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a b s t r a c t

Semidefinite programs (SDPs) are standard convex problems that are frequently found in control
and optimization applications. Interior-point methods can solve SDPs in polynomial time up to
arbitrary accuracy, but scale poorly as the size of matrix variables and the number of constraints
increases. To improve scalability, SDPs can be approximated with lower and upper bounds through
the use of structured subsets (e.g., diagonally-dominant and scaled-diagonally dominant matrices).
Meanwhile, any underlying sparsity or symmetry structure may be leveraged to form an equivalent
SDP with smaller positive semidefinite constraints. In this paper, we present a notion of decomposed
structured subsets to approximate an SDP with structured subsets after an equivalent conversion.
The lower/upper bounds found by approximation after conversion become tighter than the bounds
obtained by approximating the original SDP directly. We apply decomposed structured subsets to
semidefinite and sum-of-squares optimization problems with examples of H∞ norm estimation and
constrained polynomial optimization. An existing basis pursuit method is adapted into this framework
to iteratively refine bounds.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

Semidefinite programs (SDPs) are a class of convex optimiza-
ion problems that include Linear Programs (LP) and Second-
rder Cone Programs (SOCP). SDPs are characterized by a sym-
etric positive semidefinite (PSD) matrix variable subject to
ffine constraints and a linear cost. Let Sn be the set of symmetric
atrices of size n. A more general conic program has a cost matrix
∈ Sn, constraint matrices A1, . . . , Am ∈ Sn, and a constraint

ector b ∈ Rm. Variables are restricted to a proper cone K and
ual cone K ∗, where ⟨·, ·⟩ denotes the canonical inner product
etween elements in cones. A conic program has the following
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rimal and dual forms:

p∗ = min
X

⟨C, X⟩

subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m, (1)
X ∈ K ,

d∗ = max
y,Z

⟨b, y⟩

subject to Z +
∑m

i=1 yiAi = C, (2)
y ∈ Rm, Z ∈ K ∗.

The objectives in (1) and (2) are related by p∗ ≥ d∗, known as
weak duality (Boyd & Vandenberghe, 2004). Strong duality, where
p∗ = d∗, may hold under appropriate constraint qualification
conditions. SDPs are conic programs with K = K ∗

= Sn
+
, where

Sn
+
denotes the set of PSD matrices. The dual form (2) of an SDP is

also known as a Linear Matrix Inequality (LMI) (Boyd, El Ghaoui,
Feron, & Balakrishnan, 1994).

Classical interior-point methods (IPMs) can solve an SDP to ϵ-
accuracy in polynomial time with complexityO(n2m2

+n3 m+m3)
per iteration (Alizadeh, 1995). Constraint processing methods
may be able to remove linearly dependent constraints and there-
fore reduce the value of m. When m is fixed, reducing the cone

dimension n can greatly speed up the computational efficiency
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f IPMs. Structured subset methods restrict (1) to simple subsets
Kinner ⊂ Sn

+
⊂ Kouter to develop inner and outer approximations

resulting in optima p∗outer ≤ p∗ ≤ p∗inner. These simple subsets
nclude (scaled-) diagonally dominant (DD or SDD) cones (Barker
Carlson, 1975; Boman, Chen, Parekh, & Toledo, 2005). Solv-

ng (1) where X is DD is an LP, and the scenario where X is
SDD is an SOCP. These simplified formulations yielding possibly
conservative bounds are often much faster to solve than the
original SDP. We note that polynomial optimization problems
can be approximated by a hierarchy of sum-of-squares (SOS)
programs, which can be cast as structured SDPs (Parrilo, 2000).
The method of structured subsets has also been used to find
bounds on polynomial optimization problems when the standard
SOS method leads to prohibitively large SDPs; see Majumdar,
Ahmadi, and Tedrake (2014).

Structured subset techniques (DD/SDD matrices) ignore any
underlying sparsity and reducible properties in the original SDP.
For example, a diagonally dominant constraint imposes that each
diagonal element is greater than the sum of all absolute values
on its row/column. Even if the original problem is sparse (com-
paratively few elements appear in cost or constraints), the prob-
lem approximated by standard DD/SDD constraints will still be
dense and may have a slower runtime than the sparse-converted
SDP (Vandenberghe, Andersen, et al., 2015). On the other side, an
SDP with sparse/symmetric structure may still have overly large
blocks after conversion, and these PSD blocks may dominate the
computational performance.

This paper presents the notion of Decomposed Structured Sub-
sets to find improved lower/upper bounds to semidefinite pro-
grams, which exploits problem properties (e.g. sparsity and sym-
metry) before approximating it with a structured subset. The
cones in the decomposition may be mixed, such that large PSD
blocks are approximated with structured subsets while small
blocks remain PSD to yield tighter bounds than a uniform cone
approximation. Some preliminary results were presented in
Miller, Zheng, Sznaier, and Papachristodoulou (2020). This pa-
per additionally explores SDPs with multiple kinds of structure,
including SDPs that simultaneously have sparsity and symme-
try. Decomposed structured subsets are applied to polynomial
optimization problems through sum-of-squares approximations.
The analysis of the iterative change of basis algorithm to our
framework is extended.

The rest of this paper is organized as follows. Section 2 reviews
preliminaries of chordal sparsity and approximation by struc-
tured subsets. Section 3 merges these two topics into decom-
posed structured subsets. Section 4 applies decomposed struc-
tured subsets to semidefinite programming including an H∞

norm estimation problem. Section 5 discusses the application of
decomposed structured subsets in SOS optimization. Section 6
summarizes our results and provides directions for future re-
search. The appendices contain details of sparse DD/SDD decom-
positions and an analysis of problems with both sparsity and
symmetry. An extended version of this paper is available at arxiv:
1911.12859.

2. Preliminaries

2.1. Structured subsets

For a fixed matrix size n, the nonnegative diagonal, DD, and
SDD cones may be described as,

Dn
= {A ∈ Sn

: A = diag(a1, . . . , an), ai ≥ 0},

DDn
= {A ∈ Sn

: aii ≥
∑

j̸=i|aij|, i = 1, 2, . . . , n}, (3)

SDDn
= {A ∈ Sn

: ∃D ∈ Dn, DAD ∈ DDn
}.
2

These subsets satisfy the following containment relation

Dn
⊂ DDn

⊂ SDDn
⊂ Sn

+
. (4)

Optimizing conic program (1) by setting K equal to these cones
with a minimization objective will find bounds:

pD ≥ pDD ≥ pSDD ≥ p∗. (5)

Another class of structured subsets is the set of factor width
matrices. A matrix M ∈ Sn has factor-width at most k (denoted as
M ∈ FWn

k ) if there exists a matrix U such thatM = UUT, and each
column of U has at most k nonzero entries (Boman et al., 2005). A
block factor-width kmatrix given a partition of indices is a matrix
M = UUT where each column of U has nonzero elements in at
most k sets in the partition (Zheng, Sootla, & Papachristodoulou,
2019).

2.1.1. Change of basis
The change of basis method is an iterative algorithm that

sharpens bounds from structured subsets (Ahmadi & Hall, 2017).
Given a basis-change matrix B ∈ Rn×n and a structured subset
cone K ⊂ Sn

+
, the basis-changed cone is K (B) = {BQBT

| Q ∈ K }.
PSD matrices X ̸∈ K can be made X ∈ K (B) for some appropriate
basis B. To start the iterative refinement process, we first solve
a conic optimization problem over a structured subset K such
as in (1), leading to the iterate X0. The Cholesky decomposition
X0 = L0LT0 can be used to find the next optimal solution X1:

X1 = argmin
X

⟨C, X⟩

subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m,

X ∈ K (L0).

(6)

Use X1 = L1LT1 , and solve the same problem over K n(L1) to find
optimal point X2. The cost ⟨C, X⟩ of iterate t is upper bounded by
the cost at iterate t−1, because both Xt−1 and Xt are members of
the feasible set K (Lt−1) at iteration t . We note that this procedure
might not converge to the true SDP optimum.

2.2. Chordal decomposition

An SDP is sparse if only a few entries of X ∈ Sn
+

are involved
in the cost and constraints. For example, if Cjk = (Ai)jk = 0, ∀i =
1, . . . ,m, the values of Xjk and Xkj are simply present to ensure
that X ⪰ 0. The sparsity structure of C and Ai can be represented
by an undirected graph G(V, E), termed as the aggregate sparsity
pattern. The number of nodes |V| = n, and an edge (j, k) ∈ E if
C or Ai has a nonzero value at index (j, k). We need a few graph-
theoretic notions. A cycle of length k ≥ 3 is a set of vertices
(v1, v2, . . . , vk−1, vk, v1) with edges (vk, v1) and (vi, vi+1), ∀i =

1, . . . , k − 1. A chord in a cycle is an edge between two non-
consecutive vertices in the cycle. A chordal graph is a graph where
each cycle of length 4 or more has a chord (Vandenberghe et al.,
2015). A clique C with cardinality |C| is a complete subgraph of G,
and a maximal clique is a clique that is not contained in another
clique. Nonchordal graphs can be rendered chordal by adding new
edges, a process known as chordal extension (Vandenberghe et al.,
2015).

Following notation from Kakimura (2010), the set of sparse
symmetric matrices with pattern G forms a cone Sn(E, 0) =

{X ∈ Sn
| Xij = 0, ∀i ̸= j, (i, j) ̸∈ E}. The sparse PSD

cone defined by E is Sn
+
(E, 0) = Sn(E, 0) ∩ Sn

+
. The dual cone

[Sn
+
(E, 0)]∗ = Sn

+
(E, ?) is the set of sparse symmetric matrices

that admit a PSD completion. For a vector x ∈ Rn and a clique
C ⊆ V , there exists a vector xC ∈ R|C| that selects the entries of
x with indices C. Let EC ∈ R|C|×n be 0/1 entry selector matrices
such that xC = ECx, ∀x ∈ Rn. The cones Sn

+
(E, ?), and Sn

+
(E, 0)

have a decomposable structure if G is chordal:

https://arxiv.org/abs/1911.12859
https://arxiv.org/abs/1911.12859
https://arxiv.org/abs/1911.12859


J. Miller, Y. Zheng, M. Sznaier et al. Automatica 137 (2022) 110125

T
1
{

t

M

T
c
d
v
o
t
w

o
r

3

{

l
a

S
i

D

a
t
i

D
c

K

c
s
s

3

D
f
X

t
w
c
t
i

D
K
p

K

heorem 1 (Grone’s Theorem (Grone, Johnson, Sá, & Wolkowicz,
984)). Let G(V, E) be a chordal graph with maximal cliques
C1, C2, . . . , Cp}. Then, X ∈ Sn

+
(E, ?) if and only if Xk = ECkXE

T
Ck

∈

S|Ck|
+ for k = 1, . . . , p.

Theorem 2 (Agler’s Theorem (Agler, Helton, et al., 1988)). Let
G(V, E) be a chordal graph with maximal cliques {C1, C2, . . . , Cp}.
Then, Z ∈ Sn

+
(E, 0) if and only if ∃Zk ∈ S|Ck|

+ , k = 1, . . . , p such
hat Z =

∑p
k=1 E

T
Ck
ZkECk .

Grone’s theorem can split problem (1) with K = Sn
+
(E, ?),

min
X

⟨C, X⟩

subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m,

ECkXE
T
Ck

∈ S|Ck|
+ , k = 1, . . . , p.

(7)

Problem (7) reduces the size of the maximum PSD constraint.
In numerical SDP solvers, equality constraints are introduced to
enforce consistency between variables on clique overlaps (Van-
denberghe et al., 2015). Criteria for merging cliques to improve
computational performance are discussed in Garstka, Cannon, and
Goulart (2020).

3. Decomposed structured subsets

This section combines decomposition methods and structured
subsets into decomposed structured subsets. As a motivating ex-
ample, consider a matrix M(a, b):

M(a, b) =

⎡⎢⎢⎣
1 1

2 + a ? ?
1
2 + a 2 −2a a+ b
? −2a 5 b

2
? a+ b b

2 2

⎤⎥⎥⎦ , (8)

where ‘?’ denotes unspecified entries. Since the sparsity pat-
tern of this matrix is chordal, Grone’s Theorem guarantees that
M(a, b) ∈ S4

+
(E, ?) if and only if

M1(a, b) =

[ 2 −2a a+ b
−2a 5 b/2
a+ b b/2 2

]
⪰ 0,

2(a, b) =
[

1 1/2+ a
1/2+ a 2

]
⪰ 0.

he blocks M1(a, b) and M2(a, b) correspond to the maximal
liques C1 = {2, 3, 4} and C2 = {1, 2}. The structure of (8)
efines an affine slice of the PSD completion cone S4

+
(E, ?), as

isualized in the black set in each panel of Fig. 1. The red region
f the left panel is the set where ‘?’ may be chosen to ensure
hat M(a, b) ∈ DD4. The blue set in the left panel of is the region
here M1(a, b) ∈ DD3 and M2(a, b) ∈ DD3. The blue set contains

the red set, because imposing that M(a, b) is DD4-completable
adds a constraint on the previously arbitrary entries ‘?’, yielding
1 ≥ |1/2+a|+|?13|+|?14|. The same behavior is observed for the
SDD cone in the right panel of Fig. 1, with the yellow set where
M(a, b) is SDD4-completable is contained within in the brown
set describing M1(a, b) ∈ SDD3,M2(a, b) ∈ SDD2. This notion
f structured subsets over cliques and containment will be made
igorous in this section.

.1. Definition of decomposed structured subsets

A clique edge cover of a graph G(V, E) is a set of subsets
Ck}

p
k=1 such that every maximal clique of G is contained in at

east one clique Ck. Clique edge covers allow for clique extensions
nd merges for possibly non-chordal graphs.
3

Fig. 1. Regions of the (a, b) plane for which the matrix M(a, b) from Eq. (8)
is DD4-completable, DD4(E, ?), or S4

+
(E, ?) (Left), and SDD4-completable,

DD4(E, ?), or S4
+
(E, ?) (Right). (For interpretation of the references to color

n this figure legend, the reader is referred to the web version of this article.)

efinition 1. We define sparse DD and SDD matrices as:

DDn(E, 0) = Sn(E, 0) ∩ DDn,

SDDn(E, 0) = Sn(E, 0) ∩ SDDn.

These sparse matrices obey the containment: DDn(E, 0) ⊂

SDDn(E, 0) ⊂ Sn
+
(E, 0). The following result is proven in Ap-

pendix A:

Proposition 1. Let G(V, E) be a graph with a clique edge cover
{C1, C2, . . . , Cp}. Then,

(1) Z ∈ DDn(E, 0) if and only if

Z =
∑p

k=1 E
T
Ck
ZkECk , Zk ∈ DD|Ck|, k = 1, . . . , p.

(2) Z ∈ SDDn(E, 0) if and only if

Z =
∑p

k=1 E
T
Ck
ZkECk , Zk ∈ SDD|Ck|, k = 1, . . . , p.

Motivated by Theorems 1 and 2, and Proposition 1, we let E be
sparsity pattern, K = {Kk}

p
k=1 be a set of cones corresponding

o a clique edge cover C1, . . . , Cp, where each individual cone Kk
s some structured subset in S|Ck|.

efinition 2. Decomposed Structured Subsets. Given clique
ones K, we define:

(E, 0) :=
{
Z ∈ Sn

| Z =
∑p

k=1 E
T
Ck
ZkECk , (9)

Zk ∈ Kk, k = 1, . . . , p
}
,

K(E, ?) :=
{
X ∈ Sn

| ECkXE
T
Ck

∈ Kk, k = 1, . . . , p
}
.

Note that the sets DDn(E, 0) and SDDn(E, 0) are special de-
omposed structured subsets for any sparsity pattern, and the
ets Sn

+
(E, 0), and Sn

+
(E, ?) are special decomposed structured

ubsets for chordal sparsity patterns.

.2. Containment analysis

efinition 3. A sparse matrix X ∈ Sn(E, 0) has a K -completion
or a structured subset K ⊆ Sn

+
if there exists an X̄ ∈ K such that

ij = X̄ij, ∀(i, j) ∈ E .

For a structured subset K ⊆ Sn
+
and a sparsity pattern G(V, E),

he set of K -completable matrices with pattern E is contained
ithin K (E, ?). This containment is illustrated in Fig. 1 for the
ones DD4 (left) and SDD4 (right). The notion of decomposi-
ion structured subsets (9) gives more freedom to choose the
ndividual cones Kk.

efinition 4. For a graph G(V, E) with clique cover C1, . . . , Cp, let
= {Kk}

p
k=1 and K̃ = {K̃k}

p
k=1 be two sets of clique-cones. The

artial ordering ⊆ is defined as:

⊆ K̃ if and only if K ⊆ K̃ ∀ k = 1 . . . p.
k k
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Fig. 2. Mixing cones expands feasibility regions of the (a, b) plane for which the
matrix M(a, b) ∈ K(E, ?) in (8). Left: K1

= {DD3, S2
+
}; Right: K2

= {S3
+
,DD2

}.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Remark 1. If clique-cones K ⊆ K̃ for a clique edge cover
C1, . . . , Cp of a graph G(V, E), then by definition, we have

K(E, 0) ⊆ K̃(E, 0) and K(E, ?) ⊆ K̃(E, ?).

The relationship above is simple, yet has useful implications in
semidefinite optimization. In particular, the cone DDn(E, 0) has
the same cone on each clique Ck with ECkXE

T
Ck

= Xk ∈ DD|Ck|.
ixing cones with K : Kk ⊇ DD|Ck|,∀k = 1 . . . p where not all
k = DD|Ck| will form a cone K(E, 0) ⊃ DD(E, 0). Mixing cones
herefore results in cones closer to Sn

+
(E, 0). Similar statements

old for Sn
+
(E, ?). This allows us to get better lower and upper

ounds for problem (1). In Fig. 2, the green set on the left panel
and the orange set on the right panel illustrate mixed cones. The
green set has M1(a, b) ∈ DD3, M2(a, b) ∈ S2

+
, and the feasibility

set is slightly expanded to the right. The orange set on the right
panel with M1(a, b) ∈ S3

+
, M2(a, b) ∈ DD2 cuts a large leftward

swath of the PSD feasibility region.
Decomposed structured subsets can be posed over dual cones

that are larger than the PSD cone.

Proposition 2. Let K = {Kk}
p
k=1 be a set of cones with dual K∗

=

{K ∗

k }
p
k=1 where each Kk ⊆ S|Ck|

+ , and Ck is a set of max. cliques for E .
Then, we have

[K(E, 0)]∗ = K∗(E, ?), (10)

[K(E, ?)]∗ ⊇ K∗(E, 0). (11)

Proof. For the equivalence in (10), recall the definition of K(E, 0)
and K(E, ?) in (9). We verify that [K(E, 0)]∗ is,

K(E, 0)t∗ ={M ∈ Sn
| ⟨M,N⟩ ≥ 0,∀N ∈ K(E, 0)}

=
{
M ∈ Sn

|
⟨
M,

∑p
k=1 E

T
Ck
NkECk

⟩
≥ 0, ∀Nk ∈ Kk

}
=

{
M ∈ Sn

|
∑p

k=1

⟨
ECkMET

Ck
,Nk

⟩
≥ 0, ∀Nk ∈ Kk

}
=

{
M ∈ Sn

| ECkMET
Ck

∈ K ∗

k , k = 1, . . . , p
}
,

where the last set is the definition of K∗(E, ?). The last equality
used the following fact: if any ECtMET

Ct
/∈ K ∗

t for some t , we can
choose Nt ∈ Kt such that ⟨ECtMET

Ct
,Nt⟩ < 0. Now, by choosing

Nk = 0 ∈ Kk, k ̸= t , we have∑p
k=1

⟨
ECkMET

Ck
,Nk

⟩
= ⟨ECtMET

Ct
,Nt⟩ < 0,

which contradicts line 4. Thus, we must have ECkMET
Ck

∈ K ∗

k , k =

1, . . . , p. We now prove the containment in (11). Given any M ∈

K∗(E, 0), we show M ∈ [K(E, ?)]∗. By definition (6), there exists
Mk ∈ K ∗

k , k = 1, . . . , p, such that M =
∑p

k=1 E
T
Ck
MkECk . We now

verify that ∀N ∈ K(E, ?)

⟨M,N⟩ =
⟨∑p

k=1 E
T
Ck
MkECk ,N

⟩
=

∑p
k=1

⟨
Mk, ECkNE

T
Ck

⟩∑p

= k=1⟨Mk,Nk⟩≥ 0,

4

Table 1
Cost vs. subset and pattern in Fig. 3.

K K (EF , ?) K (E, ?)

DD Inf. Inf. Inf.
B1 64.5 34.7 19.4
B2 51.4 27.1 13.9
B5 32.1 15.0 5.34
B10 20.8 7.10 −1.23
S+ −1.23 −1.23 −1.23

where the last inequality used the definition of N ∈ K(E, ?).
herefore, M ∈ [K(E, ?)]∗ and K∗(E, 0) ⊆ [K(E, ?)]∗. □

emark 2. The equality K∗(E, 0) = [K(E, ?)]∗ will hold if the
clique cover Ck of E are disjoint: Ck ∩ Ck′ = ∅, ∀k ̸= k′.

4. Applications to semidefinite optimization

In this section, we develop inner and outer approximations
of SDPs using the notion of decomposed structured subsets, and
apply H∞ norm estimation to networked systems. All code is
publicly available at https://github.com/soc-ucsd/SDPfw within
the folder decomposed_structured_subsets.

4.1. Decomposed structured subsets in SDPs

Let K ⊂ Sn
+

be a structured subset. As discussed in the
introduction, bounds p∗inner and p∗outer can be found by constraining
X in (1) to K and K ∗ respectively. This procedure can also be
done for decomposed structured subsets. Let G(V, E) be a sparsity
pattern, C = {Ck}

p
k=1 be a clique cover of E , and K be a cone-

set over C. The relationship K ⊆ {S|Ck|
+ }

p
k=1 ⊆ K∗ holds with

espect to the partial ordering ⊆ from Definition 4. Inner and
uter approximations for problem (1) over X ∈ Sn

+
(E, ?) may be

found by constraining X to K(E, ?) and K∗(E, ?) respectively. The
same procedure can be done to approximate Sn

+
(E, 0) with K(E, 0)

from inside and K∗(E, 0) from outside.
Fig. 3 visualizes the aggregate sparsity pattern of a random

SDP with 80 equality constraints, where each of the 15 blocks
has size 10 and the arrowhead has width 10. The original SDP
has X ∈ S160

+
, and a chordal decomposition has Xk ∈ S20

+
for each

clique where cliques overlap in the 10 × 10 bottom right corner
(blue pattern E). A coarser chordal decomposition is the union
of blue and magenta blocks in Fig. 3 (fill-in EF ), which has block
izes (S50

+
)2 × S40

+
× (S30

+
)2 that are each equal in the bottom right

orner. Clique consistency for EF and E adds 220 and 770 equality
onstraints respectively.
Cost values of this SDP and its approximants are recorded in

able 1. Rows are different structured subsets and the columns
pply the structured subsets: imposing that X ∈ K and that
he cliques of Xk ∈ Kk, where cliques are set based on the
raphs EF and E . We introduce shorthand Bk as a cone of block
actor-width 2 matrices where each block has k components (so
1 = SDD) and membership constraints in S2k

+
are imposed. By

gler’s theorem, all entries of K = S160
+

have the same optima.
ll entries K = DD160 are infeasible, and objectives decrease
owards the bottom right corner of the table as expected in the
bove containment analysis.
Table 1 demonstrates that merging blocks together may de-

rade the resultant approximation quality. Even well-chosen
erges that speed up program execution such as in Garstka et al.

2020) may worsen the approximated SDP bound.

https://github.com/soc-ucsd/SDPfw
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Fig. 3. Block arrow sparsity pattern and extension. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version
f this article.)

Fig. 4. Decomposed vs. Standard Change of Basis on (8). Left: Start from
DD4-completable; Right: Start from DD4(E, ?).

Remark 3 (Certifying Optimality). A structured subset approxima-
tion yields the same optimum as the original SDP if an eigenvalue
test is satisfied. Assume that a structured subset approximation
with K ⊆ Sn

+
yields an optimal primal–dual triple (X, y, Z) ∈

K ,Rm, K ∗)(Ahmadi, Dash, & Hall, 2017). The approximation is
ight if the dual matrix satisfies Z ∈ Sn

+
(dual feasibility of the

riginal SDP). For SDP lower bound programs with decomposed
tructured subsets, the clique cones K have Kk ⊇ S|Ck|

+ . Tightness
s certified if Xk ∈ S|Ck|

+ , ∀k = 1, . . . , p. Upper bounds have
k ⊆ S|Ck|

+ . For each clique Ck in the K, check if the corresponding
ual block Zk ∈ S|Ck|

+ . The dual clique blocks Zk can be obtained
y computing Z = C −

∑m
i=1 yiAi.

.2. Decomposed change of basis

Decomposed structured subsets are compatible with the
hange of basis algorithm as reviewed in Section 2.1.1. Assume
hat X0 ∈ K(E, ?) is a solution to Problem (1). Define Cholesky
actorization matrices L0k for each clique k = 1 . . . p such that
0
kL

0T
k = ECkX0ET

Ck
. The next iteration of the change of basis

lgorithm will solve

1 = argmin
X

⟨C, X⟩

subject to ⟨Ai, X⟩ = bi, i = 1, 2, . . . ,m,

ECkXE
T
Ck

∈ Kk(L0k), k = 1, . . . , p.

(12)

he solution to (12) can be used to find a new set of factor
atrices L1k by finding L1kL

1T
k = ECkX1ET

Ck
. Each clique Ck is

escribed by basis Lk, and different bases may describe the same
lements of X on clique-overlaps.

emark 4. Performing a decomposed change-of-basis over
n(E, ?) will result in a lower cost as compared to applying
hange-of-basis over K n at the first iteration. No conclusions
an be drawn after the first iteration. In experiments, the cost
equence obtained from performing change-of-basis over K n re-
ains above K n(E, ?)’s cost sequence.

Fig. 4 illustrates the change of basis technique on the example
n 3 optimizing a cost function ⟨C, X⟩ (direction of black arrow).
 t

5

Fig. 5. Change of basis on Block Arrow SDP. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. Sea Star topology and LMI constraint sparsity.

he left plot is a change of basis starting from DD4, while the
ight plot is a decomposed change of basis on DD4(E, ?). At
he second iteration, the change-of-basis on the DD set (left)
s −2.50, while the DD(E, ?) set (right) is −3.02. Fig. 5 shows
he output of the change of basis algorithm for the cone B160

5 on
he block arrow system shown in Fig. 3. Over the course of 20
terations, the basis-changed cone starting with B160

5 (E, ?) (green
urve) eventually matches the SDP optimum.

.3. H∞ Norm estimation for networked systems

Consider a dynamical system G(s) with state-space form,

˙ = Ax+ Bu, y = Cx+ Du.

he H∞ norm of G(s) is the supremum over frequencies ω of the
aximum singular value of G(jω). The norm ∥G∥∞ is finite when
is Hurwitz. The Bounded Real Lemma can be used to find upper
ounds on ∥G∥∞:

heorem 3 (Bounded Real Lemma (Boyd et al., 1994)). The follow-
ng statements are equivalent:

(1) ∥G∥∞ < γ ;
(2) There exists a P ≻ 0 such that[

PA+ ATP + CTC PTB+ CTD
BTP + DTC −γ 2I + DTD

]
≺ 0. (13)

We propose the ‘sea star’ networked system as a testbed for
pplying decomposed structured subsets to H∞ norm estimation.
ach agent obeys linear dynamics with ni states, mi inputs, di
utputs. Agents in the sea star network either lie in the densely
onnected head or in one of the arms. The left panel of Fig. 6
hows a sea star network with 12 arms and 70 agents in the
ead. Each arm has 2 densely connected ‘knuckles’, where in each
nuckle 4 agents connect to the previous knuckle (or head) and
agents connect to the next knuckle. Agent dynamics are chosen
uch that the global dynamics are open-loop stable.
The H∞-norm of G(s) can be estimated through minimiza-

2
ion of γ on the Bounded Real Lemma. The LMI enforcing the
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ime to find γ by upper bound K (minutes).

Bounded Real Lemma has two PSD variables corresponding to the
matrix P ⪰ 0 and Eq. (13) with size 1760 and 2691 respectively.
block-diagonal choice of P such that each agent’s block in P has
size equal to order of that agent’s dynamics will be compatible
ith the sparsity of the network, but may yield conservative H∞

orm bounds (Zheng, Kamgarpour, Sootla, & Papachristodoulou,
018). The block-diagonal P is displayed on the center panel of
ig. 6, and the Bounded Real Lemma network constraint is on
he right panel. The chordal decomposition H∞ sea-star LMI’s
ggregate sparsity pattern possesses a giant clique of size 387
agents in head), a set of cliques of size 37–90 (knuckles), and
run of cliques of sizes 1–11. For the rest of this section, cone
imensions when referring to cones such as Sn

+
and K (E, ?) may

e omitted for ease of explanation.
Table 2 displays the time required to find H∞-norm upper

ounds for the sea star system. The columns of each table are
tructured subsets K which includes DD, S+, and block-factor-
idth 2 matrices Bq for integer q. The rows are size thresholds
hat define the decomposed structured subset K. For an example
ize threshold of 11, all cliques with |C| ≤ 11 remain PSD while
liques with |C| > 11 are restricted to K . Displayed values
n the tables achieve the same bound as the S+ case with a
ertification from Section 4.1. Non-displayed values on Table 2
id not achieve the optimal γ = 1.137: the cone DD with

thresholds 0, 11 was primal infeasible. The fastest time to obtain
the optimal γ was the program with cone B5 and size threshold of
0 (B5(E, 0)). In this case, B5(E, 0) offered the best compromise be-
tween cone complexity and number of new equality constraints.
All experiments were written in Matlab R2018a and performed
on Mosek (Andersen & Andersen, 2000) on a Intel i7 CPU with a
clock frequency of 2.7 GHz and 16.0 GB of RAM.

5. Applications to polynomial optimization

5.1. Preliminaries for polynomial optimization

A polynomial optimization problem (POP) may be approx-
imated by semidefinite programming (Lasserre, 2010). A basic
semialgebraic set K is defined by a finite number of bounded-
degree polynomial constraints:

K = {x ∈ RN
| gi(x) ≥ 0, hj(x) = 0}. (14)

The task of minimizing a polynomial p(x) ∈ R[x]≤d of bounded
degree d with x ∈ K is equivalent to solving:

p∗ = max
γ∈R

γ , subject to p(x)− γ ≥ 0, ∀x ∈ K. (15)

Polynomial nonnegativity constraints are generically NP hard, and
sum-of-squares (SOS) methods offer convex relaxations by solv-
ing SDPs. A polynomial q(x) is SOS if there exists a monomial map
6

Table 3
Minutes to find constrained LR lower bound over K∗ .

v(x) and a Gram matrix Q ⪰ 0 such that q(x) = v(x)TQv(x). The
OS cone Σ[x] is a subcone of all nonnegative polynomials. The
utinar Positivstellensatz (Putinar, 1993) yields an SOS relaxation
o Eq. (15):
∗
= max

γ∈R, σ (x)∈Σ[x], ζi(x)∈Σ[x], φj(x)∈R[x]
γ (16)

subject to p(x)− γ = σ (x)+
∑

i ζi(x)gi(x)+
∑

j φj(x)hj(x).

Eq. (16) is an SDP when restricted to polynomials σ (x), ζi(x),
j(x) of bounded degree 2d. Solving (16) at degree d will result in
bound p∗d ≤ p∗, and the sequence p∗d ≤ p∗d+1 ≤ p∗d+2 ≤ · · · is an

ncreasing sequence of lower bounds to p∗ (Theorem 5.6 and 4.1
f Lasserre, 2010). If K satisfies an Archimedean condition, then

p∗ will be reached at a finite degree d. The size of the Grammatrix
Q scales as O(Nd).

Two methods of defining and exploiting sparsity in POPs in-
clude Correlative Sparsity (Waki, Kim, Kojima, & Muramatsu,
2006) and Term Sparsity (Wang, Magron, & Lasserre, 2021b).
Term sparsity may be combined with Correlative Sparsity to
maximize performance (CS-TSSOS) (Wang, Magron, & Lasserre,
2021a).

5.2. Decomposed structured subsets for POPs

Decomposed structured subsets can be integrated into polyno-
mial optimization. A polynomial p(x) ∈ SOS may exhibit sparsity
in which the Gram matrix Q ∈ Sn

+
(E, 0) for a pattern G(V, E).

The matrix Q may be restricted to a decomposed structured
subset K∗(E, 0) to form approximations of the SOS lower bound.
An example of decomposed structured subsets for polynomial
optimization is the minimization of the N-variate polynomial
f (x) = fQ (x)+ fR(x), where fQ (x) = xT1:N/6Ax1:N/6 and,

R(x) =
∑N−3

i=1 10(xi+2 + 2xi+1 − x2i )
2
+ (1− xi − xi+3)2.

Q (x) is a quadric where A is the Lehmer matrix defined as Aij =

in(i/j, j/i), and fR(x) is a Rosenbrock function. The Rosenbrock
unction fR is highly sparse and multiplies together variables
xi, xj) only when |i − j| ≤ 3, while the LR function has a block
ontaining (x1:N/6) from fQ .
The cliques of largest size for minimizing the LR function f (x)

ith N = 120 overK = [1, 2]120 in the d = 4 CS-TSSOS relaxation
ith option ‘clique’ are 124, 80, 50, 50, 50. All other cliques are
f size 40 or less, and there are 10647 cliques in total (including
473 cliques of size 6 and 5727 cliques of size 1). Table 3 displays
he time taken in minutes to provide tight lower bounds. The SDP
ptimum of 4939.1 is attained in 31.8 min with the cone B∗3 and
ize threshold 45, compared to 63.4 min on the full SDP S+(E, ?).
he S column timing is reported for multiple runs.
+
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. Conclusions

Structured subsets can be used to find upper and lower bounds
f SDP optima. Decomposition methods may be able to con-
ert large PSD constraints into smaller PSD blocks. This paper
ombines the two methods into decomposed structured sub-
ets. Properties of these subsets are analyzed with their bound
uality, and the facility to mix cones adds additional flexibil-
ty. Improved approximations are demonstrated on H∞ norm
nd polynomial optimization problems. Future directions include
pplying these techniques to network H∞-optimal control and
ore POPs. It would also be valuable to investigate compromises
etween cone complexity, additional consistency constraints, and
pproximation quality.

ppendix A. Proof of Proposition 1

In this Appendix, we provide the proof for Proposition 1 where
E is not necessarily a chordal graph.

⇐: If Zk ∈ DD|Ck| then ET
Ck
ZkECk ∈ DDn because diagonal

lements of Zk will remain on the diagonal of ET
Ck
ZkECk , and

he diagonal dominance relation is preserved in the embedded
atrix. DDn is a cone, so Z =

∑p
k=1 E

T
Ck
ZkECk ∈ DDn for multiple

liques in C. Let Ec
⊇ E be a chordal completion of E with a

lique cover Cc . All of the induced submatrices of Z by cliques
n Cc are DD, so from Agler’s theorem we have Z ∈ Sn(E, 0). Thus,
∈ DDn(E, 0).
⇒: Let ei ∈ Rn, ej ∈ Rn where i ̸= j be standard basis vectors,

e define the following DD basis matrices:

i = eieTi , v±

ij = (ei ± ej)(ei ± ej)T.

Given a symmetric Z ∈ DDn(E, 0) for a (not-necessarily chordal)
sparsity pattern E , define the slack quantities ∆i = Zii−

∑
j̸=i |Zij|

0. Such a Z can be decomposed as:

Z =
∑n

i=1 ∆ivi +
∑

(i,j)∈P Zijv+

ij +
∑

(i,j)∈N |Zij|v−

ij

P := {(i, j) | Zij > 0, i < j}
N := {(i, j) | Zij < 0, i < j}.

By this characterization, Z ∈ DDn(E, 0) can be represented as
the sum of DD matrices with the same pattern E and clique cover
C. The terms v+

ij , v−

ij with Zij ̸= 0 can be uniquely assigned to
some clique (i, j) ∈ Ck, and the slack terms ∆ivi can be distributed
among all cliques in C that include i. Grouping summands into
cliques yields

Z =
∑p

k=1 E
T
Ck
ZkECk , Zk ∈ DD|Ck|, k = 1, . . . , p.

Let D be a positive definite (PD) diagonal matrix, and define
matrices DCk = ECkDE

T
Ck

with inverses D−1
Ck

= ECkD
−1ET

Ck
. By

definition (3) there exists a PD diagonal matrix D for a Z ∈

SDDn(E, 0) such that DZD ∈ DDn. Since pre and post-multiplying
by a diagonal matrix does not change the sparsity pattern, DZD ∈

DDn(E, 0). By the decomposition of DDn matrices:

DZD =
∑p

k=1 E
T
Ck
Z̃kECk ,

where Z̃k ∈ DD|Ck|, k = 1, . . . , p. This leads to

Z =
∑p

k=1 D
−1ET

Ck
Z̃kECkD

−1
=

∑p
k=1 E

T
Ck
ZkECk ,

where Zk = D−1
Ck

Z̃kD−1
Ck

∈ SDD|Ck|, since ECkD
−1

= D−1
Ck

ECk and
D−1

= E D−1ET , completing the proof.
Ck Ck Ck

7

Fig. B.1. Sparse and Symmetric *-algebra.

Appendix B. Combining decompositions

B.1. Symmetry/*-algebra decomposition

An additional form of structure occurs when all constraint
and cost matrices (C, Ai) ∈ Sn can be simultaneously block
diagonalized by a unitary matrix P ∈ Rn×n:

⟨C, X⟩ = ⟨PTCP, X̃⟩ =
∑

k ⟨C̃k, X̃k⟩.

Application of P together with Agler’s theorem breaks the large
PSD variable X = PX̃PT into a set of smaller PSD variables
X̃k, and the SDP in (C̃k, Ãik) will have an equivalent optimum as
(C, Ai) (Vallentin, 2009). This block diagonalization can occur if
all matrices (C, Ai) lie in a common *-algebra A ⊂ Sn , which is
closed under addition, products, and transposition. The structure
of the *-algebra’s block-diagonalization into blocks of size ni with
multiplicitymi such that n =

∑
i nimi is expressed in the Wedder-

burn decomposition (Wedderburn, 1934) of A ∼= ⊕
p
i=1Imi ⊗ Sni ,

with inner products ⟨C, X⟩ =
∑

i mi⟨C̃i, X̃i⟩. The set of matrices
in Sn

+
invariant under action by a group G forms a *-algebra [Sn

+
]
G.

B.2. Symmetry and sparse structure

Decomposed structured subsets can be applied to symmetric
SDPs in the same manner as chordally sparse problems. In the *-
algebra framework, the cone-set K refers to the cone of each sym-
metric block in the program. Fig. B.1 shows block-arrow (sparse)
matrices in the invariant ring [S90

]
G under block-permutation

action. The permutation structure is illustrated in the top-left
pane of Fig. B.1. Matrices X ∈ [S90

]
G are invariant under swapping

blocks of the same color, and the split blocks are additionally
invariant under swapping the top and bottom halves. The permu-
tation group acting on these matrices is G = (S4×Z2)×Id×Z2×Z2.
The top right pane of Fig. B.1 shows a one such matrix X ∈ [S90

]
G.

All such matrices can be block diagonalized (bottom right) under
unitary action by the matrix P (bottom left, based on the Discrete
Cosine Transform). The block-sizes and multiplicities are:

{mi, ni}
5
i=1 = {(3, 5), (1, 10), (4, 5), (1, 5), (1, 40)sparse}.

Table B.1 shows the cost and time of running a randomly
generated G-invariant SDP with 80 equality constraints under
the cone SDD. The rows show if the matrix has been block-
diagonalized before applying SDD, and the columns indicate if
Grone’s theorem has been applied to apply SDD to cliques. Whole
blocks (green, brown orbits) contribute PSD constraints with n =

10 while split blocks yield n = 5.
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Cost Full Sym. Time (s) Full Sym.

Dense 12.96 10.86 Dense 124.5 19.3
Sparse 9.49 8.44 Sparse 38.2 12.0
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