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Synchrophasor data suffer from quality issues like missing and bad data.

Exploiting the low-rankness of the Hankel matrix of the synchrophasor data,

this paper formulates the data recovery problem as a robust low-rank Hankel

matrix completion problem and proposes a Bayesian data recovery method

that estimates the posterior distribution of synchrophasor data from partial ob-

servations. In contrast to the deterministic approaches, our proposed Bayesian

method provides an uncertainty index to evaluate the confidence of each

estimation. To the best of our knowledge, this is the first method that provides

confidence measure for synchrophasor data recovery. Numerical experiments

on synthetic data and recorded synchrophasor data demonstrate that our

method outperforms existing low-rank matrix completion methods.
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1 INTRODUCTION

PHASOR Measurement Units (PMU) provide synchronized phasor

measurements of various locations of the power system, and

these data can be used for state estimation [Aminifar et al. 2013;

Dobakhshari et al. 2020; Zhao et al. 2015a], post-disturbance anal-

ysis [Bhui and Senroy 2016; Guo and Milanović 2015] and system

identification [Kamwa and Gerin-Lajoie 2000; Zhou et al. 2006].

Synchrophasor data have quality issues such as missing and bad data,

including false data injection attacks from malicious intruders [Liu

et al. 2011]. Such quality issues prevent synchrophasor data from

being employed for real-time control.

A variety of methods have been developed for PMU missing data

recovery such as training deep neural networks [James et al. 2019,

2018; Ren and Xu 2019], designing a dynamic state estimator based

on Kalman filter [Jones et al. 2014; Zhou et al. 2014], filling the

missing data based on the inference of a dynamic model [Foggo and

Yu 2021], formulating it as a low-rank matrix completion problem

[Gao et al. 2016b; Genes et al. 2018; Liao et al. 2018; Zhang et al.

2018] and the more general tensor completion problem [Osipov and
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Chow 2020]. Bad data are corrected by methods like hypothesis test-

ing [Huang et al. 2018; Kosut et al. 2011; Mestav et al. 2019; Mestav

and Tong 2020], exploiting spatio-temporal similarities [Wu and Xie

2016], spatial clustering [Wang et al. 2019], independent component

analysis [Esmalifalak et al. 2015], and low-rank approaches [Gao

et al. 2016a; Hao et al. 2018; Zhang and Wang 2018]. Low-rank

methods have the unique advantages among all these efforts: (1) no

need of power system topology and line parameters as required by

state estimators, (2) no need of training data as required by neural-

network-based approaches, and (3) more computationally efficient

than tensor approaches. Moreover, synchrophasor data have the spe-

cial property that not only the data matrix but also the corresponding

Hankel matrix is low-rank, and [Hao et al. 2018; Zhang et al. 2018;

Zhang and Wang 2019] have leveraged this low-rank Hankel property

to enhance the data recovery performance. One major advantage of

low-rank Hankel methods is the ability to recover simultaneous and

consecutive data issues across all channels, while the conventional

low-rank methods fail in this extreme scenario.

The critical limitation of the above methods is the lack of a confi-

dence measure of the returned estimation. Although low-rank meth-

ods have theoretical guarantees that the recovery is accurate if the

loss/error percentage is less than a threshold, such bound generally

underestimates the methods’ capabilities and thus is not practical.

Only a few works consider the uncertainty modeling for matrix

completion problem. Ref. [Zhao and Udell 2020] quantifies the un-

certainty based on Gaussian copula. Ref. [Chen et al. 2019] builds a

confidence interval for noisy matrix completion. Both works require

strong assumptions and consider missing data only. [Babacan et al.

2012] develops a Bayesian approach to recover low-rank matrices.

However, [Babacan et al. 2012] develops two separate approaches to

handle missing and bad data, respectively, and no confidence measure

is provided.

This paper develops a Bayesian low-rank Hankel matrix recovery

method to recover missing and bad data. The method also returns

an uncertainty index for each recovered value such that the operator

can evaluate the confidence of the recovery. Specifically, given the

prior distribution of the data, the method computes the posterior dis-

tribution using partial observations that contain noise and errors. The

mean of the posterior is employed to estimate each data point, and

the corresponding variance is viewed as the uncertainty index. The

advantage of our method over the existing deterministic approaches

[Zhang et al. 2018; Zhang and Wang 2019] on low-rank Hankel ma-

trix recovery are threefold. First, our method provides the uncertainty

index to evaluate the confidence of each estimation. Second, our

method outperforms the deterministic approaches in handling cor-

rupted data. Third, our method is more robust to parameter selection.

For instance, the estimated rank of the Hankel matrix can be set to

ACM SIGENERGY Energy Informatics Review Volume 2 Issue 1, February 2022



be much larger than the actual value initially, and our method can es-

timate the actual value from the data by iterative pruning. Moreover,

our method significantly outperforms conventional Bayesian matrix

completion approaches like [Babacan et al. 2012] , because the latter

perform poorly on simultaneous data losses or corruptions across

all channels. In addition, [Babacan et al. 2012] handles missing and

bad data separately, while our method can recover missing data and

correct bad data at the same time.

The rest of the paper is organized as follows. The low-rank Hankel

property of synchrophasor data and the problem formulation are

introduced in Section II. Our proposed approach is presented in

Section III. The numerical experiments are reported in Section IV,

and Section V concludes the paper. Technical details of our method

are described in the supplementary material.

2 PROBLEM FORMULATION

Let a matrix Y contain the ground-truth measurements of< channels

in = time instants,

_ = [~1,~2, ...,~=] ∈ R<×=, (1)

where ~8 ∈ R< contains the data of< channels at 8th time instant.

Let K denote the additive bad data and T denote the additive noise

data. K is a sparse matrix, and the values in K can be arbitrarily large.

T is a dense noise matrix and the values in T are small. Let matrix

_> ∈ R<×= denote the observed data with each entry satisfying

.>8,9 = .8, 9 + �8, 9 + #8, 9 (8, 9) ∈ 
, (2)

where the set 
 contains the indices of the observed entries in _> .

The objective of robust matrix completion is to recover _ from

partial observations .>8,9 that contain missing data, bad data and noise.

Moreover, this paper wants to provide an uncertainty index for the

confidence evaluation of each estimation .8, 9 .

2.1 Low-Rank Hankel Property of PMU Data

Fig. 1. The measurements of voltage magnitude [Hao et al. 2018]

The Hankel operator H : R<×= → R
<=2×=1 (=1 + =2 = = + 1)

linearly maps a matrix to its corresponding Hankel matrix, the 8th

column of which contains the data from all< channels in =2 consec-

utive time steps starting from time 8, i.e.,

^ = H=2 (_ ) =



~1 ~2 ... ~=1
~2 ~3 ... ~=1+1
...

... ...
...

~=2 ~=2+1 ... ~=



∈ R<=2×=1 . (3)

Let 28 denote the 8th largest singular value of H=2 (_ ), and let u8
and v8 denote the corresponding left and right singular vectors. The

rank-A (A ≪<,=) approximation of H=2 (_ ) can be computed from

QA (H=2 (_ )) =
A∑

8=1

28u8v
)
8 . (4)

QA (H=2 (_ )) has the smallest normalized approximation error to

H=2 (_ ) among all rank A matrices. The normalized approximation

error can be computed from
| |QA (H=2 (_ ))−H=2 (_ ) | |�

| |H=2 (_ ) | |� .

Fig. 2. The normalized approximation errors of different Hankel matri-

ces H=2 (. )

As discussed in [Hao et al. 2018], the Hankel matrix H=2 (_ ) is

often approximately low-rank. That is because for a well-operated

power system, some system modes may be highly damped, or not

directly measured, or not excited by the input [Hao et al. 2018].

During an event, the observations usually contain at most  modes

where  is much less than the system dimension. Then H=2 (_ ) is

approximately rank  .

[Hao et al. 2018] provides a formal analysis of the low-rank Hankel

property. Here we only show the empirical evaluation on a recorded

synchrophasor dataset in Central New York Power System. The

dataset in [Hao et al. 2018] contains 11 voltage phasors with 30 sam-

ples per second. Fig. 1 shows the voltage magnitude in 10 seconds,

and a disturbance occurs at around 2.3 seconds.

Let _ ∈ R11×300 denote measured magnitude of 11 channels in

10 seconds. Fig.2 shows the approximation errors of H=2 (_ ) with

varying approximation rank A and the Hankel parameter =2. All

the matrices H=2 (_ ) can be approximated by a rank-6 matrix with a

negligible error. For example, when =2 = 4, the rank-6 approximation

to H=2 (_ ) has error 0.00067.

3 BAYESIAN ROBUST HANKEL MATRIX

COMPLETION

The proposed approach factorizes the Hankel matrix of _ as the

product of two factors, the basis matrix J and the coefficient matrix

] . ] is modeled as an element-wise product of two matrices `

and Y, where the binary matrix ` represents the sparse support, and

Y represents the non-zero coefficients. Bad data are modeled by a

sparse matrix K . Each item is modeled by a probability distribution.

The algorithm learns the posterior distributions of J, ` , Y, and K

from obtained partial observations. Our approach then infers the

distribution of each entry .8, 9 . The predictive mean will be calculated
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Fig. 3. An overall illustration of the proposed approach. The approach arranges the ground-truth data . into a Hankel matrix- and then decomposes

- in a factorized form with a basis, the sparse support, and the coefficient matrices.

as the estimation of .8, 9 and the predictive variance will be computed

to measure the uncertainty of the estimation. Fig. 3 shows an overall

framework of our proposed algorithm.

This method extends from the conventional Bayesian matrix com-

pletion in the following aspects. First, the low-rank Hankel property

is exploited to capture the temporal correlations in time series. In

conventional low-rank matrix completion, one needs at least A entries

in each channel to recover the missing data. The recovery would

fail if measurements in all channels were corrupted at the same time

instant. Our algorithm additionally considers the temporal correla-

tions and can recover simultaneous missing or bad data. Moreover,

the recovery accuracy is enhanced significantly by exploiting the

temporal correlations. Second, our method provides the uncertainty

measure, which characterizes the confidence of the recovery results.

Third, our method can recover both missing and bad data at the

same time, as shown in equation (5), while missing and bad data are

treated separately in [Babacan et al. 2012]. Lastly, we introduce the

additional binary matrix ` to enhance the sparsity of the coefficients

] , which in turn leads to a more accurate estimation of the rank and

improves the recovery performance.

3.1 Proposed Probabilistic Model

A hierarchical probabilistic model is employed to infer all the latent

variables, and (5) to (16) show the model and the prior distribution.

(5) is derived from (2), where we use^ to denote the low-rank Hankel

matrix of the ground-truth data, and the inverse of Hankel matrix

(H†^ )8, 9 is employed here to represent .8, 9 . The formal definition

of the inverse Hankel operator H† can be found in supplementary

material. Let ^ be rank  , then its @th column, denoted by x.@ , can

be written as the product of the basis J ∈ R<=2× with a coefficient

vectorw.@ , wherew.@ is modeled as the element-wise product of two

vectors z.@ and s.@ . We introduce the additional binary vector z.@
to enhance the sparsity of the coefficientsw.@ . The :th entry of z.@ ,

denoted by z:@ , is assumed to have a prior Bernoulli distribution

with probability c: . The prior of c: is a Beta distribution with pre-

defined values 00 and 10. Reference [Zhou et al. 2009] shows that

data generated from this so-called Beta-Bernoulli process is sparse.

Because the actual rank of the Hankel matrix may be unknown, the

initial rank  can be set as a large number, and our method can infer

the actual rank by gradually pruning the basis using the sparsity of

learned ` from data.

The prior distribution s.@ is a multivariate Gaussian N(0, W−1B O ),
where O is a  ×  identity matrix. Each entry of the noise matrix

T and the error matrix K is drawn from N(0, W−1n ) and N(0, V−18, 9 ),
respectively. Three gamma priors are incorporated on WB , Wn and

V8, 9 , following Gamma priors with parameters (20, 30), (40, 50), and

(60, ℎ0), respectively. The prior distribution of each row of J is

N(0, _−1
3

O ), where _3 is a pre-defined value. [Babacan et al. 2012]

shows that the Gaussian distribution with Gamma priors models the

sparsity of the bad data �8, 9 . The Gaussian assumption for the bad

data has been employed in the literature, see, e.g., [Luttinen et al.

2012][Zhao et al. 2015b] and [Babacan et al. 2012]. We employ con-

jugate priors to simplify calculations and obtain analytical posterior

distributions.

For all ? = 1, 2, 3, ...,<=2, @ = 1, 2, 3, ..., =1, and : = 1, 2, 3, ...,  ,

.>8,9 = (H†^ )8, 9 + �8, 9 + #8, 9 (8, 9) ∈ Ω, (5)

x.@ = Jw.@, (6)

w.@ = (z.@ ⊙ s.@), (7)

3?. ∼ N(0, _−1
3

O ), (8)

z.@ ∼
 ∏

:=1

Bernoulli(c: ), (9)

c: ∼ Beta(00/ ,10 ( − 1)/ ), (10)

s.@ ∼ N(0, W−1B O ), (11)

�8, 9 ∼ N(0, V−18, 9 ) (8, 9) ∈ Ω, (12)

#8, 9 ∼ N(0, W−1n ), (13)

WB ∼ Γ(20, 30), (14)

Wn ∼ Γ(40, 50), (15)

V8, 9 ∼ Γ(60, ℎ0) . (16)
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3.2 Variational Inference for Approximating the

Posterior Distributions

Let � = {d?., s.@, z.@, �8, 9 , 0: , WB , Wn , V8, 9 , ? = 1, 2, 3, ...,<=2, @ = 1, 2,

3, ..., =1, : = 1, 2, 3, ...,  , (8, 9) ∈ 
} denote all the latent variables.

Given _>
Ω

, we aim to compute the posterior % (�, _ |_>
Ω
). From the

Bayes’ theorem,

% (�, _ |_>
Ω
) =

% (�, _ , _>
Ω
)

% (_>
Ω
) . (17)

Because % (_>
Ω
) is difficult to calculate by marginalizing all the latent

variables, computing (17) is intractable.

The mean field variational inference [Bishop 2006] is employed

here to approximate % (�, _ |_>
Ω
) by the variational distribution @(�).

Mean field approximation assumes that elements in � are mutually

independent and @(�) is factorized as

@(�) = @(J)@(Y)@(` )@(0)@(K)@(#)@(WB )@(Wn ) =
∏<=2
?=1 @(d?.)

∏=1
@=1 @(s.@)@(z.@)

∏ 
:=1

@(c: )
∏

(8, 9) ∈Ω @(�8, 9 )@(V8, 9 )@(WB )@(Wn ) .
(18)

The Kullback–Leibler (KL) divergence is employed to measure

the similarity of two distributions. Variational inference finds the

closest approximation @(�) to % (�, _Ω |_>Ω) by solving the following

optimization problem,

@(�) = argmin
@ (�)
KL(@(�) | |% (�, _ |_>

Ω
))

= argmax
@ (�)
E[ln % (�, _ , _>

Ω
)] − E[ln@(�)] . (19)

The above optimization problem is solved approximately by se-

quentially estimating the approximation distribution of each factor

given all the others. Each approximation distribution is obtained

through computing the expectations of all the other factors based on

learned distributions [Bishop 2006; Blei et al. 2017]. The station-

ary approximation distribution of the variational inference is a local

optimum to the optimization problem (19) [Bishop 2006; Blei et al.

2017]. For example, @(d?.) denotes the approximation distribution

of d?. while keeping other latent variables fixed. The optimal @(d?.)
which maximizes the objective function in (19) is

ln@(d?.) = E@ (�\d? ) [ln % (�, _ , _
>
Ω
)] + constant, (20)

E@ (�\d? ) means taking the expectation with respect to all the latent

variables except d? .

As all the distributions in the proposed model have conjugate

priors, the conditional posterior distributions have explicit forms.

We directly present the conditional distribution and expectation of

each variable. The details of the derivations are summarized in the

supplementary material.

(I) The approximate posterior distribution of d?. (for all ? = 1, ...,<=2),

the ?th row of basis, is a Gaussian distribution with mean E[d?.],
which denotes the expectation of @(d?.), and covariance �d?.

, i.e.,

@(d?.) ∼ N (E[d?.], �d?. ), (21)

where

�d?.
= [E[Wn ]

∑

@:(?,@) ∈ΨΩ

E[(s.@ ⊙z.@) (s.@ ⊙z.@)) ] +_3 O ]−1, (22)

Fig. 4. Graphical representation of the dependence of the random

variables in the proposed Bayesian Hankel matrix completion model

E[d?.] = E[Wn ]
∑

@:(?,@) ∈ΨΩ

H(_> − K)?,@ (E[s.@]) ⊙ E[z.@]) )�d?. ,

(23)

ΨΩ denotes the set of observed entries in the Hankel matrix of _> .

(II) The approximate posterior distribution of s.@ (@ = 1, ..., =1 ) is a

Gaussian distribution.

@(s.@) ∼ N (E[s.@], �s.@ ), (24)

where

�s.@ = [E[Wn ]
∑

? :(?,@) ∈ΨΩ

E[5)?,@5?,@] + E[WB ]O ]−1, (25)

E[s.@] = E[Wn ]�s.@
∑

? :(?,@) ∈ΨΩ

E[5?,@])H(_> − K)?,@, (26)

5?,@ = d?. ⊙ z).@ .

(III) The approximate posterior distribution of I:@ (for all @ =

1, ..., =1, and : = 1, ...,  ) is a Bernoulli distribution.

@(I:@) ∼ Bernoulli(
@(I:@ = 1)

@(I:@ = 1) + @(I:@ = 0) ), (27)

with mean and variance

E[I:@] =
@(I:@ = 1)

@(I:@ = 1) + @(I:@ = 0) , (28)

�I:@ = E[I:@] (1 − E[I:@]), (29)

where
ln(@(I:@ = 1)) ∝
−E[Wn ]

2

∑

? :(?,@) ∈ΨΩ

[trace(E[d)?.d?.] (E[s.@s).@] ⊙ E[ẑ.@ ẑ).@]))]

+E[Wn ]
∑
? :(?,@) ∈ΨΩ

H(_> − K)?,@ [(E[s.@] ⊙ E[ẑ.@]))E[d?.]) ] + E[ln(c: )],
(30)

where ∝ denotes “proportional to.” Î.@ = [Î1@, Î2@, ..., Î:@, ..., Î @]) .

Î:@ = 1 and other entries in Î.@ equal to the corresponding entries in

I.@ .

ln(@(I:@ = 0)) ∝
−E[Wn ]

2

∑

? :(?,@) ∈ΨΩ

[trace(E[d)?.d?.] (E[s.@s).@] ⊙ E[ẑ.@ ẑ).@]))]

+E[Wn ]
∑
? :(?,@) ∈ΨΩ

H(_> − K)?,@ [(E[s.@] ⊙ E[ẑ.@]))E[d?.]) ] + E[ln(1 − c: )],
(31)
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Î:@ = 0, and other entries in Î.@ equal to the corresponding entries in

I.@ .

(IV) The approximate distribution of c: ( : = 1, ...,  ) is from a Beta

distribution.

@(c: ) ∼ Beta(00/ +∑=1
@=1 E[I:@], 10 ( − 1)/ + =1 −

∑=1
@=1 E[I:@]).

(32)

Therefore,

E[ln(c: )] = k (00/ +∑=1
@=1 E[I:@]) −k ((00 + 10 ( − 1))/ + =1),

(33)

E[ln(1 − c: )] = k (10 ( − 1)/ + =1 −
∑=1
@=1 E[I:@]) −k ((00 + 10 ( − 1))/ + =1),

(34)

wherek (.) is the diagamma function.

(V) The approximate posterior distribution of WB is a Gamma distri-

bution.

@(WB ) ∼ Γ(=1 
2

+ 20,
1

2

=1∑

@=1

E[B).@B.@] + 30), (35)

with mean

E[WB ] =
=1 + 220

∑=1
@=1 E[s

)
.@s.@] + 230

, (36)

where E[s).@s.@] = E[s).@]E[s.@] + trace(�s.@ ).
(VI) The approximate posterior distribution of �8, 9 (for (8, 9) ∈ 
) is

a Gaussian distribution.

@(�8, 9 ) ∼ N (E[�8, 9 ], ��8,9 ), (37)

with variance and mean

��8,9 = (E[Wn ] + E[V8, 9 ])−1, (38)

E[�8, 9 ] = E[Wn ]Σ�8,9 (.>8,9 − E[(H
†^ )8 9 ]) . (39)

(VII) The approximate posterior distribution of V8, 9 (for (8, 9) ∈ 
)

is a Gamma distribution.

V8, 9 ∼ Γ( 1
2
+ 60,

1

2
E[�28, 9 ] + ℎ0), (40)

with mean

E[V8, 9 ] =
1 + 260

E[�28, 9 ] + 2ℎ0
. (41)

(VI) The approximate posterior distribution of Wn is a Gamma distri-

bution.

@(Wn ) ∼ Γ( |
 |
2

+ 40,
1

2
E[| |_> − %Ω (H†^ + K) | |2� ] + 50), (42)

with mean

E[Wn ] =
|
 | + 240

E[| |_> − %Ω (H†^ + K) | |2
�
] + 250

. (43)

Pruning the basis J and the error matrix K . As J is a redundant

basis when  is larger than the ground-truth rank, we propose to

prune the basis E[J] to reduce computation. If E[I:@] = 0 for

all @ in each iteration, the algorithm removes :th basis atom d.:
because d.: does not contribute to the representation of X. Then the

algorithm also removes the corresponding E[ln(c: )], E[ln(1 − c: )],
E[I:@], E[B:@] for all @. Because K is sparse, we also prune E[K] by

thresholding, i.e., if entries in E[K] are very small (e.g., 10−1), these

entries are set as zeroes.

Convergence criteria. Matrix ¯̂ is the estimation for^ at the current

iteration. Matrix ¯̂pre is the estimation for X at the previous iteration

The algorithm terminates if
‖ ¯̂− ¯̂

pre ‖�
‖ ¯̂pre ‖�

< b for a pre-determined

threshold b (e.g., 10−4) or if the maximum iterations )max is reached.

Initialization. After constructing the Hankel matrix ^ from _> ,

where missing entries are filled in zeros, we compute the SVD of ^ as

^ = [G\) . J is initialized by [G
1
2 and Y is initialized with G

1
2 \) .

z.@ are initialized with all ones. All values in c: are initialized as 0.5.

WB , and _3 are initialized by
| |_> | |�√
<=

. 1/Wn is initialized by
| |_> | |2

�
<= .

The initial ¯̂ 0
= J (Y ⊙ ` ). The initial K is �8, 9 = .

>
8,9 − (H† ¯̂ 0)8, 9

if (8, 9) ∈ 
 and �8, 9 = 0 otherwise. All the covariance matrices

for d?. and s.@ are initialized by a  ×  diagonal matrix where the

diagonal elements are equal to
| |_> | |�√
<=

. The covariance matrices for

z.@ are initialized by a  ×  zero matrix. All the elements in # are

initialized as
| |_> | |�√
<=

.

Missing data only. Our algorithm can be simplified if only missing

data presents. One can skip steps VI and VII about updating E[�8, 9 ]
and E[V8, 9 ], and other steps remain unchanged.

Computational complexity. The per-iteration computational com-

plexity is O(^<=2=1 4 +<=2 3 + =1 3 +<=2=1 ), where ^ (0 <

^ ≤ 1) is the portion of observed entries. Thus, it is at most linear

in the dimension of the Hankel matrix. Derivation of the complexity

can be found in Section A.4 in the supplementary materials.

3.3 The uncertainty measure

Let ) = {J,` , Y, Wn } denote all the latent variables related to .8, 9 .

After computing the posterior distributions, we employ Monte-Carlo

integration [Paisley et al. 2012] to estimate the mean and variance of

.8, 9 . Define

5 ) (.8, 9 ) = H† (J (Y ⊙ ` ))8, 9 . (44)

The predictive mean is computed by

.̂8, 9 = E[.8, 9 ] ≈
1

!

;=!∑

;=1

5 ); (.8, 9 ), (45)

where each ) ; is independently drawn from the learned approxima-

tion distributions of J , ` , Y, and Wn . ! is the number of Monte-Carlo

samples. Similarly, the predictive variance is approximated by

Var[.8, 9 ] = E[. 2
8, 9 ] − E[.8, 9 ]

2

≈ 1

!

;=!∑

;=1

1

Wn
+ 1

!

;=!∑

;=1

5 ); (.8, 9 )2 − ( 1
!

;=!∑

;=1

5 ); (.8, 9 ))2 .
(46)

The derivation details of (45) and (46) are provided in the supplemen-

tary materials. A larger ! offers a more accurate estimate but also

leads to a higher computational cost. In our experiments, ! = 50 is

sufficient to provide a reliable estimate of the mean and the variance.
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E[.8, 9 ] is used to as an estimate .̂8, 9 of .8, 9 , and Var[.8, 9 ] is used

as an uncertainty index of the estimation, because a larger variance

indicates a higher uncertainty in the estimation.

3.4 Parameter Selections of the Algorithm

Several pairs of parameters (00, 10),(20, 30),(40, 50), (60, ℎ0) are need-

ed in the prior distributions (10), (14), (15) and (16) respectively. [Yi

and Wang 2021; Zhou et al. 2009] show that 20 and 30 are non-

informative priors, which have a negligible impact on the results, and

can be set as small values (e.g., 10−6 ). A larger 00 with fixed 10 leads

to a larger mean of the prior distribution of c: , which in turn leads to

less number of zero entries in z.@ . Decreasing 50 with fixed 40 leads

to a larger Wn , which leads to a smaller variance of the measurement

noise # . A larger ℎ0 with fixed 60 leads to smaller values of # ,

which leads to larger values in K . Note that these parameters only

have slight impact on the inferred posterior distributions. Section

4.2.3 demonstrates that the proposed method is robust to parameter

selections and these parameters can be set in a wide range. A larger

=2 improves the performance of the algorithm but also suffers from

higher computational burden. In our experiments, =2 is set as at most

30, and it is sufficient to obtain reliable recovery results.

3.5 Time Window Selection for Streaming data

Fig. 5. Non-overlapping and overlapping sliding windows

When handling streaming data in real-time, one needs to truncate

the measurements into blocks and process each time block separately.

One can use a sliding window with length = and step size B. When the

window is non-overlapping (= = B), as shown in the left half of Fig. 5,

each entry is estimated once in one time window. Otherwise, every

entry is estimated ⌊=/B⌋ times in different time windows, where ⌊G⌋
means the greatest integer less than or equal to G . One can pick the

estimate that has the smallest uncertainty index. For example, the

right half of Fig. 5 shows overlapping windows with = = 4 and B = 1.

4 NUMERICAL EXPERIMENTS

4.1 Experimental Setup

Three modes of missing data and bad data are considered, as shown

in Fig. 6. For example, M1 means Mode 1 missing data, and B1

means Mode 1 bad data. The value of the additive error is randomly

generated from (2, 4) for synthetic data and (1, 1.5) for real data.

• Mode 1: Missing/bad data occur independently and randomly

across all the channels and time instants.

• Mode 2: Missing/bad data occur across all the channels at

some randomly selected time instants.

• Mode 3: Missing/bad data occur across all the channels at con-

secutive time instants. The starting time is selected randomly.

Fig. 6. The missing and bad data generation.

Our proposed Bayesian Robust Hankel matrix completion method,

abbreviated by “BRHMC,” is compared with the deterministic Han-

kel robust matrix completion method “SAP” in [Zhang and Wang

2019] and the deterministic robust matrix completion method “R-

RMC” in [Cherapanamjeri et al. 2017] for simultaneous recovery

of missing and bad data. When the goal is recovering missing data

only, we compare a simplified version of our method, abbreviated

by “BHMC,” with the deterministic Hankel missing data recovery

method “AM-FIHT” in [Zhang et al. 2018] and Bayesian missing

data recovery method “VSBL” in [Babacan et al. 2012]. Some param-

eters of BRHMC/BHMC are set as follows for all the experiments:

00 = 103, 10 = 1, 20 = 10−6, 30 = 10−6, 40 = 10−6, ℎ0 = 10−6. The

experiments are implemented in MATLAB 2019 on a desktop with

3.1 GHz Intel Core i9 and 32 GB RAM.

Evaluation Metrics: Two metrics are used to measure the recovery

performance. The Normalized Estimation Error (NEE) is defined as

NEE = ‖_̂ − _ ‖� /‖_ ‖� , (47)

where _̂ and _ in R<×= represent the estimated data and the ground-

truth data, respectively. A new metric weighted normalized estima-

tion error (WNEE) is defined as

WNEE =

√√√

Σ8, 9
( (.̂8, 9 − .8, 9 )2

Var[.̂8, 9 ]
)
/
(
Σ8, 9

. 2
8, 9

Var[.̂8, 9 ]
)
. (48)

When Var[.̂8, 9 ] is large, there is a higher uncertainty in the estimate

.̂8, 9 . Then from (48), a smaller weight in placed on .̂8, 9 when com-

puting the overall performance error. If the variance is the same for

all .̂8, 9 , WNEE is equal to NEE. If WNEE is smaller than NEE, then

those estimations with large errors are indeed penalized with a small

weight in WNEE and, thus, the corresponding variance is large. Thus,

WNEE being smaller than NEE indicates that the uncertainty index

indeed represents the accuracy of the estimation.

4.2 Performance on Synthetic Datasets

4.2.1 Dataset generation and parameter setting. We conduct

the experiments on synthetic spectrally sparse signals which have

the low-rank Hankel property [Zhang et al. 2018; Zhang and Wang

2019]. Each row of _ is a weighted sum of A sinusoids. Specifically,

the ground truth .8, 9 is generated from

.8, 9 = Real(
A∑

:=1

18,:4
y2c 5: 9 ) 8 = 1, ...,<, 9 = 1, ..., =, (49)
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(a) M1 only (b) M2 only (c) M3 only

(d) M1 plus 10% B1 (e) M2 plus 10% B2 (f) M3 plus 10% B1

Fig. 7. The recovery results with different missing/bad data. (a)-(c) show the recovery results with

three missing modes. (d)-(f) show the recovery results with three missing and bad modes.

Fig. 8. The histogram of uncer-

tainty index in the M3 mode.

where y is the imaginary unit, 5: is the frequency, 18,: is the normal-

ized complex amplitude of the :-th sinusoid, and Real(·) keeps the

real part only. We randomly select 5: from (0, 1). The angle of 18,:
is randomly selected from (0, 2c), and the magnitude is 1 + 100.508,: ,

where 08,: is randomly generated from (0, 1). . is rank 2A . Here, A

is set as 2.< = 20, and = = 300. Each entry is added with a random

Gaussian noise from N(0, 0.032), which is about 1.1% NEE error.

Each bad data entry is randomly selected from (2, 4).
Some parameters of BRHMC/BHMC are set as follows: 50 = 10−6,

60 = 10−6, b = 10−4, =2 = 30.  is 4. )max is 100. ! = 50 in (45) and

(46). All the results are averaged over 50 independent trials.

4.2.2 Recovery performance. Fig. 7 (a)-(c) compare the missing

recovery performance of BHMC with VSBL and AM-FIHT. Fig. 7

(d)-(f) compare the recovery performance of BRHMC with R-RMC

and SAP when both missing and bad data exist. BHMC-N denotes

NEE error in (47) for BHMC, and BHMC-WN denotes the WNEE

error in (48). Because no uncertainty index is provided for all other

methods, only NEE error is reported.

The recovery errors of BRHMC/BHMC stay consistently small

and outperform all the existing methods. Specifically, the conven-

tional low-rank methods like VSBL and R-RMC perform poorly in

Mode 2 and Mode 3, because they cannot handle simultaneous data

issues across all channels. Deterministic Hankel-based methods like

AM-FIHT and SAP outperform low-rank methods but perform worse

than our proposed methods. Moreover, AM-FIHT and SAP are more

sensitive to rank selections than our methods. We also tested other

distributions of bad data and noise and obtained similar results as

those in Fig. 7. Please see Fig. 11 in the supplementary materials.

When the data loss percentage is high, WNEE is less than NEE

of our proposed methods. As discussed after (48), this gap indicates

that those estimates with larger errors have larger variances. Fig. 8

further shows the histogram of uncertain indices in mode M3. When

the data loss percentage increase, the uncertain indices of some

entries increase, indicating a less reliable estimation. Our methods

can differentiate unreliable estimates from reliable ones.

The average time to compute the posterior distribution is 2-7 sec-

onds, and the Monte-Carlo computation of mean and variance takes

around 0.5-1 second. The computational time for AM-FIHT, VSBL,

R-RMC and SAP are 0.9-1.3 seconds, 0.1-0.4 seconds, 0.05-0.2

seconds, and 0.2-3 seconds, respectively.

4.2.3 The impact of parameter selections. Numerical experi-

ments are conducted on a dataset with 20% B1 and 20% M2 to test

the impact of parameter selections on the performance of BRHMC.

As discussed in Section 3.4, we only consider the impact of three

pairs (00, 10), (40, 50), (60, ℎ0), and vary one while fixing the other.

One can see from Tables 1-3, the recovery errors remain small in a

wide range of parameters, and NEE and WNEE are the same.

Table 1. The impact of 00 (10 is fixed and 10 = 1)

00 1 10 102 103 104 105

(W)NEE 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017

Table 2. The impact of 50 (40 is fixed and 40 = 10−6)

50 10−1 10−2 10−3 10−4 10−5 10−6

(W)NEE 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017

Table 3. The impact of ℎ0 (60 is fixed and 60 = 10−6)

ℎ0 10−1 10−2 10−3 10−4 10−5 10−6

(W)NEE 0.0024 0.0018 0.0017 0.0017 0.0017 0.0017

Table 4. The impact of the initial rank  

initial rank  4 12 20 28 32

Proposed
(W)NEE 0.0017 0.0017 0.0017 0.0017 0.0017

estimated rank 4 5 5 5 5

SAP NEE 0.064 0.0040 0.0053 0.0063 0.0067

AM-FIHT NEE 0.0017 0.0027 0.0035 0.0042 0.0045

Because BHMC prunes the basis during the inference, it is robust

to the initial rank  of basis. Table 4 shows that when  is selected
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(a) (b) (c) (d)

Fig. 9. The recovery performance on 20% M2 missing data and additional noise during 5.6-6.6 seconds. (a) the observed data, (b) the estimated

data, (c) the estimated data in one channel with the confidence interval, (d) the corresponding uncertainty index for one channel in (c)

(a) (b) (c) (d)

Fig. 10. The recovery performance on 20% M1 missing data and 15% B1 bad data. (a) the observed data, (b) the estimated data, (c) the estimated

data in one channel with the confidence interval, (d) the corresponding uncertainty index for one channel in (c)

Table 5. The impact of Hankel parameter =2

=2 1 10 20 30 40 50

NEE 0.45 0.0021 0.0018 0.0017 0.0017 0.0017

WNEE 0.014 0.0021 0.0018 0.0017 0.0017 0.0017

from a wide range, the recovery error of the proposed method is

always small, and the final estimated rank is close to the ground-truth

value 4. In contrast, the performance of SAP and AM-FIHT degrades

when the rank is not properly selected. In Table 4, AM-FIHT is tested

for 20% M2, while others are tested on 20% B1 and 20% M2.

Table 5 shows the performance when the Hankel block size =2
increases. When =2 = 1, the method reduces to the conventional

Bayesian matrix completion method, which has a large error. Increas-

ing =2 indeed improves the recovery performance.

4.3 Performance on practical PMU dataset

The recorded synchrophasor dataset in Central New York Power Sys-

tem as shown in Fig. 1 is employed here to evaluate the performance

on streaming data. The proposed method is compared with SAP al-

gorithm. 60 = 0.2, b = 10−6. The window length is set as 50 for our

algorithm and 60 for SAP. We use a sliding window with step size 1

for our algorithm. Non-overlapping windows are employed for SAP,

because it does not return an uncertainty index to compare the per-

formance of overlapping windows. Two case studies are considered.

=2 = 20 for Case 1, and =2 = 6 for Case 2. 50 = 10−3 for Case 1 and

Case 2. Besides, the ranks are set as  = 6 for two algorithms. The

computational time of the non-overlapping windows for Case 1 is 2.6

seconds and is 6.6 seconds for Case 2. Another two case studies for

the phasor angle data are included in the supplementary materials.

• Case 1: 20% data are removed following Mode M2. Moreover,

additional Gaussian noise from N(0, 0.0032) is added to every

observation during time 5.6 to 6.6 seconds.

• Case 2: 20% data are removed following Mode M1, and 15%

observations contain Mode B1 bad data. Each bad entry is

randomly selected from (1,1.5).

Our method can recover the data accurately in both cases. NEE and

WNEE for Case 1 are 8.8 × 10−4 and 8.4 × 10−4, respectively. NEE

and WNEE for Case 2 is 2.0 × 10−3 and 1.5 × 10−3, respectively. In

comparison, the NEE of SAP for Case 1 and 2 is 5.9 × 10−3 and

6.0 × 10−3, respectively, worse than our method. Because SAP does

not return the uncertainty index, we do not report the WNEE for SAP.

Fig. 9-Fig. 10 show the recovery performance of the cases 1 and 2.

We visualize the corrupted data, recovered data, the confidence inter-

val of one channel, and the uncertainty index of the corresponding

channel in each subfigure, respectively. The 95% confidence interval

for each time instant is the predictive mean plus and minus 1.96

times the predictive standard deviation. In both cases, the ground-

truth measurements are located within the confidence interval. At

time 2.3 seconds when the event happens, the uncertainty index in-

creases because the method is less confident about the estimation

at that time instant. Moreover, in Fig. 9(c), the uncertainty index in-

creases during the time interval 5.6-6.6 seconds, which corresponds

to the time when additional noise is introduced. Fig. 9(b) shows that

the noise is reduced in the recovery results.

5 CONCLUSIONS

This paper develops a Bayesian low-rank Hankel matrix recovery

method to address missing and bad data in synchrophasor measure-

ments. It provides the uncertainty index for the operator to evaluate

the estimation accuracy of recovered data in real-time. The method

outperforms all the existing methods numerically.

One future direction is to explore the Bayesian tensor matrix com-

pletion method by exploiting the Hankel structure. We will also in-

vestigate the theoretical guarantee of uncertainty modeling in robust

matrix completion problem.
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SUPPLEMENTARY MATERIAL

A.1 Beta and Gamma distributions

The Beta and Gamma distributions are introduced here.

The Gamma function is defined as

Γ(U1) =
∫ ∞

0

GU1−14−G3G . (50)

The Beta distribution is

Beta(c: |U1, V1) =
Γ(U1 + V1)
Γ(U1)Γ(V1)

(c: )U1−1 (1 − c: )V1−1, (51)

The “Beta(c: |U1, V1)” denotes that c: is a Beta distribution with

two parameters U1 and V1. Other notations have same rule in the

following section. The mean of this Beta distribution is U1
U1+V1 and

the variance of this Beta distribution is
U1V1

(U1+V1)2 (U1+V1+1) .

The Gamma distribution is

Γ(WB |20, 30) =
30
20 (WB )20−14−30Wn

Γ(20)
∝ (WB )20−14−30WB , (52)

where 20 > 0, 30 > 0. ∝ denotes “proportional to”. The mean of this

Gamma distribution is 20
30

and the variance of this Gamma distribu-

tion is 20
30

2 .

A.2 The Hankel operator

H† is the Moore-Penrose pseudoinverse of H . For any ^ ∈ R<=2×=1 ,

(H†^ )8, 9 ∈ R<×= is defined as

(H†^ )8, 9 = 〈H†^ , 484)9 〉 =
1

^ 9

∑

D−8
< +E=9

-D,E

=

{
1
^ 9

∑9
91=1

- ( 91−1)<+8, 9+1−91 9 ≤ =2
1
^ 9

∑= 9
92=9+1−=2 - ( 9−92)<+8, 92 9 ≥ =2 + 1

, (53)

where ^ 9 = #{( 91, 92) | 91 + 92 = 9 + 1 1 ≤ 91 ≤ =2, 1 ≤ 92 ≤ =1} is

the number of entries in the 9 th anti-diagonal of an =2 × =1 matrix.

= 9 = min( 9, =1).
We employ two sets to define the mapping relationship between the

original matrix and the corresponding Hankel matrix. (8, 9) denotes

one coordinate in the original matrix. Ψ8, 9 denotes the set of the

mapping entries of (8, 9) in the corresponding Hankel matrix of _> .

Ψ8, 9 shows the mapping relationship in (53). One can simply check

the corresponding coordinate of (8, 9) in ^ to obtain Ψ8, 9 . Ψ8, 9 is

a subset of ΨΩ . Ψ8, 9 only shows the mapping set of one point (i,j)

while ΨΩ denotes the set of all the mapping entries of all (8, 9) in the

corresponding Hankel matrix.

Ψ8, 9 = {(D, E) | (D, E) = (( 91 − 1)< + 8, 9 + 1 − 91) for every

91 = 1, 2, ..., 9, under the case when 9 ≤ =2;
(D, E) = (( 9 − 92)< + 8, 92) for every 92 = 9 + 1 − =2, ..., = 9 ,
where = 9 = min( 9, =1), under the case when 9 ≥ =2 + 1; } (8, 9) ∈ Ω.

(54)

ΨΩ = {(D, E) | there exists (8, 9) ∈ Ω such that (D, E) ∈ Ψ8, 9 }.
(55)

A.3 Updating rule for variational inference

Algorithm 1 Varational Inference for Bayesian Robust Hankel Ma-

trix Completion

Require: The observation matrix _> . The parameters _3 ,

00, 10, 20, 30, 40, 50, 60, ℎ0 for prior distributions. The initial ba-

sis size  . The maximum iterations )max. The convergence

threshold b . The Hankel matrix parameter =2.

1: Initialization:Form the Hankel matrix ^ by _> . Take the SVD

of ^ by ^ = [G\) . J is initialized by [G
1
2 . Y is initialized

with G
1
2 \) . ` is initialized with all-one matrix. All values in

c: are initialized as 0.5. WB and _3 are initialized by
| |_> | |2

�
<= .

1/Wn is initialized by
| |_> | |�√
<=

. ¯̂ 0
= J (Y ⊙ ` ). The initial K is

�8, 9 = .
>
8,9 − (H† ¯̂ 0)8, 9 if (8, 9) ∈ 
 and �8, 9 = 0 otherwise. All

the elements in # are initialized as
| |_> | |�√
<=

. [ = 1, C = 1.

2: while [ > b and C < )max do

3: Compute E[d?.] from @(d?.) by (23) for each ? =

1, 2, 3, ...,<=2;

4: Compute E[s.@] from @(s.@) by (26) for all @;

5: for : = 1, 2, 3, ...,  do

6: Compute E[I:@] from @(I:@) by (28) for all @;

7: Compute E[ln(c: )] and E[ln(1 − c: )] from @(c: ) by (33)

and (34);

8: end for

9: Compute E[WB ] from @(WB ) by (36);

10: Compute E[�8, 9 ] from @(�8, 9 ) by (39) for all (8, 9) ∈ Ω;

11: Compute E[V8, 9 ] from @(V8, 9 ) by (41);

12: Compute E[Wn ] from @(Wn ) by (43);

13: if E[I:@] = 0 for all : then

14: Remove E[d.: ] in E[J], E[c: ], and E[I:@], E[B:@] for all

@;

15:  =  − 1;

16: end if

17: ¯̂
= J (Y ⊙ ` );

18: [ =

‖ ¯̂− ¯̂
pre ‖�

‖ ¯̂pre ‖�
;

19: ¯̂pre =
¯̂ ;

20: C = C + 1;

21: end while

22: Estimate the predictive mean E[.8, 9 ] and variance Var[.8, 9 ] by

(45) and (46) for all (8, 9).
23: return The predictive mean E[.8, 9 ] and predictive variance

Var[.8, 9 ] for each entry.

The details of our proposed approach are summarized in Algorithm

1. Algorithm 1 can be simplified if only missing data presents. One

can skip lines 10-11 in Algorithm 1 about updating E[�8, 9 ] and

E[V8, 9 ], and all the other updating rules remain unchanged.
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The KL divergence in (19) is difficult to compute because comput-

ing % (_>
Ω
) is intractable. To see this,

KL(@(�) | |% (�, _ |_>
Ω
))

= −
∫

@(�)ln
% (�, _ |_>

Ω
)

@(�) 3�

= E[ln@(�)] − E[ln % (�, _ |_>
Ω
)]

= E[ln@(�)] − E[ln % (�, _ , _>
Ω
)] + ln(% (_>

Ω
))

= −(E[ln % (�, _ , _>
Ω
)] − E[ln@(�)]) + ln(% (_>

Ω
))

= −ELBO(@(�)) + ln (% (_>
Ω
)).

(56)

ELBO is evidence lower bound. ln (% (_>
Ω
) denotes the natural

logarithm of % (_>
Ω
). The expectations in (56) are taken with respect

to @(�). Because ln(% (_>
Ω
)) is not related to @(�), minimizing the

KL divergence is equivalent to maximizing the ELBO. The goal of

variational inference is changed to maximizing the ELBO.

The joint probability of observed data and all the parameters is

characterized by (57).

% (�, _ , _>
Ω
)

=? (_>
Ω
|J, Y,` , K , Wn ), ? (J |_3 )? (Y |WB )? (` |0)? (0)

? (K |#)? (#)? (WB )? (Wn )

=

∏

(8, 9) ∈Ω
N(.>8,9 | (H

†^ )8, 9 + �8, 9 ,
1

Wn
)Γ(V8, 9 |60, ℎ0)

=1∏

@=1

N(s.@ |0,
1

WB
O )

<=2∏

?=1

N(d?. |0,
1

_3
O )

 ∏

:=1

Beta(c: |00, 10)

=1∏

@=1

 ∏

:=1

Bernoulli(I:@ |c: )

Γ(WB |20, 30)Γ(Wn |40, 50) .

(57)

N(.>8,9 | (H
†^ )8, 9 + �8, 9 , 1

Wn
) denotes that .>8,9 follows a Gaussian dis-

tribution with mean (H†^ )8, 9 + �8, 9 and variance 1
Wn

when J, ` , Y,

K and Wn are given.

The derivation details of updating rules of variational inference

are shown below.

(I) The approximate posterior distribution of d?. is a Gaussian distri-

bution (for all ? = 1, ...,<=2).

To see this, note that

∏

(8, 9) ∈Ω
N(.>8,9 | (H

†^ )8, 9 + �8, 9 ,
1

Wn
)

∝
∏

(8, 9) ∈Ω
exp( −Wn

2
(.>8,9 − �8, 9 − (H†^ )8, 9 )2)

∝
∏

(8, 9) ∈Ω
exp( −Wn

2
(.>8,9 − �8, 9 −

1

^ 9

∑

(D,E) ∈Ψ8,9
[dD. (s.E ⊙ z.E)])2)

∝∼
∏

(8, 9) ∈Ω exp( −Wn
2

(.>8,9 − �8, 9 −
1
^ 9
^ 9 [d?. (s.@ ⊙ z.@)] (?,@) ∈Ψ8,9 )2)

∝
∏

(8, 9) ∈Ω
exp( −1

2
[d?.Wn (s.@ ⊙ z.@) (s.@ ⊙ z.@)) d)?.] (?,@) ∈Ψ8,9

+ Wn (.>8,9 − �8, 9 ) [(s.@ ⊙ z.@)) d)?.] (?,@) ∈Ψ8,9 −
Wn

2
(.>8,9 − �8, 9 )

2)

∝ exp(d?.
−Wn
2

∑

@:(?,@) ∈ΨΩ

(s.@ ⊙ z.@) (s.@ ⊙ z.@)) d)?.

+Wn
∑
@:(?,@) ∈ΨΩ

H (_> − K)?,@ (s.@ ⊙ z.@)) d)?. −
Wn
2

∑
@:(?,@) ∈ΨΩ

H (_> − K)2?,@).
(58)

where H (_> − K)?,@ represents entry (?, @) of the Hankel matrix

H(_> − K).
Also note that

N(d?. |0,
1

_3
O ) ∝ exp(−_3

2
d?.d

)
?.) . (59)

Therefore,

∏

(8, 9) ∈Ω
N(.>8,9 | (H

†^ )8, 9 + �8, 9 ,
1

Wn
)N (d?. |0,

1

_3
O )

∝ exp(−1

2
d?. (Wn

∑

@:(?,@) ∈ΨΩ

(s.@ ⊙ z.@) (s.@ ⊙ z.@)) + _3 O )d)?.

+Wn
∑
@:(?,@) ∈ΨΩ

H (_> − K)?,@ (s.@ ⊙ z.@)) d)?. −
Wn
2

∑
@:(?,@) ∈ΨΩ

H (_> − K)2?,@).
(60)

Now it is safe to write that

ln( @(d?.))
= E�\d?. [ln ? (�, _ , _

>
Ω
)] + const.

= E�\d?. [ln ? (_
>
Ω
|J, Y,` , K , Wn )% (J |_3 )] + const.

= E[ln
∏

(8, 9) ∈Ω N(.>8,9 | (H
†^ )8, 9 + �8, 9 , 1

Wn
)N (d?. |0, 1

_3
O )] + const.

= E[−1

2
d?. (Wn

∑

@:(?,@) ∈ΨΩ

(s.@ ⊙ z.@) (s.@ ⊙ z.@)) + _3 O )d)?.

+Wn
∑
@:(?,@) ∈ΨΩ

H (_> − K)?,@ (s.@ ⊙ z.@)) d)?. −
Wn
2

∑
@:(?,@) ∈ΨΩ

H (_> − K)2?,@] + const.

= −1

2
d?. (E[Wn ]

∑

@:(?,@) ∈ΨΩ

E[(s.@ ⊙ z.@) (s.@ ⊙ z.@)) ] + _3 O )d)?.

+ E[Wn ]
∑

@:(?,@) ∈ΨΩ

H(_> − E[K])?,@ (E[s.@] ⊙ E[z.@])) d)?.

− E[Wn ]
2

∑

@:(?,@) ∈ΨΩ

H(_> − E[K])2?,@ + const..

(61)

The above derivation reveals that @(d?.) is a Gaussian distribution

with mean E[d?.] and covariance �d?.
, i.e.,

@(d?.) ∼ N (E[d?.], �d?. ), (62)

where
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�d?.
= [E[Wn ]

∑

@:(?,@) ∈ΨΩ

E[(s.@ ⊙ z.@) (s.@ ⊙ z.@)) ] + _3 O ]−1, (63)

E[d?.] = E[Wn ]
∑
@:(?,@) ∈ΨΩ

H(_> − K)?,@ (E[s.@]) ⊙ E[z.@]) )�d?. .
(64)

The required expectation is

E[(s.@ ⊙ z.@) (s.@ ⊙ z.@)) ] = E[s.@s).@] ⊙ E[z.@z).@]
= (E[s.@]E[s.@]) + �s.@ ) ⊙ (E[z.@]E[z.@]) + �z.@ ),

(65)

where �z.@ is

�z.@ = diag[E[I1@] (1 − E[I1@]), ...,E[I @] (1 − E[I @])] . (66)

(II) The approximate posterior distribution of s.@ (@ = 1, ..., =1) is a

Gaussian distribution.

To see this, note that

∏

(8, 9) ∈Ω
N(.>8,9 | (H

†^ )8, 9 ,
1

Wn
)

∝
∏

(8, 9) ∈Ω
exp( −Wn

2
(.>8,9 − �8, 9 − (H†^ )8, 9 )2)

∝
∏

(8, 9) ∈Ω
exp( −Wn

2
(.>8,9 − �8, 9 −

1

^ 9

∑

(D,E) ∈Ψ8,9
[dD. (s.E ⊙ z.E)])2)

∝∼
∏

(8, 9) ∈Ω
exp( −Wn

2
(.>8,9 − �8, 9 −

1

^ 9
^ 9 [d?. (s.@ ⊙ z.@)] (?,@) ∈Ψ8,9 )

2)

∝
∏

(8, 9) ∈Ω
exp( −Wn

2
( [s).@ (z.@ ⊙ d)?.) (d?. ⊙ z).@)s.@] (?,@) ∈Ψ8,9

− 2(.>8,9 − �8, 9 ) [(d?. ⊙ z).@)s.@] (?,@) ∈Ψ8,9 + (.>8,9 − �8, 9 )
2))

∝
∏

(8, 9) ∈Ω
exp( −Wn

2
( [s).@5)?,@5?,@s.@] (?,@) ∈Ψ8,9

− 2(.>8,9 − �8, 9 ) [5?,@s.@] (?,@) ∈Ψ8,9 + (.>8,9 − �8, 9 )
2))

∝ exp( −Wn
2

(s).@
∑

? :(?,@) ∈ΨΩ

5)?,@5?,@s.@)

+Wn
∑
? :(?,@) ∈ΨΩ

H(_> − K)?,@ [5?,@s.@] − Wn
2

∑
? :(?,@) ∈ΨΩ

H(_> − K)2?,@),
(67)

where we define 5?,@ = d?. ⊙ z).@ .

Also note that

N(s.@ |0,
1

WB
O ) ∝ exp( −WB

2
(s).@s.@)) . (68)

Therefore,

∏

(8, 9) ∈Ω
N(.>8,9 | (H

†^ )8, 9 + �8, 9 ,
1

Wn
)N (s.@ |0,

1

WB
O )

∝ exp( −Wn
2

(s).@
∑

? :(?,@) ∈ΨΩ

5)?,@5?,@s.@)

+ WnH(_> − K)?,@ [5?,@s.@] (?,@) ∈Ψ8,9 −
Wn

2
H(_> − K)2?,@)

exp( −WB
2

(s).@s.@))

∝ exp( −1
2
(s).@ [

∑

? :(?,@) ∈ΨΩ

Wn5
)
?,@5?,@ + WB O ]s.@)

+Wn
∑
? :(?,@) ∈ΨΩ

H(_> − K)?,@5?,@s.@ − Wn
2

∑
? :(?,@) ∈ΨΩ

H(_> − K)2?,@).
(69)

Thus,

ln(@(s.@))
= E�\B.@ [ln ? (�, _ , _

>
Ω
)] + const.

= E�\s.@ [ln ? (_
>
Ω
|J, Y,` , K , Wn )? (Y |WB )] + const.

= E[( −1
2
(s).@ [

∑

? :(?,@) ∈ΨΩ

Wn5
)
?,@5?,@ + WB O ]s.@)

+Wn
∑
? :(?,@) ∈ΨΩ

H(_> − K)?,@5?,@s.@ − Wn
2

∑
? :(?,@) ∈ΨΩ

H(_> − K)2?,@)] + const.

=

−1
2
(s).@ [

∑

? :(?,@) ∈ΨΩ

E[Wn ]E[5)?,@5?,@] + E[WB ]O ]s.@)

+ E[Wn ]
∑

? :(?,@) ∈ΨΩ

H(_> − E[K])?,@E[5?,@]s.@

− E[Wn ]
2
E[

∑

? :(?,@) ∈ΨΩ

H(_> − K)2?,@] + const..

(70)

The above derivation reveals that @(s.@) is a Gaussian distribution

with mean E[s.@] and covariance �s.@ , i.e.,

@(s.@) ∼ N (E[s.@], �s.@ ), (71)

where

�s.@ = [E[Wn ]
∑

? :(?,@) ∈ΨΩ

E[5)?,@5?,@] + E[WB ]O ]−1, (72)

E[s.@] = E[Wn ]�s.@
∑

? :(?,@) ∈ΨΩ

E[5?,@])H(_> − K)?,@ . (73)

The required expectation is E[5?,@] = E[d?.] ⊙ E[z.@]) and

E[5)?,@5?,@] = (E[d)?.d?.]) ⊙ (E[z).@z.@])
= (E[d?.])E[d?.] + �d?.

) ⊙ (E[z.@]E[z.@]) + �z.@ )) .
(74)

(III) The approximate posterior distribution of I:@ (for all @ =

1, ..., =1, and : = 1, ...,  ) is a Bernoulli distribution.

Note that
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ln(@(I:@))
= E�\I:@ [ln ? (�, _ , _

>
Ω
)] + const.

= E�\I:@ [ln ? (_
>
Ω
|J, Y,` , K , Wn )? (I:@ |c: )] + const.

= E[ln
∏

(8, 9) ∈Ω
N(.>8,9 | (H

†^ )8, 9 + �8, 9 ,
1

Wn
)

Bernoulli(I:@ |c: )] + const..

(75)

Because I:@ is binary, ln(@(I:@ = 1)) can be written as

ln(@(I:@ = 1))

= E�\I:@ [ln
∏

(8, 9) ∈Ω
N(.>8,9 | (H

†^ )8, 9 + �8, 9 ,
1

Wn
)c: ] + const.

= E[ln
∏

(8, 9) ∈Ω
N(.>8,9 | (H

†^ )8, 9 + �8, 9 ,
1

Wn
)] + E[ln(c: )] + const.

= E[ −Wn
2

∑

? :(?,@) ∈ΨΩ

[d?. (s.@ ⊙ ẑ.@) (s.@ ⊙ ẑ.@)) d)?.]

+ Wn
∑

? :(?,@) ∈ΨΩ

H(_> − K)?,@ [(s.@ ⊙ ẑ.@)) d)?.] + E[ln(c: )] + const.

= E[ −Wn
2

∑

? :(?,@) ∈ΨΩ

[trace(d?. (s.@ ⊙ ẑ.@) (s.@ ⊙ ẑ.@)) d)?.)]

+ Wn
∑

? :(?,@) ∈ΨΩ

H(_> − K)?,@ [(s.@ ⊙ ẑ.@)) d)?.] + E[ln(c: )] + const.

= E[ −Wn
2

∑

? :(?,@) ∈ΨΩ

[trace(d)?.d?. (s.@ ⊙ ẑ.@) (s.@ ⊙ ẑ.@)) )]

+ Wn
∑

? :(?,@) ∈ΨΩ

H(_> − K)?,@ [(s.@ ⊙ ẑ.@)) d)?.] + E[ln(c: )] + const.

=

−E[Wn ]
2

∑

? :(?,@) ∈ΨΩ

[trace(E[d)?.d?.] (E[s.@s).@] ⊙ E[ẑ.@ ẑ).@]))]

+ E[Wn ]
∑

? :(?,@) ∈ΨΩ

H(_> − K)?,@ [(E[s.@] ⊙ E[ẑ.@]))E[d?.]) ]

+ E[ln(c: )] + const.,

(76)

where Î:@ = 1, other entries in Î.@ equal to the corresponding entries

in I.@ . The required expectations are

E[d)?.d?.] = E[d?.])E[d?.] + �d?.
, (77)

E[s.@s).@] = E[s.@]E[s.@]) + �s.@ , (78)

E[ẑ.@ ẑ).@] = E[ẑ.@]E[ẑ.@]) + Ĥ@, (79)

where Ĥ@ = diag[E[I1@] (1−E[I1@]), ...,E[I @] (1−E[I @])], �̂:@ =

E[I:@] (1 − E[I:@]) = 0.

ln(@(I:@ = 0)) can be expressed as

ln(@(I:@ = 0))

= E�\I:@ [ln N(.>8,9 | (H
†^ )8, 9 + �8, 9 ,

1

Wn
) (1 − c: )] + const.

=

−E[Wn ]
2

∑

? :(?,@) ∈ΨΩ

[trace(E[d)?.d?.] (E[s.@s).@] ⊙ E[ẑ.@ ẑ).@]))]

+ E[Wn ]
∑

? :(?,@) ∈ΨΩ

H(_> − K)?,@ [(E[s.@] ⊙ E[ẑ.@]))E[d?.]) ]

+ E[ln(1 − c: )] + const.,

(80)

where Î:@ = 0, other entries in Î.@ equal to the corresponding entries

in I.@ .

Thus, I:@ follows a Bernoulli distribution

@(I:@) ∼ Bernoulli(
@(I:@ = 1)

@(I:@ = 1) + @(I:@ = 0) ), (81)

with mean and variance

E[I:@] =
@(I:@ = 1)

@(I:@ = 1) + @(I:@ = 0) , (82)

�I:@ = E[I:@] (1 − E[I:@]), (83)

where

ln(@(I:@ = 1)) ∝
−E[Wn ]

2

∑

? :(?,@) ∈ΨΩ

[trace(E[d)?.d?.] (E[s.@s).@] ⊙ E[ẑ.@ ẑ).@]))]

+ E[Wn ]
∑

? :(?,@) ∈ΨΩ

H(_> − K)?,@ [(E[s.@] ⊙ E[ẑ.@]))E[d?.]) ]

+ E[ln(c: )],
(84)

where Î:@ = 1, other entries in Î.@ equal to the corresponding entries

in I.@ .

ln(@(I:@ = 0)) ∝
−E[Wn ]

2

∑

? :(?,@) ∈ΨΩ

[trace(E[d)?.d?.] (E[s.@s).@] ⊙ E[ẑ.@ ẑ).@]))]

+ E[Wn ]
∑

? :(?,@) ∈ΨΩ

H(_> − K)?,@ [(E[s.@] ⊙ E[ẑ.@]))E[d?.]) ]

+ E[ln(1 − c: )],
(85)

where Î:@ = 0, other entries in Î.@ equal to the corresponding entries

in I.@ .

(IV) The approximate posterior distribution of c: ( : = 1, ...,  ) is

from a Beta distribution.

Because the prior distribution of c: is a Beta distribution

Beta(c: |
00

 
,
10 ( − 1)

 
) ∝ (c: )

00
 −1 (1 − c: )

10 ( −1)
 −1 . (86)
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Given c: , the likelihood of I:@ is a Bernoulli distribution

Bernoulli(I:@ |c: ) = (c: )I:@ (1 − c: )1−z:@ . (87)

Combine (86) and (87) together, we can get

=1∏

@=1

Bernoulli(I:@ |c: )Beta(c: |
00

 
,
10 ( − 1)

 
)

∝ (c: )
00
 +∑=1@=1 I:@−1 (1 − c: )

10 ( −1)
 +=1−

∑=1
@=1 I:@−1 .

(88)

Therefore,

ln(@(c: ))
= E�\c: [ln ? (�, _ , _

>
Ω
)] + const.

= E�\c: [ln ? (` |c: )? (c: )] + const.

= E [ln
∏=1
@=1 Bernoulli(I:@ |c: )Beta(c: | 00 ,

10 ( −1)
 )] + const.

= E [ln (c: )
00
 +∑=1@=1 I:@−1 (1 − c: )

10 ( −1)
 +=1−

∑=1
@=1 I:@−1] + const.

= E[(00
 

+
=1∑

@=1

I:@ − 1)ln(c: ) + (10 ( − 1)
 

+ =1 −
=1∑

@=1

I:@ − 1)

ln(1 − c: )] + const.

= (00
 

+
=1∑

@=1

E[I:@] − 1)ln(c: ) + (10 ( − 1)
 

+ =1

−
=1∑

@=1

E[I:@] − 1)ln(1 − c: ) + const..

(89)

So @(c: ) satisfies a Beta distribution

@(c: ) ∼

Beta(00
 

+
=1∑

@=1

E[I:@],
10 ( − 1)

 
+ =1 −

=1∑

@=1

E[I:@]).
(90)

The expectation of ln(c: ) is

E[ln(c: )] = k (
00

 
+
=1∑

@=1

E[I:@]) −k (
00 + 10 ( − 1)

 
+ =1). (91)

The expectation of ln(1 − c: ) is

E[ln(1 − c: )] =

k (10 ( − 1)
 

+ =1 −
=1∑

@=1

E[I:@]) −k (
00 + 10 ( − 1)

 
+ =1).

(92)

Note that the equations (91) and (92) are derived based on one prop-

erty of logarithm Beta function, i.e., if c: satisfies a Beta distribu-

tion Beta(U1, V1) with parameters (U1, V1), then the expectations of

ln(c: ) and ln(1 − c: ) are

E[ln(c: )] = k (U1) −k (U1 + V1)
and

E[ln(1 − c: )] = k (V1) −k (U1 + V1),
respectively.k (.) is the diagamma function andk (U1) = Γ

′ (U1)
Γ (U1) .

(V) The approximate posterior distribution of WB is a Gamma distri-

bution.

Given

Γ(WB |20, 30) ∝ (WB )20−14−30WB , (93)

and

=1∏

@=1

N(s.@ |0,
1

WB
O ) ∝ (WB )

=1 

2 exp(−
∑=1
@=1 | |s.@ | |

2
2

2
WB ) . (94)

Therefore,

ln(@(WB ))
= E�\WB [ln ? (�, _ , _

>
Ω
)] + const.

= E�\WB [ln ? (Y |WB )? (WB )] + const.

= E[ln
=1∏

@=1

N(s.@ |0,
1

WB
� )Γ(WB |20, 30)] + const.

= E[ln(WB )
=1 

2
+20−1exp[−WB (

1

2

=1∑

@=1

| |s.@ | |22 + 30)]]

+ const.

= E[(=1 
2

+ 20 − 1)ln(WB ) − WB (
1

2

=1∑

@=1

| |s.@ | |22 + 30)]

+ const.

= (=1 
2

+ 20 − 1)ln(WB ) − WB (
1

2

=1∑

@=1

E[s).@s.@] + 30)

+ const..

(95)

The @(WB ) satisfies a Gamma distribution

@(WB ) ∼ Γ(=1 
2

+ 20,
1

2

=1∑

@=1

E[s).@s.@] + 30), (96)

with mean

E[WB ] =
=1 
2

+ 20
1
2

∑=1
@=1 E[s

)
.@s.@] + 30)

, (97)

where E[s).@s.@] = E[s).@]E[s.@] + trace(�s.@ ).
(VI) The approximate posterior distribution of �8, 9 (for (8, 9) ∈ 
) is

a Gaussian distribution.

Because

N(.>8,9 | (H
†^ )8, 9 + �8, 9 ,

1

Wn
)N (�8, 9 |0,

1

V8, 9
)

∝ exp( −Wn
2

(�28, 9 − 2�8, 9 (.>8,9 − (H†^ )8, 9 )

+ (.>8,9 − (H†^ )8, 9 )2))exp(
−V8, 9
2

�28, 9 )

∝ exp(
−(Wn + V8, 9 )

2
�28, 9 + Wn�8, 9 (.

>
8,9 − (H†^ )8, 9 )−

Wn

2
(.>8,9 − (H†^ )8, 9 )2),

(98)
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then we can derive

ln( @(�8, 9 ))
= E�\�8,9 [ln ? (�, _ , _

>
Ω
)] + const.

= E�\�8,9 [ln ? (_
>
Ω
|J, Y,` , K , Wn )? (�8, 9 )] + const.

= E[ln N(.>8,9 | (H
†^ )8, 9 + �8, 9 ,

1

Wn
)N (�8, 9 |0,

1

V8, 9
)] + const.

= E[
−(Wn + V8, 9 )

2
�28, 9 + Wn�8, 9 (.

>
8,9 − (H†- )8, 9 )

− Wn

2
(.>8,9 − (H†^ )8, 9 )2] + const.

=

−(E[Wn ] + E[V8, 9 ])
2

�28, 9 + E[Wn ]�8, 9 (.
>
8,9 − E[(H

†^ )8, 9 ])

− E[Wn
2
(.>8,9 − (H†^ )8, 9 )2] + const..

(99)

The above derivation reveals that @(�8, 9 ) is a Gaussian distribution

with mean E[�8, 9 ] and covariance ��8,9 , i.e.,

@(�8, 9 ) ∼ N (E[�8, 9 ], ��8,9 ), (100)

where

E[�8, 9 ] = E[Wn ]Σ�8,9 (.>8,9 − E[(H
†^ )8, 9 ]), (101)

��8,9 =
1

E[Wn ] + E[V8, 9 ]
. (102)

The required expectation is

E[(H†^ )8, 9 ] =
1

^ 9

∑

(D,E) ∈Ψ8,9
[E[dD.] (E[s.E] ⊙ E[z.E])] . (103)

(VII) The approximate posterior distribution of V8, 9 (for (8, 9) ∈ 
)

is a Gamma distribution.

Because

Γ(V8, 9 |60, ℎ0) ∝ (V8, 9 )60−14−ℎ0V8,9 , (104)

and

N(�8, 9 |0,
1

V8, 9
) ∝ (V8, 9 )

1
2 exp(

−V8, 9
2

�28, 9 ). (105)

Combine (104) and (105) together,

N(�8, 9 |0,
1

V8, 9
)Γ(V8, 9 |60, ℎ0)

∝ (V8, 9 )
1
2
+60−1exp(−V8, 9 (

1

2
�28, 9 + ℎ0)) .

(106)

Therefore,

ln(@(V8, 9 ))
= E�\V8,9 [ln ? (�, _ , _

>
Ω
)] + const.

= E�\V8,9 [ln ? (�8, 9 |V8, 9 )? (V8, 9 )] + const.

= E[ln N(�8, 9 |0,
1

V8, 9
)Γ(V8, 9 |60, ℎ0)] + const.

= ( 1
2
+ 60 − 1)ln(V8, 9 ) − V8, 9 (

1

2
E[�28, 9 ] + ℎ0) + const.,

(107)

where E[�28, 9 ] = E[�8, 9 ]
2 + ��8,9 . The equation (107) indicates that

V8, 9 follows a Gamma distribution

@(V8, 9 ) ∼ Γ( 1
2
+ 60,

1

2
E[�28, 9 ] + ℎ0), (108)

with mean

E[V8, 9 ] =
1
2
+ 60

1
2
E[�28, 9 ] + ℎ0

, (109)

where E[�28, 9 ] = E[�8, 9 ]
2 + ��8,9 .

(VI) The approximate posterior distribution of Wn is a Gamma distri-

bution.

Note that

Γ(Wn |40, 50) ∝ (Wn )40−14−50Wn , (110)

and

∏

(8, 9) ∈Ω
N(.>8,9 | (H

†^ )8, 9 + �8, 9 ,
1

Wn
)

∝ (Wn )
|Ω |
2 exp( −Wn

2
| |_> − %Ω (H†^ + K) | |2� ),

(111)

where |
 | is the cadinality of 
.

Therefore,

ln(@(Wn ))
= E�\Wn [ln ? (�, _ , _

>
Ω
)] + const.

= E�\Wn [ln ? (_
>
Ω
|J, Y,` , K , Wn )? (Wn )] + const.

= E[ln
∏

(8, 9) ∈Ω
N(.>8,9 | (H

†^ )8, 9 + �8, 9 ,
1

Wn
)Γ(Wn |40, 50)] + const.

= ( |Ω |
2

+ 40 − 1)ln(Wn ) +
−Wn
2
E[| |_> − %Ω (H†^ + K) | |2� ] − 50Wn + const.

= ( |Ω |
2

+ 40 − 1)ln(Wn ) +
−Wn
2

∑

(8, 9) ∈Ω
E[(.>8,9 − �8, 9

− 1

^ 9

∑

(D,E) ∈Ψ8,9
[dD. (s.E ⊙ z.E)])2] − 50Wn + const.,

(112)

where

E[(.>8,9 − �8, 9 −
1

^ 9

∑

(D,E) ∈Ψ8,9
[dD. (s.E ⊙ z.E)])2]

= .>8,9
2 − 2.>8,9E[�8, 9 ] + E[�

2
8, 9 ] − 2(.>8,9 − E[�8, 9 ])

1

^ 9

∑

(D,E) ∈Ψ8,9

[E[dD.] (E[s.E] ⊙ [E[z.E])] +
1

^29
E[(

∑

(D,E) ∈Ψ8,9
dD. (s.E ⊙ z.E))2]

(113)

ACM SIGENERGY Energy Informatics Review Volume 2 Issue 1, February 2022



=

1

^29

∑

(?,@) ∈Ψ8,9
trace(E[d?.])E[d?.] (E[s.@]E[s.@]) ⊙ �z.@ ))

+ 1

^29

∑

(?,@) ∈Ψ8,9
trace(E[d?.])E[d?.] (E[z.@]E[z.@]) ⊙ �s.@ ))

+ 1

^29

∑

(?,@) ∈Ψ8,9
trace(E[d?.])E[d?.] (�z.@ ⊙ �s.@ ))

+ 1

^29

∑

(?,@) ∈Ψ8,9
trace(�d?. (E[s.@]E[s.@]

) ⊙ �z.@ ))

+ 1

^29

∑

(?,@) ∈Ψ8,9
trace(�d?. (E[z.@]E[z.@]

) ⊙ �s.@ ))

+ 1

^29

∑

(?,@) ∈Ψ8,9
trace(�d?. (�z.@ ⊙ �s.@ )) + Σ�8,9

+ 1

^29

∑

(?,@) ∈Ψ8,9
trace(�d?. (E[s.@]E[s.@]

) ⊙ E[z.@]E[z.@]) ))

+ (.>8,9 − E[�8, 9 ] −
1

^ 9

∑

(D,E) ∈Ψ8,9
[E[dD.] (E[s.E] ⊙ E[z.E])])2 .

(114)

The equation (112) indicates that Wn follows a Gamma distribution

@(Wn ) ∼ Γ( |
 |
2

+ 40,
1

2
E[| |_> − %Ω (H†^ + K) | |2� ] + 50), (115)

with mean

E[Wn ] =
|
 |
2

+ 40
1
2
E[| |_> − %Ω (H†^ + K) | |2

�
] + 50

. (116)

A.4 Computational Complexity

The computational complexities for Hankel operation and inverse

Hankel operation are O(<=2=1). The computational complexity for

updating � is O(^<=2=1 2 +<=2 3), and the complexity for up-

dating ( is O(^<=2=1 2 +=1 3). The computational complexity for

updating / is O(^<=2=1 4+ =1) and the computational complexity

for updating Wn is O(^<=2=1 3 +<=2=1 ). The computational com-

plexities for c: , WB , �, and V are O( =1), O( 2=1), O(<=2=1 )
and O(<=), respectively. The final complexity is O(^<=2=1 4 +
<=2 

3 + =1 3 +<=2=1 ). The complexity scales at most linearly

with respective to the dimension of the Hankel matrix.

A.5 Predictive mean and predictive variance

We can derive the predictive mean as follows:

E[.8, 9 ] =
∫

? (.8, 9 |_>Ω).8, 93.8, 9

=

∫
(
∫

? (.8, 9 |) )? () |_>Ω)3) ).8, 93.8, 9

=

∫
(
∫

? (.8, 9 |) ).8, 93.8, 9 )? () |_>Ω)3)

=

∫
E? (.8,9 |) ) [.8, 9 ]? () |_

>
Ω
)3)

=

∫
5 ) (.8, 9 )? () |_>Ω)3)

≈ 1

!

;=!∑

;=1

5 ); (.8, 9 ) ); ∼ @() |_>Ω) .

(117)

The predictive mean for .8, 9 is derived by taking the expectation

over the probability ? (.8, 9 |_>Ω). ) = {J,` , Y, Wn }. E? (.8,9 |) ) [.8, 9 ] is

the expectation of .8, 9 over ? (.8, 9 |) ). The integration in last second

step of equation (117) is difficult to obtain, thus ); is sampled from

@() |_>
Ω
) and Monte Carlo integration is employed to approximately

compute it.

To derive the predictive variance, we compute E[. 2
8, 9 ] as follows:

E? (.8,9 |_>Ω ) [.
2
8, 9 ]

=

∫
? (.8, 9 |_>Ω).

2
8, 93.8, 9

=

∫
(
∫

? (.8, 9 |) )? () |_>Ω)3) ).
2
8, 93.8, 9

=

∫
(
∫

? (.8, 9 |) ). 2
8, 93.8, 9 )? () |_

>
Ω
)3)

=

∫
(E? (.8,9 |) ) [.

2
8, 9 ])? () |_

>
Ω
)3)

=

∫
(Var? (.8,9 |) ) [.8, 9 ] + E

2
? (.8,9 |) ) [.8, 9 ]))? () |_

>
Ω
)3)

=

∫
( 1
Wn

+ 5 ) (.8, 9 )2)? () |_>Ω)3)

≈ 1

!

;=!∑

;=1

1

Wn
+ 1

!

;=!∑

;=1

5 ); (.8, 9 )2 ); ∼ @() |_>Ω).

(118)

By plugging (117) and (118) into equation (46), the predictive vari-

ance can be derived in (46).

A.6 Additional Experiments

A.6.1 The impact of distributions of bad data and noise. In our

problem setup, the bad data is generated from uniform distribution

and the noise is generated from Gaussian distribution. In this section,

we also study the recovery accuracy when the bad data and noise are

drawn from different distributions. We consider M1 with 10 % B1 to

compare with Fig. 7(d). For the bad data generation, we consider the

Laplace distribution with mean 1.5 and standard deviation 0.5. We

also consider the Gaussian distribution with mean 1.5 and standard

deviation 0.5. For the noise generation, we consider the uniform

distribution in the range from 0 to 0.006. We also consider the Laplace

distribution with mean 0 and standard deviation 0.08. The recovery
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performance is shown in Fig. 11. One can see from Fig. 11 that our

proposed method still performs better than the baseline methods. The

results are comparable to Fig. 7(d).

(a) B1 from Laplace distribution (b) B1 from Gaussian distribution

(c) Noise from uniform distribution (d) Noise from Laplace distribution

Fig. 11. The recovery results with M1 plus 10% B1 with different bad

data or noise distributions. (a)-(b) show the recovery results with bad

data generated from different distributions. (c)-(d) show the recovery

results with noise generated from different distributions.

Fig. 12. The measurements of voltage angle [Hao et al. 2018]

A.6.2 Performance on practical PMU phasor angle dataset.

The corresponding PMU angle data of Fig. 1 is shown in Fig. 12.

Two extra case studies are considered to verify the effectiveness of

our algorithm on the phasor angle dataset. The parameter settings are

the same with Case 1 and 2 except that =2 = 20 and 50 = 10−5.

• Case 3: 15% data are removed following Mode M2, and 15%

observations contain Mode B2 bad data. Each bad entry is

randomly selected from (1,1.5).

• Case 4: 15% data are removed following Mode M3, and 10%

observations contain Mode B1 bad data. Each bad entry is

randomly selected from (1,1.5).

Our method can also recover the data accurately in both cases

for the angle data. The NEE and WNEE for Case 3 are 6.5 × 10−4

and 5.3 × 10−4, respectively. The NEE and WNEE for Case 4 are

1.3 × 10−3 and 1.1 × 10−3, respectively. Fig. 13-Fig. 14 show the

recovery performance of Case 3 and 4. Similar to the magnitude data,

at time 2.3 seconds when the event happens, the uncertainty index

increases because the method is less confident about the estimation

at that time instant.
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(a) (b) (c) (d)

Fig. 13. The recovery performance on 15% M2 missing data and 15% B2 bad data on the angle data. (a) the observed data, (b) the estimated

data, (c) the estimated data in one channel with the confidence interval, (d) the corresponding uncertainty index for one channel in (c)

(a) (b) (c) (d)

Fig. 14. The recovery performance on 15% M3 missing data and 10% B1 bad data on the angle data. (a) the observed data, (b) the estimated

data, (c) the estimated data in one channel with the confidence interval, (d) the corresponding uncertainty index for one channel in (c)
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