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Abstract—This paper analyzes the convergence and general-
ization of training a one-hidden-layer neural network when the
input features follow the Gaussian mixture model consisting of
a finite number of Gaussian distributions. Assuming the labels
are generated from a teacher model with an unknown ground
truth weight, the learning problem is to estimate the underlying
teacher model by minimizing a non-convex risk function over
a student neural network. With a finite number of training
samples, referred to the sample complexity, the iterations are
proved to converge linearly to a critical point with guaranteed
generalization error. In addition, for the first time, this paper
characterizes the impact of the input distributions on the sample
complexity and the learning rate.

Index Terms—Gaussian mixture model, convergence, general-
ization, sample complexity, neural networks

I. INTRODUCTION

The recent success of machine learning mainly benefits from

the developments of neural networks. It is surprising to witness

the superior empirical performance in various applications

ranging from imaging processing [1], [2] to natural language

processing [3]. However, the lack of theoretical generalization

guarantee has become a rising concern with the widespread

utilization of neural networks. That is, the learned model from

a finite number of training samples has guaranteed test error

on the unseen data. From the perspective of optimization,

achieving guaranteed generalization is to obtain both a small

training error and a bounded generalization gap (difference

between the training and test errors), which are referred to

convergence and generalization analysis. Despite the high test

accuracy in numerical experiments, the convergence and gen-

eralization analysis are limited, and significant breakthroughs

focus on shallow neural networks [4]–[6]. Nevertheless, it is

well-known that training a one-hidden-layer neural network

with only three nodes is NP-hard [7], and various assumptions

are imposed to ensure feasible analysis.

One representative line of works studies the overparame-

terized neural networks, where the number of trainable pa-
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rameters is far larger than the number of training samples. In

particular, the optimization problem of training on overparam-

eterized networks has no spurious local minima [8]–[11], and

thus the random initialization can achieve bounded training

errors. However, such learned models may suffer from over-

fitting and cannot provide a generalization guarantee without

additional assumptions. With the assumptions of infinite width

of neurons, training a neural network via gradient descent can

be approximated by a differential equation from the Mean

Field (MF) view [4], [12]–[14] or a Gaussian kernel processing

from the Neural Tangent Kernel (NTK) view [5], [15]–[18].

In particular, for one-hidden-layer neural networks, [19]–

[22] provide bounded generalization errors for some target

functions with nice properties, i.e., even or infinitely smooth

functions. Nevertheless, both MF and NTK frameworks re-

quire a significantly larger number of neurons than that in

practical cases.

For training neural networks with a fixed number of neu-

rons, the landscapes of the objective functions are highly

non-convex. They can contain intractably many spurious lo-

cal minima [23] with multiple neurons. This line of work

follows the “teacher-student” setup, where the training data

is generated by a teacher neural network. The learning is

performed on a student network by minimizing the empirical

risk functions of the training data. To achieve the optimal

with guaranteed generalization, most of the theoretical works

with a fixed number of neurons assume the input belongs to

standard Gaussian distributions (zero mean and unit variance)

for feasible analysis [6], [24]–[28] with a few exceptions [29],

[30]. Nevertheless, the neural network considered in [29],

[30] only contains a single neuron in the hidden layer, and

the objective function has a large benign landscape near the

desired point such that random initialization succeeds with

constant probability regardless of the non-convexity. Other

works considering non-Gaussian input features either require

an infinitely large number of neurons [4], [31] or cannot

provide bounded generalization analysis [32]–[36].

Overall, the generalization analysis of neural networks

beyond the standard Gaussian input is less investigated and

has not received enough attention. On the one hand, Gaussian



mixture models are widely employed in plenty of applications,

including data clustering [37]–[39], image segmentation [40],

and few-shot learning [41]. On the other hand, the study of

Gaussian mixture models casts an insight into understanding

how the mean and variance of the input features affect the

performance. In practice, the input distribution will affect

the learning performance, and several data pre-processing

techniques such as data whitened [42] and batch normaliza-

tion [43] have been applied to accelerate the convergence

rate and improve the generalization error. Although various

works [44]–[46] have studied the enormous success of batch

normalization from different scopes and provided different

explanations, none of them have studied from the perspective

of generalization analysis.

Contributions: This paper provides a theoretical analysis

of learning one-hidden-layer neural networks when the input

distribution follows a Gaussian mixture model containing

an arbitrary number of Gaussian distributions with arbitrary

mean. Specific contributions include:

1. Proposition of a gradient descent algorithm and tensor

initialization with Gaussian mixture inputs: This is the first

paper to propose a gradient descent with tensor initialization

method for Gaussian mixture inputs.

2. Guaranteed generalization error with Gaussian mix-

ture inputs for binary classification problems: For the first

time, we give a guaranteed generalization error for binary clas-

sification problems when the inputs follow Gaussian mixture

model.

3. First sample complexity analysis depending on the

parameters of the input distribution: Our theorem provides

the first explicit characterization of the required number of

samples to learn the neural network.

Notations: Vectors are in bold lowercase, and matrices and

tensors are in bold uppercase. Scalars are in normal fonts. Sets

are in calligraphic fonts. For example, Z is a matrix, and z

is a vector. Z is a set. zi denotes the i-th entry of z, and Zi,j

denotes the (i, j)-th entry of Z. [K] (K > 0) denotes the set

including integers from 1 to K. Id ∈ R
d×d and ei represent

the identity matrix in R
d×d and the i-th standard basis vector,

respectively. We use δi(Z) to denote the i-th largest singular

value of Z. The matrix norm is defined as ‖Z‖ = δ1(Z). The

gradient and the Hessian of a function f(W ) are denoted by

∇f(W ) and ∇2f(W ), respectively.

Given a tensor T ∈ R
n1×n2×n3 and matrices A ∈ R

n1×d1 ,

B ∈ R
n2×d2 , C ∈ R

n3×d3 , the (i1, i2, i3)-th entry of the

tensor T (A,B,C) is given by

n1∑

i′
1

n2∑

i′
2

n3∑

i′
3

Ti′
1
,i′

2
,i′

3
Ai′

1
,i1Bi′

2
,i2Ci′

3
,i3 . (1)

We follow the convention that f(x) = O(g(x)) (or Ω(g(x)),
Θ(g(x))) means that f(x) is at most, at least, or in the order

of g(x), respectively.

II. PROBLEM FORMULATION

In this paper, we consider the distribution (X ,Y) over

(x, y) ∈ R
d × {+1,−1}, where X is the Gaussian mixture

distribution [47]–[49] such that

x ∼
L∑

l=1

λlN (µl, Id), (2)

where λl ∈ [0, 1] with
∑

l λl = 1, and N denotes the

multi-variate Gaussian distribution with mean µl ∈ R
d, and

covariance Id for all l ∈ [L]. Let M = (µ1,µ2, · · · ,µL)
and λ = (λ1, λ2, · · · , λL). The teacher model in this paper

is a fully connected neural network consisting of an input

layer, a hidden layer, followed by a pooling layer. The

number of neurons in the hidden layer is denoted as K.

All neurons are equipped with Sigmoid activation functions1

φ(x) = 1
1+exp(−x) . For any input x ∈ X , the output of the

teacher model is denoted as

H(W ∗;x) :=
1

K

K∑

j=1

φ(w∗
j
⊤
x), (3)

where W ∗ = [w∗
1 , ...,w

∗
K ] ∈ R

d×K is an unknown fixed

weight matrix, and w∗
j ∈ R

d is the weight of the j-th neuron

in the hidden layer. The corresponding output label y satisfies

P(y = 1|x) = H(W ∗;x). (4)

The training process is over a student neural network with

the same architecture as the teacher model, and the trainable

parameters are denoted as W ∈ R
d×K . Given n pairs of

training samples {xi, yi}
n
i=1 from (X ,Y), the empirical risk

function is

fn(W ) =
1

n

n∑

i=1

ℓ(W ;xi, yi), (5)

and ℓ(W ; ·, ·) is the cross-entropy loss function as

ℓ(W ;x, y) =− y · log(H(W ;x))

− (1− y) · log(1−H(W ;x)).
(6)

The neural network training problem is to minimize the

following non-convex objective function:

min
W∈Rd×K

: fn(W ). (7)

W ∗ may not be a global optimal solution to (7) because y is

the quantization of H(W ∗;x). However, W ∗ minimizes the

expectation of (7) over (X ,Y). Note that for any permutation

matrix P ∈ R
K×K , we have H(W ;x) = H(WP ;x), and

fn(WP ) = fn(W ). Hence, the estimation is considered

successful if one finds weights W close to any column

permutation of W ∗.

III. ALGORITHM

We propose a gradient descent algorithm with tensor ini-

tialization method to solve (7). The method starts from an

initialization W0 ∈ R
d×K computed from the tensor initial-

ization method (Subroutine 1) and then updates the iteration

1The results can be generalized to any even activation function φ with
bounded φ, φ′ and φ′′. Examples include tanh and erf.



Wt using gradient descent with the step size η0. The pseudo-

code is summarized in Algorithm 1.

The tensor initialization algorithm is summarized in Sub-

routine 1. While existing tensor decomposition methods in

[50] and [6] only apply for standard Gaussian distribution, we

extend the methods to Gaussian mixture models. The intuition

is similar to that in [6], where the directions of {w∗
j }j∈[K]

are first estimated through decomposing the high-order tensor,

and then the corresponding magnitudes are estimated through

solving a linear regression problem. However, the high-order

tensors are defined in a fairly different way because of the

difference between input distributions. Formally, the high

order tensor Qj’s are defined in Definition 1.

Definition 1. For j = 1, 2, 3, we define

Qj := Ex∼
∑

L

l=1
λlN (µl,Σl)

[y · (−1)jp−1(x)∇(j)p(x)], (8)

where p(x) is

p(x) =
L∑

l=1

λl(2π)
− d

2 exp
(
−

1

2
(x− µl)

⊤(x− µl)
)
. (9)

Algorithm 1 Gradient Descent with Tensor Initialization

1: Input: Training data {(xi, yi)}
n
i=1, the step size η0 =(∑L

l=1 λl(‖µl‖∞ + 1)2
)−1

;

2: Initialization: W0 ← Tensor initialization method via

Subroutine 1;

3: for t = 0, 1, · · · , T − 1 do

3: Wt+1 = Wt − η0∇fn(W )
4: end for

5: Output: WT

Subroutine 1 Tensor Initialization Method

1: Input: Partition {(xi, yi)}
n
i=1 into three disjoint subsets

D1, D2, D3;

2: Compute Q̂2 using D1. Estimate the subspace Û with

respect to the largest K eigenvectors of Q̂2;

3: Compute R̂3 = Q̂3(Û , Û , Û) from data set D2. Obtain

{v̂i}i∈[K] by decomposing R̂3;

4: w̄∗
i = Û v̂i for i ∈ [K];

5: Compute Q̂1 from data set D3. Estimate the magnitude ẑ

by solving the optimization problem

ẑ = arg min
α∈RK

1

2
‖Q̂1 −

K∑

j=1

αjw̄
∗
j ‖

2;

6: Return: ẑjÛ v̂j as the jth column of W0, j ∈ [K].

Subroutine 1 estimates the direction and magnitude of

w∗
j , j ∈ [K] separately. The direction vector is defined as

w̄∗
j := w∗

j /‖w
∗
j ‖, and the corresponding magnitude ‖w∗

j ‖ is

denoted as zj . Line 2 estimates the subspace Û spanned by

{w∗
1 , · · · ,w

∗
K} using Q̂2. Lines 3-4 estimate the direction

vector w̄∗
j by employing the KCL algorithm [51]. Line 5

estimates the magnitude zj . Finally, the returned estimation

of W ∗ is calculated as ẑjÛ v̂j .

IV. THEORETICAL RESULTS

Theorem 1 indicates that with sufficient number of samples

as in (10), the iterates returned by proposed Algorithm 1

converge linearly to a critical point Ŵn near a permutation

of the ground truth, denoted as W ∗P ∗. The distance between

Ŵn and W ∗P ∗ are upper bounded as a function of the

number of samples in (12). Additionally, the required number

of samples depends on B, which is a function of input

distributions in (2).

Theorem 1. Given the samples from (X ,Y) with size n
satisfying

n ≥ nsc := poly(ǫ−1
0 , κ,K)B(λ,M)d log2 d (10)

for some ǫ0 ∈ (0, 1
4 ) and positive value functions B(λ,M)

and q(λ,M), with probability at least 1− d−10, the iterates

{Wt}
T
t=1 returned by Algorithm 1 with step size η0 =

O
((∑L

l=1 λl(‖µ̃l‖∞+1)2
)−1

)
converge linearly to a critical

point Ŵn with the rate of convergence v = 1−K−2q(λ,M),
i.e.,

||Wt − Ŵn||F ≤ vt||W0 − Ŵn||F . (11)

Moreover, there exists a permutation matrix P ∗ such that the

distance between W ∗P ∗ and Ŵn is bounded by

||Ŵn −W ∗P ∗||F ≤ O
(
K

5

2 ·
√
d log n/n

)
. (12)

Remark 1: From (10), the required number of samples

for successful estimation is a linear function of the input

feature dimension d and B(λ,M), where B is a function

of the input distribution parameters. Note that the degree of

freedom of W ∗ is dK, the sample complexity in (10) is nearly

order-wise optimal in terms of d. In addition, B(λ,M) is

an increasing function of any entry of M (from Corollary 1

below), indicating that the sample complexity increases as the

mean of any Gaussian component increases.

Remark 2: From (11), the distance between the convergent

point Ŵn and the ground truth W ∗P ∗ is in the order of√
d log n/n. When the number of samples increases, the

convergent point moves closer to the ground truth, implying a

smaller generalization error.

Remark 3: From (12), we can see that the iterations

converge to Ŵn linearly, and the rate of convergence is

1 − K−2q(λ,M), denoted as ν. When the number of neu-

rons decreases or the input distribution changes such that q
increases, the rate of convergence decreases, indicating a faster

convergence.

Corollary 1 states the impact of the distribution parameters

λ and M . Specifically, when the mean vectors {µl}
M
l=1 in (2)

increases, the sample complexity nsc increases as B(λ,M)
increases, and the convergence rate v increases as q(λ,M)
decreases. Suppose some entry of µl go to infinity, nsc will

go to infinity, and ν will converge to 1.
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Fig. 1. The sample complexity against the feature dimension d

Corollary 1. Recall M = (µ1, · · · ,µL). Let |µl(i)| be the

i-th entry of µl,

1) B(λ,M) is an increasing function of |µl(i)|.
2) q(λ,M) is a decreasing function of |µl(i)|.

V. SIMULATION

Here we present our results for numerical experiments.

All simulations are implemented in MATLAB 2021b on a

workstation with 3.40GHz Intel Core i7. The weights of the

teacher model W ∗ ∈ R
d×K are randomly generated such

that each entry of W ∗ belongs to N (0, 1). The corresponding

training samples {xi, yi}
n
i=1 are randomly selected following

(2) and (3) with the generated weights W ∗.

A. Sample complexity

We first show how the number of required samples is related

to the dimension of data. The parameters of input distribution

are selected as L = 2, λ1 = λ2 = 1
2 , µ1 = 0.5 ∗ 1 and

µ2 = −µ1. The number of neurons in the hidden layer is

set as 3. For a given W ∗, we initialize the starting point M

times randomly and denote Ŵ
(m)
n as the output of Algorithm

1 with the m-th initialization, and M = 20. An experiment

is viewed as a success if the average estimation error eW ∗

is less than 10−3, where eW ∗ is the standard deviation of

(Ŵ
(1)
n , · · · , Ŵ

(L)
n ).

In Fig. 1, we increase the feature dimension d from 12 to

50 by 2 and vary the number of samples n from 2 × 103 to

3× 104. We test 20 independent experiments for each pair of

d and n and then show the average success rate using grey

blocks, where black ones mean rate 0 and white ones mean

rate 1. In Fig. 1, the boundary line of black and white parts is

almost straight, indicating an approximate linearity between n
and d, which verifies our result in (10).

We then study the impact on the sample complexity when

the mean value in the Gaussian mixture model changes. Set

d = 10, λ1 = 0.4, λ2 = 0.6, µ1 = µ · 1, µ2 = 0. Fig. 2

shows that when the mean increases from 0 to 2, the sample

complexity increases, matching our theoretical analyses in

Section IV.
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B. Convergence analysis

We next fix d = 5 and evaluate the convergence rate

of Algorithm 1. We set n = 1 × 104, λ1 = λ2 = 0.5,

µ1 = −µ2 = C · 1 for a positive C. We vary C and

let µ̃ = maxl ‖µ̃l‖∞. Recall the relative error is defined as

‖Wt − Ŵn‖F in (11). Fig. 3 shows the linear convergence

of Algorithm 1 for different µ̃ and the impact of ‖µ̃l‖∞. As

predicted in Theorem 1, when µ̃ increases, gradient descent

converges slower.

VI. CONCLUSION

In this paper, we study the problem of learning a fully

connected neural network when the input features belong to

the Gaussian mixture model from the theoretical perspective.

We propose a gradient descent algorithm with tensor initial-

ization, and the iterates are proved to converge linearly to a

critical point with guaranteed generalization. Additionally, we

establish the sample complexity for successful recovery, and

the sample complexity is proved to be dependent on the param-

eters of the input distribution. Possible future direction is to

analyze the influence of variance on the learning performance.
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Eds., vol. 32. Curran Associates, Inc., 2019, pp. 1722–1730.
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