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Abstract—This paper considers energy disaggregation at sub-
stations (EDS) where the objective is to estimate the consumption
of each load from aggregate measurements, in which whether or
not some loads are consuming power is unknown to the operator.
The existing EDS method cannot provide any reliability measure
of the disaggregation results, while the disaggregation accuracy
can vary significantly for different data due to the volatility
of loads such as the solar generation. This paper proposes a
Bayesian-dictionary-learning-based approach to disaggregate the
loads and provides an uncertainty measure of the returned
estimation. Our approach learns the probability distributions
of the load patterns and the decomposition coefficients from
recorded data with partial labels at the offline stage. In real-
time disaggregation of the obtained aggregate data, our approach
computes the mean and covariance of the probability distribution
of each load consumption, estimates the load using the mean,
and computes the uncertainty index based on the covariance.
Numerical experiments indicate that our method achieves im-
proved disaggregation accuracy over the existing EDS method,
and the uncertainty index measures the reliability of the returned
estimation accurately.

Index Terms—Energy disaggregation, behind-the-meter solar
generation, Bayesian dictionary learning, uncertainty modeling

I. INTRODUCTION

At a distribution substation, measurements are taken con-
stantly about the net power consumption of all the loads’,
such as residential loads, industrial loads, wind and solar
generations, while the power consumption of individual load
types is not directly measured. Energy disaggregation at the
substation level (EDS) wants to extract the energy consump-
tion of each type of load from the aggregated net load
measurements. The accurate consumption of each load type
is useful for distribution system planning and operations, such
as hosting capacity evaluation [1], [2], providing restoration
solutions for distribution networks [3], [4], net load forecasting
[5], [6], demand response and load dispatching [7], [8] and
dynamic Volt/Var control [9], [10]. EDS becomes increasingly
challenging due to the volatility of renewable generations such
as the behind-the-meter (BTM) solar generations.

EDS is different from energy disaggregation at the house-
hold level (EDH) [11]-[14], which is studied under the
terminology of non-intrusive load monitoring (NILM) [11]-
[17]. Most household-level electric appliances demonstrate
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'Renewable generation is also referred to as a negative “load” in this paper.

repeatable characteristics and are often single-sate or multi-
state devices. EDH methods first estimate the patterns of
individual appliances from measurements that contain one
appliance only and then identify appliances from the testing
data using these patterns. At the substation level, in contrast,
the power consumption is highly aggregated from various
types of loads. It is more challenging to obtain measurements
that only contain one type of load at the substation than the
household level and, thus, more difficult to learn the distinctive
patterns of different loads. In addition, although the operator
knows the types of loads connected to a substation, it may not
know whether all the loads are consuming power or not in a
given time window. For instance, the operator does not have
direct information about whether the BTM solar generation is
functioning or not at a particular time. In fact, identifying
the actual amount of generation by the BTM solar is an
important and challenging task. In theory, one can disaggregate
the solar generation at each household from the smart meter
and add them to obtain the total solar generation [18]. If
smart meters are not available at every home or there is
a large number of houses, solving EDS directly using the
aggregate measurements is a practical and computationally
efficient approach.

Ref. [19] is the first work to formulate the EDS as a
deterministic dictionary learning problem from so-called “par-
tially labeled aggregate data.” Note that due to the additive
features in power consumption, the problem formulated by
[19] differs from the conventional dictionary learning using
incomplete label information in image classification [20], [21].
Because some loads such as BTM solar are volatile, and
load patterns are masked in the aggregated measurements and
difficult to learn accurately, it is natural that the estimated
power consumption contains errors. The method in [19],
however, only provides an estimate of the power consumption
of each type of load and does not provide any information
about the reliability of the estimation. For the operator to
make an informative decision, it is imperative to develop
EDS methods that can provide an uncertainty measure of the
returned estimation. Moreover, the deterministic approach in
[19] does not model measurement noise explicitly, and the
disaggregation performance degrades significantly when the
noise level is high.

This paper develops a probabilistic EDS method to esti-
mate the consumption of different load types from aggregate
measurements and computes an uncertainty measure of the
disaggregation results. The proposed method includes both the
offline learning that estimates the load patterns, referred to as
dictionaries, from recorded noisy training data and the online



disaggregation that separates the consumption of each type of
load from the aggregate power consumption. The offline learn-
ing problem is formulated as a Bayesian dictionary learning
problem where given prior distributions of model parameters
and the recorded data, we compute the posterior distributions
of the dictionaries. In online disaggregation, we use the learned
distributions of the dictionaries to estimate the probability
distributions of the power consumption of each load. We also
compute an uncertainty index based on the singular values of
the covariance matrix of the estimated distribution. To the best
of our knowledge, this is the first work on EDS that provides
an uncertainty measure, which can be used to evaluate the
reliability of the disaggregation result. Moreover, our method
has a much higher disaggregation accuracy than the deter-
ministic approach in [19], especially when the measurements
are noisy. Furthermore, the performance of the deterministic
dictionary learning methods depends critically on the prior
selection of model parameters such as the dictionary size,
and the performance degrades significantly if the parameters
are not selected properly. In contrast, our method based on
Bayesian dictionary learning can learn the dictionary size from
data and is also more robust to other model parameters.

Bayesian dictionary learning [22]-[24] has been exploited
in applications like image denoising and object classification.
To the best of our knowledge, this paper is the first work that
studies the EDS problem from the perspective of Bayesian
dictionary learning. Moreover, conventional Bayesian dictio-
nary learning methods require that every training data point
belongs to exactly one class and cannot handle the case
when a training data point is the sum of multiple types of
loads. This paper provides the first formulation and solution of
Bayesian dictionary learning from partially labeled aggregate
data. Our approach learns the dictionaries of different types of
loads from aggregate data, even when the load types in each
training data sample are not fully known. This is a general
methodology and can be applied to other domains beyond
energy disaggregation, as long as the data are additive of
different classes.

A. Related Works

Both model-based and data-driven methods have been de-
veloped to estimate solar loads from the net point. The model-
based methods [18], [25]-[27] utilize parametric models to es-
timate BTM solar generation. The estimation accuracy largely
depends on the precise meteorological and geographic infor-
mation, which are not always available and may be expensive
to obtain. Data-driven methods [28]-[33] usually require high-
resolution historical load profiles. These two categories of
methods disaggregate solar load only but not other types of
loads. Refs. [34], [35], [36], [37] disaggregate different types
of loads from the feeder level at the substation, but they
develop parametric models for each load and require weather
information.

The non-intrusive load monitoring [11]-[17] studies the
energy disaggregation problem at the household level. Most of
existing methods require recorded measurements of individual
appliances to learn the typical features. Various approaches

have been proposed such as training deep neural networks
[13], [38], [39], modeling NILM as factorial hidden Markov
model [12], [40], [41], learning representative patterns by
dictionary learning [11], [42], [43], constraining the states
of electrical appliances by mixed-integer linear programming
[44], and solving matrix decomposition problem [45], [46].
Among them, hidden-Markov-model-based algorithms model
the discrete operating states of household electrical appli-
ances probabilistically and often require high temporal data
resolution. At the substation level, the sampling rate is not
high, and the complexity of modeling individual appliances at
each household quickly explodes as the number of users in-
creases. Dictionary-learning-based approaches are model-free
and computationally efficient. The disaggregation accuracy can
be improved by promoting discriminative dictionaries [11],
[42], [43] and adding regularization constraints [45]. None of
these works can characterize the uncertainty of solutions.

Only a few works model the uncertainty of the prediction.
Ref. [6] uses Bayesian neural networks to forecast residen-
tial loads and characterize the uncertainty of the forecasting
results. Ref. [32] proposes to model uncertainty of solar gen-
eration by the fuzzy interval. These methods forecast one load
based on the historical data and do not consider disaggregating
multiple loads from aggregate measurements.

II. PROBLEM FORMULATION

There are C' (C' > 1) types of loads in total connecting
to a substation. A load is considered as a positive load if it
consumes the power or a negative load if it generates power.
Examples include but not limited to residential load, industrial
load, solar generation and wind generation. Note that in a
given time interval, not every load is consuming/generating
power. Let & € R¥ denote the total power consumption at
the substation during a time interval with length P. y =
[v, 92, ...,y¢] € {0,1}€ is a multi-label binary vector with
size C that indicates the load types that exist in = € RF, ie.,
y© =1 if load ¢ is nonzero in x, and y° = 0 of load c is zero
in . For example, when C = 3, y = [0,1,1]7 indicates that
loads 2 and 3 exist in & but not load 1.

Only partial entries in y are known to the operator, while
whether or not some other loads exist in a specific time
series x is unknown. This setup follows the “partially labeled
aggregate data” in [19]. As described in [19], the partial
labels can be obtained either by engineering experience (e.g.,
residential load exists during 7-9 pm) or applying a detector
for some types of load [47], [48]. Because the measurements
are aggregated at the substation, a detector may fail to detect
the existence of some loads [49], resulting in partial labels. We
also remark that the scenario when all the labels are known is
a special case of our setup, and the proposed method in this
paper for partial labels naturally handles full labels as well.

Let X € RP*N represent N recorded measurements, each
with window length P. The ith column of X, denoted by
x;, represents the data at the ith interval. Let y; denote
the corresponding multi-label of =;. The C x N matrix
Y = [y1,Y2, -, yn] collects all the labels. Let ) denote
the set of indices where entries of Y are known. Let Q be



the complement set of {). Then the index (c,n) belonging
to 2 means that we know whether load ¢ is in @, or not.
Otherwise, (c,n) belongs to €. The partially known labels
are characterized in Y. In the above example where N =1
and C' = 3, if one only knows load 2 exists in =, and no
information is provided about load 1 and 3, then Y can be
written as Yo = [?,1,7]7 where ? denotes the entries not in
Q.

Then given a time series of aggregate measurement & €
RP, the questions this paper addresses are (1) what is the
corresponding power consumption of each load ¢ in &, denoted
by &°? (2) What is the uncertainty of this estimation?

ITI. BAYESIAN ENERGY DISAGGREGATION USING
PARTIALLY LABELED AGGREGATE DATA

Following the dictionary learning framework, the dictionary
D¢ € RFP*Ke contains K, representative patterns of load
c. Then the aggregate data x; can be written as x; =
Ef=1 D°w§ +€;, where w¢ € R¥< represents the coefficients
for load ¢, and €; represents the noise.

Fig. 1 is an overview of our proposed approach. In the
offline training stage (Section III-A), the method infers K,
and learn the distributions of the dictionaries D and the
coefficients from the recorded data X and the corresponding
partial labels Yq. In online disaggregation (Section III-B),
based on the learned probabilistic model, the method computes
the distribution of &¢, which is the consumption of load ¢ in
€. The mean will be used as an estimate of ¢ and the
uncertainty measure is calculated based on the covariance.

A. Bayesian dictionary learning from partially labeled aggre-
gate data

A probabilistic model is employed to describe the data.
The hierarchical model is shown in equations (1) to (11), and
visualized in Fig. 2. Conventional Bayesian dictionary learning
uses data belonging to one same class to learn one dictionary.
This model here extends from the model in conventional
dictionary learning from two aspects. First, aggregate data
from C' dictionaries rather than one dictionary are considered
here, as shown in (1). Second and more importantly, the load
types that actually exist in each training sample x; are not
fully known. Different from conventional Bayesian dictionary
learning, one needs to additionally estimate the full labels
(load types that actually exist) of each training data point.
Thus, a new binary variable y{ is introduced here as an
indicator of the existence of load ¢ in training sample 1.

For all < = 1,2,3,..,N, ¢ = 1,2,3,...,C, and k =
1,2,3,.., K,
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Each column of the dictionary D<€, denoted by dj for
the kth column, is sampled from a multi-variant Gaussian
N(0, A—]'de), where Ay is a fixed constant, and Ip is a P x P
identity matrix. The vector €; models the measurement noise
and is from Gaussian A/(0, ,Y_];I_p). The coefficient vector w}
includes the corresponding coefficients in training sample x;
of all dictionary atoms of D*®. As shown in (2), w{ can be
viewed as the point-wise product of two vectors z{ and sf in
R%e and then multiplied by the value y¢.

y§ is binary scalar indicating the existence of load ¢ in x;.
If y§ is zero, wy is a zero vector. y§ is sampled from the
Bernoulli distribution with ¢°. ¢¢ governs the probability that
load ¢ exists in the aggregate data and is drawn from a Beta
distribution with pre-determined constants g and hg.

z§ is a binary vector and its kth entry, denoted by z§,
indicates whether the pattern represented by the kth dictionary
atom of D¢ exists in ; or not. If ¥ = 1 and 2§, = 0, that
means load ¢ exists in x; but the specific pattern df does
not exist in x;. The kth entry of z{ is sampled from the
Bernoulli distribution with 7. 77 governs the probability of
the existence of dj, in the aggregate data. 7 is drawn from
a Beta distribution with pre-determined constants ap and by.
As shown in [22], z{ generated from this process is sparse,
i.e., contains many zero entries. After computing the posterior
distributions of 7f and z{ using the recorded data, one can
prune the dictionaries based on z{. Therefore, K, are set as
large values in the prior distribution, and the actual dictionary
sizes are learned from the data.

The coefficient vector s§ is sampled from N(O, ,%CIKC)-
Two gamma priors are placed on ~5 and - with pre-
determined constants ¢g, dy, eg and fy. Note that the priors
in our model are all conjugate priors, which can simplify the
computation of posterior in the following discussion.

Let ©® = {d§,z¢, 85,75, 0% 75, ve,i = 1,2,3,...,N,c =
1,2,3,...,C,k=1,2,3, ..., K.} denote all the latent variables.
Given X and partial labels Yq, the goal is to compute the
posterior P(®, Y| X, Y,). From the Bayes rule,

P(6,X.Y)
P(X,Yo)
However, it is difficult to compute (12) because computing

P(X,Yq) requires marginalizing over all the parameters in
©, which is often intractable.

(10)

P(©,Y5|X,Yo) = (12)
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Fig. 1: An overall illustration of the proposed method. In the offline stage, the method learns the probability distributions of the dictionaries,
the labels of existing dictionary atoms, the coefficients of the dictionary atoms, and the labels of the existing loads from the training data. In
the online stage, based on the learned dictionary distributions, our method learns the probability distributions of the coefficients and labels

for the testing sample.

Gibbs sampling [50], a standard Monte Carlo Markov
Chain (MCMC) technique, is employed here to compute
P(©,Y5|X,Y,). Gibbs sampling generates a Markov Chain
of samples by sequentially sampling from the conditional
distribution of one variable given all others, and the stationary
distribution of the Markov Chain follows the desired joint
distribution. Here, we sequentially sample from the conditional
probability of one variable in ® and Y5 given all the other
parameters in ©, Y, and X. These conditional distributions
can be computed explicitly because they have the known
forms due to conjugate priors and are proportional to the joint
distribution P(®, X |Y), which can be computed explicitly.
Here, the conditional distribution of each variable given others
are directly introduced. The detailed derivations are in the
supplementary material. p(dj,|—) denotes the conditional dis-
tribution of df, while keeping other variables fixed. The same
rule applies to other notations.

(I) Sample dj, (forallc=1,...,C and k =1,..., K,), the kth
dictionary of class ¢, from a Gaussian distribution with mean
Hag and covariance Edi* ie.,
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Fig. 2: Graphical representation of the proposed Bayesian dictionary
learning model
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The details of the proposed method are shown in Algorithm

1 in the supplementary materials. The dictionary in each

iteration is pruned to reduce the computational time and obtain

N cC
1
+e0,5 2 llzi=Y_ D (2f0s)yfl 3+ o).
i=1 e=1

a compact dictionary. Specifically, in each iteration, given ¢
and k, the algorithm checks all the training data that are
currently labeled as containing load ¢ only. If z{, are all zeros
in all these training data i, the dictionary atom dj, is removed
because it does not appear in any load ¢ measurements. The
corresponding 7y, z5,, s5;. for all ¢ are also removed.

Vector ! is the estimation of total power consumption of
all loads in x; in the ¢ th iteration. Matrix X* includes all the
@} for all 7. The algorithm terminates if the change in X*,
measured by %%, is less than pre-defined threshold
&, or if the maximuanumber of iterations T; is achieved.
£ is a very small constant. 77 can be set as a large value
such that the Markov chain achieves the stationary distribution
approximately.

For initialization, D¢ is sampled randomly from data that
contain label ¢. If no data contains label ¢, D€ is sampled
randomly from the training data. z{ are initialized with all-
one vectors. Every entry in Yg is initialized with 1. Given the
initialization of the dictionaries D*, the sparse coefficients S
are initialized by the solution to sparse coding [19] in (28).

min[| X — DSll2 + Al[S]|1, (28)

where A is a regularization constant, and D =
[D',D?,...,D%]. The ¢; norm measures the sum of
the absolute values of all entries in a matrix and promotes
a sparse solution. S = [S1;82;...; S€], and the ith column
of S¢ contains s§, for all & = 1,...,K.. Algorithm 1 also
handles naturally the case that all the labels are known . One
only needs to skip lines 3-6 in Algorithm 1 about updating
unknown y; and ¢° and everything else remains unchanged.

Our probabilistic model and the proposed learning method
are different from conventional Bayesian dictionary learning
such as [22]-[24]. Even though Ref. [24] considers learning
C dictionaries using data from C classes, every training data
point in [24] belongs to exactly one class, and the label is
correctly known. Thus, it is still the conventional problem
of learning each dictionary separately using the data in that
class. The fundamental difference of our problem setup from
conventional Bayesian dictionary learning is that every training
sample x; can contain up to C loads, and the load types
that exist in x; are not fully known. Thus, the new binary
variables y{ are introduced in our model, and the probability
distributions are updated using (24) and (27), and all the
unknown y§ are sampled based on the currently estimated
distribution in each iteration.

B. Online load disaggregation and uncertainty calculation

In real-time operations, given the aggregate data &, our
approach estimates the consumption ¢ for load c using the
learned probability distributions in the offline stage. A proba-
bilistic model & is described as follows. For all c = 1,...,C,
k=1,...K,

C
&= D208 +¢ (29)
e=1

p(dp| X, Yo) (30)
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Equations (29)-(36) are similar to (1) to (11) with two
differences. First, the learned probability distributions of
51X, Y). p(ng|X, Ya). p(+IX, Ya). p(¢1X,Ya). as
shown in (30) to (34), from the offline stage are directly
employed and not updated in the online stage. p(v¢| X, Ya)
is sampled once to initialize 4.. Second, the pre-determined
parameters e; and f; in the Gamma distribution for 4, are
different from the counterparts in the offline stage. That is
because in the offline stage the method learns the average
noise distribution of all N samples, while in the testing stage,
the method focuses on the noise distribution of each individual
testing sample.

Given &, the posterior distributions of 3¢, Zg, $f, and
% are computed using Gibbs sampling. The updating rules
are similar to those in Algorithm 1 with minor changes.
Specifically, one only needs to replace x;, yf, 25, 55. Ve
for the training data with &, 3¢, 2§, 8¢, 4. for the testing data
in equations (17), (18), (24). Moreover, the updating rule for
Je is

P 1 =
P =) ~ T +er, 518 —Y D250y l3+f1) GT)
e=1
The algorithm details are summarized in Algorithm 2 in the
supplementary materials.

After computing all the posterior distributions, one can esti-
mate the distribution of ¢ from (31). Then use the mean as the
estimate of the consumption of load ¢ and use the covariance
to estimate the uncertainty. Because it is intractable to obtain
the closed-form expression of the probability distribution of
¢, Monte-Carlo integration [51] is employed to compute the
mean and variance approximately.

To simplify the notations, let & = {D*¢ 2¢ 8% ¢° 4.}
denote the set of variables related to computing ¢, and define

f(¥)=D°(2° @ 8%)g° (38)
The predictive mean can be approximated by
=
~ > F(EY (39)
=1

where each ¥! is independently drawn from the learned
probabilities distributions of D€, 2¢, §° and y°. When the

number of Monte-Carlo samples L is sufficiently large, the
right-hand side of (39) provides a rather accurate estimate of
the mean of #¢, which is used as an estimate of the load
¢ consumption. Similarly, the predictive covariance can be
computed by

Var[¢¢] =E[#°2°T] — E[2°| E[#°]"
Ip sty 1L
irp~—~ 1 l
“e Xt Zf('l'z)f('l') “0)
| =L z L
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Let o; (1 = 1,..., P) be all the singular values of Var[#¢]. An

uncertainty index U, for each load ¢ and the uncertainty index
Uan for all output loads are defined as

Ue =304 (41)

Uan = £, Ue 42)
Intuitively, if a random variable has a large variance, then
the estimation of its realization may have high uncertainty.
The uncertainty indices in (41) and (42) can characterize this

phenomenon.

C. The influence of parameter selections

The proposed hierarchical model requires several
hyper-parameters. Ay in (3) is a constant and can
be set as the length of the time window. Four pairs
(ag,bo), (co,dp), (€0, fo), (go, ho) of parameters are used in
the prior distributions (5), (8), (9) and (11). As shown in [22],
co and dp are set as very small values (10~6 both in [22]
and here), and they are non-informative priors in Gamma
distributions, providing little information to the experiments.

Regarding the other three pairs, fixing either one of the
pair and tuning another has similar performance. For example,
fixing ap and increasing by have similar performance with
fixing by and decreasing ag. A larger by leads to a smaller
mean of the prior distribution of 7§, which in turn leads to
more zero entries in z§. Similarly, gy and by affect the number
of zeros in Y5. When go is fixed, a larger hp leads to a
smaller ¢¢ and, correspondingly, more zeros in Yg. Increasing
fo while fixing eg leads to a smaller ~,, which in turn leads to
a larger variance of the measurement noise e. Because these
parameters affect prior distributions only and are independent
of the data, they have limited impact on the learned posterior
distributions. As one can see in Section I'V-C, the method has
very similar disaggregation performance in a wide range of
parameter selections.

One remark is that our method is robust to the initial dictio-
nary size K, because it prunes the dictionaries in computing
the posterior distribution. This is one of the advantages over
the deterministic approach in [19], which requires accurate
estimation of the dictionary size.



IV. NUMERICAL EXPERIMENTS
A. Experimental Setup

1) Datasets: The numerical evaluations are performed on
two datasets of partially labeled aggregate data. The first one,
referred to as the “Ind-Ind-Solar” dataset, is the same as
that in [19]. It contains three types of loads, two industrial
sites and one solar generation. The industrial loads are from
EnerNOC GreenButton Data [52], and the solar generation is
from National Renewable Energy Laboratory (NREL) [53].
Each measurement has an 8-hour time window from 8:00 am
to 4:00 pm with a 5-minute resolution. The power consumption
of load 1 (industry load from one site) varies from 23 MW to
73 MW, and load 2 (industry load from the other site) varies
from 39 MW to 74 MW. The power generation of load 3 (solar
generation) is from 4 MW and 65 MW. All the measurements
are denoised by a Gaussian filter and then added together
to generate 360 training samples and 300 testing samples.
Each training sample is labeled with one load, although it
may contain up to all three loads. No label is provided for
the testing data. -y denotes the percentage of measurements of
individual loads in the training data. v = 70% means that 70%
of the training data labeled as ¢ (¢ = 1,2, 3) contain load ¢
only and the 30% of data contain other loads.

The second dataset, referred to as the “Resi-Ind-Solar”
dataset, is constructed by replacing the first industrial load
in the previous dataset with a residential load. The residential
load is from Pecan Street? and contains 25 homes in Austin.
The measurement has an 8-hour time window from 8:00 am to
4:00 pm with a 15-minute resolution. The power consumption
of residential load varies from 12 MW to 95 MW. We keep the
same time window and down-sample the industrial and solar
loads to the 15-minute resolution. - is set as 70%.

2) Methods: Our proposed Bayesian energy disaggregation
method at the substation (abbreviated by “B-EDS”) is com-
pared with the deterministic EDS method in [19] (abbreviated
by “D-EDS”). Other dictionary-learning-based disaggregation
methods such as [11] and [45], as well as deep-learning-
based methods [13], [38], [39] need training data of individual
loads to learn each dictionary. When the measurements contain
multiple types of loads and are not fully labeled, measure-
ments labeled as load ¢ can in fact contain other loads in
the EDS problem, then the learned dictionary of each load
often contains patterns of other loads, resulting in significant
disaggregation errors. This limitation of these methods has
already been demonstrated empirically in [19], see Table III
to Table V in [19] for details. Therefore, in this paper, B-EDS
is compared with D-EDS, which is the state-of-the-art method
for EDS with partially labeled aggregate data.

In B-EDS method, Algorithm 1 is employed to learn the
patterns from recorded data. Algorithm 2 is implemented on-
line to disaggregate real-time measurements and compute the
uncertainty index. If not otherwise specified, the parameters
are set as follows: ag = 1, by = 10%, ¢g = 1078, dy = 1078,
eo =103, fo=10,g0 = 1, ho = 10°, e, = 1075, f; = 0.06,
Ag = 96, &, = 0.01, £&; = 0.001. The robustness of our method

Zhttp://www.pecanstreet.org/

to the parameter selection is demonstrated in Section IV-B.
The initial values of K, (for all ¢), 7§, ¢°, 75, v are set as
10, 0.01, 0.01, 1, 100, respectively. A in (28) is set as 0.001
to initialize Algorithm 1 and 0.01 — 0.1 to initialize Algorithm
2. Ty is 5000, and T3 is 2000. L = 50 in (39) and (40). All
the following results for D-EDS are averaged over 50 times
for a fair comparison.

All the experiments are run in MATLAB 2019 on a desktop
with 3.1 GHz Intel Core i9 and 32 GB memory. The training
time for B-EDS is around 50 seconds, and the testing time for
each testing sample is around 4 seconds.

3) Performance evaluation: Several metrics are employed
to measure the disaggregation accuracy. Root Mean Square
Error (RMSE) [45] is a standard metric to measure the
disaggregation error. RMSE, measures the average error of
disaggregating load ¢ from M aggregate measurements. If
and ¢ in RY represent the estimation and the ground-truth
consumption of load ¢ in the ith sample, respectively.

vM j13e _ 7|2
RMSEC — \/ i—]"‘sl Ia”Z A {43)

PM

A new metric, weighted root mean square error (WRMSE),
is proposed here to measure the weighted average disaggrega-
tion error, as shown in (44).

wM #2013
i=1 U,:ix‘?i

2 g
Compared with RMSE, an additional weight 1/U,(Z) is mul-
tiplied to the estimation error of load ¢ consumption in sample
i, where U.(zf) is the uncertainty index of the estimation .
A larger uncertainty index indicates that the estimation is less
reliable. Therefore, the corresponding error is multiplied with a
smaller weight when computing the overall error in WRMSE.
From its definition in (44), if the uncertain index is the same
for all the training samples, WRMSE is the same as RMSE. If
the estimations that are less accurate have larger uncertainty
indices, then WRMSE can be much smaller than RMSE. In
fact, WRMSE being much less than RMSE indicates that
the unreliable estimation can be identified by the uncertain
index. To see this, consider a simple case that the individual
reconstructed errors for three samples ||Z§ — Z$||2,7 = 1,2,3
are 80, 60 and 2, respectively. Suppose the corresponding
uncertainty indices are 64, 36, 1, respectively and P = 96.
Then RMSE is 5.90 while the WRMSE is 1.43. That is because
the first sample has a high estimation error but its uncertainty
index is also high.

The Total-Error-Rate (TER) [19] is employed to measure
the total disaggregation error of all the loads,

Y B8 min(||2§ — 21, [1Z5]]1)
_Hi=1%c= _ ’ x 100%  (45)
E?ilzillli“;?lll

WRMSE, = (44)

TER

TER belongs to [0, 1], and a small TER corresponds to a small
disaggregation error. Our B-EDS method also estimates the
labels in the testing data. The label estimation for a testing
sample is called successful if the existence of every load in that



sample is correctly labeled. The average classification accuracy
(CA) of M testing samples is measured by

Number of successful predictions

i x 100%.

CA = (46)

B. Disaggregation Performance

1) Performance on denoised measurements: Table 1 com-
pares the disaggregation performance of B-EDS and D-EDS
on “Ind-Ind-Solar” dataset when the measurements are de-
noised before implementing the methods. This is the setup
considered in [19] and is used as a baseline here. Because D-
EDS does not return the load labels and uncertain indices, its
classification accuracy and WRMSE are not reported. Both
methods perform better when ~ is larger. B-EDS method
has a higher disaggregation accuracy than D-EDS even when
the data are deonised. One important observation is that the
WRMSE of each load by B-EDS is significantly smaller than
the corresponding RMSE. As discussed after (44), this indi-
cates that those inaccurate estimates are accompanied by large
uncertainty indices, and one can indeed use the uncertainty
index to evaluate the reliability of the estimation. Although the
RMSE of B-EDS is only slightly better than that of D-EDS
on denoised data, the WRMSE of B-EDS is much smaller
than its RMSE. That shows B-EDS can differentiate reliable
and unreliable estimates, and the average error of those reliable
estimates, i.e., with small uncertainty indices, are much smaller
than the average error of all the estimates.

Table I: Disaggregation performance of B-EDS and D-EDS on “Ind-
Ind-Solar” dataset with denoised data

B-EDS D-EDS
¥ = 70% v = 50% ¥ =T0% v = 50%

RMSE; 5.89 7.03 6.63 7.43
RMSE3> 5.14 5.29 5.12 6.12
RMSE3 5.67 6.54 6.11 6.31
WRMSE; 0.16 0.23 - -
WRMSE2 0.13 0.17 - -
WRMSE3 0.13 0.22 - -
TER 8.69% 10.89% 9.91% 11.63%
CA 95.00% 92.67% - -

2) Performance on noisy measurements: These two meth-
ods are also compared when the data are noisy. Gaussian noise
iid. drawn from A(0,0?) are added to every denoised ag-
gregate measurement in both the training and testing samples.
Here by = 1 and other parameters are the same as in Section
IV-A. Table 11 shows that B-EDS is much more robust to noise
than D-EDS. On denoised data, the TER of B-EDS is 1%
better than that of D-EDS (Table I), corresponding to about
10% performance improvement. When o is between 1 and
3, the TER of B-EDS is 2.5-3% lower than that of D-EDS,
which corresponds to about 25% performance improvement.
That indicates B-EDS handles noise much better. Both meth-
ods are also evaluated on the original measurements before
denoising. B-EDS again performs much better than D-EDS.
Moreover, WRMSE of B-EDS is significantly smaller than
the corresponding RMSE.

The dictionary size in D-EDS is selected to achieve a pre-
defined approximation threshold of the training data. There-
fore, the dictionary sizes K7 and K> and K3 increase signif-

icantly when the noise level increases. For a fair comparison,
the initial dictionary sizes in B-EDS is set the same as those
in D-EDS. Because B-EDS models the noise directly and can
prune the dictionary accordingly, one can see that the final
dictionary sizes are much smaller than that of D-EDS and
consistent under different noise levels.

Table II: Disaggregation performance of B-EDS and D-EDS on “Ind-
Ind-Solar” dataset when data contain noises (v = 70%)

B-EDS D-EDS

og=1 o¢=3 ongmal| c=1 o=3 orgmnal
RMSE; 7.06 7.08 7.09 9.00 11.03 10.81
RMSE> 5.58 6.18 6.24 4.88 6.17 5.79
RMSE; 6.50 5.99 7.20 9.30 8.51 10.48
WRMSE;: | 3.06 3.39 3.59 - - -
WRMSE; | 0.14 0.16 0.11 - - -
WRMSE3| 0.16 0.11 0.14 - - -
TER 10.17% 10.99% 12.44% | 12.66% 14.08% 15.18%
CA 94.67% 95.67% 94.67% | - - -
K 2 2 2 13 + 22
Ka 3 2 3 10 42 46
Ky 2 3 2 16 46 24

3) Impact of label errors: The disaggregation performance
of B-EDS with partial label errors is evaluated on the denoised
“Ind-Ind-Solar” dataset. v = T0%. p denotes the percentage
of erroneous labels among all available labels. The erroneous
patterns include setting the labels of pure load 1 measurements
as “load 2,” setting the labels of pure load 2 measurements as
“load 3.” and setting the labels of pure load 3 measurements
as “load 1.” The results without label errors are repeated in the
first column of Table III to compare. One can see that B-EDS
is not sensitive to label errors. The average performance such
as RMSE, TER, and CA degrade slightly when p increases.
An interesting observation is that WRMSE always stays small
and does not change much when p changes. That means
although a large percentage of wrong labels can lead to errors
in the estimation of some loads, those inaccurate estimates
are accompanied by high uncertain indices and can thus be
identified by the operator.

Table III: The disaggregation results of B-EDS with label errors on
“Ind-Ind-Solar™ dataset (v = 7T0%, o = 0)

P 0 5% 10% 15%
RMSE; 5.89 8.60 7.92 8.16
RMSE> 5.14 3.60 5.14 6.46
RMSE3 5.67 1.26 747 7.28

WRMSE; 0.16 0.27 0.21 0.21

WRMSE; 0.13 0.14 0.14 0.15

WRMSE3 0.13 0.16 0.15 0.16
TER 869% 1090% 11.40% 12.01%
CA 95.00% 91.33% 92.33% 91.61%

4) Performance on the “Resi-Ind-Solar” dataset.: Table IV
compares the disaggregation performance of B-EDS and D-
EDS on the “Resi-Ind-Solar” dataset v = 70%. All the other
parameters are kept the same except that by =1, fo = 1 and
fi = 0.003. Similar to the performance on “Ind-Ind-Solar”
dataset, the TER of B-EDS is around 1% higher than that of
D-EDS on denoised data, corresponding to 8% performance
improvement. When the measurements are noisy, B-EDS has a
much higher disaggregation accuracy than D-EDS: TER of B-
EDS is 3% smaller than that of D-EDS, corresponding to 25%



performance improvement. Moreover, the WRMSE for the
residential load by B-EDS is higher than those for industrial
and solar loads. That is because the load patterns of residential
loads are more volatile than others, leading to less accuracy
than other loads.

Table IV: Disaggregation performance of B-EDS and D-EDS on
“Resi-Ind-Solar” dataset with different noise level (v = T0%)

B-EDS D-EDS

a=0 ag=1 ag=3 og=0 og=1 ag=3
RMSE; 9.03 0.88 10.17 8.25 9.34 11.39
RMSE> 8.74 8.51 8.74 9.14 9.54 8.53
RMSE3 541 7.06 6.37 6.70 0.88 11.97
WRMSE;| 6.54 7.30 9.32 - - -
WRMSE2| 0.12 0.14 0.13 - - -
WRMSE3z| 0.05 0.07 0.07 - - -
TER 14.07% 1542% 16.772% | 15.28% 18.28% 19.94%
CA 93.00% 92.00% 91.33% | - - -
Ky 3 3 3 4 5 16
Ko 3 3 3 4 5 15
Ky 4 3 3 4 6 17

C. The influence of parameter selections

Table V: The influence of bo (ao is fixed and ap = 1)

bo 1 10 107 103 107 10°
TER | 12.35% 10.29% 11.08%  11.42% 8.69% 10.80%
CA 92.33% 94.33% 93.00% 92.33% 95.00% 92.33%

The impact of the hyper parameters in the prior distribu-
tions on the performance of B-EDS are studied numerically.
Following the discussion in Section III.C, we mainly focus on
the three pairs (ao,bo), (€0, fo), (go, ho), and fix one while
varying the other in each pair. Table V shows the impact
of varying by while fixing other parameters. One can see
that B-EDS achieves low disaggregation errors with a wide
range of by. Therefore, the algorithm is not sensitive to the
selection of by. Table VI demonstrates that increasing the hg
improves the classification accuracy and hp can be selected
from a wide range. Table VII shows the impact of fy while
other parameters are fixed. One can see that B-EDS is also
not sensitive to the selection of fj.

Table VI: The influence of ho (go is fixed and go = 1)

o T0? 10° 10° 107
TER | 1167% 8.69% 10.71% 11.47%
CA | 8833% 05.00% 95.00% 91.67%

Table VII: The influence of fo, (eo is fixed and ep = 1072)

To I 5 10 15 20 25
TER | 974%  980%  8.69% 10.13% 11.75% 11.60%
CA | 9433% 9433% 9500% 93.67% O1.33%  92.00%

B-EDS is robust to the initial dictionary size and prunes the
dictionaries in computing the posterior distribution. In Table
VIIL, let K, denote the initial dictionary sizes of all three
loads and vary K. One can see that the final dictionary sizes
are much smaller than the initial values due to the pruning.
Moreover, the disaggregation and classification performance
are consistent even though there are minor differences in the
final dictionary sizes.

Table VIII: The influence of initial dictionary size

Initial K. 6 10 14 18 22 26
TER 10.92%  8.69% 9.41% 11.05% 10.23% 10.31%
CA 92.00% 95.00% 92.67% 92.33% 9533% 92.67%
Ky 3 5 7 6 8 10
Ky El 7 9 8 g 10
Ks 4 6 6 8 8 9

D. The uncertainty index to measure the reliability of the
results

Table IX: The uncertainty index and the disaggregation performance
with different cases

Case 1 Case 2 Case 3 Case 4 Case 5

U; 182.17 143.89 318.89 0.13 129.35

Uy 294.26 331.58 129.25 0.13 616.57

Uz 196.08 272.35 408.42 043.39 705.54

Uy 673.52 T48.81 858.56 971.02 1451.47
B-EDS TER 2.86% 4.37% 5.29% 153.95% 12.22%
D-EDS TER 6.56% 8.59% 0.01% 20.26% 18.02%

One main advantage of B-EDS over D-EDS is that B-EDS
provides the uncertainty index of the returned disaggregation
result, and the users can use the uncertainty index to evaluate
the reliability of the results. Five case studies are provided
here to demonstrate the effectiveness of uncertainty index.

« Case 1 contains three loads and is randomly selected from
the testing samples used in Table L. It is used as a baseline
case.

» Case 2 uses the same data as Case 1 but adds an i.i.d.
Gaussian noise from N (0,32) to every data point.

o Case 3 adds an ii.d. noise from A(0,5%) to every data
point of the data in Case 1.

o Case 4 contains one solar load only, but its pattern is
different from the solar patterns in the training data.

« Case 5 contains three loads, and the solar load has a
different pattern from the training data.

Fig. 4 visualizes the different patterns of solar generation in
the training and testing data for cases 4 and 5.

Fig. 3 shows the disaggregation performance of these five
cases. The ground-truth measurements, the predictive mean
of the estimation, and the 99.7% confidence interval of the
estimation for each load are plotted. At each time instant, the
two ends of the confidence interval are the mean value minus
and plus three times the square root of the corresponding diag-
onal entry of the covariance matrix. Note that the confidence
interval is for visualization only and does not characterize the
correlations among measurements at different time instants.
One shall use the uncertainty index for rigorous character-
ization of the uncertainty. One can see that in Cases 1-3,
the ground-truth consumption is mostly within the confidence
level, while as the noise level increases, the estimation error
increases slightly (see Fig. 3(i)). In Cases 4 and 5, because
the solar pattern is different from those in the training data,
the estimation error is much larger, and the ground-truth solar
generation deviates from the estimation.

Table IX lists the uncertainty indices and the disaggregation
error for these five cases. From Cases 1-3, one can see
that when the noise level in the measurements increases, the
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Fig. 3: The load disaggregation performance of five cases in Table IX. (a)-(c) show the ground-truth data and the disaggregation results of
loads 1, 2, and 3 respectively for Case 1. (d)-(f) show the results for Case 2 where the test data contain iid. Gaussian noise N(0,3?).
(g)-(i) show Case 2 where the test data contain i.i.d. Gaussian noise N'(0,52). (j)-(1) show Case 4 which contains one solar load with a
different pattern from the training data. (m)-(o) show Case 5 that contains three loads, and the solar load has a different pattern from the

training data.
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Fig. 4: The typical solar patterns of training data and some volatile
testing samples. Left: typical patterns of training data. Right: typical
patterns of volatile testing samples

uncertainty level increases slightly. From the uncertainty index
for the solar generation (Us), one can see that the index is
much higher in Cases 4 and 5 when the pattern is different
from the patterns in the training data. In Case 4, B-EDS can
correctly identify that loads 1 and 2 do not exist and the
uncertainty indices for these two loads are small. Due to the
existence of the other two loads in Case 5, the disaggregation
accuracy of the other two loads is also negatively affected,
and thus the overall uncertainty Uy is higher than that in
Case 4. Therefore, the uncertainty index can be used as a
measure of the reliability of the disaggregation results. Table
IX also compares the TER of B-EDS and D-EDS, and the
former performs much better than the latter.

V. CONCLUSIONS

This paper develops a Bayesian-dictionary-learning-based
load disaggregation approach for aggregate measurements
with partial labels at the substation. The proposed approach
improves the disaggregation performance, especially when the
measurements contain noisy. An uncertainty index is provided
about the returned estimation. This index can be used for the
operator to evaluate the reliability of the disaggregation results
and is especially useful in the presence of volatile loads and
renewable generations. No previous works on EDS provide an
uncertainty measure. The new error metric WRMSE verifies
that the unreliable estimation can be identified by the uncer-
tainty index.

One future direction is to connect side information such
as weather and industrial distributions with the data-driven
method. Another direction is to evaluate the disaggregation
performance of other volatile loads such as electrical vehicles
and wind power. We will also investigate the disaggregation
method when the given label information contain errors.
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