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Synchrophasor data suffer from quality issues like missing and bad data.
Exploiting the low-rankness of the Hankel matrix of the synchrophasor data,
this paper formulates the data recovery problem as a robust low-rank Hankel
matrix completion problem and proposes a Bayesian data recovery method
that estimates the posterior distribution of synchrophasor data from partial ob-
servations. In contrast to the deterministic approaches, our proposed Bayesian
method provides an uncertainty index to evaluate the confidence of each
estimation. To the best of our knowledge, this is the first method that provides
confidence measure for synchrophasor data recovery. Numerical experiments
on synthetic data and recorded synchrophasor data demonstrate that our
method outperforms existing low-rank matrix completion methods.
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1 INTRODUCTION

HASOR Measurement Units (PMU) provide synchronized phasor
measurements of various locations of the power system, and
these data can be used for state estimation [Aminifar et al. 2013;
Dobakhshari et al. 2020; Zhao et al. 2015a], post-disturbance anal-
ysis [Bhui and Senroy 2016; Guo and Milanovi¢ 2015] and system
identification [Kamwa and Gerin-Lajoie 2000; Zhou et al. 2006].
Synchrophasor data have quality issues such as missing and bad data,
including false data injection attacks from malicious intruders [Liu
et al. 2011]. Such quality issues prevent synchrophasor data from
being employed for real-time control.

A variety of methods have been developed for PMU missing data
recovery such as training deep neural networks [James et al. 2019,
2018; Ren and Xu 2019], designing a dynamic state estimator based
on Kalman filter [Jones et al. 2014; Zhou et al. 2014], filling the
missing data based on the inference of a dynamic model [Foggo and
Yu 2021], formulating it as a low-rank matrix completion problem
[Gao et al. 2016b; Genes et al. 2018; Liao et al. 2018; Zhang et al.
2018] and the more general tensor completion problem [Osipov and
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Chow 2020]. Bad data are corrected by methods like hypothesis test-
ing [Huang et al. 2018; Kosut et al. 2011; Mestav et al. 2019; Mestav
and Tong 2020], exploiting spatio-temporal similarities [Wu and Xie
2016], spatial clustering [Wang et al. 2019], independent component
analysis [Esmalifalak et al. 2015], and low-rank approaches [Gao
et al. 2016a; Hao et al. 2018; Zhang and Wang 2018]. Low-rank
methods have the unique advantages among all these efforts: (1) no
need of power system topology and line parameters as required by
state estimators, (2) no need of training data as required by neural-
network-based approaches, and (3) more computationally efficient
than tensor approaches. Moreover, synchrophasor data have the spe-
cial property that not only the data matrix but also the corresponding
Hankel matrix is low-rank, and [Hao et al. 2018; Zhang et al. 2018;
Zhang and Wang 2019] have leveraged this low-rank Hankel property
to enhance the data recovery performance. One major advantage of
low-rank Hankel methods is the ability to recover simultaneous and
consecutive data issues across all channels, while the conventional
low-rank methods fail in this extreme scenario.

The critical limitation of the above methods is the lack of a confi-
dence measure of the returned estimation. Although low-rank meth-
ods have theoretical guarantees that the recovery is accurate if the
loss/error percentage is less than a threshold, such bound generally
underestimates the methods’ capabilities and thus is not practical.
Only a few works consider the uncertainty modeling for matrix
completion problem. Ref. [Zhao and Udell 2020] quantifies the un-
certainty based on Gaussian copula. Ref. [Chen et al. 2019] builds a
confidence interval for noisy matrix completion. Both works require
strong assumptions and consider missing data only. [Babacan et al.
2012] develops a Bayesian approach to recover low-rank matrices.
However, [Babacan et al. 2012] develops two separate approaches to
handle missing and bad data, respectively, and no confidence measure
is provided.

This paper develops a Bayesian low-rank Hankel matrix recovery
method to recover missing and bad data. The method also returns
an uncertainty index for each recovered value such that the operator
can evaluate the confidence of the recovery. Specifically, given the
prior distribution of the data, the method computes the posterior dis-
tribution using partial observations that contain noise and errors. The
mean of the posterior is employed to estimate each data point, and
the corresponding variance is viewed as the uncertainty index. The
advantage of our method over the existing deterministic approaches
[Zhang et al. 2018; Zhang and Wang 2019] on low-rank Hankel ma-
trix recovery are threefold. First, our method provides the uncertainty
index to evaluate the confidence of each estimation. Second, our
method outperforms the deterministic approaches in handling cor-
rupted data. Third, our method is more robust to parameter selection.
For instance, the estimated rank of the Hankel matrix can be set to
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be much larger than the actual value initially, and our method can es-
timate the actual value from the data by iterative pruning. Moreover,
our method significantly outperforms conventional Bayesian matrix
completion approaches like [Babacan et al. 2012] , because the latter
perform poorly on simultaneous data losses or corruptions across
all channels. In addition, [Babacan et al. 2012] handles missing and
bad data separately, while our method can recover missing data and
correct bad data at the same time.

The rest of the paper is organized as follows. The low-rank Hankel
property of synchrophasor data and the problem formulation are
introduced in Section II. Our proposed approach is presented in
Section III. The numerical experiments are reported in Section IV,
and Section V concludes the paper. Technical details of our method
are described in the supplementary material.

2 PROBLEM FORMULATION

Let a matrix Y contain the ground-truth measurements of m channels
in n time instants,

Y = [y, y2, ... yn] € R™, (1)

where y; € R™ contains the data of m channels at ith time instant.
Let E denote the additive bad data and N denote the additive noise
data. E is a sparse matrix, and the values in E can be arbitrarily large.
N is a dense noise matrix and the values in N are small. Let matrix
Y? € R™ " denote the observed data with each entry satisfying

Y7 =Yij+Eij+Nij (i) €<, )

where the set Q contains the indices of the observed entries in Y°.

The objective of robust matrix completion is to recover Y from
partial observations Yl"] that contain missing data, bad data and noise.
Moreover, this paper wants to provide an uncertainty index for the
confidence evaluation of each estimation Y; ;.

2.1 Low-Rank Hankel Property of PMU Data
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Fig. 1. The measurements of voltage magnitude [Hao et al. 2018]

The Hankel operator {: R™*" — R™2XM (n; + ny = n+ 1)
linearly maps a matrix to its corresponding Hankel matrix, the ith
column of which contains the data from all m channels in ny consec-
utive time steps starting from time i, i.e.,

vy . Y
Y2 Y3 ... Yni+1

X=Hy,(Y)=]| . , T e rmnom (3
Yn, Ynp+1l .- Yn
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Let o; denote the ith largest singular value of Hp, (Y), and let u;
and v; denote the corresponding left and right singular vectors. The
rank-r (r << m, n) approximation of Hp, (Y) can be computed from

,
Q (Hp, (V) = ) Giuio] . @)
i=1
Q" (Hp, (Y)) has the smallest normalized approximation error to
Hp, (Y) among all rank » matrices. The normalized approximation
Q" (Hy, (Y))=Hpy (Y)1IF

error can be computed from Z
P [ Fy (VT

IS
T

Normalized approximation error
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Fig. 2. The normalized approximation errors of different Hankel matri-
ces Hy, (Y)

As discussed in [Hao et al. 2018], the Hankel matrix H,, (Y) is
often approximately low-rank. That is because for a well-operated
power system, some system modes may be highly damped, or not
directly measured, or not excited by the input [Hao et al. 2018].
During an event, the observations usually contain at most K modes
where K is much less than the system dimension. Then Hp, (Y) is
approximately rank K.

[Hao et al. 2018] provides a formal analysis of the low-rank Hankel
property. Here we only show the empirical evaluation on a recorded
synchrophasor dataset in Central New York Power System. The
dataset in [Hao et al. 2018] contains 11 voltage phasors with 30 sam-
ples per second. Fig. 1 shows the voltage magnitude in 10 seconds,
and a disturbance occurs at around 2.3 seconds.

Let Y € RI3% denote measured magnitude of 11 channels in
10 seconds. Fig.2 shows the approximation errors of Hy, (Y) with
varying approximation rank r and the Hankel parameter ny. All
the matrices Hp, (Y) can be approximated by a rank-6 matrix with a
negligible error. For example, when ny = 4, the rank-6 approximation
to Hy, (Y) has error 0.00067.

3 BAYESIAN ROBUST HANKEL MATRIX
COMPLETION

The proposed approach factorizes the Hankel matrix of Y as the
product of two factors, the basis matrix D and the coefficient matrix
W. W is modeled as an element-wise product of two matrices Z
and S, where the binary matrix Z represents the sparse support, and
S represents the non-zero coefficients. Bad data are modeled by a
sparse matrix E. Each item is modeled by a probability distribution.
The algorithm learns the posterior distributions of D, Z, S, and E
from obtained partial observations. Our approach then infers the
distribution of each entry Y; ;. The predictive mean will be calculated
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Fig. 3. An overall illustration of the proposed approach. The approach arranges the ground-truth data Y into a Hankel matrix X and then decomposes
X in a factorized form with a basis, the sparse support, and the coefficient matrices.

as the estimation of Y; j and the predictive variance will be computed
to measure the uncertainty of the estimation. Fig. 3 shows an overall
framework of our proposed algorithm.

This method extends from the conventional Bayesian matrix com-
pletion in the following aspects. First, the low-rank Hankel property
is exploited to capture the temporal correlations in time series. In
conventional low-rank matrix completion, one needs at least » entries
in each channel to recover the missing data. The recovery would
fail if measurements in all channels were corrupted at the same time
instant. Our algorithm additionally considers the temporal correla-
tions and can recover simultaneous missing or bad data. Moreover,
the recovery accuracy is enhanced significantly by exploiting the
temporal correlations. Second, our method provides the uncertainty
measure, which characterizes the confidence of the recovery results.
Third, our method can recover both missing and bad data at the
same time, as shown in equation (5), while missing and bad data are
treated separately in [Babacan et al. 2012]. Lastly, we introduce the
additional binary matrix Z to enhance the sparsity of the coefficients
W, which in turn leads to a more accurate estimation of the rank and
improves the recovery performance.

3.1 Proposed Probabilistic Model

A hierarchical probabilistic model is employed to infer all the latent
variables, and (5) to (16) show the model and the prior distribution.
(5) is derived from (2), where we use X to denote the low-rank Hankel
matrix of the ground-truth data, and the inverse of Hankel matrix
(HTX);, ;j is employed here to represent Y; ;. The formal definition
of the inverse Hankel operator H * can be found in supplementary
material. Let X be rank K, then its qth column, denoted by X.g> can
be written as the product of the basis D € R™"2XK with a coefficient
vector w g, where w g is modeled as the element-wise product of two
vectors z 4 and s 4. We introduce the additional binary vector z 4
to enhance the sparsity of the coefficients w 4. The kth entry of z 4,
denoted by zp4, is assumed to have a prior Bernoulli distribution
with probability . The prior of ;. is a Beta distribution with pre-
defined values ay and bj. Reference [Zhou et al. 2009] shows that
data generated from this so-called Beta-Bernoulli process is sparse.
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Because the actual rank of the Hankel matrix may be unknown, the
initial rank K can be set as a large number, and our method can infer
the actual rank by gradually pruning the basis using the sparsity of
learned Z from data.

The prior distribution s 4 is a multivariate Gaussian N (0, yg 1),
where Ik is a K X K identity matrix. Each entry of the noise matrix
N and the error matrix E is drawn from N (0, yZ') and N(0, ,b’i_’}),
respectively. Three gamma priors are incorporated on ys, ye and
Pi,j following Gamma priors with parameters (co, do), (eo, fo), and
(go, ho), respectively. The prior distribution of each row of D is
N(0, AglIK), where A is a pre-defined value. [Babacan et al. 2012]
shows that the Gaussian distribution with Gamma priors models the
sparsity of the bad data E; ;. The Gaussian assumption for the bad
data has been employed in the literature, see, e.g., [Luttinen et al.
2012][Zhao et al. 2015b] and [Babacan et al. 2012]. We employ con-
jugate priors to simplify calculations and obtain analytical posterior
distributions.

Forallp=1,2,3,...mny, q=1,2,3,...,n;,and k = 1,2,3,..., K,

Y2 = (H'X)ij+Eij+Nij (i)) €Q, ®)
xq=Dwg, (6)
wq=(240s4), (7)
dp. ~ N (0,17 Ix), (8)
K
zq~ l_[ Bernoulli(y), )
k=1
7 ~ Beta(ag /K, bo(K — 1)/K), (10)
sq~ N,y I), (11
Eij ~N(O.B) (i) €, (12)
Nij ~N@©,yh), (13)
¥s ~ I'(co, do). (14)
Ye ~ I'(eo, fo), (15)
Bi.j ~ T(go, ho). (16)
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3.2 Variational Inference for Approximating the
Posterior Distributions

Let © = {dp.,s.q,2.q: Ei j, 7, Ys, Yes Pijo p = 1, 2,3, ...,mng, g = 1,2,
3,..n,k =1,23,..,K,(i,j) € Q} denote all the latent variables.
Given Yg, we aim to compute the posterior P(©,Y|Y?). From the
Bayes’ theorem,

P(©,Y[Yg Poe.xYg) 17

(6,Y[Yg) = TYS) (17

Because P(Yg) is difficult to calculate by marginalizing all the latent
variables, computing (17) is intractable.

The mean field variational inference [Bishop 2006] is employed
here to approximate P(@, Y|Yg) by the variational distribution q(®©).
Mean field approximation assumes that elements in © are mutually
independent and g(®) is factorized as

q(0) = q(D)q(8)q(Z)q(m)q(E)q(B)q(ys)q(ye) =

T2 g(dp) 11, 4(5 )q(2.) T, q0m) T iy 4(Es)a (i a(vs)atre)-
(18)

The Kullback-Leibler (KL) divergence is employed to measure
the similarity of two distributions. Variational inference finds the
closest approximation q(®) to P(®, Yo|Yg) by solving the following
optimization problem,

q(©) = argmin KL(q(©)||P(,Y[Yy))
q(©)

= argn%zg;E[lnP(@, Y, Y3)] - E[lng(©)]. (19)
q

The above optimization problem is solved approximately by se-
quentially estimating the approximation distribution of each factor
given all the others. Each approximation distribution is obtained
through computing the expectations of all the other factors based on
learned distributions [Bishop 2006; Blei et al. 2017]. The station-
ary approximation distribution of the variational inference is a local
optimum to the optimization problem (19) [Bishop 2006; Blei et al.
2017]. For example, q(dp.) denotes the approximation distribution
of dj. while keeping other latent variables fixed. The optimal g(d,.)
which maximizes the objective function in (19) is

Ing(dp.) =Eg(e\a,)[In P(O,Y, Y$)] + constant, (20)

Eq(@)\dp) means taking the expectation with respect to all the latent
variables except dj.

As all the distributions in the proposed model have conjugate
priors, the conditional posterior distributions have explicit forms.
We directly present the conditional distribution and expectation of
each variable. The details of the derivations are summarized in the
supplementary material.

(I) The approximate posterior distribution of dj,_ (forall p = 1, ..., mny),
the pth row of basis, is a Gaussian distribution with mean E[d,, ],
which denotes the expectation of g(d).), and covariance % dp» ie.,

q(dp) ~ N(Bldy ], Zg,), 1)
where
%q, = [Elyel )| El(sq024)(s4029) 1+aIk]™, 22)

q:(p.q) €¥0
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Fig. 4. Graphical representation of the dependence of the random
variables in the proposed Bayesian Hankel matrix completion model

Eldp]=Blyel Y, HEY°-E)pg(Elsgl” 0Elz4]")q,,
q:(p.q) €%
(23)
Y denotes the set of observed entries in the Hankel matrix of Y°.
(IT) The approximate posterior distribution of s g (¢ = 1,...,n1 ) is a
Gaussian distribution.

Q(s.q) ~ N(E[S.q]’ Zs_q)y (24)
where
%5, = [Elyel ). Elgpodpgl +ElnlIkI™, (29
P:(p.q) €%
E[sq] = ElyelZs, El¢pg)"H(Y’ —E)pq  (26)
P:(p.q) €¥0

¢p’q = dp O] Z.I;I.
(IIT) The approximate posterior distribution of zi, (for all g =
1,...,n1,and k = 1, ..., K) is a Bernoulli distribution.

q(qu = 1)
q(zkg = 1) + q(zg = 0)

q(zq) ~ Bernoulli( ), (27

with mean and variance
_ q(qu = 1)

q(zkg = 1) + q(zg = 0)
szq = E[qu] (1- E[qu])’ (29)

Elz

kgl : (28)

where
In(q(zxq = 1))

—Elve] .

— [trace(E[d), dp ] (E[s ¢s7,] © B[z,42%1))]

pi(p.q) ¥

+Elyel Zpi(p.q et H(Y® = E)pgl(Els g] O B[z 4]) Eldp "] + E[In(m)],
(30)

where o denotes “proportional t0.” 2.q = [Z1g, 22gs - Zkgy -+ éKq]T.

Zkq = 1 and other entries in 2 4 equal to the corresponding entries in

Z.g-

ln(Q(qu =0)) o

—Elye] ..

el Z [trace(E[d), d) ] (E[s.¢s’,] © E[z.42%1))]
p:(p.q) €¥a

+Elye] Rpipgyeva H(YO = E)pgl(Els g] © B[24)TE[dy 7] +E[In(1 - 7)),

€1y
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Zkq = 0, and other entries in Z 4 equal to the corresponding entries in

z.q-
(IV) The approximate distribution of 73 (k =1, ...,
distribution.

q(m) ~ Beta(ag/K + Z;Ll

K) is from a Beta
Elzigl bo(K 1)K + 1 — £ Elzgg)).

(32)
Therefore,

1 Elzigl) = ¢((ao + bo(K = 1)) /K +ny),
(33)

E[In(m)] = ¥(ao/K + Z;lz

E[In(1 = m)] = (bo(K = 1)/K +n1 = E71 Elzig]) = ¢/((ao + bo (K = 1)) /K + ny),
(34)

where 1/(.) is the diagamma function.

(V) The approximate posterior distribution of ys is a Gamma distri-

bution.

q(ys) ~ <—+co, ZE g +do), (35)

with mean Ko
niK + 2co
Elys] = ; (36)
zg;l E[shs.q] +2do

where E[sf]s,q] = E[sZ]E[s,q] +trace(Zs ).
(VI) The approximate posterior distribution of E; ; (for (i, j) € Q) is

a Gaussian distribution.

q(Eij) ~ N(E[Ei;], ZE; ;). (37

with variance and mean
2k, = Elye] +E[fi;D 7 (38)
E[Ei ] = Elyel S, (Y2, — EL(H X)ij]). (39)

(VII) The approximate posterior distribution of ; j (for (i, j) € Q)
is a Gamma distribution.

1 1
Pij ~ (5 + 9o, EE[EI'ZJ] + ho), (40)

with mean

1+ 290
E[El.zj] +2hy
(VI) The approximate posterior distribution of y, is a Gamma distri-
bution.

E[fi] = (41)

Q|

q(ye) ~T (|—+eo, E[IIY® - Po(H X +E)I[Z] + fo),  (42)

with mean
|Q| + 2eg
E[|[Y® - Po(HTX + E)||2] +2fy

Pruning the basis D and the error matrix E. As D is a redundant
basis when K is larger than the ground-truth rank, we propose to
prune the basis E[D] to reduce computation. If E[z,] = 0 for
all ¢ in each iteration, the algorithm removes kth basis atom d j
because d ;. does not contribute to the representation of X. Then the

Elye] = (43)
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algorithm also removes the corresponding E[In(7z)], E[In(1 — mx)],
E[zgq], Elskq] for all g. Because E is sparse, we also prune E[E] by
thresholding, i.e., if entries in E[ E] are very small (e.g., 1071), these
entries are set as zeroes.
Convergence criteria. Matrix X is the estimation for X at the current
iteration. Matrix Xpre is the estimation for X at the previous iteration
if I X—XprellF
1 Xpre Il 2
threshold ¢ (e.g., 10™%) or if the maximum iterations Tyax is reached.
Initialization. After constructing the Hankel matrix X from Y?,
where missing entries are filled in zeros, we compute the SVD of X as
X = UAVT. D is initialized by UA? and § is initialized with A7 V7.
z q are initialized with all ones. All values in 7. are initialized as 0.5.
||Y° 1%

The algorithm terminates i < & for a pre-determined

vs, and Ay are initialized by HJJF 1/ye is initialized by

The initial X° = D(S © Z). The initial E is Eij = Y7, — (‘HTXO), J
if (i,j) € Q and E;; = 0 otherwise. All the covarlance matrices
for dj. and s 4 are initialized by a K x K diagonal matrix where the
HY°llF
mn

diagonal elements are equal to . The covariance matrices for

z q are initialized by a K X K zero matrix. All the elements in § are
initialized as 12X

W
Missing data only. Our algorithm can be simplified if only missing
data presents. One can skip steps VI and VII about updating E[E; ;]
and E[f; j], and other steps remain unchanged.
Computational complexity. The per-iteration computational com-
plexity is O(kmnani K* + mnoK3 + n1 K3 + mnyn; K), where « (0 <
Kk < 1) is the portion of observed entries. Thus, it is at most linear
in the dimension of the Hankel matrix. Derivation of the complexity
can be found in Section A.4 in the supplementary materials.

3.3 The uncertainty measure

Let & = {D,Z,S,yc} denote all the latent variables related to Y; ;.
After computing the posterior distributions, we employ Monte-Carlo
integration [Paisley et al. 2012] to estimate the mean and variance of
Y;,j. Define

O (i) =H'(D(S @ 2)). (44)

The predictive mean is computed by

l L

2 fA), (45)

l

¥ij =E[Yij]

where each 6! is independently drawn from the learned approxima-
tion distributions of D, Z, S, and ye. L is the number of Monte-Carlo
samples. Similarly, the predictive variance is approximated by

Lj
I=L =L I=L (46)
g = I Zf"'m,j)z - <% 1% )

The derivation details of (45) and (46) are provided in the supplemen-
tary materials. A larger L offers a more accurate estimate but also
leads to a higher computational cost. In our experiments, L = 50 is
sufficient to provide a reliable estimate of the mean and the variance.
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E[Y;,;] is used to as an estimate f/i,j of Y; j, and Var[Y; ;] is used
as an uncertainty index of the estimation, because a larger variance
indicates a higher uncertainty in the estimation.

3.4 Parameter Selections of the Algorithm

Several pairs of parameters (ao, bo),(co, do),(eo, fo), (go, ho) are need-
ed in the prior distributions (10), (14), (15) and (16) respectively. [Yi
and Wang 2021; Zhou et al. 2009] show that ¢y and dy are non-
informative priors, which have a negligible impact on the results, and
can be set as small values (e.g., 107%). A larger ap with fixed by leads
to a larger mean of the prior distribution of 7, which in turn leads to
less number of zero entries in z 4. Decreasing f with fixed eg leads
to a larger y., which leads to a smaller variance of the measurement
noise N. A larger hy with fixed go leads to smaller values of B,
which leads to larger values in E. Note that these parameters only
have slight impact on the inferred posterior distributions. Section
4.2.3 demonstrates that the proposed method is robust to parameter
selections and these parameters can be set in a wide range. A larger
ny improves the performance of the algorithm but also suffers from
higher computational burden. In our experiments, ny is set as at most
30, and it is sufficient to obtain reliable recovery results.

3.5 Time Window Selection for Streaming data

time window 7  time window 7 +1 time window ¢ time window 7 +1

3 channels
3 channels

J=2j-17 j¥1j+2 -
overlapped |:>

Fig. 5. Non-overlapping and overlapping sliding windows

J=2j-1j j+1j+2 -

When handling streaming data in real-time, one needs to truncate
the measurements into blocks and process each time block separately.
One can use a sliding window with length n and step size s. When the
window is non-overlapping (n = s), as shown in the left half of Fig. 5,
each entry is estimated once in one time window. Otherwise, every
entry is estimated |n/s] times in different time windows, where | x |
means the greatest integer less than or equal to x. One can pick the
estimate that has the smallest uncertainty index. For example, the
right half of Fig. 5 shows overlapping windows with n =4 and s = 1.

4 NUMERICAL EXPERIMENTS
4.1 Experimental Setup

Three modes of missing data and bad data are considered, as shown
in Fig. 6. For example, M1 means Mode 1 missing data, and B1
means Mode 1 bad data. The value of the additive error is randomly
generated from (2, 4) for synthetic data and (1, 1.5) for real data.

e Mode 1: Missing/bad data occur independently and randomly
across all the channels and time instants.

e Mode 2: Missing/bad data occur across all the channels at
some randomly selected time instants.

e Mode 3: Missing/bad data occur across all the channels at con-
secutive time instants. The starting time is selected randomly.
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Fig. 6. The missing and bad data generation.

Our proposed Bayesian Robust Hankel matrix completion method,
abbreviated by “BRHMC,” is compared with the deterministic Han-
kel robust matrix completion method “SAP” in [Zhang and Wang
2019] and the deterministic robust matrix completion method “R-
RMC” in [Cherapanamjeri et al. 2017] for simultaneous recovery
of missing and bad data. When the goal is recovering missing data
only, we compare a simplified version of our method, abbreviated
by “BHMC,” with the deterministic Hankel missing data recovery
method “AM-FIHT” in [Zhang et al. 2018] and Bayesian missing
data recovery method “VSBL” in [Babacan et al. 2012]. Some param-
eters of BRHMC/BHMC are set as follows for all the experiments:
ap =103, by =1, ¢ = 1070, dy = 107°, ey = 107°, hy = 107°. The
experiments are implemented in MATLAB 2019 on a desktop with
3.1 GHz Intel Core i9 and 32 GB RAM.

Evaluation Metrics: Two metrics are used to measure the recovery
performance. The Normalized Estimation Error (NEE) is defined as

NEE = [|¥ - Y||¢/IIY]lF. 47)

where ¥ and Y in R represent the estimated data and the ground-
truth data, respectively. A new metric weighted normalized estima-
tion error (WNEE) is defined as

) AP ARV Y2,
WNEE = {5, (B 1%y o T ) g
Var|Y; ;] Var[Y; ;]

When Var[f/l-l ;71 is large, there is a higher uncertainty in the estimate
ﬁ; j- Then from (48), a smaller weight in placed on f’i, j when com-
puting the overall performance error. If the variance is the same for
all f/, j» WNEE is equal to NEE. If WNEE is smaller than NEE, then
those estimations with large errors are indeed penalized with a small
weight in WNEE and, thus, the corresponding variance is large. Thus,
WNEE being smaller than NEE indicates that the uncertainty index
indeed represents the accuracy of the estimation.

4.2 Performance on Synthetic Datasets

4.2.1 Dataset generation and parameter setting. We conduct
the experiments on synthetic spectrally sparse signals which have
the low-rank Hankel property [Zhang et al. 2018; Zhang and Wang
2019]. Each row of Y is a weighted sum of r sinusoids. Specifically,
the ground truth Y; ; is generated from

.
Y= Real(z by i=1, . mj=1,..n (49)
k=1
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Fig. 7. The recovery results with different missing/bad data. (a)-(c) show the recovery results with
three missing modes. (d)-(f) show the recovery results with three missing and bad modes.

where 1 is the imaginary unit, fi is the frequency, b; j is the normal-
ized complex amplitude of the k-th sinusoid, and Real(-) keeps the
real part only. We randomly select f; from (0, 1). The angle of b; j
is randomly selected from (0, 27r), and the magnitude is 1 + 100-°%k
where a; . is randomly generated from (0,1). Y is rank 2r. Here, r
is set as 2. m = 20, and n = 300. Each entry is added with a random
Gaussian noise from N (0,0.03%), which is about 1.1% NEE error.
Each bad data entry is randomly selected from (2, 4).

Some parameters of BRHMC/BHMC are set as follows: fy = 107°,
go =107, & = 1074, ny = 30. K is 4. Typay is 100. L = 50 in (45) and
(46). All the results are averaged over 50 independent trials.

4.2.2 Recovery performance. Fig. 7 (a)-(c) compare the missing
recovery performance of BHMC with VSBL and AM-FIHT. Fig. 7
(d)-(f) compare the recovery performance of BRHMC with R-RMC
and SAP when both missing and bad data exist. BHMC-N denotes
NEE error in (47) for BHMC, and BHMC-WN denotes the WNEE
error in (48). Because no uncertainty index is provided for all other
methods, only NEE error is reported.

The recovery errors of BRHMC/BHMC stay consistently small
and outperform all the existing methods. Specifically, the conven-
tional low-rank methods like VSBL and R-RMC perform poorly in
Mode 2 and Mode 3, because they cannot handle simultaneous data
issues across all channels. Deterministic Hankel-based methods like
AM-FIHT and SAP outperform low-rank methods but perform worse
than our proposed methods. Moreover, AM-FIHT and SAP are more
sensitive to rank selections than our methods. We also tested other
distributions of bad data and noise and obtained similar results as
those in Fig. 7. Please see Fig. 11 in the supplementary materials.

When the data loss percentage is high, WNEE is less than NEE
of our proposed methods. As discussed after (48), this gap indicates
that those estimates with larger errors have larger variances. Fig. 8
further shows the histogram of uncertain indices in mode M3. When
the data loss percentage increase, the uncertain indices of some
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Fig. 8. The histogram of uncer-
tainty index in the M3 mode.

entries increase, indicating a less reliable estimation. Our methods
can differentiate unreliable estimates from reliable ones.

The average time to compute the posterior distribution is 2-7 sec-
onds, and the Monte-Carlo computation of mean and variance takes
around 0.5-1 second. The computational time for AM-FIHT, VSBL,
R-RMC and SAP are 0.9-1.3 seconds, 0.1-0.4 seconds, 0.05-0.2
seconds, and 0.2-3 seconds, respectively.

4.2.3 The impact of parameter selections. Numerical experi-
ments are conducted on a dataset with 20% B1 and 20% M2 to test
the impact of parameter selections on the performance of BRHMC.
As discussed in Section 3.4, we only consider the impact of three
pairs (ao, bo), (eo, fo), (g0, ho), and vary one while fixing the other.
One can see from Tables 1-3, the recovery errors remain small in a
wide range of parameters, and NEE and WNEE are the same.

Table 1. The impact of ay (b is fixed and by = 1)

a | 1 10 10 10% 107 10°
(W)NEE | 0.0017_0.0017 0.0017_0.0017 _0.0017 0.0017

Table 2. The impact of f; (e is fixed and ey = 107°)

fo ] 10T 107 107 10T 108 10°
(W)NEE | 0.0017_0.0017__0.0017__0.0017__0.0017 _0.0017

Table 3. The impact of hy (go is fixed and gy = 107°)

ho \ 1071 1072 1073 107* 107 107
(W)NEE‘(),0024 0.0018 0.0017 0.0017 0.0017 0.0017

Table 4. The impact of the initial rank K

initial rank K 4 12 20 28 32
Proposed .(W)NEE 0.0017 0.0017 0.0017 0.0017  0.0017
estimated rank 4 5 5 5 5
SAP NEE 0.064  0.0040 0.0053  0.0063  0.0067
AM-FIHT NEE 0.0017 0.0027 0.0035  0.0042  0.0045

Because BHMC prunes the basis during the inference, it is robust
to the initial rank K of basis. Table 4 shows that when K is selected
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Table 5. The impact of Hankel parameter n,

ny 1 10 20 30 40 50
NEE 0.45  0.0021 0.0018 0.0017 0.0017 0.0017
WNEE 0.014 0.0021 0.0018 0.0017 0.0017 0.0017

from a wide range, the recovery error of the proposed method is
always small, and the final estimated rank is close to the ground-truth
value 4. In contrast, the performance of SAP and AM-FIHT degrades
when the rank is not properly selected. In Table 4, AM-FIHT is tested
for 20% M2, while others are tested on 20% B1 and 20% M2.

Table 5 shows the performance when the Hankel block size n3
increases. When ny = 1, the method reduces to the conventional
Bayesian matrix completion method, which has a large error. Increas-
ing ny indeed improves the recovery performance.

4.3 Performance on practical PMU dataset

The recorded synchrophasor dataset in Central New York Power Sys-
tem as shown in Fig. 1 is employed here to evaluate the performance
on streaming data. The proposed method is compared with SAP al-
gorithm. go = 0.2, £ = 107°. The window length is set as 50 for our
algorithm and 60 for SAP. We use a sliding window with step size 1
for our algorithm. Non-overlapping windows are employed for SAP,
because it does not return an uncertainty index to compare the per-
formance of overlapping windows. Two case studies are considered.
ny = 20 for Case 1, and ny = 6 for Case 2. fy = 1073 for Case 1 and
Case 2. Besides, the ranks are set as K = 6 for two algorithms. The
computational time of the non-overlapping windows for Case 1 is 2.6
seconds and is 6.6 seconds for Case 2. Another two case studies for
the phasor angle data are included in the supplementary materials.

e Case 1: 20% data are removed following Mode M2. Moreover,
additional Gaussian noise from N (0,0.003%) is added to every
observation during time 5.6 to 6.6 seconds.
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e Case 2: 20% data are removed following Mode M1, and 15%
observations contain Mode B1 bad data. Each bad entry is
randomly selected from (1,1.5).

Our method can recover the data accurately in both cases. NEE and
WNEE for Case 1 are 8.8 x 107* and 8.4 x 107%, respectively. NEE
and WNEE for Case 2 is 2.0 x 1073 and 1.5 x 1073, respectively. In
comparison, the NEE of SAP for Case 1 and 2 is 5.9 x 1073 and
6.0 x 1073, respectively, worse than our method. Because SAP does
not return the uncertainty index, we do not report the WNEE for SAP.
Fig. 9-Fig. 10 show the recovery performance of the cases 1 and 2.
We visualize the corrupted data, recovered data, the confidence inter-
val of one channel, and the uncertainty index of the corresponding
channel in each subfigure, respectively. The 95% confidence interval
for each time instant is the predictive mean plus and minus 1.96
times the predictive standard deviation. In both cases, the ground-
truth measurements are located within the confidence interval. At
time 2.3 seconds when the event happens, the uncertainty index in-
creases because the method is less confident about the estimation
at that time instant. Moreover, in Fig. 9(c), the uncertainty index in-
creases during the time interval 5.6-6.6 seconds, which corresponds
to the time when additional noise is introduced. Fig. 9(b) shows that
the noise is reduced in the recovery results.

5 CONCLUSIONS

This paper develops a Bayesian low-rank Hankel matrix recovery
method to address missing and bad data in synchrophasor measure-
ments. It provides the uncertainty index for the operator to evaluate
the estimation accuracy of recovered data in real-time. The method
outperforms all the existing methods numerically.

One future direction is to explore the Bayesian tensor matrix com-
pletion method by exploiting the Hankel structure. We will also in-
vestigate the theoretical guarantee of uncertainty modeling in robust
matrix completion problem.
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SUPPLEMENTARY MATERIAL
A.1 Beta and Gamma distributions

The Beta and Gamma distributions are introduced here.
The Gamma function is defined as

I'(a1) = / x@ e X dx. (50)
0
The Beta distribution is
F(al + ﬁl)
T(a)T(B1)

The “Beta(my|a1, f1)” denotes that ;. is a Beta distribution with
two parameters «; and f;. Other notations have same rule in the

Beta(;rk|a1,ﬁ1) = (ﬂk)al_l(l - ﬂk)ﬁl_l, (29

following section. The mean of this Beta distribution is al"fﬂl and
. . .. . . o ﬁl
the variance of this Beta distribution is T ALCE

The Gamma distribution is

do® (y5) 0 te~ove
I'(co)

where ¢y > 0,dy > 0. oc denotes “proportional to”. The mean of this
Gamma distribution is {Ci—‘[’] and the variance of this Gamma distribu-

T(ysleo, do) = o (ys)07temhYs, (52)

.. g
uonis —.
dy?

A.2 The Hankel operator

H' is the Moore-Penrose pseudoinverse of . For any X € R™"2XM |
(H'X);j € R™™ is defined as

1
(H'X)ij = (H X, eie] ) = = > Xuo
=)
1\J )
= {E Zj1=1 X(ji-D)m+ij+1-j, J <n2 )
- 1 n] . )
Ky Zj2=j+1—nz X(j—jz)m+i,j2 j=ny+1

where k; = #{(j1, j2)lj1 +j2 =j+1 1< j1 <np 1< jp <mp}is
the number of entries in the jth anti-diagonal of an ny X n; matrix.
nj = min(j, ny).

‘We employ two sets to define the mapping relationship between the
original matrix and the corresponding Hankel matrix. (i, j) denotes
one coordinate in the original matrix. ¥; ; denotes the set of the
mapping entries of (i, j) in the corresponding Hankel matrix of Y°.
¥, j shows the mapping relationship in (53). One can simply check
the corresponding coordinate of (i, j) in X to obtain ¥; ;. ¥;; is
a subset of ¥q. ¥; ; only shows the mapping set of one point (i,j)
while ¥ denotes the set of all the mapping entries of all (i, j) in the
corresponding Hankel matrix.

Vi ={(w,0)|[(w,0) = ((j1 —)m+1i,j+1~ jp) for every
j1=1,2,...,j, under the case when j < ny;

(u,0) = ((J = j2)m +1, jz) forevery jz = j+1—ng,...nj,

where nj = min(j, n1), under the case when j > ny +1;} (i, j) € Q.

(54)
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Yo = {(u,0)| there exists (i, j) € Q such that (u,0) € ¥;;}.
(55)

A.3 Updating rule for variational inference

Algorithm 1 Varational Inference for Bayesian Robust Hankel Ma-
trix Completion

Require: The observation matrix Y°. The parameters Ay,
ag, bo, co, do, o, fo, go, ho for prior distributions. The initial ba-
sis size K . The maximum iterations Tnax. The convergence
threshold &. The Hankel matrix parameter na.

1: Initialization:Form the Hankel matrix X by Y°. Take the SVD
of X by X = UAVT. D is initialized by UA:. S is initialized
with A2V7T. Z is initialized with all-one matrix. All values in

s s Yol
7 are initialized as 0.5. ys and Ay are initialized by I mr‘llF

1/ye is initialized by % X% = D(S © Z). The initial E is
Eij=Y7 - (HTX0);; if (i, j) € Q and E; ; = 0 otherwise. All

the elements in f are initialized as % n=1t=1.
2: while n > £and t < Tipax do
3. Compute E[dp.] from gq(dp) by (23) for each p =
1,2,3,..., mng;
Compute E[s 4] from g(s.¢4) by (26) for all g;
for k=1,2,3,...Kdo
Compute E[zx,] from g(zx4) by (28) for all g;
Compute E[In(my)] and E[In(1 — % )] from q(7) by (33)
and (34);
8:  end for
9:  Compute E
10:  Compute E

A

¥s] from q(ys) by (36);

E; j] from q(E; ;) by (39) for all (i, j) € Q;
11: ~ Compute E[f; ;] from q(p; ;) by (41);

12:  Compute E[y,] from g(ye) by (43);

13: ifE[qu] = 0 for all k then

—_——_—

14: Remove E[d x| in E[D], E[n], and E[zg4], E[sgq] for all
q;
15: K=K-1;
16:  end if
172 X=D(S02);
) — ”X_Xpre“F .
= Rl
19: Xprc =X;

20: t=t+1;

21: end while

22: Estimate the predictive mean E[Y; ;] and variance Var[Y; ;] by
(45) and (46) for all (i, j).

23: return The predictive mean E[Y; ;] and predictive variance
Var[Yj ;] for each entry.

The details of our proposed approach are summarized in Algorithm
1. Algorithm 1 can be simplified if only missing data presents. One
can skip lines 10-11 in Algorithm 1 about updating E[E; ;] and
E[pi,j], and all the other updating rules remain unchanged.
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The KL divergence in (19) is difficult to compute because comput-
ing P(YQ) is intractable. To see this,

KL(q(©)[|P(®,Y[Yg))

_ P(0,Y[Y])
= /q(@))ln—q(@) doe

=E[lng(®)] - E[lnP(6,Y|Y3)] (56)
= E[Inq(©)] - E[In P(8,Y,Y3)] + In(P(Y3))

= —(E[InP(O,Y,Y3)] - E[lnq(©)]) + In(P(YY))

= —ELBO(q(©)) +In (P(YY)).

ELBO is evidence lower bound. In (P(Yg) denotes the natural
logarithm of P(YJ). The expectations in (56) are taken with respect
to q(©). Because ln(P(YS%)) is not related to ¢(©), minimizing the
KL divergence is equivalent to maximizing the ELBO. The goal of
variational inference is changed to maximizing the ELBO.

The joint probability of observed data and all the parameters is
characterized by (57).

P(6,Y,Y3)
=p(Y3ID, S, Z, E, ye), p(DIAg) p(Slys)p(Z|m)p(7)
p(EIB)p(B)p(ys)p(ye)

- 1
= l_[ N(Yi?jl(‘}{'x)i,j +Ei,js —)r(ﬂi,ﬂgo, ho)
(1) €2 re

ny
1
N (s l0, = Ix)
(];! Vs (57)
mny l

K
[ [~V @p.lo. 1) | | BetaCmilao, bo)
p=1 A

n K

1_[ 1_[ Bernoulli(zyq|7x)
q=1k=1

T (ysleo, do)T (veleo. fo)-

N(Yl."jl(‘HTX),-,j +E;j, yle) denotes that Yi"j follows a Gaussian dis-

tribution with mean (?{*X)l-y j + E; j and variance # when D, Z, S,
E and y, are given.

The derivation details of updating rules of variational inference
are shown below.
(I) The approximate posterior distribution of dj,. is a Gaussian distri-
bution (for all p = 1, ..., mny).
To see this, note that

1
[T NOIH X)) +Eij =)
(ij)€Q Ve

—Ye i 2
o I_[ exp(—= (Y7 ~ Eij ~ (H'X)i)?)
(i.j)€Q
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o [T eno0p-By-— Y ldulso0zol?)

(i.,j)€Q 7 (w0)e¥;;
< M eoexp(F= (Y, = Eij = 1Kjldp.(s.q ©29)] (pg)ew;,))
-1
o l_[ exp(? [dp,)/e(s.q © Z.q) (S.q O} Z.q)TdZ;.] (p.q) €¥s;
(i,j) €Q
+ye(YS = Ei(s.q ©29) ) ) pgyew,, = (Y = Eip)?)
oc exp(dp. _Tye Z (5.q0z4)(540 z‘q)Td;.

q:(p.q) €¥o

+e Zg(pgyeta HY® = E)pg(sq© Z-q)Td; - YTG Dg:(p.geva HY = E)fzq)'
(58)

where H(Y® — E)p 4 represents entry (p,q) of the Hankel matrix
H(Y° —E).
Also note that
dy. 10, g al 59
N( p.|0»ZIK) OCCXP(—? p.dp). (59)

Therefore,

1 1
[T MO0+ By - IN (10 3= Ti)

(.)€
1 T T
o exp(— dp. (1e D (5402954029 + Aalk)dy,
q:(p.q) €%
+e Xq(pa et HO® = E)pg(sq ©29) dp — 5 Tiipgyewg HY® = E)f ).

(60)
Now it is safe to write that

In( gq(dp.))

=Ee\d, [Inp(©,Y, Y3)] + const.

=Ee\a, [In p(Y3ID,S, Z, E, ye) P(D|A4)] + const.

= E[In[1(; j)eq N(Yifj|(wTX),~, j+Eij, #)N(dp. |0, ﬁIK)] + const.
1

= E[—Edp_(ye Z (5.q02z4)(540 z,q)T + AdIK)d;

q:(p.g) €Y
+e Sq(pqyeto HY® = E)pg(s.q©2z9)7d) — X 50 pqew, HY = E) ] +const.

- _%dp.(E[Ye] Z E[(sq ©24)(sq @24 ] +Aalk)d},

q:(p.q) €Yo
VEll > H(Y ~EIEDpg(Blsql 0 Elzg))Td]
q:(p.q) €¥q
_ Elel Z H(Y° —E[E])2 , + const
2 P -

q:(p.q) €¥a
(61)

The above derivation reveals that g(dp.) is a Gaussian distribution
with mean E[d) | and covariance de_, ie.,

q(dp.) ~ N(E[dp.]. 24, ) (62)

where
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E[(sq©zq)(sq02zg) ]+ AgIk] 7%, (63)

q, = [Ely] )

q:(p.q) €¥a

Eldp.] = Elye] Zq.(p.q ety H(Y° = E)pg(Elsgl” 0E[z4])Zq, -
(64)

The required expectation is

E[(sq02.9)(sq029)] =E[sgsh] 0Elz42]]

T T (65)
= (E[s.q]E[sq] + 2:s,q) O} (E[z.q]E[z.q] + 2:z,q),

where X2 is

Yz, = diag[E[z14](1 - E[z14]), .. El[zkq] (1 = E[zk¢q])].  (66)

(II) The approximate posterior distribution of s 4 (¢ = 1,...,n1) is a
Gaussian distribution.

To see this, note that

[1 ~vor |<wTX>u, )

(i,j)eQ
« [] exp( —Eij— (H'X)i)?)
(i.j)€Q
1
o [] ep(F2 -Eij-— Y [duls0 020D
(i.j) €Q T (o) e¥;;
1
o ]_I eXp(—(Y" ;Kj[dp-(s-qQz-q)](p,q)e‘l’i,j)z)
(i.j)eQ J
« ] exp(—([ sh(zq0d))(dp. ©25)s 4l (pgew,,
(i.j)€Q

- Z(Yi(,)j - Ei,j)[(dp, © Z_];I)S_q] (pgeti; t (Yi?j - Ei,j)z))
Y
o 1_[ exp(f([sfy¢;,q¢p,qs~q](p,q)e‘l’i,j
(i,j)eQ

= 2(Y; ~ Eij)[$pgS.q) (pg ew, + (Y~ Eij)2)

> pabrasa)

o exp(_Tye(sz

pi(p.q) €¥a
+e Lp(pg)eva MY = E)pgldpgsgl = %5 Zp(pgewg HY° ~E)F ),
(67)
where we define ¢ g = dp. © zf].
Also note that
1 Vs, T
N (s 4lo0, }’_IK) o exp(T(s_qs.q)). (68)
S

Therefore,
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1
[T NORIH X5+ Eijioo )N(s_q|0, “Ix)
(i,j)€Q Vs

o exp(_Tye(sf] Z

p:(p.q) €¥a
+YeH(Y® = E)pq[9pgs.q) (pg)ews, = S HY = E)f o)

T
¢p,q¢p,q3.q)

exp(—> (slys.q))

wexp(o(hl Y

p:(p.q) €%
+Ye Lp:(pg)evo H(Y? = E)pgdpqS.q

Ye‘l’;,q(bp,q +ysIk]s.q)
_Ye 0 _ E)2
2 Zp:(p,q)e‘l’u W(Y E)p,q)~
(69)

Thus,

In(q(s.q))
=Ee\s, [In p(©,Y,Y3)] + const.
=Ee\s, [In p(Y5|D. S, Z, E. ye)p(Slys)] + const.

Bl Y

p:(p.q) ¥
+Ye Lpi(pqyeto H(Y? = E)pqbpgs.q—

=_71(32[ > ElrelEL9] gbpal +ElyslIk]s.g)

Ye¢g,q¢p,q +ysIk]s.q)

Lo 3 ppagp e H(YO — E)2 )] + const.

p:(p.q) €¥a
Elyel > HX°—E[E])yqElppqlsq
pi(p.q) €
_ Elrel E Z H(Y° - E)f,’q] + const..
p:(p.q) €Yo

(70)

The above derivation reveals that g(s.q) is a Gaussian distribution
with mean E[s 4] and covariance DIFPIS KO

Q(s.q) ~ N(E[s.q], z:s,q)> (71)

where

s, = [Blrel ).

p:(p.q) €¥0

El¢) op.q) +ElvslIk]™,  (72)

Elsgl =ElyelZs, ), Elgpgl HIY =E)pg  (73)

P:(p.q) €¥o

The required expectation is E[¢p 4] = E[d).] © E[z.q]T and

El¢) ,p.q) = (E[d]} dp.]) © (E[zz.4])

(74)
= (Bldp1"Eldp] +24,) © (B[zg]E[z4]" +22,)).

(II) The approximate posterior distribution of zi, (for all g =
1,...n1,and k = 1, ..., K) is a Bernoulli distribution.
Note that
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In(q(zky))
= IE:@\qu [Inp(O,Y, YS)] + const.

=Eg)\z, [In p(YID, S, Z, E, ye) p(zieq|mi)] + const. s

- 1
=E[n ]_[ NI (HX)ij +Eij, —)
(i.j)eQ ve
Bernoulli(zyq |7y )] + const..

Because zj is binary, In(q(zq = 1)) can be written as

In(q(zxq = 1))
1
=Eoyg, [ [ | NOPIH X)i; +Eyj,—)m] +const.
o > Ye
(i.j)eQ
- 0 T 1
=Blln [ | NOPIHX)ij+Eij, —)] +E[In(m)] + const,
e e

- E[‘TYG D ldp(sq029) (54029 7d]]
p:(p.q)€¥a
t¥e D, HY°-E)pgl(sq©2q)dy]+E[In(m)] + const,
p:(p.g) ¥
B[S D [trace(dy. (s.q©2)(s.q029) d])]
p:(p.g) ¥
t¥e D, HY°-E)pgl(sq©zq)dy]+E[In(m)] + const,
p:(p.q) e¥o
- E[‘Tﬁ D lwace(d] dp (sq©29)(sq029)7)]
p:(p.q) €¥a
+yve . HE°-E)pgl(sq02q) dy]+E[In(m)] +const,
p:(p.g) ¥
S B S frace(BlA dy 1 (Bl gsT) © B2 q20 )]
= 5 b.dp. $.4S.q 2424
p:(p.q) €Yo
+Elyel ), HE°-E)pgl(Elsgl ©Elz4)Eldy]"]
P:(p.q) €%

+ E[In(my)] + const.,
(76)

where 2kq = 1, other entries in Z 4 equal to the corresponding entries
in z 4. The required expectations are

Eld, dp ]| =E[d, ] E[d) ] + T4, (77)
Elsgsh] =E[sg]E[sq]” + s, (78)
Elz,42,] =El24]E[24]" + By, (79)

where By = diag[E[z14] (1-E[214]), ... E[zkq] (1-Elzkq]) ], Big =
E[qu](l - E[qu]) =0.
In(q(zxq = 0)) can be expressed as
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In(q(zkg = )
1

= E@\qu [In N(Yii]j|('}‘[TX)i’j +Ei,js Y—)(l - lTk)] + const.
€

—E[ye]
= Z

p:(p.q) €¥0

+Elyl )|

p:(p.q) €¥0
+ E[In(1 — 7;.)] + const.,

[trace(E[d), d) ] (E[s.¢s5,] © E[2.,42%]))]

H(Y° = E)pql(Els.ql ©E[241)TE[d,y "]

(80)
where Zi, = 0, other entries in Z 4 equal to the corresponding entries
in Zq-

Thus, zi, follows a Bernoulli distribution

q(qu =1)

(zkgq) ~ Bernoulli(
1%ka 4(zkg = D) +q(z1g = 0)

) (81

with mean and variance

_ q(qu =1)
Elzkql = PP T P (82)
Zzrg = Elzkg] (1 - Elzig)), (83)

where

IH(CI(qu =1)) «

—Elyel Z [trace(E[dg_dp.](E[S.qsz] © E[i-qiz]))]
p:(p.q) €¥0

+Elrd Y. HOY® - E)pgl(Els ] 0 El24) Eldy 1]
P:(p.q) €%

+EB[In(z)],

(84)

\.Nhere Ziq = 1, other entries in Z 4 equal to the corresponding entries
inzg.

In(g(zgq = 0)) o«

—E_[)/e] Z [trace(E[d;dp.] (E[s.qs.]:]] © E[i’qéz]))]
p:(p.g) ¥

+E[yel Z H(Y® - E)pgl(E[sq] ©E[24]) Eldy]"]
pi(p.g) €Y

+E[In(1 — m)],
(85)

where £, = 0, other entries in Z g equal to the corresponding entries
inzg.

(IV) The approximate posterior distribution of 7 (k = 1,...,K) is
from a Beta distribution.

Because the prior distribution of 7. is a Beta distribution

ao bo(K-1)
K’ K

bo(K-1)

Yo (m) RN -m) K L (86)

Beta (|
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Given my, the likelihood of zi, is a Bernoulli distribution

Bernoulli(zjg|my) = ()9 (1 — m) ' =%, (87)
Combine (86) and (87) together, we can get
bo(K

1_[ Bernoulh(qulnk)Beta(nk| gl %)

g=1 (88)

o (JT]C) ‘;70+Z;i1 qu—l (1 _ ”k) bo(i—l) +n1—zgi1 qu—l .
Therefore,
In(q(my))

=Eg\x [In p(©,Y,Y3)] + const.

=Ee\x, [In p(Z|m)p(my)] + const.
=E [In Hnl_ Bernoulli(qumk)Beta(nk|@’ bo(K—l))]

( -1)
= E [In (m) & 2 a7l (1 = ) K ek k)

+szq—l)ln(7rk)+( bo(X )+n1—2qu—1)

g=1 g=1
In(1 — )] + const.
1
ap bO(K - 1)
=(g+ ;E[qu] ~ Din(r) + (= + 1

ny

- ZE[qu] — 1)In(1 — ;) + const..

g=1
(89)
So q(my) satisfies a Beta distribution
q(m) ~
ny ny
ap bo(K — 1) (90)
Beta(; + ZE[Z g e - ZE[qu]).
q=1 g=1
The expectation of In() is
ap + bo(K
Blin(r)] = (%2 + Z Blzig) (D o

The expectation of 1n(1 —my) is

E[ln(1 - )] =

bo(K - 1)

y D ZE i)~ (D O

nl).

Note that the equations (91) and (92) are derived based on one prop-
erty of logarithm Beta function, i.e., if 7 satisfies a Beta distribu-
tion Beta(ay, 1) with parameters (a1, 1), then the expectations of
In(y) and In(1 — ;) are

E[ln(me)] = ¢(e1) = ¥(e1 + B1)
and
E[In(1 - 7)) = ¢(B1) — ¥(ea + 1),

respectively. ¢/(.) is the diagamma function and /(1) = W'
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+ const.

+ const.

(V) The approximate posterior distribution of ys is a Gamma distri-
bution.
Given

T(yslco, do) oc (ys) 0 e™0Ys, (93)
and

S s gl
[ ™ es gl —IK)oc(ys) Foxp(- =2y o)
q=1

Therefore,

In(q(ys))
=Eg\y, [In p(6,Y,Y3)] + const.

=Ee\y, [In p(Slys)p(ys)] + const.

E[ln ]_[ N (s4lo, —IK)F(ys|co,d0)] + const.
q_

ny
mK - 1
=Elln(y) = " lexp[—ys<5Zl||s.q||§+do>n
T (95)
+ const.

n K 1 & 2
=E[(=~ +co = Dln(ys) =1 (5 ; lsqll5 +do)]
+ const.

mK 1
= (= +a - DIn(s) - x(; Z E[shs.q] +do)
=

+ const..

The g(ys) satisfies a Gamma distribution

q(ys) ~ r(— 0,5 ZE 1+do), (96)

with mean

mK
7 tco

7 Zoii Elsy sql+do)’

where E[s%s 4] = E[s] ]E[s 4] + trace(Zs ).
(VI) The approximate posterior distribution of E; ; (for (i, j) € Q) is
a Gaussian distribution.

Because

97

Elys] =

N(Y? |<7ﬂx>l,+E,], TN(E 0. 2—)

,31
—(H™X)i))

2Ei,j(Yi,j

+ (Y2 = (HX); j)%))exp(—=* ﬁ “TE2) (98)
~(ye+Pij)
2
) - (X000,

oc exp(————LE ; +yeFi j (Y7 = (H'X); )—
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then we can derive
In( q(E; )
=Ee\g,, [In p(©,Y,Y()] + const.
=Ee\g,, [In p(Y5|D, S, Z, E, ye)p(Ei,j)] + const.

1 1
=B[In NV [(H X)i + Ey j, y—)N(E,-, 10, —)] + const.
€

Bij
—(ye +ﬁi,j)E2

=E[—, 2 YeEn (Y = (HTX)i )

- %(Yl"j - (WTX)i,j)Z] + const.

_ —Blyl +ElBi;])
2
_ E[%(Y{,’j — (HX); j)%] + const..

E} ; +Elyel By (Y — E[(HX)i 1))

99)

The above derivation reveals that g(E; ;) is a Gaussian distribution
with mean E[E; ;] and covariance X, , i.e.,

q(Eij) ~ N(E[Ei;]. ZE, ;). (100)
where
E[Ei ] = Elye]ZE,, (Y2, - E[(H X)i,]), (101)
1

>p. = ———— 102
Eis = Byl +Elf] (102

The required expectation is

BIOH X = — Y [Eldu] (Blsel ©ElzaD]. (109

T (uv)e¥;,;

(VII) The approximate posterior distribution of f; ; (for (i, j) € Q)
is a Gamma distribution.

Because
T(By 5190, ho) o< (B ;)9 e~ MoPis, (104)
and
1 5 _‘3., .
N (Eq 10, ——) o (Byj) 2exp(—EF ). (105)
Bij 2 Y
Combine (104) and (105) together,
1
N (E; 10, /T)F(ﬁi,ﬂgo, ho)
L] . (106)
1
oc (/3i,j)§+g°_1exp(—ﬁi,j(§Ei2,j +ho)).
Therefore,
In(q(pi,;))

=Eg\p,, [In p(©,Y,Y3)] +const.

=Ee\p,; [In p(Eijlfi,j)p(Pij)] + const.

| (107)
=E[ln N(Ei;lo, F)T(ﬂi,ﬂgo, ho)] + const.

ij

! 1
= (5 +90 ~ DIn(fi) - ﬁi,j(EE[Eij] + ho) + const.,
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where IE[EI.2 j] =E[E;, j]z + 2, ;- The equation (107) indicates that
pi,j follows a Gamma distribution

1 1
q(Bij) ~ T(5 +9go. SEIE] ;1 + ho), (108)

with mean

1
Elfis] = Torm (109)
%E[Elz’ j] + ho

where E[Eizj] = IE[EZ-J]2 +ZE,;-

(VI) The approximate posterior distribution of y, is a Gamma distri-
bution.

Note that
T(yeleo, fo) o (ye) @0 te fove, (110)

and

1
1_[ N(Yi?j|(7{TX)i,j+Ei,j>_)
(i.j) €@ e (111)
121 —Ye 0 T 2
o (Ye) 2 eXP(TIIY —Po(H'X +E)||p),

where |Q| is the cadinality of Q.
Therefore,

In(q(ye))
=Eg\y. [In p(©,Y,Yg)] + const.
=Ee\y, [In p(YID, S, Z, E, ye)p(ye)] + const.

1
=E[ln [ | NOZIHX)i;+Eij, T (releo. fo)] + const.
(L)€Q ‘

- (% +eo — Dln(ye) + _?YE]E[HY" - Po(H X + E)||2] - foye + const.
Q —
- (% +ep - Dln(ye) + % > B, - By
()€
1

- Z [du.(5.0© 2.0)])%] = foye + const.,
J (u,0) €¥;
(112)

where

B0 -Fij—— > [du(s.00 20

J (u,0)€¥; ;

1
= ¥7;% — 2V EIE ) + BIEL ] 200 —ELE D= )

J (H,U)E\I/i’j
[Bldu ] Blso] © [BlzoD)] + ZEIC Y, du(so©z0)’]
J (u,u)e‘l‘,»,j
(113)
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1
=5 Z trace(E[d,.]"E[d) ] (E[s q]E[s4]" ©2z,))
K (p.q) €Y%
1
+— > wace(Eldy | E[dy | (Elzg]Elz4]" ©3s,))
K] (p.q) €Y
1
t > trace(E[d) ]"E[d) ] (3, © %s,))
7 (pg)e¥i,
1
+= Z trace(Sq, (B[s ¢]E[s 41" ©32,))
i (e
1
tg > trace(Sq, (Elzg]Elz4]" ©3s,))
J (p.@) €¥ij
1
+ = Z trace(ZdP'(ZZ_q ) Zs_q)) +2E;;
7 (pg)e¥i,
+ 53 irce(Zy, (Blsg]Bls gl ©BlzglElzq]T)
2 . - -q q -q
J (@)€Y

1
+ (Y9, ~E[Eij] - —

Kj (u,0) €Yy ;

[E[du.](E[s.0] @ E[z5])])*.

(114)

The equation (112) indicates that y. follows a Gamma distribution

q(ye>~r<—+eo, E[|lY° - Po(H X +E)|[2] + f),  (115)

with mean

Q
I |+eo

%E[||YO—PQ(%X+E)||,%]+J%'

Efyel = (116)

A.4 Computational Complexity

The computational complexities for Hankel operation and inverse
Hankel operation are O(mnzn1). The computational complexity for
updating D is O (kmnzniK? + mnyK3), and the complexity for up-
dating S is O (kmnan1K? + n1K3). The computational complexity for
updating Z is O (kmnany K*+Kny) and the computational complexity
for updating y is O(kmnani1 K3 +mnaniK). The computational com-
plexities for 7y, ys, E, and § are O(Kny), O(K?n1), O(mnaniK)
and O(mn), respectively. The final complexity is O(kmnaniK* +
mnaK3 + n K3 + mnyn1K). The complexity scales at most linearly
with respective to the dimension of the Hankel matrix.

A.5 Predictive mean and predictive variance

We can derive the predictive mean as follows:
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E[Y;] = / (Y, IYQ) Vi jdYi,s
- / ( / p(Y,j10)p(O1Y2)dO)Y, ;dY; )
- / ( / p(Y1j10)Yi;dY; )p(01Y3)d6

) (117)
:/Ep<Yi,,-|9)[1G,j]P(9|YQ)d9

/ FO % )p(01YS)do

I=L

o) 6 ~q(olYy).
1

X

1
L

~

The predictive mean for Y; ; is derived by taking the expectation
over the probability p(Y; j|Y]). 0 = {D, Z,S, ye}. Ep(y,;10) [Yi;]is
the expectation of Y; ; over p(Y; j|6). The integration in last second
step of equation (117) is difficult to obtain, thus 6; is sampled from
q(0]Y$) and Monte Carlo integration is employed to approximately
compute it.

To derive the predictive variance, we compute E[ij] as follows:

Ep (v, 1v3) Vi)

=/p(n,j|Yg)ijdn,j

- [ ([ ptsiompcong aontar,

= [ ([ pjoz av ppcoing a0

= [ @y 10172 Dp(o1¥g 0 1)
= [ Vi, oy 331+ By, 1y [0 O1¥) 0

. / (L4 100 Pp(01¥)d0

11 1
ley— ZlZfelm,j)z 01 ~ q(0IY).
=1

By plugging (117) and (118) into equation (46), the predictive vari-
ance can be derived in (46).

A.6 Additional Experiments

A.6.1 The impact of distributions of bad data and noise. In our
problem setup, the bad data is generated from uniform distribution
and the noise is generated from Gaussian distribution. In this section,
we also study the recovery accuracy when the bad data and noise are
drawn from different distributions. We consider M1 with 10 % B1 to
compare with Fig. 7(d). For the bad data generation, we consider the
Laplace distribution with mean 1.5 and standard deviation 0.5. We
also consider the Gaussian distribution with mean 1.5 and standard
deviation 0.5. For the noise generation, we consider the uniform
distribution in the range from 0 to 0.006. We also consider the Laplace
distribution with mean 0 and standard deviation 0.08. The recovery
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performance is shown in Fig. 11. One can see from Fig. 11 that our
proposed method still performs better than the baseline methods. The
results are comparable to Fig. 7(d).
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Fig. 11. The recovery results with M1 plus 10% B1 with different bad
data or noise distributions. (a)-(b) show the recovery results with bad
data generated from different distributions. (c)-(d) show the recovery
results with noise generated from different distributions.
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Fig. 12. The measurements of voltage angle [Hao et al. 2018]

A.6.2 Performance on practical PMU phasor angle dataset.
The corresponding PMU angle data of Fig. 1 is shown in Fig. 12.
Two extra case studies are considered to verify the effectiveness of
our algorithm on the phasor angle dataset. The parameter settings are
the same with Case 1 and 2 except that ny = 20 and fy = 107°.

e Case 3: 15% data are removed following Mode M2, and 15%
observations contain Mode B2 bad data. Each bad entry is
randomly selected from (1,1.5).

e Case 4: 15% data are removed following Mode M3, and 10%
observations contain Mode B1 bad data. Each bad entry is
randomly selected from (1,1.5).

Our method can also recover the data accurately in both cases
for the angle data. The NEE and WNEE for Case 3 are 6.5 x 1074
and 5.3 x 1074, respectively. The NEE and WNEE for Case 4 are
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1.3 x 1073 and 1.1 x 1073, respectively. Fig. 13-Fig. 14 show the
recovery performance of Case 3 and 4. Similar to the magnitude data,
at time 2.3 seconds when the event happens, the uncertainty index
increases because the method is less confident about the estimation
at that time instant.
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Fig. 13. The recovery performance on 15% M2 missing data and 15% B2 bad data on the angle data. (a) the observed data, (b) the estimated
data, (c) the estimated data in one channel with the confidence interval, (d) the corresponding uncertainty index for one channel in (c)
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Fig. 14. The recovery performance on 15% M3 missing data and 10% B1 bad data on the angle data. (a) the observed data, (b) the estimated
data, (c) the estimated data in one channel with the confidence interval, (d) the corresponding uncertainty index for one channel in (c)
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