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Abstract

We develop a framework for joint constraints on the CO luminosity function based on power spectra (PS) and
voxel intensity distributions (VID) and apply this to simulations of CO Mapping Array Pathfinder (COMAP), a
CO intensity mapping experiment. This Bayesian framework is based on a Markov chain Monte Carlo
(MCMC) sampler coupled to a Gaussian likelihood with a joint PS + VID covariance matrix computed from a
large number of fiducial simulations and re-calibrated with a small number of simulations per MCMC step. The
simulations are based on dark matter halos from fast peak patch simulations combined with the LCO(Mhalo)
model of Li et al. We find that the relative power to constrain the CO luminosity function depends on the
luminosity range of interest. In particular, the VID is more sensitive at large luminosities, while the PS and
the VID are both competitive at small and intermediate luminosities. The joint analysis is superior to using
either observable separately. When averaging over CO luminosities ranging between � :–L L10 10CO

4 7 , and
over 10 cosmological realizations of COMAP Phase 2, the uncertainties (in dex) are larger by 58% and 30% for
the PS and VID, respectively, when compared to the joint analysis (PS + VID). This method is generally
applicable to any other random field, with a complicated likelihood, as long a fast simulation procedure is
available.
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1. Introduction

Intensity mapping (Madau et al. 1997; Battye et al. 2004;
Peterson et al. 2006; Loeb & Wyithe 2008) appears promising
for mapping large 3D volumes cheaply in a relatively short
period of time, using specific bright emission lines as matter
tracers. This is an interesting avenue for advancing precision
cosmology, with a multitude of ongoing efforts (Kovetz et al.
2017), following on the successes of the CMB field in the last
few decades. One such line intensity mapping experiment
currently under construction is called the CO Mapping Array
Pathfinder (COMAP; Cleary et al. 2016; Li et al. 2016), which
aims to observe frequencies between 26 and 34 GHz,
corresponding to redshifted CO line emission from the epoch
of galaxy assembly (redshifts between z=2.4 and 3.4) for the
CO J=1l0 line at 115 GHz rest frequency, and CO
emission from the epoch of reionization (z=5.8–6.7) for the
CO J=2l1 line at 230 GHz rest frequency.

One important scientific target for studying and under-
standing the epoch of galaxy assembly, the main goal of the
first COMAP phase, is the so-called CO luminosity function,
which measures the number density of CO emitters as a
function of luminosity. Several methods for extracting this
function from real data have already been suggested in the
literature, the most prominent being the power spectrum (PS)
approach, for instance as implemented by Li et al. (2016). A

second complementary method is the one-point function, or
voxel intensity distribution (VID), (( )T , as suggested by
Breysse et al. (2016, 2017).
In this paper, we consider the prospect of combining the VID

and PS approaches when constraining the CO luminosity
function, and we study this approach within the context of the
COMAP experiment. To do so, we first define a joint likelihood
that includes both the VID and the PS and construct a joint
covariance matrix for both observables. This covariance matrix
is constructed from a large set of dark matter (DM) light-cone
halo catalogs from so-called “peak patch” cosmological
simulations (Bond & Myers 1996, Stein et al. 2019), coupled
to an empirical LCO(Mhalo) model (Li et al. 2016) that infers CO
luminosities, LCO, from DM halo masses, Mhalo. We then
investigate the posterior distribution of the resulting model
parameters for each of the first two anticipated phases of the
COMAP experiment (see Table 1). Finally, we compare the
constraints on the CO luminosity function derived from joint
PS and VID measurements to those obtained from the PS or
VID separately.

2. Idealized Simulations of the COMAP Experiment

We start our discussion by reviewing some central properties
of the COMAP experiment, focusing in particular on those
required for generating representative yet computationally
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affordable simulations. For convenience, these properties are
summarized in Table 1.

In Phase 1, COMAP will employ a single telescope equipped
with 19 single-polarization detectors, each with 512 frequency
channels with width δν≈15.6 MHz10 covering frequencies
between 26 and 34 GHz. The system temperature is expected to
be around Tsys≈40 K and the angular resolution corresponds
to a Gaussian beam with 4′full width at half maximum
(FWHM). We anticipate two years of observation time
targeting a single field of 1°.5×1°.5 close to the north celestial
pole, and we assume a conservative observing efficiency of
35% for a total of 6000 hr of total integration time on the field.

In Phase 2, the experiment will be expanded to five
telescopes with the same setup as in Phase 1 and will observe
for three additional years. In this phase, we assume that the
observation time will be split between four fields of the same
size as in Phase 1. The two COMAP phases will be referred to
as COMAP1 and COMAP2 in the following.

2.1. Noise

The simulations used in this work consist of two components
only, namely the target CO signal and random white noise with
properties corresponding to the parameters described above.
Explicitly, the noise per voxel is given by

T
U EO U EO

� � ( )T T N

e N
, 1T

sys sys pixels

tot obs feeds

where Tsys is the system temperature, τ is the observation time
per pixel, τtot is the total observation time, eobs is the
observation efficiency, Nfeeds is the number of feeds, Npixels is
the number of pixels, and δν is the frequency resolution. This
gives us σT≈11 μK and 8 μK for the COMAP1 and
COMAP2 phases, respectively. For simplicity we assume that
the noise is evenly distributed over all voxels.

A voxel is the 3D equivalent of a pixel. Two of the
dimensions correspond to a regular pixel on the sky, while the
third dimension corresponds to a small range of redshifts from
where line emission would redshift into a given frequency bin
of our instrument.

Both instrumental systematics and astrophysical foreground
contamination are neglected in the following. However, since
our estimator is inherently simulation based, these effects can
be added at a later stage when a sufficiently realistic instrument

model is available. For discussion of foreground contamination
in similar line intensity surveys see, e.g., da Cunha et al.
(2013), Breysse et al. (2015, 2017), and Chung et al. (2017).

2.2. DM Simulations

The signal component is based on the peak patch DM halo
approach described by Bond & Myers (1996) and Stein et al.
(2019), coupled to the LCO(Mhalo) model presented by Li et al.
(2016). Additionally, we adopt the same cosmological para-
meters as the Li et al. (2016) analysis for the DM simulations:
Ωm=0.286, ΩΛ=0.714, Ωb=0.047, h=0.7, σ8=0.82,
and ns=0.96.
The DM simulations in this paper were created using the

peak patch method of Bond & Myers (1996) and Stein et al.
(2019). To cover the full redshift range of the COMAP
experiment we simulated a volume of (1140Mpc)3 using a
particle-mesh resolution of Ncells=40963. Projecting this onto
the sky results in a 9°.6×9°.6 field of view covering the
redshift range 2.4<z<3.4, with a minimum DM halo mass
of 2.5×1010Me.
The resulting halo catalog contains roughly 54 million halos,

each with a position, velocity, and mass. The peak patch
method can simulate continuous light cones on-the-fly, so
stitching snapshots together was not required to create the light
cone. Although peak patch simulations result in quite accurate
halo masses, the DM halo catalogs were additionally mass
corrected by abundance matching along the light cone to
Tinker et al. (2008) to ensure statistically the same mass
function as the simulations used in the Li et al. (2016) analysis.
For a detailed study of the clustering properties of peak patch
simulations and other approximate methods, see Lippich et al.
(2019), Blot et al. (2018), and Colavincenzo et al. (2019).
A single run required 900 s of computation time on 2048

Intel Xeon EE540 2.53 GHz CPU cores of the Scinet-GPC
cluster, with a memory footprint of ;2.4 TB. This efficiency of
the peak patch method allowed for 161 independent realiza-
tions of the full 1140Mpc, �N 4096cells

3 volume, taking a
total computation time of only ∼82,000 CPU hours, over three
orders of magnitude faster when compared to an N-body
method of equivalent size.

2.3. Converting to CO Brightness Temperature

There are many approaches in the literature for estimating
the expected CO signal based on DM halos (e.g., Righi et al.
2008; Obreschkow et al. 2009; Visbal & Loeb 2010; Carilli
2011; Gong et al. 2011; Lidz et al. 2011; Fu et al. 2012; Carilli
& Walter 2013; Pullen et al. 2013; Breysse et al. 2014; Greve
et al. 2014; Mashian et al. 2015; Li et al. 2016; Padmanabhan
2018), with resulting estimates of the CO luminosities spanning
roughly an order of magnitude.
Here we adopt the model described by Li et al. (2016) to

convert from simulated light cones populated with DM halos to
observed CO brightness temperature. This model is defined by
a set of parametric relations between DM halo masses, star
formation rates (SFR), infrared (IR) luminosities, LIR, and CO
luminosities, LCO.
The model uses the results from Behroozi et al. (2013a,

2013b) to obtain average SFR from DM halo masses and adds
an additional log-normal scatter on top of the average,
determined by σSFR. IR luminosities are then obtained through

Table 1
Experiment Setup for the Two COMAP Phases

Parameter COMAP1 COMAP2

System temperature, Tsys [K] 40 40

Number of feeds 19 95
Beam FWHM (arcmin) 4 4
Frequency band [GHz] 26–34 26–34
Channel width, EO (MHz) 15.6 15.6
Observing time [hr] 6000 9000
Noise per voxel [μK] 11.0 8.0
Field size [deg2] 2.25 2.25
Number of fields 1 4

10 Higher spectral resolutions are available, but these are most likely useful
only for systematics mitigation rather than science due to limited signal-to-
noise per voxel.
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the relation

E� q � ( )LSFR 10 . 2MF
10

IR

Further, to obtain CO luminosities, the relation

B C� a � ( )L Llog log 3IR CO

is used before a second round of log-normal scatter is added,
determined by the parameter TLCO.

This gives us a LCO(Mhalo) model with five free parameters,
R T E B C T� { }, log , , , LSFR MF CO . The relation between LCO and
Mhalo for our fiducial model parameters is shown in Figure 1.
For more discussion of the physical and observational
motivation for this model, see the original paper, Li et al.
(2016).

This model is applied to each DM halo separately and we
create high-resolution maps from the resulting CO luminosities
by converting the total luminosity in a given voxel into
brightness temperature. These maps were created using the
publicly available limlam_mocker code.11 Next, we con-
volve these maps with the (Gaussian) instrumental beam
profile, degrade to the low-resolution voxel size used in the
analysis, and, finally, we add Gaussian uncorrelated noise with
standard deviation σT, as specified above.

3. Algorithms

The ultimate goal of this work is to constrain cosmological
and astrophysical parameters from CO line intensity observa-
tions. The computational engine for this work is a standard
Metropolis Markov chain Monte Carlo (MCMC) sampler (see,
e.g., Gilks et al. 1995), coupled to a posterior distribution with
a corresponding likelihood and prior. For this task to be
computationally tractable, though, the full CO line intensity
data set must first be compressed to a smaller set of observables

that may be modeled in terms of the desired astrophysical
parameters, fully analogous to how CMB sky maps are
compressed to a CMB power spectrum from which cosmolo-
gical parameters are derived (e.g., Bond et al. 2000). As
described above, we adopt the power spectrum and the VID as
representative observables, each of which may be approxi-
mated in terms of multivariate Gaussian random variables.
However, in order to perform a joint analysis of these two
observables, we need to construct their joint covariance matrix,
and that is the primary goal of this section. Before doing
that, however, we review for completeness each observable
individually, and our posterior sampler of choice, referring to
relevant literature for full details.

3.1. The Power Spectrum

The estimated power spectrum, P(ki), is calculated simply by
taking the 3D Fourier transform of the temperature cube,
binning the absolute squared values of the Fourier coefficients
according to the magnitude of corresponding wave number k,
and averaging over all the contributions within each bin. For a
Gaussian map, the Fourier components within each bin follow
a perfect normal distribution with mean zero and variance
given by the value of the power spectrum. For a non-Gaussian
field, the distribution of the Fourier components is more
complicated, and thus the power spectrum does not contain all
the statistical information in the map. We expect the CO signal
to form a highly non-Gaussian map, therefore, in this paper we
simply consider the power spectrum as a useful observable that
carries some, but far from all, of the statistical information in
the map.
As an observable, the power spectrum needs to be

accompanied by a covariance matrix Y w ( ( ) ( ))P k P kCov ,ij
P

i j

in the analysis, since there are correlations between the power
spectrum at different k values.

3.2. The Voxel Intensity Distribution

We consider the VID as another observable, complementary
to the PS and more closely related to the luminosity function.
Unlike in many other works on (( )D analysis (e.g., Lee et al.

2009; Glenn et al. 2010; Vernstrom et al. 2014; Breysse et al.
2017; Leicht et al. 2019), we do not try to estimate the VID
analytically, rather we estimate it based on simulations. This
allows us to fully take into account the effects of the beam,
clustering, and covariance between temperature bins in a very
straightforward manner.
We consider two contributions to the VID, namely the CO

signal itself and the instrumental noise. Together they result in
the the full probability distribution of voxel temperatures,
(( )T , where T is the observed brightness temperature from a
voxel. Since we assume the noise to be uniformly distributed
over all voxels in the observed field and assume that the CO
signal itself is statistically homogeneous and isotropic, the total
probability distribution, (( )T , is the same across all voxels.
The basic observable related to the VID are the temperature

bin counts (i.e., the histogram of voxel temperatures), Bi. The
expectation value of these are given by the VID itself,

(¨� § �
� ( ) ( )B N T dT , 4i

T

T

vox
i

i 1

where Nvox is the number of voxels observed and Bi is the
number of voxels with a temperature between Ti and Ti+1.

Figure 1. Plot of CO luminosity, LCO, as a function of dark matter halo mass,
Mhalo, in the Li et al. (2016) model. Here, T E B C T �( ), log , , , LSFR MF CO
( )0.3, 0.0, 1.17, 0.21, 0.3 (our fiducial model), and we have evaluated the
function at redshift 2.9. The solid line corresponds to the mean relation with no
scatter added, while the shaded region corresponds to the 95% confidence
intervals after adding log-normal scatter at the two appropriate steps.

11 https://github.com/georgestein/limlam_mocker
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If the temperatures of all the voxels that we sample were
completely independent, then each of the voxel bins would be
approximately independent and would follow a binomial
distribution with variance � � § � � §( ) ( )B B B NVar 1i i iind vox .
However, even in this ideal case they would not be perfectly
independent. We only have a finite number of voxels, and,
therefore, if one bin contains a number of voxels above
average, then the other bins must have a number lower than
average.

In general, the samples will not be independent for many
reasons, including correlated sky or noise structures and
processing effects, and we therefore need the full covariance
matrix between bins, Y w ( )B BCov ,ij

B
i j . This covariance matrix

will depend on the DM density field, the CO bias, and the
luminosity function, and we will estimate it using simulations.

3.3. The Joint PS+VID Covariance Matrix

The main missing component in the above method is
definition of a joint power spectrum and VID covariance
matrix. By having access to the computationally cheap yet
realistic Monte Carlo simulations described above, we can
approximate this matrix with simulations. In addition to giving
us covariance matrices to do our analysis, this also allows us to
check under what conditions the full covariance matrix is
necessary and when we can get away with assuming that
individual samples are independent.

In this paper, we start with 161 independent simulated light-
cone cubes of DM halos, each covering about 9°.6×9°.6 on
the sky and a frequency range between 26 and 34 GHz,
corresponding to redshifts between 2.4 and 3.4. The frequency
dimension is divided equally into 512 frequency bins, each
spanning δν≈15.6MHz, corresponding to a redshift resolu-
tion of δz≈0.002. Since the COMAP field only spans
1°.5×1°.5 on the sky, we sub-divide each of the 9°.6×9°.6
light-cone cubes, after beam convolution, into 36 square fields,
each covering 1°.5×1°.5 , resulting in a total of 5796 semi-
independent sky realizations. The final pixelization of these
maps is a 22×22 grid of square pixels, resulting in a pixel size
of ER x a4.1. To these maps, we add uniformly distributed
white noise at the appropriate levels for the COMAP1 and
COMAP2 experiment setups described above.

When choosing the pixel size to use for the analysis, we
follow Vernstrom et al. (2014). They show that, for (( )D
analysis, choosing a pixel size to be equal to the FWHM of the
beam is a good tradeoff between picking a small pixel size to
include the maximal information, and choosing a larger pixel
size to reduce the pixel to pixel correlations induced by
the beam.

We combine our two observables into a joint one-
dimensional vector of the form

� ( ) ( )d P B, , 5i k ii

where Pki is the binned power spectrum and Bi are the
temperature bin counts. Let us first consider the ideal case in
which all elements in this vector are independent and the
Fourier components are approximately Gaussian. In that case
we can compute the expected variance, which we will simply
call the independent variance, analytically,

� � §( ) ( ) ( )P P N kVar , 6k k iind
2

modesi i

� � § � � § x � §( ) ( ) ( )B B B N BVar 1 , 7i i i iind vox

where Nmodes(ki) is the number of modes in the ith k bin and
where we have introduced the notation Varind(di) for this
conditionally independent variance.
With this notation in hand, we define a “pseudo-correlation

matrix” as

Y
w

( ) ( )
( )c

d dVar Var
, 8ij

ij

i jind ind

where, as in Section 3.4, ξij is the full covariance matrix. Note
that cij is the exact correlation matrix in the limit that Varind(di)
is the true full variance. An important advantage of the pseudo-
correlation matrix, however, is the fact that Varind(di) may be
estimated directly from the average data itself, and this is
required for our MCMC procedure to be sufficiently fast.
The full covariance matrix ξ is estimated for the model

described by Li et al. (2016), adopting the fiducial parameters
θ0, using the set of 5796 simulations described above.
However, for the MCMC sampler described in Section 3.4,
we actually need the full covariance matrix, corresponding to
different model parameters θ, at each step in the Markov chain.
Generating the full covariance matrix with the above procedure
at each MC step is clearly not computationally feasible and we
therefore need to approximate this somehow.
With regard to this last point, we introduce the following

proposal: we assume that the full covariance matrix scales,
under a change of model parameters from θ0 to θ, the same way
as the independent variance, Varind(di),

Y R Y Rx
R R

R R
ˆ ( ) ( )

( ) ( )
( ) ( )

( )
d d

d d

Var Var

Var Var
, 9ij ij

i j

i j

0
ind ind

ind ind
0 0

where R ( )dVar iind
0 is the independent variance for the fiducial

model and R ( )dVar iind is the independent variance for arbitrary
parameters θ. Since this latter function only depends on the
average quantities � §di , it is computationally straightforward to
compute Y Rˆ ( )ij at any position in an MCMC sampler. Note also

that Y Rˆ ( )ij is, by construction, positive definite, as required for a
proper covariance matrix.
For a noise-dominated experiment, where all samples

are approximately independent, the independent variance,
Varind(di), is the correct variance and Equation (9) is the
correct scaling of the covariance matrix. However, we use this
scaling as a first approximation even in cases where there is
some covariance in the data.
Intuitively, Equation (9) is equivalent to postulating that the

pseudo-correlation matrix, cij, is approximately constant (i.e.,
independent of the specific parameters in question). For real-
world applications, we recommend testing this assumption
explicitly by computing the covariance matrix by brute force
simulation for a few extreme parameter combinations drawn
from the Markov chains produced during the analysis.
The above prescription applies straightforwardly to single-

field observations as, for instance, planned for COMAP1. In
contrast, COMAP2 will, under our assumptions, span N=4
independent but statistically identical fields. Since the mean
vector of observables evaluated across those four fields equals
the average of the four corresponding independent observable
vectors, the full covariance matrix is simply given by the
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single-field covariance matrix divided by the number of fields:

Y �
Y ( ). 10ij

N
N

field ij
1 field

Note that cij then, assuming the fields are of the same size, only
depends on the noise level per field, so for a given noise level
per field, cij is independent of the number of fields.

Finally, we note that the total number of degrees of freedom
in our joint PS+VID statistic is in this paper equal to 45,
corresponding to 20 power spectrum bins and 25 VID bins. For
this number of degrees of freedom, a set of 5796 (semi-
independent) simulations provides a very good estimate of all
numerically dominant components of the covariance matrix,
including both the diagonal and the leading off-diagonal
modes, and ξij is well conditioned.

3.4. Posterior Mapping by MCMC

As previously mentioned, we use an MCMC algorithm to
sample from the posterior distribution of the LCO(Mhalo) model
parameters, R T E B C T� { }, log , , , LSFR MF CO . This posterior dis-
tribution is, as usual, given by Bayes’ theorem,

R R Rr( ∣ ) ( ∣ ) ( ) ( )P d P d P , 11i

where d represents our compressed data set, R( ∣ )P d is the
likelihood defined below, and P(θ) is some set of priors. We
use the emcee package (Foreman-Mackey et al. 2013) and its
implementation of an affine-invariant ensemble MCMC
algorithm, with 142 walkers.

We use a burn-in period of 1000 steps, and use the next 1000
steps for the posterior estimation.

We assume a Gaussian likelihood for our observables di of
the form (up to an additive constant)

�R Y Y� � � � § � � § ��( ∣ ) [ ]( ) [ ] ∣ ∣ ( )P d d d d d2 ln ln , 12
ij

i i ij j j
1

where the means � §di depend on the model parameters θ, and
the covariance matrix ξij is approximated by the expression
given in Equation (9). (Note that we do not need to assume that
the low-level data are Gaussian, but only that the compressed
observables may be well approximated by a multivariate
Gaussian distribution. Due to the central limit theorem, this is
in practice very often an excellent approximation.)

For both the power spectrum and the low and intermediate
temperature VID bins, for which there is a large number of
voxel counts per bin, this Gaussian approximation holds to a
high degree. However, for the highest VID temperature bins,
where there are only a few voxel counts per bin, the discrete
nature of the bin count may become relevant and the full
binomial distribution should, in principle, be taken into
account. However, this effect can also be easily remedied by
increasing the bin width, albeit at the cost of a slight loss of
information, as is suggested in Vernstrom et al. (2014), and we
therefore neglect it in the following, since our primary focus is
the dominant Gaussian component of the likelihood. A more
thorough analysis may take this issue into account either
analytically or by simulations.

An advantage of using a Gaussian likelihood for the VID is
that it gives us a straightforward way to take into account the
correlations between temperature bins apparent in the

covariance matrix, ξij (e.g., in Figure 2). For another approach
to building up a (( )D likelihood, see Glenn et al. (2010).
To estimate � §di , we compute 10 maps of the survey volume

at each step in the MCMC chain using the current model
parameters θ with different DM halo realizations (randomly
drawn from 252 independent catalogs corresponding to the
survey volume). The specific number of realizations, 10 in our
case, represents a compromise between minimizing the sample
variance in the estimate of � §di and maintaining a reasonable
computational cost per MC step. Finally, we bin all of the halos
in the 10 realizations according to their luminosity and use this
histogram to estimate the luminosity function at the current
values of θ. This way the MCMC procedure gives us the
luminosity function at different points in parameter space,
sampled according to the posterior of the model parameters,
which we can use to derive constraints on the luminosity
function itself.
We adopt the same physically motivated priors as discussed

by Li et al. (2016). Specifically, these read

&T �( ) ( ) ( )P 0.3, 0.1 13SFR

&E �( ) ( ) ( )P log 0.0, 0.3 14MF

&B �( ) ( ) ( )P 1.17, 0.37 15

&C �( ) ( ) ( )P 0.21, 3.74 16

&T �( ) ( ) ( )P 0.3, 0.1 , 17LCO

where & N T( ), corresponds to a Gaussian distribution with
mean μ and standard deviation σ. Additionally, we require
the two logarithmic scatter parameters, σSFR and TLCO, to be
positive. We choose the mean of all these distributions as the
fiducial model, θ0.
To quantify the importance of joint PS+VID analysis, we

perform the above analysis both with each observable
separately and with the joint analysis. The main result in this
paper may then be formulated in terms of the relative
improvement on the CO luminosity function uncertainty
derived from the joint analysis to those found in the
independent analyses.
When calculating our observables (PS and VID), we assume

that our survey volume can be treated as a rectangular grid of
voxels with constant co-moving volume. We also neglect the
evolution of our observables over redshifts between z=2.4
and 3.4. That is, we assume that samples from different
redshifts are drawn from the same distribution, whether they
are power spectrum modes or voxel temperatures. We also
assume that the instrument beam is achromatic and is equal to
the value at the central frequency. This is of course just an
approximation that we make in order for the analysis to be
simple. If we were doing experiments with higher signal to
noise, we might divide our data into two different redshift
regions and do an independent analysis of each region. This
could allow us to study the redshift evolution of the
observables. For COMAP (1 and 2), however, we are probably
best off combining all the data, like we do here, in order to
increase the overall signal to noise.
Finally, since COMAP will not measure absolute zero levels,

we subtract the mean from all maps. For the power spectrum,
this has a negligible impact, as it simply removes one out of
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Nvox modes. However, it has a significantly higher impact for
the VID. Specifically, it makes it much harder to distinguish a
potential background of weak sources from noise. Indeed, as

shown by Breysse et al. (2017), removing the monopole makes
it much harder to detect a possible low luminosity cutoff in the
CO luminosity function using the VID.

Figure 2. Estimated pseudo-correlation matrix of observables di, � ( ) ( ( ) ( ) )c d d d dCov , Var Varij i j i jind ind , based on simulated maps with and without noise. The
first block in each matrix corresponds to the power spectrum and the second block to the VID. Top: signal plus white noise corresponding to the COMAP1 experiment
(T Nx 11 Kvoxel ). Middle: signal plus white noise corresponding to the COMAP2 experiment (T Nx 8 Kvoxel ). Bottom: signal alone. Note that here we have changed
the color scale. Left: covariance matrices without beam smoothing. Right: covariance matrices with R � a4FWHM beam smoothing.
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4. Results

We are now ready to present the main numerical results from
our analysis, starting with an inspection of the joint PS+VID
covariance matrix itself.

4.1. Visual Inspection of the PS+VID Covariance Matrix

Figure 2 shows the pseudo-correlation matrices, cij, for our
two experimental setups, as well as for pure signal alone, for
reference. In order to illustrate the effect of the beam, we show
covariance matrices from maps both without and with beam
smoothing in the left and right columns, respectively.

The first thing to notice is that instrumental noise
significantly reduces the numerical values of the normalized
covariance matrices, bringing it closer to the independent white
noise case for which cij=δij. This agrees with intuition, since
the noise itself is white and uncorrelated.

Beam smoothing also leads to weaker correlations. This is
mainly due to the beam diluting the signal at small scales,
where the correlation is otherwise strongest.

Next, we notice that the cross-correlations between the
power spectrum and VID are of the same order of magnitude as
the correlations internal to each observable itself. Thus, it is
essential to account for all these correlations in any joint PS and
VID analysis, as is done in the present paper.

Finally, we note that when designing an experiment like
COMAP, one of the important trade-offs involves observation
time per field. To obtain a fast signal detection it is in general
advantageous to observe deep on the smallest possible field.
However, this only holds true while the signal-to-noise per
voxel is significantly less than unity. When the noise starts to
become comparable to the signal, the signal-induced voxel–
voxel correlations starts to become important, and the effective
uncertainties no longer scale as ' U( )1 , where τ is the
observation time per pixel. Generally, in such a tradeoff, any
significant correlations between different power spectrum
modes or voxel temperatures will tend to favor larger survey
area or multiple fields, both effectively leading to more
independent samples, and thereby higher overall integration
efficiency.

4.2. Luminosity Function Constraints

We are now ready to present both individual and joint PS
+VID constraints on the CO luminosity function, which are
summarized in Figure 3 for COMAP1 (left column) and
COMAP2 (right column). The top row shows the constraints
obtained from the power spectrum alone; the middle row shows
the constrains obtained from the VID alone; and the third row
shows the constraints from the joint analysis. In each panel, the
shaded colored region shows the 95% credibility region from
the MCMC samples and the solid line with the same color
shows the posterior median. The purple solid line shows the
average luminosity function obtained from the mean of all
available halo catalogs, and thus represents the ensemble
average of our input model. Note that the colored regions
correspond to one single realization and the uncertainties
therefore contain contributions from instrumental noise, cosmic
variance, and sample variance. The agreement between the
estimated confidence regions and the ensemble mean is quite
satisfactory in all cases, with uncertainties that appear neither
too large nor too small.

Considering first the individual PS and VID estimates,
shown in the top two rows, we see that the two observables are
indeed complementary. In particular, the VID primarily
constrains the high luminosity end of the luminosity function,
while the power spectrum imposes relatively stronger con-
straints on the low luminosity end. This makes sense
intuitively, since the VID is essentially optimized to look for
strong outliers above the noise, whereas the power spectrum
represents a weighted mean across the full field for each
physical scale. It is interesting to note, however, that the VID
provides, on average, stronger constraints on the luminosity
function than the power spectrum does.
Due to this complementarity, the joint estimator provides the

strongest constraints of all. To make this point more explicit,
the fourth row compares the uncertainties of the independent
power spectrum and VID analyses to the joint constraints. Of
course, there is a significant amount of cosmic variance in each
of these functions and the precise numerical value of the
uncertainty ratio therefore varies significantly with luminosity;
but the mean trend is clear: The individual analyses typically
result in 20%–70% larger uncertainties than the joint analysis
when averaged over luminosities between LCO=104–107 Le.
Over 10 cosmological realizations, the PS and VID resulted in,
on average, 58% and 30% larger uncertainties (in dex)
individually, than the joint analysis. This is the main novel
result presented in this paper.

4.3. Posterior Distribution of Model Parameters

Lastly we present the constraints of the model parameters
themselves. When doing the MCMC posterior mapping we
explore the parameter space of the Li et al. (2016) LCO(MHalo)
model. Figure 4 shows the posterior distribution for these
parameters derived from one realization of the COMAP2
experiment (the same realization as the COMAP2 results in
Figure 3).
Results for PS, VID, and joint PS+VID analysis are shown

in blue, red, and black, respectively. Prior distributions are
shown in green. The two curves of each color correspond 68%
and 95% credibility regions.
We see that the two parameters that are mainly constrained

are α and β, the two parameters from the average LCO–LIR
relation. These two parameters are fairly degenerate, and the
direction in which they are degenerate is given roughly by the
line α=−0.1β + 1.19 (Li et al. 2016). In Figure 5, we show
the luminosity function for different points on this line. For the
figure, the values of T T, LSFR CO, and Elog MF are fixed at 0.3,
0.3, and 0.0, respectively. Although the overall signal strength,
at least in terms of detectability, is fairly constant along this
line, the shape of the luminosity function changes significantly.
Lower values of alpha imply a more steep power-law relation
between LCO and LIR leading to more sources with very high or
very low luminosities. We see this as a flattening of the
luminosity function. In such a case, a larger fraction of the
overall signal will be given by high-luminosity sources.
The other parameter that is also slightly constrained is the

log-normal scatter parameter from the LCO–LIR relation, TLCO.
This parameter is only slightly more constrained compared to
the prior, with the highest values of TLCO being disfavored. The
posterior of the other scatter parameter, σSFR, is basically given
by the corresponding prior (i.e., this parameter is not very well
constrained by the experiment), although, as expected from the
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Figure 3. Constraints on the luminosity function from simulated experiments COMAP1 (left) and COMAP2 (right). The shaded area corresponds to 95% credibility
intervals, solid lines correspond to the median, while the purple curve corresponds to the average luminosity function derived from all the available halo catalogs (i.e.,
the ensemble mean). Top row: constraints derived using only the power spectrum ( )P ki as the observable. Middle row: constraints derived using only the temperature
bin counts Bi as the observable. Bottom row: constraints derived by a joint analysis using both the power spectrum ( )P ki and the temperature bin counts Bi as
observables. Bottom: comparison of the uncertainty of the luminosity function constraints in dex, i.e., %' w ' � 'log log10 97.5% 10 2.5%.
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fact that the scatter parameters have basically the same effect,
we see signs of the degeneracy between them in the posterior.

Interestingly, the normalization parameter in the SFR–LIR
relation, Elog MF, actually has a posterior that is wider than the
prior. This may be because the best fit of this parameter from
each of the different patches have an intrinsic scatter larger than
the scatter in the prior. We note that we see the same effect in
Li et al. (2016; their Figure 7).

From the mean relations in the Li et al. (2016) model, we
have log LCO∼−β−log δMF. Intuitively, we would then
expect Elog MF to be completely degenerate with β. However,
since the SFR–LIR is much better constrained by observations
than the LCO–LIR relation, the prior on Elog MF is much tighter
than the one on β. The degeneracy thus prevents us from

constraining E Cuntillog MF is constrained to a comparable
level.

5. Discussion

We have developed a joint power spectrum and VID analysis
for the CO luminosity function in the context of the COMAP
CO intensity mapping experiment. We have implemented an
efficient approach to estimating the joint covariance matrix for
these two observables and have shown that accounting for both
one- and two-point correlations leads to 20%–70% smaller
uncertainties on the CO luminosity function for both COMAP1
and COMAP2.
The critical computational engine in our approach is the

construction of fast yet semi-realistic simulations of the signal

Figure 4. Posterior distributions for the Li et al. (2016) model parameters for a single realization of the COMAP2 experiment (the same realization as the COMAP2
results in Figure 3). Results for PS, VID, and joint PS+VID analysis are shown in blue, red, and (slightly bolder) black, respectively. Prior distributions are shown in
green. The two curves of each color correspond to 68% and 95% credibility regions. The numbers on top of each column correspond to the 68% credibility interval for
each parameter from the PS+VID analysis. We see that while the posterior of the two scatter parameters, TSFR and TLCO, is mostly set by the prior, the posterior on

Elog MF, from the SFR–LIR relation, is actually slightly wider than the prior, suggesting a significant intrinsic scatter in estimates of this parameter. These results are
consistent with the corresponding results in Figure 7 in Li et al. (2016). The two parameters that are actually strongly constrained by the simulated experiment are α
and β, the two parameters from the –L LCO IR relation, and this figure shows that, at least for this realization, the constraints on these two get significantly improved in
the combined analysis (PS+VID) as compared to analysis using the individual observables. This figure was created using the publicly available code (https://github.
com/dfm/corner.py) corner (Foreman-Mackey 2016).

9

The Astrophysical Journal, 871:75 (11pp), 2019 January 20 Ihle et al.

https://github.com/dfm/corner.py
https://github.com/dfm/corner.py


in question. These simulations are based on the computation-
ally cheap peak patch DM halo simulations produced by Bond
& Myers (1996) and Stein et al. (2019), coupled to the semi-
analytic CO luminosity model of Li et al. (2016). Of course, the
results we derive are correspondingly limited by how well the
model reproduces the true cosmological signal. If the true
signal is significantly more complex than the model predicts,
the constraints in Figure 3 will not be reliable.

The strength of the constraints on the CO luminosity
function will depend on the overall level of the CO signal,
which is highly uncertain. However, given the same rough
level of signal, we expect the constraints on the luminosity
function at the high luminosities to be less model dependent
than the constraints on the LCO–Mhalo relation or the luminosity
function at lower luminosities. This is because the high-
luminosity sources leave a fairly unique imprint on the maps
that does not depend on the specific model used.

Additionally, we expect that the relative merits of using the
PS or the VID as observables will change depending on the
properties of the signal. In particular, anything that increases
the shot noise of the signal, like a a strong galactic duty cycle, a
large intrinsic scatter in luminosities or just a more top-heavy
luminosity function, will make the resulting map more non-
Gaussian, tending to favor observables like the VID more as
compared to the PS. We can see this effect directly in Figure 4.
The VID is better, compared to the PS, at ruling out low values
of α and high values of TLCO, both of which correspond to cases
where we would have a more top-heavy luminosity function
and thus more shot noise.

We also expect the map to be more non-Gaussian on small
scales than on large, so a wide survey with low resolution will
tend to favor the PS, relative to the VID, more than a narrower
high-resolution survey.

While the issues of model dependence are less relevant for
low signal-to-noise measurements, where we are just trying to
establish the rough level of the signal, they will become more
important as the measurements improve.
Another potential issue with the simulations used in this

paper is the minimum DM halo mass of q :M2.5 1010 . While
the model used here predicts that only a small fraction of the
CO signal would come from halos lighter than this (see Li et al.
2016 and Chung et al. 2017), other models could disagree. If
fact, searching for a low luminosity cutoff in the CO luminosity
function is an interesting target for CO intensity mapping, and
simulated halo catalogs with a smaller minimum DM halo mass
would be useful both for forecasts and inference in such a
scenario.
In general, it will be important to continuously improve the

simulation pipeline as the experiment proceeds in order to
account for more and more cosmological, astrophysical, and
instrumental effects. However, the most important point in our
approach is the fact that all such effects may be seamlessly
accounted for, as long as the simulation procedure is
sufficiently fast in order to be integrated into the MCMC
procedure.
It should also be noted that our approach may be generalized

in many different directions. For instance, the CO luminosity
function does not play any unique role in our analysis, but is
rather simply one specific worked example of a particularly
interesting astrophysical function to be constrained. Many other
functions may be constrained in a fully analogous manner,
including, for instance, non-parametric LCO(Mhalo) models, or
any of the parameters that are involved in converting the DM
halo distributions to CO luminosities. The method is also not
specific to CO intensity mapping, but should be equally well
suited for other lines, or a combination of lines (Chung et al.
2018). Indeed, it should work for any type of random fields for
which the covariance matrix must be estimated by simulations.
Finally, we also note that there is nothing special about the
power spectrum or VID as observables, but any other efficient
data compression can be equally well included in the analysis,
as long as the required compression step is sufficiently
computationally efficient.

Support for the COMAP instrument and operation comes
through the NSF cooperative agreement AST-1517598. Parts
of this work were performed at the Jet Propulsion Laboratory
(JPL) and California Institute of Technology, operating under a
contract with the National Aeronautics and Space Administra-
tion. H.T.I., H.K.E., M.K.F., and I.K.W. acknowledge support
from the Research Council of Norway through grant 251328.
Research in Canada is supported by NSERC and CIFAR.
These calculations were performed on the GPC supercomputer
at the SciNet HPC Consortium. SciNet is funded by the Canada
Foundation for Innovation under the auspices of Compute
Canada; the Government of Ontario; Ontario Research Fund—
Research Excellence; and the University of Toronto. Work at
Stanford University is supported by NSF AST-1517598 and by
a seed grant from the Kavli Institute for Particle Astrophysics
and Cosmology. J.O.G. acknowledges support from the Keck
Institute for Space Studies, NSF AST-1517108, and the
University of Miami. H.P.’s research is supported by the
Tomalla Foundation.

Figure 5. Plot of the CO luminosity function in the Li et al. (2016) model for
different values of α and β. The colors of the lines indicate the values of α, the
values of T T E, and logLSFR MFCO are fixed at 0.3, 0.3, and 0.0, respectively,
while the value of β is determined from the relation B C� � �0.1 1.19. This
line corresponds roughly to the direction along which α and β are degenerate.
Although the overall detectability of the signal remains roughly constant along
this line, we see that the shape of the luminosity function changes significantly.
We see that lower values of α correspond to less steep high-luminosity tails in
the luminosity function, meaning that a larger proportion of the overall signal
comes from high-luminosity sources.
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