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a b s t r a c t

This paper seeks to develop a computationally tractable framework for data-driven control of switched
linear systems. Specifically, given a model structure and experimental data collected at different
operating points, we seek to directly design a state-feedback controller that stabilizes a system that
arbitrarily switches amongst all sub-systems that could have generated the observed data, without
an explicit plant identification step. The main result of the paper shows that this robust optimization
problem can be recast, through the use of duality, into a polynomial optimization form and efficiently
solved, leading to a robust controller with guaranteed ℓ∞ worst-case performance. The effectiveness of
the proposed technique is illustrated with several examples, including control of the horizontal motion
of a quadcopter

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Switched linear systems, e.g. systems switching amongst a
amily of linear time-invariant sub-systems (Liberzon & Morse,
999), arise in the context of a wide domain of applications
anging from fault-tolerant control to manufacturing and DC-to-
C power converters (Morse, 1995). Additionally, they can be
sed as a ‘‘poor man’s’’ models of non-linear phenomena. Given
heir importance, substantial research has been devoted during
he past decade to the problem of synthesizing stabilizing con-
rollers for switched systems operating in different scenarios. In
articular Blanchini, Miani, and Mesquine (2009) established that
necessary and sufficient condition for stability under arbitrary
witching is the existence of a common polyhedral Lyapunov
unction and indicated how to obtain a switched stabilizing con-
roller by solving a bilinear matrix inequality (BMI). Alternatively,
everal stabilization methods, based on a common quadratic Lya-
unov function (CQLF) have been proposed. As shown in Liberzon,
espanha, and Morse (1999), existence of a CQLF is equivalent to

✩ This work was partially supported by NSF, United States grants CNS-
646121, ECCS-1808381 and CNS-2038493, AFOSR, United States grant FA9550-
9-1-0005, and ONR, United States grant N00014-21-1-2431. Portions of this
aper were presented at the 9th IFAC Symposium on Robust Control Design,
eptember 3–5, 2018, Florianópolis, Brazil and the 57th IEEE Conference on
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the solvability of the Lie algebras generated by the state matrices.
Necessary and sufficient quadratic stability conditions for a sys-
tem switching between two modes were provided in Shorten and
Narendra (2002) and Shorten, Narendra, and Mason (2003). Less
onservative conditions based on multiple Lyapunov function
ere proposed in DeCarlo, Branicky, Pettersson, and Lennartson
2000) where quadratic Lyapunov-like functions are found in
ach sub-region, such that the energy is nonincreasing during
he switch. For all the approaches above, interested readers are
eferred to the excellent survey Lin and Antsaklis (2009).

While successful, existing stabilization techniques hinge on
he availability of a system model. In practical scenarios, de-
igning controllers for switched systems typically entails first
dentifying a plant model along with an associated uncertainty
escription suitable to be used by existing controller design tech-
iques. However, the process of identifying models for switched
ystems and obtaining identification error bounds by validating
hese models against additional data is far from trivial. Indeed,
n its most general form, this identification/(in)validation step is
nown to be NP-hard (see for instance Ozay, Lagoa, & Sznaier,
015; Ozay, Sznaier, & Lagoa, 2014). It is also worth noting that,
ven in the case of non-switching LTI systems, this two-step ap-
roach is generally conservative, since typically the error bounds
rovided by the identification/(in)validation steps are not tight.
he situation is even worse in the case of switched systems due to
he additional conservatism introduced at the identification step
y the relaxations required to obtain tractable problems.
Data-driven control (DDC) methods seek to avoid the plant

dentification step by synthesizing a controller directly from the

xperimental data, based on the observation that this data can
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e used as a proxy for models. Given the advantages of obviating
he identification step, combined with the increased availability
f data, in the past few years data-driven control has been the
ubject of renewed interest, leading to a number of approaches.
arlier work based on input/output models (Campi, Lecchini, &
avaresi, 2002; Formentin, Savaresi, & Del Re, 2012; Hjalmars-
on, Gevers, Gunnarsson, & Lequin, 1998; Karimi, Mišković, &
onvin, 2002) sought a controller such that the closed-loop sys-
em approximately matched a desired reference model. While
hese methods worked well in many scenarios, closed-loop sta-
ility could be guaranteed only in the ideal case when an in-
inite number of data points are considered. An alternative to
hese methods, based on robust optimization and the concept
f superstability, was proposed in Cheng, Sznaier, and Lagoa
2015). While this approach guaranteed closed-loop stability for
ll plants compatible with the observed data, it was limited to
ISO systems.
In the past two years, the issue of guaranteeing closed-loop

tability from finite data moved to the forefront. This led to
number of approaches to design data-driven state-feedback

ontrollers guaranteed to stabilize the closed-loop system. For LTI
ystems these approaches include Berberich, Koch, Scherer and
llgöwer (2020), Berberich, Köhler, Muller and Allgower (2020),
ai, Sznaier, and Solvas (2020), De Persis and Tesi (2019, 2020),

Vanwaarde, Camlibel, and Mesbahi (2020), van Waarde, Eising,
Trentelman, and Camlibel (2020), based on the idea of character-
izing the underlying dynamics in terms of matrices built from the
observed data. Recent nonlinear DDC methods include Dai and
Sznaier (2020), Guo, De Persis, and Tesi (2020), Tanaskovic, Fa-
iano, Novara, and Morari (2017). While successful, at the present
ime, none of these methods can handle switched systems. To the
est of our knowledge, the only DDC control method for switched
ystems currently available (other than the conference versions of
he present paper Dai & Sznaier, 2018a, 2018b) is Breschi and For-
entin (2019). However, this method is currently limited to SISO
ystems and does not provide closed-loop stability guarantees.
Motivated by the issues noted above, in this paper we propose
state-feedback DDC synthesis framework for switched linear

ystems, capable of handling finite, noisy data records, while
uaranteeing closed-loop stability of all plants compatible with
he observed data (the consistency set). The key observation is
hat, under the assumption of ℓ∞ bounded process noise, both
he consistency set (e.g., state matrices A,B) and the set of all
lants that share a common polyhedral control Lyapunov function
CPCLF) are polyhedrons in parameter space. Thus, in this context,
he state-feedback DDC problem reduces to finding a CPCLF such
hat the former is contained in the later. As shown in the paper,
y exploiting the extended Farkas’ lemma, this can be recast as a
olynomial optimization problem, which in turn can be reduced
o a rank constrained semi-definite program (SDP), solvable using
tandard convex relaxations of rank. Further, this semi-definite
rogram is endowed with chordal sparsity, which allows for
btaining an algorithm whose computational complexity scales
inearly with the number of sub-systems.

The rest of the paper is organized as follows: Section 2 recalls
ome background results and formally states the problem under
onsideration. Section 3 contains the main results of the paper,
ombining elements from duality, polyhedral Lyapunov functions,
nd polynomial optimization to transform the problem into a
ractable convex optimization. Section 4 briefly indicates how
o extend these results to the continuous time case. Section 5
rovides examples illustrating the practicality of the algorithms
ntroduced in the previous section. Finally, Section 6 summa-
izes the paper and discusses open issues. Portions of this paper
ere presented at the 2018 RoCond (Dai & Sznaier, 2018a) and

018 CDC (Dai & Sznaier, 2018b). This version includes complete |

2

roofs, the extension of the results to the continuous time case, an
xploration of the use of an underlying sparse graph structure to
lleviate the computational complexity and additional examples,
ncluding the stabilization of a simplified model of a quadcopter.

. Preliminaries

.1. Notation

R, (R+) Set of (non-negative)real numbers
N Set of non-negative integers
1 A vector of 1 s
In n× n identity matrix
x,X A vector in Rn, a matrix in Rm×n

|x| A vector with elements |xi|
X ≥ 0 X is element-wise non-negative

(e.g. X(i, j) ≥ 0)
X ⪰ 0 X is positive semi-definite
σi(X) The ith largest singular value of the matrix X
∥x∥∞ ℓ∞-norm of the vector

x ∈ Rn
:∥x∥∞

.
= supi |x(i)|

∥X∥∞ ℓ∞ induced-norm of the matrix
X ∈ Rm×n

:∥X∥∞
.
= supi

∑n
j=1 |X(i, j)|

⊗ Matrix Kronecker product
vec(X) Matrix vectorizing operation

vec(X) =
[
X(:, 1)T , . . .X(:, n)T

]T
.2. Properties of the Kronecker product

In this paper we will make extensive use of the following
quality, whose proof can be found for instance in Horn and
ohnson (2012).

ec(AXB) = (BT
⊗ A)vec(X) (1)

.3. Stability of switched systems

efinition 1. Given a switched system of the form:

k+1 = Aixk, i = 1, . . . ,N (2)

et P denote a compact polyhedron containing the origin in its
nterior, and V its associated gauge function, e.g.

(x) .
= inf{µ ∈ R+

: x ∈ µP}

hen V(x) is a polyhedral Lyapunov function for (2) if and only if
long its trajectories

(xk+1)− V(xk) < 0, V(xk) > 0, ∀xk ̸= 0

or any arbitrary switching sequence.

heorem 1 (Blanchini et al., 2009). The origin is an asymptotically
table equilibrium point of (2) for any arbitrary switching sequence
e.g. the system is switching stable) if and only if there exist a full
olumn rank matrix V and N matrices Hi with ∥Hi∥∞ < 1 such that

Ai = HiV (3)

imilarly, the continuous time system

˙ t = Aixt , i = 1, . . . ,N (4)

s switching stable if and only if there exist a full column rank matrix
, N scalars τi > 0, and N matrices Hi such that

Ai = HiV and
(5)
|I+ τiHi||∞ < 1
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n these cases, V(x) = ∥Vx∥∞ is a polyhedral Lyapunov function for
2) (discrete time case) and for the Euler auxiliary system (Blanchini
Miani, 2008) of (4) (continuous time case). These facts guarantee

witched stability of both (2) and, under a non-Zenoness assumption,
of (4).

2.4. Extended Farkas lemma

Lemma 1 (Henrion, Tarbouriech, & Kucera, 1999). Consider two
olyhedrons of the form PN

.
= {x : Nx ≤ n} and PM

.
= {x :

x ≤ m}, where M,N are matrices and m, n are vectors. Then
N ⊆ PM if and only if there exists a matrix Y (Farkas multiplier)
ith non-negative entries such that

N = M
Yn ≤ m

(6)

.5. Polynomial optimization problems

The main result of this paper shows that the data-driven
ontrol problem can be reduced to a (non-convex) quadratically
onstrained quadratic problem (QCQP) of the form:

min
x

vxTQ0vx s.t. vxTQkvx ≥ 0, k = 1, . . . ,N (7)

or suitable symmetric matrices Qi, i = 0, . . . ,N , where vxT =

1, x1, x2, . . . , xn
]
. This problem is a special case of polynomial

ptimization problems of the form:
∗
=min

x∈K
p(x) =

∑
α

pαxα
(8)

here xα denotes the monomial
∏n

i=1 x
αi
i with αi ∈ N, α

.
=

α1, . . . , αn] and the semi-algebraic set K = {x ∈ Rn
: gk(x) ≥

, k = 1, . . . ,N} is defined by a set of polynomial constraints of
he form gk(x) =

∑
α gk,αxα

≥ 0. As shown in Lasserre (2001),
roblem (8) is equivalent to the following optimization over the

set P(K) of probability measures µ supported on K:

p∗ = min
µ∈P(K)

∫
p(x)dµ = min

µ

∑
α

pαmα (9)

subject to mα
.
=

∫
K
xαdµ (10)

where mα denotes the αth moment of the measure µ. Under
mild conditions (Lasserre, 2001), condition (10) is equivalent to
semi-definite set of constraints of the form

(m) ⪰ 0, L(gkm) ⪰ 0, k = 1, . . .N (11)

ere m denotes the moment sequence {mα} ordered by the
index αi, arranged in a grevlex order. The entries of the (infinite
dimensional) moment M(m) and localization matrices L(gkm), are
given by

M(m)(i, j) = mαi+αj

L(gkm)(i, j) =
∑

β

gk,β mβ+αi+αj , k = 1, . . . ,N (12)

where gk,β are the coefficients of the kth polynomial that defines
the set K . Thus, Problem (9)–(10) is convex in mα, albeit infinite
imensional. A sequence of finite dimensional convex relaxations
ith cost pdm ↑ p∗ can be obtained by replacing the matrices in
11) by truncated matrices Md(m), Ld(gkm) containing moments
f order up to 2d. Further, if for some d the solution to the
roblem above satisfies (Lasserre, 2009, Theorem 3.11)

rank[Md(mα)] = rank
[
M

d−max( deg(gk(x))2 )
(mα)

]
(13)

then the relaxation is exact, that is pd = p∗.
m

3

Fig. 1. Setup for switched data-driven control synthesis.

Remark 1. In the case of QCQP of the form (7), the lowest
rder relaxation of (9)–(11) corresponds to d = 1. In this case
he objective is given by p(m) = Trace(QoM1) and each localizing
atrix reduces to a scalar of the form Lk(m) = Trace(QkM1). If

he solution to this relaxation satisfies rank[M1] = 1, it can be
asily shown that it is indeed exact. We will exploit this property
n Section 3 to obtain a computationally tractable algorithm to
ynthesize data-driven controllers.

.6. Exploiting sparsity in polynomial optimization

In this section we briefly recall some results on sparse poly-
omial optimization. The starting point is to associate to the
ptimization problem (8) the so called correlative sparsity graph

.
= (V, E), where each vertex corresponds to a variable xi and
here there is an edge between xi, xj if these variables appear in
he same constraint or the product xixj appears in the objective
unction. Let Gc denote the chordal completion of G, and Ci a
et of maximal cliques of Gc . Then, as shown in Lasserre (2006)
and Waki, Kim, Kojima, and Muramatsu (2006) it is possible to
construct a hierarchy of semidefinite programs of smaller size
by projecting the constraints (11) onto the cliques Ci, that is,
replacing the matrices in (12) by matrices of the form ET

i Md(m)Ei
and ET

i Ld(gkm)Ei, i = 1, . . . , nc , where the matrix Ei selects the
moments corresponding to variables in Ci. As shown in Waki
et al. (2006), for QCQP problems, the sparse and dense moment-
based relaxations of (7) corresponding to d = 1 achieve the
same optimal value. However, for a problem with Nv variables
and where the correlative sparsity graph has nc cliques of roughly
the same size, the d = 1 sparse relaxation has computational
complexity roughly O(nc(Nv

nc
)6) compared against O(N6

v ) for the
ense one.

.7. Statement of the problem

Consider the system shown in Fig. 1, composed of N un-
known sub-systems. The goal of this paper is to synthesize a
switched state feedback controller that stabilizes, under arbi-
trary switching, all possible plants compatible with the observed
experimental input/output data and some minimal a-priori infor-
mation about the system. This problem can be formally stated
as:

Problem 1. Consider a switched system composed of N LTI
sub-systems, each described by a state space model of the form:

δxk = Aikxk + Bikuk + ωk

where δxk =

{
xk+1 for discrete time systems (14)

ẋk for continuous time systems
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nd where xk ∈ Rn, uk ∈ Rm, and ωk ∈ Rn, denote the state, input
nd process noise, and where ik denotes the active sub-system at
ime k. Given experimental data {uk, xk, δxk, ik}Kk=0, collected from
n experiment where each sub-system is sufficiently excited, find
switched state feedback controller Fi, i = 1, . . . ,N such that
= 0 is a globally asymptotically stable equilibrium point of the
losed-loop system

xk = (Aik + BikFik )xk (15)

or any arbitrary switching sequence ik ∈ {1, . . . ,N} and for all
pairs (Aik ,Bik ) compatible with the observed experimental data.

The main result of this paper, presented in the next section,
shows that, for the case of ℓ∞ bounded noise, the problem above
can be recast, through the use of duality, into a polynomial
optimization form, which in turn can be relaxed to a SDP using
the results from Section 2.5.

3. A convex formulation

In this section we present the main result of the paper: a
convex reformulation of Problem 1. As briefly mentioned in the
introduction, the key idea is to consider two sets in the pa-
rameter space: (i) the set of all plants compatible with a-priori
information and experimental data, and (ii) the set of all plants
compatible with the a-priori information that admit a CPCLF
(the jointly stabilizable set). Problem 1 then reduces to finding
a CPCLF (and associated controller) such that the consistency set
is included in the jointly stabilizable set. For notational simplicity,
we will address the discrete time case first and then indicate how
to solve the continuous time case by exploiting the discrete time
results.

3.1. Reformulation as a polynomial optimization via duality

Given experimental data (xk,uk, δxk, ik), where ik denotes the
label of the sub-system active at time k, and a bound ϵ on the
ℓ∞ norm of the process noise (e.g. ∥ωk∥∞ ≤ ϵ), define the
consistency sets Pi, i = 1, . . . ,N as the set of all pairs (Ai,Bi)
compatible with the information collected when the ith system
was active. From (14) it follows that each set Pi is a polyhedron
of the form:
Pi

.
= {Ai,Bi : ||xt(i)k +1 − Aixt(i)k

− Biut(i)k
||∞ ≤ ϵ,

k = 1, . . . , Ki}
(16)

where t (i)k , k = 1, . . . , Ki denotes the times at which the ith sys-
tem was active and Ki indicates the number of samples generated
by this sub-system. Direct application of (1) leads, after some
manipulations to eliminate the infinity norm, to the equivalent
expression:

Pi
.
=

{
ai, bi :

⎡⎣ xT
t(i)k

⊗ In uT
t(i)k

⊗ In

−xT
t(i)k

⊗ In −uT
t(i)k

⊗ In

⎤⎦[
ai
bi

]

≤

[
ϵ + xt(i)k +1

ϵ − xt(i)k +1

]
, k = 1, . . . Ki

} (17)

where ai
.
= vec(Ai) and bi

.
= vec(Bi). From Theorem 1 it follows

that Problem 1 is equivalent to:

Problem 2. Find a full column rank matrix V, and N matrices Fi
such that, for all pairs (Ai,Bi) ∈ Pi, there exists a matrix function
Hi(Ai,Bi, Fi) such that

V (Ai + BiFi) = Hi(Ai,Bi, Fi)V (18)

∥Hi(Ai,Bi, Fi)∥∞ < 1, for i = 1, . . . ,N .

4

Note that feasibility of the problem above is not guaranteed,
even if the underlying system is switched stabilizable, if the data
is not ‘‘rich’’ enough, e.g. the consistency set is too large. To rule
out this situation, we will make the following assumption:

Assumption 1 (Data Richness). Enough data have been collected
such that all systems in the consistency set are switched stabiliz-
able by a single switched state feedback controller Fi.

The (unknown) functional dependence of Hi on (Ai,Bi, Fi),
together with the fact that (18) must hold for all pairs (Ai,Bi) in
the corresponding consistency set renders Problem 2 extremely
challenging. Thus, in the sequel, we will replace (18) with the
stronger condition:

∥V (Ai + BiFi)V†
∥∞ ≤ λ < 1, i = 1, . . . ,N (19)

where V† denotes the left inverse of V and λ is the rate of
convergence of the switched system. This allows for recasting
Problem 2 as the following robust optimization:

Problem 3. Find a full column rank matrix V, and N matrices Fi
such that, for all pairs (Ai,Bi) ∈ Pi, (19) holds.

Remark 2. It can be shown that (19) and the fact that V has full
column rank, together with a discrete time version of Theorem
4.19 in Khalil (2002), imply that ∥Vx∥∞ is an input to state (ISS)
Lyapunov function. Hence the switched control law uk = Fikxk
renders the system (14) ISS for any arbitrary switching sequence.

As we show in the sequel, while this relaxation provides only
sufficient conditions1 for the existence of a switched gain Fi that
solves the DDC problem, it has the advantage of reducing to a
polynomial optimization problem that can be efficiently solved
using the techniques outlined in Section 2.

For given V, Fi, λ, define the polyhedron

PV,Fi
.
= {Ai,Bi : ∥V(Ai + BiFi)V†

∥∞ ≤ λ < 1} (20)

in this context, Problem 3 can be restated as finding a matrix V
and N gains Fi such that

Pi ⊆ PV,Fi , i = 1, . . .N (21)

The main idea is of the paper is to enforce (21) through the use
of duality and the extended Farkas’ Lemma (Henrion et al., 1999).
However, pursuing this approach requires a characterization of
PV,Fi that does not involve the ∥.∥∞.

Theorem 2. Denote by t (i)k , k = 1, . . . , Ki the time instants where
the ith sub-system is active. Let:

Xi
.
=

⎡⎢⎢⎢⎣
xT
t(i)1

⊗ In
...

xT
t(i)K

⊗ In

⎤⎥⎥⎥⎦ ,Ui
.
=

⎡⎢⎢⎢⎣
uT
t(i)1

⊗ In
...

uT
t(i)K

⊗ In

⎤⎥⎥⎥⎦ , ξi
.
=

⎡⎢⎢⎣
xt(i)k +1

...

xt(i)K +1

⎤⎥⎥⎦ (22)

Given a (full column rank) matrix V ∈ Rp×n, there exist switched
feedback gains Fi such that

∥V(Ai + BiFi)V†
∥∞ ≤ λ (23)

for all pairs (Ai,Bi) ∈ Pi, i = 1, . . . ,N if and only if there exist N
matrices Fi ∈ Rm×n and 2pN matrices YS,i ∈ Rp×2nKi , YS,i ≥ 0 such
that

YS,i

[
Xi Ui
−Xi −Ui

]
=

[
S
(
(V†)T ⊗ V

)
S
(
(FiV†)T ⊗ V

)]
1 Indeed these conditions are necessary and sufficient when there exist a
PCLF generated by a matrix V ∈ Rn×n . Condition (19) allows for considering

more general, ‘‘tall’’ matrices.
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S,i

[
ξi + ϵ1

−ξi + ϵ1

]
≤ λ1 (24)

olds for all matrices S ∈ Rp×p2 of the form:

= s⊗ Ip (25)

here s ∈ R1×p is a vector with elements sj = ±1.

roof. Begin by noting that (Ai,Bi) ∈ Pi satisfies (23) if and only
i ⊆ PV,Fi defined in (20). The main idea of the proof is to use the
xtended Farkas’ Lemma to enforce this inclusion. To this effect,
e first need to eliminate the ∥.∥∞ from (20). For generic vectors
, s ∈ Rp, with ∥s∥∞ = 1 we have that |sTv| ≤ ∥s∥∞∥v∥1 = ∥v∥1,
ith the inequality saturated when sj = sign( vj). Applying this

nequality to each row of the matrix V(Ai +BiFi)V† we have that

V(Ai + BiFi)V†
∥∞ ≤ λ ⇐⇒∑

j

|(V(Ai + BiFi)V†)ℓj| ≤ λ ⇐⇒∑
j

sj(V(Ai + BiFi)V†)ℓj ≤ λ for all sj = ±1

(26)

ext, write the sum of the entries of the ℓth row of the matrix
ith elements sj(V(Ai + BiFi)V†)ℓj as

s⊗ Iℓ)vec(V(Ai + BiFi)V†)

here Iℓ denotes the ℓth row of I. Combining the expressions
bove leads to:
V(Ai + BiFi)V†

∥∞ ≤ λ ⇐⇒

vec(V(Ai + BiFi)V†) ≤ λ1
(27)

or all matrices S ∈ Rp×p2 of the form (25). Applying the equality
1) to express vec(V(Ai + BiFi)V†) in terms of ai

.
= vec(Ai) and

i
.
= vec(Bi) leads to the following alternative representation of

V,Fi :

V,Fi
.
=

{
ai, bi : S

(
(V†)T ⊗ V

)
ai + S

(
(FiV†)T ⊗ V

)
bi

≤ λ1 for all matrices S ∈ Rp×p2of the form (25)
}

he desired result follows from applying Farkas’ Lemma to en-
orce that for all i, the polyhedra Pi defined in (17) satisfy Pi ⊆

V,Fi . □

orollary 1. Problem 3 is equivalent to the following quadrati-
ally constrained quadratic feasibility problem: Find matrices V ∈
p×n, Z ∈ Rn×p, N matrices Fi ∈ Rm×p, 2pN matrices YS,i ∈ Rp×2nKi

nd a scalar 0 ≤ λ < 1 such that

S,i

[
Xi Ui
−Xi −Ui

]
=

[
S(ZT

⊗ V) S(FT
i ⊗ V)

]
S,i ≥ 0
V = In

S,i

[
ξi + ϵ1

−ξi + ϵ1

]
≤ λ1

(28)

olds for all matrices S ∈ Rp×p2 of the form (25).

roof. Follows from Theorem 2 by defining Z .
= V†,Fi

.
= FiV†

nd noting that all the constraints in (28) are at most quadratic in
he variables, and that, since V has full column rank, Fi can always
e recovered from Fi. □

From Corollary 1 it follows that the DDC control problem
an be solved using the polynomial optimization techniques de-
cribed in Section 2.5, by considering a sequence of SDPs of
5

ncreasing dimension until a flat extension is achieved (Curto
L.A., 1998). Given the computational complexity entailed in

onsidering higher-order relaxations, as outlined in Remark 1,
n alternative is to minimize the rank of the moment matrix M
orresponding to the d = 1 relaxation of (28), through the use
f a re-weighted Trace minimization (Fazel, Hindi, & Boyd, 2003).
hen this minimization results in a rank-1 solution M = vvT

hen the desired gains can be obtained directly from v.

.2. A lower computational complexity formulation

While Theorem 2 and its Corollary provide a necessary and
ufficient condition for the existence of a solution to Problem 3,
he resulting optimization problem has a large number of con-
traints due to the need to consider 2p matrices Swith all possible
ign vectors in Rp. Thus, while these results are of theoreti-
al interest, from a practical standpoint, their use is limited to
elatively low order systems. In this section we discuss a refor-
ulation of (24)–(25) that provides a solution to Problem 3 with
ubstantially lower computational complexity. Recall that a set
a ∈ Rnx ×Rnu is said to represent a set X ∈ Rnx , if the projection
f Xa is X , in other words, if and only if for every x ∈ X there
xists some u ∈ Rnu such that (x,u) ∈ Xa. As shown in Ben-Tal,
haoui, and Nemirovski (2009), X .

= {x :
∑

|xi| ≤ λ} admits the
quivalent representation: Xa

.
= {(x,u) :

∑
ui ≤ λ and − ui ≤

xi ≤ ui}. Using this idea, by adding p2 variables µℓj, the second
constraint in (26) can be written as:

|(V(Ai + BiFi)V†)ℓj| ≤ µℓj and (29a)∑
j

µℓj ≤ λ (29b)

Combining this observation with Farkas’ Lemma leads to the
following result:

Theorem 3. Problem 3 is equivalent to the existence of N matrices
i ∈ R2p2×2nKi ,Fi ∈ Rm×p, matrices V ∈ Rp×n, Z ∈ Rn×p, a matrix

µ ∈ Rp×p, and a scalar 0 ≤ λ < 1 such that the following conditions
old:

i

[
Xi Ui
−Xi −Ui

]
=

[
ZT

⊗ V FT
i ⊗ V

−ZT
⊗ V −FT

i ⊗ V

]
i ≥ 0
V = In

i

[
ξi + ϵ1

−ξi + ϵ1

]
≤

[
vec(µ)
vec(µ)

]
1 ≤ λ1

(30)

roof. Proceeding as in the proof of Theorem 2 it can be easily
hown that the first four conditions in (30) are necessary and
ufficient for the entries of V(Ai + BiFi)V† to satisfy (29a) for all
pairs (Ai,Bi) ∈ Pi, while the last inequality enforces that

∥V(Ai + BiFi)V†
∥∞ = max

ℓ

∑
j

⏐⏐(V(Ai + BiFi)V†)ℓj
⏐⏐

≤ max
ℓ

∑
j

µℓj ≤ λ
□

As before, the polynomial feasibility problem (30) can be
recast into a rank minimization and solved using a re-weighed
heuristic approach, leading to Algorithm 1. Briefly, this heuris-
tic seeks to minimize rank[M] by iteratively minimizing the
linearization of log determinant[M] around the present solu-
tion (Fazel et al., 2003). The main difference between our ap-
proach and Fazel et al. (2003) is the use of the second largest
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ingular value of M as a regularizer when updating W, as opposed
to a constant δ as in Fazel et al. (2003). Empirical evidence indi-
cates that this adaptive heuristic works better than the original
one when seeking rank-1 solutions. It is worth emphasizing that,
in this context, Theorem 3 leads to substantial decrease in the
omputational complexity by avoiding the need for an exponen-
ial number of sign matrices S. Indeed, while (28) involves (for
ach subsystem) 2p+1pnK variables related to Y and 2pp(n2

+

m)+p constraints, (30) requires only p2(4nK +1) variables Y, µ
nd 2p2(n2

+nm+1) constraints. Thus, if using a standard interior
oint algorithm for solving the resulting semi-definite program,
he complexity of using (28) scales as O(24pp4) versus O(p8) when
sing (30).

Algorithm 1 Reweighted Trace based DDC Design.

Initialize: iter = 0,W(0)
= I , λ < 1, ϵ

Collect: xt(i)k
,ut(i)k

, xt(i)k +1

Build: Xi,Ui, ξi
Variables: Yi, µ and m: the moment sequence of v .

=[
1, vec(V)T , vec(Z)T , vec(Fi)T

]T , i.e. V, Z,Fi depend on m. We
further define the moment matrix M .

= vvT .
repeat

Solve min
Yi,µ,m

Trace(W(iter)M) subject to:

M ⪰ 0 (a)
M(1, 1) = 1 (b)
ZV = In (c)
µ1 ≤ λ1 (d)
and, for all i = 1, . . . ,N
Yi ≥ 0 (e)

Yi

[
Xi Ui
−Xi −Ui

]
=

[
ZT

⊗ V FT
i ⊗ V

−ZT
⊗ V −FT

i ⊗ V

]
(f )

Yi

[
ξi + ϵ1

−ξi + ϵ1

]
≤

[
vec(µ)
vec(µ)

]
(g)

Update

W(iter+1)
= (M(iter)

+ σ2(M(iter))I)−1

iter = iter + 1

until rank[M] = 1.
Factor M = vvT .
Return Yi, µ, v =

[
1, vec(V)T , vec(Z)T , vec(Fi)T

]T .
3.3. Further computational complexity reduction exploiting sparsity

A large portion of the computational burden in Algorithm 1
tems from the large dimension of the matrix M ∈ Rq×q, with q =

pn+Npm+1, appearing both in the objective and semi-definite
constraints. Since the computational complexity of standard in-
terior point methods scales as (number of variables)3, it follows
hat the computational complexity of Algorithm 1 scales at least
ubically with the number of systems. In this section we briefly
utline how to reduce this computational complexity by appeal-
ng to an underlying sparsity. Note that the only elements of the
atrix M explicitly appearing in the same constraint in (30) are

those corresponding to products among variables in the sets

Co = {1, vec(V)T , vec(Z)T }
Ci = {1, vec(V)T , vec(Fi)T }

Indeed, it can be easily seen that Cj are maximal cliques in the
associated correlative sparsity graph. Thus, from Section 2.6 it
ollows that the constraint M ⪰ 0 can be replaced by the N + 1

maller constraints Mj ⪰ 0, where Mj only contains moments

6

f the variables in Cj, j = 0, . . . ,N . Further, from the results
in Miller, Zheng, Roig-Solvas, Sznaier, and Papachristodoulou
(2019) on rank minimization in the presence of chordal sparsity,
it follows that the objective function in Algorithm 1 can also be
ecomposed into a sum of terms, each depending only on Mi.
hese observations lead to Algorithm 2, whose computational
omplexity scales linearly with the number of sub-systems.

Algorithm 2 Sparse Reweighted Trace based DDC.

Initialize: iter = 0,W(0)
i = I, i = 0, . . . ,N, λ < 1, ϵ

Collect: xt(i)k
,ut(i)k

, xt(i)k +1

Build: Xi,Ui, ξi
Variables: Yi, µ, mi: the moment sequence of
vi

.
=

[
1, vec(V)T , vec(Z)T

]T for i = 0 and vi
.
=[

1, vec(V)T , vec(Fi)T
]T for i = 1, . . . ,N , i.e. V, Z,Fi depend on

mi. We further define the moment matrix Mi = vivTi .
repeat

Solve min
Yi,µ,mi

∑
i hi Trace(W

(iter)
i Mi) subject to:

Mi ⪰ 0 (a)
Mi(1, 1) = 1 (b)
ZV = In (c)
µ1 ≤ λ1 (d)
and, for all i = 1, . . . ,N
Yi ≥ 0 (e)

Yi

[
Xi Ui
−Xi −Ui

]
=

[
ZT

⊗ V FT
i ⊗ V

−ZT
⊗ V −FT

i ⊗ V

]
(f )

Yi

[
ξi + ϵ1

−ξi + ϵ1

]
≤

[
vec(µ)
vec(µ)

]
(g)

Update

W(iter+1)
i = (M(iter)

i + σ2(M
(iter)
i )I)−1

W(iter+1)
i =

Wi
∥Wi∥2

iter = iter + 1

until rank[Mi] = 1.
Factor Mi = vivTi .
Return Yi, µ, vi =

[
1, vec(V)T , vec(Z)T

]T
, i = 0.

vi =
[
1, vec(V)T , vec(Fi)T

]T
, i = 1, . . . ,N .

4. The continuous time case

In this section we briefly address the continuous time DDC by
reducing it to a discrete time equivalent. To this effect we need
the following assumption:

Assumption 2 (Non-zenoness). The number of switches is finite
on every finite interval.

Start by noting that, if V is a full column rank matrix such that:

V
(
(In + τAi)+ τBiFi

)
V†
∥∞ ≤ λ < 1, i = 1, . . . ,N (31)

hen

i
.
=

V
(
(In + τAi)+ τBiFi

)
V†

− Ip
τ

together with Assumption 2, certifies closed-loop switched sta-
bility. This follows from the fact that condition (5) guarantees
that the closed-loop vector field at time t points in a direction
of descent of ∥Vx ∥. Let A .

= I + τA, B .
= τB. In this context,
t e n e
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he continuous time DDC problem reduces to finding a scalar τ ,
matrix V and gains Fi such that for all pairs (Ae,Be) in the

onsistency set, ∥V(Ae + BeFi)V†
∥∞ < 1. Next, use the fact that

˙ t = Axt + But + ωt ⇐⇒

ẋt + xt = (In + τA)xt + τBut + τωt ⇐⇒

ẋt + xt = Aext + Beut + τωt

o rewrite the consistency set as:

i =

{
ai, bi :

⎡⎣ xT
t(i)k

⊗ In uT
t(i)k

⊗ In

−xT
t(i)k

⊗ In −uT
t(i)k

⊗ In

⎤⎦[
ai
bi

]

≤

[
τϵ + τ ẋt(i)k

+ xt(i)k
τϵ − τ ẋt(i)k

− xt(i)k

]
, k = 1, . . . , Ki

}
pplication of Farkas’ lemma leads to the following results, whose
roof, omitted for brevity, follows along the lines of the proofs of
heorems 2 and 3:

heorem 4. The continuous version of Problem 3 is equivalent to
he existence of N matrices Yi ∈ R2p2×2nK ,Fi ∈ Rm×p, matrices V ∈
p×n, Z ∈ Rn×p, a matrix µ ∈ Rp×p and scalars 0 ≤ λ < 1, τ > 0
uch that the following conditions hold:

i

[
Xi Ui
−Xi −Ui

]
=

[
ZT

⊗ V FT
i ⊗ V

−ZT
⊗ V −FT

i ⊗ V

]
i ≥ 0
V = In

i

[
ξi + τϵ1

−ξi + τϵ1

]
≤

[
vec(µ)
vec(µ)

]
1 ≤ λ1

(32)

(32) leads to polynomial optimization problems with an ad-
itional variable τ , that can be solved using a slightly modified
ersion of Algorithms 1 and 2. An alternative is to simply perform
line search on τ until a feasible solution is found.

. Illustrative examples

In this section, we present an academic example that illus-
rates the proposed approach and its performance as a function
f noise level and number of data points, and a practically moti-
ated one, control of the horizontal dynamics of a quadcopter. To
educe the computational burden, in all cases we used a square
atrix V. All the optimization problems were solved using a
ombination of CVX (Grant & Boyd, 2014) and Sedumi (Sturm,
999) in MATLAB.

xample 1 (Data-driven Control of Discrete Systems). This example
llustrates the effectiveness of Algorithms 1 and 2 using a Monte
Carlo approach. We generated 100 switching systems using the
drss command. Each switching system contained three subsys-
tems of size n = 3,m = 2. All system matrices have eigenvalues
constrained to (−1.1, 1.1). This enabled the subsystems to be
slightly unstable while keeping the trajectories at reasonable
scales. For benchmarking purposes, we used the model-based
method proposed in Blanchini et al. (2009) to verify whether
the generated systems were switching stabilizable. Specifically,
we checked feasibility of Eq. (4) in Blanchini et al. (2009). To
apply the proposed data-driven design, we generated trajectories
starting from an initial state and input uniformly distributed in
(−1, 1). Finally, the state was corrupted with a random noise
ωk, where ∥ωk∥∞ ≤ ϵ. We considered different noise levels
ϵ = [0, 0.05, 0.1, 0.15] and collected K = 120 samples

for each experiment. Applying Algorithm 1 with λ = 0.99 led

7

Table 1
Number of successful designs.
ϵ 0 0.05 0.1 0.15
# of success 99 92 85 70

Table 2
Number of successful designs.
K 60 120 180 240
# of success 58 85 89 91

to Table 1. Note that for the noiseless case, the relaxation of
(30) described in Algorithm 1 successfully found a stabilizing
controller in 99% of the cases. As the noise increases, the success
rate decreases, since the consistency set becomes larger and thus
a controller that robustly stabilizes this set may not exist. This
issue can be alleviated by collecting more samples. Table 2 shows
the effect of the number of samples on the design with fixed
ϵ = 0.1, λ = 0.99. Next we show that exploiting sparsity leads to
a faster algorithm. Applying Algorithm 2 on the same data with
K = 120, ϵ = 0.1, and choosing h = [10, 1, 1, 1], λ = 0.99
educed the mean computational time to 49.7481s from 55.1688s
or Algorithm 1.

emark 3. In addition to the reduction in computational time, a
econd advantage of exploiting the sparse chordal decomposition
s the ability to find a faster closed–loop system, by selecting a
maller λ which may be infeasible for Algorithm 1. This stems
rom the fact that, when using the chordal decomposition, only
he submatrices of the moment matrix corresponding to cliques
n the chordal graph are subject to the rank 1 constraint (Miller
t al., 2019).

An important feature of the proposed controller is its ability
o reject persistent disturbances. Assume that the closed-loop
witched system is affected by a ℓ∞ bounded disturbance ωk, that
is:

xk+1 = (Ai + BiFi)xk + ωk (33)

then
||Vxk+1||∞ ≤ ||V(Ai + BiFi)xk||∞ + ||Vωk||∞

= ||(V(Ai + BiFi))V†Vxk||∞ + ||Vωk||∞

≤ λ||Vxk||∞ + ||Vωk||∞

(34)

hus, if ∥Vxk∥∞ ≤
∥Vωk∥∞

1−λ
, then

||Vxk+1||∞ ≤ (
λ

1− λ
+ 1)||Vωk||∞ =

||Vωk||∞

1− λ
(35)

It follows that the set

S .
=

{
x : ||Vxk||∞ ≤ ν

.
=

||Vωk||∞

1− λ

}
(36)

s positively invariant. Therefore, any trajectory starting in S is
niformly bounded by ∥xk∥∞ ≤ M , where M = max∥xk∥∞ sub-
ect to ∥Vxk∥∞ ≤ ν. This feature is illustrated in Fig. 2, showing
he value of ∥Vx∥∞ for a sample closed-loop trajectory from one
f the random systems used in this example, corresponding to a
esign with λ = 0.5, excited with a random disturbance ωk with
omponents ±0.1.

xample 2 (Data-driven Control of Continuous Time System). In this
xample we consider the horizontal motion of a Quanser Qball-X4
uadrotor. The motion dynamics in the X direction are described
y the following continuous model:⎡⎣Ẋ
Ẍ

⎤⎦ =

⎡⎣0 1 0
0 0 4Ksin(θ )

M

⎤⎦⎡⎣X
Ẋ

⎤⎦+

[0
0

]
uZ (37)
v̇ 0 0 −ω v ω
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Fig. 2. Sample evolution of ∥Vx∥∞ in the presence of a persistent disturbance.

where K = 120 N, M = 1.4 kg, ω = 15 rad/s are parameters
given in Educate (2007) and θ is the pitch angle. Note that when
θ changes, we have different model representing the flight status
of the quadcopter, hence it can be viewed as a switched system.
We consider the case where the quadcopter has two flying modes
with θ = 10° and 20°.

A1 =

[0 1 0
0 0 59.54
0 0 −15

]
B1 =

[ 0
0
15

]
(System 1)

A2 =

[0 1 0
0 0 117.3
0 0 −15

]
,B2 =

[ 0
0
15

]
(System 2)

The experimental data was generated by exciting the switched
system with a random input uk, where ∥uk∥∞ ≤ 1 and random
process noise ωk, where ∥ωk∥∞ ≤ 0.1. Applying the continuous
time version of Algorithm 1 with λ = 0.99 and τ = 0.04 leads,
in 48 s, to the following controller:

F1 =
[
−0.2558 −0.1898 −0.7513

]
(Gain 1)

F2 =
[
−0.2564 −0.1892 −1.8518

]
(Gain 2)

The ℓ∞ norms of the corresponding closed-loop sub-systems are
∥V(Ae1+Be1F1)Z∥∞ = 0.9765 and ∥V(Ae2+Be2F2)Z∥∞ = 0.9735,
respectively, hence guaranteeing switched stability. A sample
closed-loop trajectory starting from a random initial condition
and under random switching is shown in Fig. 3.

To explore this example further, note that since our algorithm
solves a feasibility problem, the above solution is only one work-
able controller in the set. This opens up the possibility of using the
additional degrees of freedom to satisfy additional performance
criteria. As an example, it may be of interest to find a single
controller that stabilizes all plants, by enforcing that all Fi = Fo.
pplying this idea to the example above leads to the following
ime invariant controller:

=
[
−0.6657 −0.4771 −2.1659

]
(Gain 1)

hat guarantees closed-loop switched stability. Interestingly, this
tatic gain stabilizes the nonlinear model (37) for θ ∈ [10°, 20°].

6. Conclusion

This paper presented a framework for synthesizing data-driven
switched state feedback controllers for both continuous and dis-
crete time switched systems. The main idea is to exploit neces-
sary and sufficient conditions for stability under arbitrary switch-
ing, given in terms of the existence of a common polyhedral
8

Fig. 3. Quadcopter state trajectories corresponding to a random initial condition
and random switching.

Lyapunov function. While in principle this leads to a very chal-
lenging non-convex min–max optimization problem, the main
result of the paper shows that it can be reduced, via Farkas’
Lemma, to a polynomial optimization. In turn, by exploiting tools
from the theory of moments, this optimization can be reduced
to a rank-constrained SDP for which efficient convex relaxations
are readily available. Further, as noted in the paper, this rank
constrained SDP exhibits chordal sparsity, a feature that can be
exploited to mitigate the computational complexity growth with
the number of sub-systems.

The resulting controller is guaranteed to render the closed-
loop system ISS for all plants in the consistency set and arbi-
trary switching sequences. To the best of the author’s knowl-
edge, the proposed method is the first data-driven one capable
of handling unknown switched systems and certify closed-loop
switched stability. In addition, the proposed controller provides
uniform worst-case bounds on the peak value of the magnitude of
the state in the presence of bounded disturbances. These features
were illustrated by synthesizing a purely data-driven controller
to stabilize a quadcopter switching between two different pitch
angles.

Perhaps the main limitation of the proposed method is the fact
that it is currently limited to state feedback controllers and pro-
cess noise models. Efforts are underway to extend the framework
to handle measurement noise and output feedback by combining
the framework presented here with the data-driven observers
proposed in Dai and Sznaier (2019).
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