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Abstract

In this paper we propose a model reduction technique to speed up the diagonalization-based parallel-in-
time (ParaDIAG) preconditioner, for iteratively solving all-at-once systems from evolutionary PDEs. In
particular, we use the reduced basis method to seek a low-dimensional approximation to the sequence of
complex-shifted systems arising from Step-(b) of the ParaDIAG preconditioning procedure. Different from
the standard reduced order modeling that uses the separation of offline and online stages, we have to build the
reduced order model (ROM) online for the considered systems at each iteration. Therefore, several heuristic
acceleration techniques are introduced in the greedy basis generation algorithm, that is built upon a residual-
based error indicator, to further boost up its computational efficiency. Several numerical experiments are
conducted, which illustrate the favorable computational efficiency of our proposed ROM-accelerated Para-
DIAG preconditioner, in comparison with the multigrid-based one.

Keywords: Parallel-in-time, α-circulant preconditioner, model order reduction, reduced basis method,
FGMRES

1. Introduction

With the advent of massively parallel processors, various parallel-in-time (PinT) algorithms have been
developed in the last few decades for simulating time-dependent partial differential equations (PDEs) [16,
45]. Such PinT algorithms with successful implementations can provide significant speed up over the tra-
ditional sequential time-stepping schemes. However, the design of effective PinT algorithms is more chal-
lenging than their counterparts in space, such as spatial domain decomposition, because of the sequential
nature of forward time evolution/marching. Thus far, there are several different types of PinT algorithms in
literature1, including the parareal algorithm [36], the multigrid reduction in time (MGRIT) algorithm [14],
the space-time parallel multigrid algorithm[19], and the more recent diagonalization-based ParaDIAG al-
gorithm [18], etc. The mechanism of each method varies greatly, which leads to significant difference with
respect to application scopes, convergence properties and parallel efficiency. Among them, the ParaDIAG
algorithms [18] are built upon the diagonalization of the time discretization matrix or its approximations
within the all-at-once system arising from solving all the time steps simultaneously. Extensive numerical
results given in [18, 22] indicate that the ParaDIAG algorithms have a very promising parallel efficiency
for both parabolic [8, 35, 63] and hyperbolic PDEs [17, 37, 61]. Especially, there is a sequence of sparse
complex-shifted linear systems to be solved in the algorithm. These linear systems are independent, thus
can be solved by parallel computing. However, the size of the individual linear systems can be tremendous
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in real-world applications, as it is determined by the number of spatial degrees of freedom. Solving these
systems represents the major computational cost in numerical simulations of evolutionary PDEs by the Para-
DIAG algorithms. Therefore, in order to accelerate the ParaDIAG algorithms, we propose to synthesize it
with model reduction techniques.

The reduced order models (ROMs) have been widely used in approximating large-scale linear and non-
linear dynamical systems, with successful applications to numerical simulations, control and optimization
problems. Common model reduction techniques include but not limited to the reduced basis method (RBM),
proper orthogonal decomposition (POD), dynamical model decomposition (DMD), and interpolatory meth-
ods [1, 2, 7, 27, 28, 49]. Although they provide quite different ways to construct ROMs, they all are date-
driven approaches and usually share a common computational strategy: (i) finding a low-dimensional ap-
proximation to the solution manifold of the underlying system’s dynamics and building a ROM at an offline
stage; (ii) using the ROM for fast simulations at an online stage. The efficacy of the low-dimensional approx-
imation can be quantified by the Kolmogorov n-width [5, 48]. Successful ROMs can dramatically reduce
the online simulation cost. In the context of parallel-in-time simulations with the parareal method, the ROM
and FOM has been used together in [9, 15, 38], where the ROM on the fly is regarded as a coarse propagator.
Recently, the ROMs have also been integrated with preconditioners in Krylov-subspace iterative solvers. For
instance, preconditioned Conjugate Gradient (PCG) methods are developed using a POD-based precondi-
tioner in [39, 47] and a RBM-based one in [44], which are able to speed up the traditional iterative methods
in serial computing.

In this work, we pursue in this direction and improve the efficiency of the ParaDIAG algorithms by online
reduced order modeling. We focus on addressing the sequence of linear systems in Step-(b) of ParaDIAG
via building their low-dimensional approximation by the RBM. In particular, a greedy algorithm is used
to find a reduced basis and the Galerkin projection is applied in constructing the ROM. Once the ROM is
constructed, the computational complexity for solving the systems only depends on the dimension of the
ROM, which is much smaller than the number of degrees of freedom in space and time of the full order
models. Since the build stage is part of the approach, we propose several algorithmic improvements on the
greedy basis generation. The proposed approach leads to significant computational savings in Step-(b) and,
as a consequence, notably decreases the overall computational cost of the ParaDIAG algorithms. Our current
paper focuses on the serial computing case with Step-(b) dominates the total computations.

The rest of the paper is organized as follows. In the next section, a block α-circulant type ParaDIAG
algorithm is briefly reviewed for solving an unsteady convection-diffusion equation based on a standard
upwind finite difference scheme. Our proposed ROM-based ParaDIAG preconditioner for approximately
solving the linear systems in Step-(b) is introduced in Section 3, where a greedy algorithm for selecting the
reduced basis is explained in detail and brief discussions on computational complexity are presented. Exten-
sive 1D and 2D numerical examples are presented in Section 4 to demonstrate the promising performance
of our proposed ROM-based ParaDIAG preconditioner in contrast with the multigrid-based ParaDIAG pre-
conditioner. Finally, some conclusions are drawn in the last section.

2. The ParaDIAG algorithm for fully discretized evolutionary PDEs

In this work, we consider the unsteady convection-diffusion equation [43]:





ut(x, t) = ∇ · (a(x)∇u)−c(x) ·∇u(x, t)+ f (x, t), in Ω× (0,T ],

u(x, t) = g(x, t), on ∂Ω× (0,T ],

u(x,0) = u0(x), in Ω×{0},
(1)

where Ω ⊂ R
d is the spatial domain, a(x) ≥ a0 > 0 is a variable diffusion coefficient, c(x) is a convection

or velocity field, f is a source term, g is a Dirichlet boundary condition, and u0 is an initial condition. To
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illustrate the ParaDIAG algorithm, we restrict ourselves to the case in which Ω = (0,1)2 (d = 2) and dis-
cretize the space and time using finite difference methods (FDM). However, we emphasize the proposed
algorithm can be applied to problems defined in a one-dimensional or three-dimensional domain; it can also
be applied to problems defined in an irregular domain for which finite element method can be employed for
spatial discretization. Furthermore, we assume all data are regular enough such that the solution is unique
and sufficiently smooth to assure the convergence of finite difference schemes. We refer to the monographs
[26, 43, 51] for more discussion on various different discretization schemes. For readers’ convenience and
following the conventions in [23], we summarize in Table 1 the list of frequently used operator and MAT-
LAB notations across the paper. We will also use the well-known matrix Kronecker product (denoted by
⊗) property [23, p. 28] that vec(AXB) = (BT⊗A)vec(X) for any matrices A,B,X of compatible sizes.

Table 1: List of frequently used operator and MATLAB notations (mostly following [23])
Notation Definition or Meaning Notation Definition or Meaning

AT non-conjugate transpose of A A(:, j) j-th column of the matrix A

A∗ complex conjugate transpose of A A(i, :) i-th row of the matrix A

vec reshape a matrix into a vector A(i : j, :) i-th till j-th rows of the matrix A

mat reshape a vector into a matrix Z = diag(z) Z is a diagonal matrix with Zk,k = zk

z± z+ := max{z,0}, z− := min{z,0} [A B] concatenate matrices A and B horizontally

h,τ spatial and time mesh sizes

[
A

B

]
concatenate matrices A and B vertically

Ih, I, It identity matrices of various sizes

[
A C

B D

]
concatenate matrices A,B,C, and D

Re(z) real part of z Θ\Θin the set of elements in Θ that are not in Θin.

For the discretization of (1), we use the backward Euler scheme in time, the conservative central finite
difference scheme for the diffusion term, and the upwind scheme for the convection term [26, 34]. Given
a positive integer N, let h = 1/(N + 1) be the spatial mesh size and the 2D square domain Ω = [0,1]2 be
partitioned uniformly by grid points (xi = ih,y j = jh) with 0 ≤ i, j ≤ N+1. We denote the set of all interior
grid points by Ωh = {(xi,y j)}i, j=N

i, j=1 and also define the cell center points (xi±1/2 = (i ± 1/2)h,y j±1/2 =
( j±1/2)h) with 1 ≤ i, j ≤ N. Given the final time T > 0 and another positive integer K, let τ = T/K be the
time step size and the time domain [0,T ] be uniformly divided by grid points tk = kτ with 0 ≤ k ≤ K. Let
Uk

i, j represent the finite difference approximation of u(xi,y j, tk). Assuming c(x) = (p(x,y),q(x,y)), the full
finite difference discretization of the PDE (1) on the set Ωh of interior grid points reads: for 1 ≤ i, j ≤ N,
1 ≤ k ≤ K,

Uk
i, j −Uk−1

i, j

τ
=

1
h

(
ai+1/2, j

Uk
i+1, j −Uk

i, j

h
−ai−1/2, j

Uk
i, j −Uk

i−1, j

h

)

+
1
h

(
ai, j+1/2

Uk
i, j+1 −Uk

i, j

h
−ai, j−1/2

Uk
i, j −Uk

i, j−1

h

)

−
(

p+i, j

Uk
i, j −Uk

i−1, j

h
+ p−i, j

Uk
i+1, j −Uk

i, j

h

)

−
(

q+i, j

Uk
i, j −Uk

i, j−1

h
+q−i, j

Uk
i, j+1 −Uk

i, j

h

)
+ f k

i, j, (2)

where ai±1/2, j±1/2 = a(xi±1/2, y j±1/2), pi, j = p(xi,y j), qi, j = q(xi,y j), and f k
i, j = f (xi,y j, tk). Under suitable

regularity assumptions [26, Thm. 5.17], the above scheme (2) has a first-order accuracy in space and time.
Let Uk,Fk be column vectors containing the ordered values of Uk

i, j, f k
i, j over all the interior grids in Ωh
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at time tk, respectively. Upon enforcing the Dirichlet boundary condition by shifting boundary nodes to the
right-hand-side, the above finite difference scheme (2) can be written into the following sequential time
stepping formulation (marching from the given U0 to U1, then to U2, till the last time step UK):

(τ−1Ih −Lh)U
k = τ−1Uk−1 +Fk +Gk, 1 ≤ k ≤ K, (3)

where Ih ∈ R
N2×N2

is an identity matrix, Lh is the coefficient matrix representing the discretized spatial
differential operators (involving a, p,q), U0 is given by the initial condition u0(x,y), and Gk comes from the
Dirichlet boundary conditions. Explicitly, the coefficient matrix Lh has the following expression in terms of
Kronecker products:

Lh =− 1
h2

[
(I ⊗DT)Ax(I ⊗D)+(DT⊗ I)Ay(D⊗ I)

]

− 1
h

[
P+(I ⊗ D̂)+P−(I ⊗ Ď)+Q+(D̂⊗ I)+Q−(Ď⊗ I)

]
, (4)

where I ∈ R
N×N is an identity matrix,

D =




1
−1 1
0 −1 1

. . . . . . . . .
0 −1 1

0 −1




∈ R
(N+1)×N , D̂ = D(1 : N, :), Ď = D(2 : N +1, :),

Ax = diag
(

vec
(
[ai−1/2, j]

N+1,N
i=1, j=1

))
, Ay = diag

(
vec

(
[ai, j−1/2]

N,N+1
i=1, j=1

))
,

P± = diag
(

vec
(
[p±i, j]

N,N
i=1, j=1

))
, Q± = diag

(
vec

(
[q±i, j]

N,N
i=1, j=1

))
.

Here Z = [zi, j]
m,n
i=1, j=1 defines an m×n matrix with zi, j as its (i, j)-th entry, vec(Z) reshapes an m×n matrix

Z into a column vector Z ∈ R
mn by stacking all columns together one after another, and diag(Z) denotes

a diagonal matrix with the vector Z as its main diagonal entries. Here D̂ and Ď are defined via MATLAB
syntax of selecting the first and last N rows of the (N+1)×N rectangular difference matrix D, respectively.

Different from the sequential time stepping method marching from the initial time step to the final, the
all-at-once approach tries to simultaneously solve all time steps in one-shot without explicit time marching.
More specifically, by stacking all the K systems in (3) together and using Kronecker product notation, we
can obtain the following all-at-once non-symmetric N2K ×N2K linear system

(τ−1B⊗ Ih + It ⊗ (−Lh))U = F, (5)

where It ∈ R
K×K is an identity matrix,

B =




1
−1 1
0 −1 1

. . . . . . . . .
0 −1 1



∈ R

K×K , U =




U1

U2

U3

...
UK



, F =




(F1 +G1)+ 1
τ U0

(F2 +G2)
(F3 +G3)

...
(FK +GK)



. (6)

By exploiting the Toeplitz matrix B due to the uniform time step size, the Strang-type block α-circulant
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preconditioner [35, 41] for (5) has the following Kronecker product form

Pα := τ−1Cα ⊗ Ih + It ⊗ (−Lh), (7)

where the Toeplitz matrix B is replaced by a Strang-type α-circulant matrix (with α ∈ (0,1])

Cα =




1 −α

−1 1
0 −1 1

. . . . . . . . .
0 −1 1



∈ R

K×K . (8)

It is shown in [35] that, for pure diffusion equations, the GMRES equipped with the above preconditioner
Pα for a sufficiently small α = O(

√
τ) ∈ (0,1) can solve (5) effectively and it achieves a provable mesh-

independent convergence rate. Here Cα is indeed a rank-one perturbation of B satisfying limα→0 ∥Cα −B∥=
0, which implies the preconditioner Pα is expected to lead faster convergence rate as α gets smaller if not
considering the possible round-off errors due to inverting Pα during the preconditioning step. In practice,
a small α = 0.01 seems to be very effective.

Let F= 1√
K

[
ω(l1−1)(l2−1)

]K
l1,l2=1 (with i=

√
−1 and ω = e

2πi
K ) be the discrete Fourier matrix and define

a diagonal matrix Γα = diag
(

1,α
1
K , · · · ,α K−1

K

)
for α ∈ (0,1). Let F∗ represents the complex conjugate

transpose of F. The above so-called α-circulant matrix Cα can be explicitly diagonalized [6] according to
its spectral decomposition

Cα =V ΛV−1, (9)

where V = Γ−1
α F

∗ ∈ C
K×K and Λ = diag(d1, · · · ,dn, · · · ,dK) := diag

(√
KFΓαCα(:,1)

)
with Cα(:,1) being

the first column of Cα . More specifically, let θn = 2(n − 1)π/K ∈ [0,2π) with 1 ≤ n ≤ K, the explicit
expressions for the K complex eigenvalues of Cα are

dn = 1−α
1
K eiθn = (1−α

1
K cosθn)− iα

1
K sinθn, 1 ≤ n ≤ K. (10)

With the above explicit diagonalization Cα =V ΛV−1, we can easily factorize Pα in into

Pα = (V ⊗ Ih)︸ ︷︷ ︸
Step-(a)

(
τ−1Λ⊗ Ih + It ⊗ (−Lh)

)
︸ ︷︷ ︸

Step-(b)

(V−1 ⊗ Ih)︸ ︷︷ ︸
Step-(c)

,

where the matrix of Step-(b) has the following block diagonal structure

τ−1Λ⊗ Ih + It ⊗ (−Lh) =




(d1/τ)Ih −Lh

. . .
(dn/τ)Ih −Lh

. . .
(dK/τ)Ih −Lh



.

Such a block diagonal structure is the key for designing the diagonalization-based ParaDIAG algorithms.
Suppose the preconditioner Pα is used in a preconditioned Krylov subspace method, it is required to com-
pute or approximate the preconditioning step P−1

α s at each iteration, where s ∈ R
N2K is the residual vector.
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Let S := mat(s)∈R
N2×K , the preconditioning step z :=P−1

α s can be implemented via the following 3 steps:

Step-(a) S1 = S(V−1)T,

Step-(b) S2(:,n) = ((dn/τ)Ih −Lh)
−1S1(:,n), n = 1,2, . . . ,K,

Step-(c) z = vec(S2VT),

(11)

where S1(:,n) and S2(:,n) denote the n-th column of S1 and S2, respectively. Here we used the fact vec(AXB)=
(BT⊗A)vec(X) to avoid the explicit use of the Kronecker products.

Since V = Γ−1
α F

∗ and hence V−1 = (F∗)−1Γα = FΓα , Steps-(a) and (c) in (11) can be computed effi-
ciently via FFT in time direction at the computational complexity O(N2K logK) operations. Step-(b) needs
to solve K complex-shifted elliptic systems of size N2 ×N2 with different right-hand-sides. Since these sys-
tems are independent of each other, parallel computing can be used to significantly reduce the wall-clock
time. If N is large, these systems can be costly if solved by direct sparse solvers. Therefore, another efficient
iterative solver has to be applied in Step-(b). This essentially leads to inexact GMRES [58] or flexible GM-
RES (FGMRES) [52, 57]. For instance, the authors in [35] employ one geometric multigrid V-cycle with
ILU smoother to approximately solve the sparse linear systems in Step-(b), which needs slightly more outer
GMRES iterations than solving these systems by the costly sparse direct solver. If the preconditioned GM-
RES converges in l iterations for a given tolerance, the overall computational cost of such a multigrid-based
ParaDIAG (ParaDIAG-MG) preconditioner for solving (5) is about O(N2K logK+ lN2K) operations. Other
efficient iterative solvers, such as domain decomposition algorithms [20, 33, 59], can also be used in Step-
(b), but the overall computational complexity remains high. Thus, it is natural to consider model reduction
techniques to derive a low-dimensional surrogate model for these systems that could greatly improve the
computational efficiency.

2.1. A motivating example

Before presenting the proposed ROM-based solver for Step-(b), we motivate it by considering the heat
equation with a constant diffusion coefficient, defined on the unit square domain. In particular, the equation
is obtained from (1) by setting a(x,y) = ε = 0.01, c(x,y) = (0,0), f (x,y, t) = 0, g(x,y, t) = 0 and u0(x,y) =
x(x−1)y(y−1): 




ut = ε∆u, in Ω× (0,T ),

u = 0, on ∂Ω× (0,T ),

u = x(x−1)y(y−1), in Ω×{0},
(12)

with ε = 0.01 and the final time T = 10. The known exact solution is used for measuring approximation
errors. We set h = τ = 1/64 in the FDM discretization and use one multigrid V-cycle to approximately
solve the linear systems of Step-(b) in serial. The FGMRES preconditioned by the ParaDIAG-MG with
ILU smoothing converges after 4 iterations, which achieves the accuracy 5.7× 10−5. Meanwhile, Step-(b)
dominates the total computational cost: the simulation is completed in 6.2 seconds, while 5.5 s of them is
spent in solving Step-(b) that takes over 88% of the total CPU time. Hence the central task for improving
the overall efficiency is to speed up the system solving in Step-(b).

The Step-(b) outputs S2 during the four iterations are shown in Fig. 1: real part in the left column and
imaginary part in the middle column, where relatively large structures are observed mainly near both ends.
We perform the singular value decomposition (SVD) of S2 and display the singular values of S2 greater
than 10−15 in the right column of Fig. 1. It is seen that the singular values decay quickly, which indicates
the solution manifolds have low-dimensional structures. This further motivates us to use a model reduction
technique such as RBM to extract the low-rank trail spaces and accelerate the computation of Step-(b) by
solving reduced order systems. We remark that the exponential or algebraic decay rate of singular values
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Figure 1: The visualization of Step-(b) outputs S2 at iterations 1 to 4 (from top to bottom): (left column) real part of S2, (middle
column) imaginary part of S2, (right column) singular values of S2 greater than 10−15.

of S2 highly depends on the underlying physical model, which usually shows much slower decay rate in
convection-dominated problems.
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3. ROM-based Fast Solver for Step-(b)

The independent linear systems to be solved in Step-(b) can be regarded as discrete systems associated
to a parametric PDE (pPDE) with a varying source term. Solving them is equivalent to querying numerical
solutions of the pPDE for multiple times. Reduced basis method (RBM), as one of the popular model reduc-
tion techniques, is designed for efficiently completing such a computation task [4, 24, 27, 49]. Typically, it
has two separate computation stages: (i) at the offline stage, a low-dimensional subspace is determined that
could approximate the pPDE solution manifold subject to a user-defined error tolerance, and a reduced order
model is built on this subspace; (ii) then at the online stage, the ROM as a surrogate model to the original
pPDE is simulated at a very cheap cost. However, in the context of our considered ParaDIAG precondition-
ing, it is not straightforward to construct the ROM offline, because it is difficult to parametrize the varying
source terms. Moreover, the source terms consist of the residual vectors that would change very irregularly
during the GMRES iterations. As a result, we have to move the offline stage of building the ROM to the
online stage. However, if the solution stays within a low dimensional manifold, one can still expect the total
computational cost is significantly less than the full order simulations, but some special attention are needed
to reduce the computation cost of the ‘offline’ stage during each iteration. Fortunately, the required numbers
of preconditioned GMRES iterations are usually very small.

We first recast the systems in Step-(b) into a general form: for n = 1, . . . ,K,

Anxn := ((dn/τ)Ih −Lh)xn = bn, (13)

where An ∈C
N2×N2

with dn = 1−α
1
K eiθn being a complex number. The model is referred to as the full order

model (FOM). They have a continuous pPDE counterpart:

(d(θ)/τ −L)v(x;θ) = b(x;θ), for θ ∈ [0,2π), (14)

where d(θ)= 1−α
1
K eiθ , L(u)=∇ ·(a(x)∇u) if there is no convection term in (1); and L(u)=∇ ·(a(x)∇u)−

c(x) ·∇u(x, t)+ h
2 [p(x,y)uxx+q(x,y)uyy] if there is convection. Note that the extra dissipation appears in the

latter case due to the use of upwind finite difference [50]. However, we shall focus on the discrete set of
equations (13), corresponding to the pPDE at the prescribed discrete parameter set {θ1, . . . ,θK} specified
in (10). For a long time simulation, we expect K to be very large and hence give rise to a large discrete
parameter set.

Assume there exists a reduced space spanned by the basis vectors {φ1,φ2, . . . ,φr}, the reduced state can
be defined by x̃n = Φrx̂n with Φr := [φ1 φ2 . . . φr] ∈ C

N2×r. Replacing the state in (13) with the reduced
approximation x̃n ≈ xn and applying the Galerkin projection, we obtain the following reduced system: to
find x̂n such that

Φ∗
r AnΦrx̂n = Φ∗

r bn, (15)

where Φ∗
r is the conjugate transpose of Φr. Once x̂n is found, the original state variable can be approximated

by the reduced state. The size of this reduced system matrix Φ∗
r AnΦr is r× r. As r is much less than N2, it

can be solved cheaply using a direct solver with the complexity of O(r3).
The remaining task is to efficiently determine the reduced basis matrix Φr. For this purpose, RBM uses a

greedy strategy based on a posteriori error estimations. Such error estimations are usually derived from the
equivalence between the error norm and a dual norm of the residual vector. Next, we focus on the discrete
systems in Step-(b) and derive an error indicator by establishing the relation between the unknown error
norms and measurable residual norms.
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A residual-based error indicator

Note that α ∈ (0,1), the constant dn = 1−α
1
K eiθn given in (10) has a positive real part

Re(dn) = (1−α
1
K cosθn)≥ (1−α

1
K )> 0, (16)

which implies the matrix An = (dn/τ)Ih − Lh is strictly diagonally dominant by rows and columns since
(−Lh) is irreducibly diagonally dominant [26, Thms. 5.17]. Define two positive constants

βR : = min
1≤k≤N2

(
|(dn/τ)− (Lh)k,k|− ∑

j ̸=k

|(Lh)k, j|
)

(17)

and

βC := min
1≤k≤N2

(
|(dn/τ)− (Lh)k,k|− ∑

j ̸=k

|(Lh) j,k|
)
. (18)

Since Re(dn)> 0 and −(Lh)k,k > 0, there obviously holds

|(dn/τ)− (Lh)k,k| ≥ Re(dn/τ)+ |(Lh)k,k|,

and |(Lh)k,k| ≥ ∑ j ̸=k |(Lh)k, j| due to the row weakly diagonal dominance of (−Lh), which leads to

βR ≥ min
k

(
Re(dn/τ)+ |(Lh)k,k|− ∑

j ̸=k

|(Lh)k, j|
)

≥ Re(dn)/τ. (19)

Similarly there holds βC ≥ Re(dn)/τ because of the column weakly diagonal dominance of (−Lh). By a
lower bound of the smallest singular value [60, Cor. 2], there holds

∥A−1
n ∥2 ≤

1√
βRβC

≤ τ

Re(dn)
≤ τ

1−α1/K
=

τ

1−ατ/T
≤ T

1−α
, (20)

where we used the fact that φ(τ) := τ
1−ατ/T is an increasing function of τ ∈ (0,T ]. In fact, by the inequality

ln(1+ z)< z for z > 0, a simple calculation can verify φ ′(τ)> 0, that is

φ ′(τ) =
1−ατ/T (1+ ln(α−τ/T ))

(1−ατ/T )2
>

1−ατ/T (1+(α−τ/T −1))

(1−ατ/T )2
= 0.

The bound (20) shows that some An may become more ill-conditioned (or as ill-conditioned as Lh) as the
chosen fixed parameter α gets closer to 1. The second inequality also explains why the linear systems with
Re(dn)≈ 0 (or cos(θn)≈ 1) are more difficult to approximate since their condition numbers are larger. We
mention that the limiting case α = 1 may lead to much slower convergence rate of preconditioned GMRES
(see Example 2 in [35]) and hence not further considered here (see below Remark 1 for discussion of the
pure diffusion situation with an upper bound covers the case α = 1).

Denote the reduced approximation error by en = xn− x̃n, and define the residual vector by rn = bn−Anx̃n.
The error representation reads:

Anen = An(xn − x̃n) = Anxn −Anx̃n = bn −Anx̃n = rn. (21)
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which implies

∥en∥2 = ∥A−1
n rn∥2 ≤ ∥A−1

n ∥2∥rn∥2 ≤
τ

Re(dn)
∥rn∥2 ≤

T

1−α
∥rn∥2. (22)

The right-hand-side term provides an upper bound of the error norm and the denominator (1−α) suggests
that choosing a smaller α close to 0 leads to tighter estimate. Numerically, we find that α = 10−2 works very
well for all tested examples. Although it is possible to directly take the above upper bounds (e.g. τ

Re(dn)
∥rn∥2)

as an absolute error indicator, to be compatible with the used outer FGMRES stopping criterion, we will use
the following relative residual norm

En :=
∥rn∥2

∥bn∥2
(23)

as an error indicator for estimating the errors and guiding the greedy algorithm for searching reduced basis
vectors. During the process, we also obtained the approximate solutions to Step-(b) simultaneously.

Remark 3.1. The above uniform upper bound (20) may be improvable, since it does not explicitly depend

on the ellipticity constant a0 > 0 yet. For example, consider the pure diffusion equation with c(x) = (0,0)
and constant coefficient a(x,y) = a0 > 0, (−Lh) is symmetric positive definite and there holds [26, Thm

4.34]

λmin(−Lh) = ∥(−Lh)
−1∥−1

2 ≥ 16a0,

where λmin(−Lh) denotes the smallest eigenvalue of (−Lh). Then from Anen = rn with An = (dn/τ)Ih −Lh,

we can get

(dn/τ)e∗nen + e∗n(−Lh)en = e∗nAnen = e∗nrn,

and since Re(dn)> 0 and e∗n(−Lh)en ≥ λmin(−Lh)∥en∥2
2 ≥ 16a0∥en∥2

2 > 0 there holds

(Re(dn/τ)+16a0)∥en∥2
2 ≤ Re(dn/τ)e∗nen + e∗n(−Lh)en ≤ |e∗nAnen|= |e∗nrn| ≤ ∥en∥2∥rn∥2.

This leads to the following slightly improved error estimate

∥en∥2 ≤
1

Re(dn/τ)+16a0
∥rn∥2 ≤

τ

(1−ατ/T )+16a0τ
∥rn∥2 ≤

T

(1−α)+16a0T
∥rn∥2 ≤

1
16a0

∥rn∥2,

which is tighter than the bound (22) when a0 ≫ 0 and T is large and is also applicable to the limiting case

α = 1. For a general convection-diffusion equation, the spatial discretization matrix (−Lh) is not symmetric

any more and the above Rayleigh quotient-based arguments utilizing a known lower bound of the smallest

eigenvalue would not be valid in general.

A greedy algorithm for basis generation and its complexity

The reduced basis generation strategy is summarized in Algorithm 1. At each iteration, the algorithm
identifies a problem that would yield the worst a posteriori error, and generates a new basis from the as-
sociated FOM solution. As the reduced space gets richer, the reduced approximation would become more
accurate. When the accuracy meets the user-defined tolerance tolROM, the process would terminate and re-
turn the approximation solutions to (13). Note that Step (b) is performed inside the FGMRES iteration, for
which we only need to provide a reasonable approximate solution. In our implementation, tolROM is set to
be square root of the tolerance of FGMRES iterations. We refer to [21, 57] for further analysis on how the
inexact solving of preconditioned systems affects the convergence of FGMRES or relaxed GMRES.

The major computation inside the for loop lies in steps 1, 2 and 6. At the m-th iteration, the com-
plexity of these three steps contains O(m3K + N2 + N2K) operations for assembling the matrices and
solving the ROMs with direct solver; O(mN2K) operations for estimating the residual norm; and O(N2)
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Algorithm 1: Greedy basis generation
Input: tolROM, K and r = 1
Output: reduced basis matrix Φr and solutions to (13) {x1, . . . ,xK}
choose n1 ∈ Θ = {1, . . . ,K} such that n1 = argmax

n∈Θ
∥bn∥, initialize Θin = {n1};

compute xn1 in (13), orthogonalize it as basis w1, and initialize Φr = [w1];
for r = 1, . . . ,rmax do

1. compute x̂n of (15) for all n ∈ Θ\Θin; // O(m3K +N2 +N2K) operations at m-th iter.

2. evaluate the error estimator En for all n ∈ Θ\Θin; // O(mN2K) operations at m-th iter.

3. choose nr+1 = arg max
n∈Θ\Θin

En;

4. if Enr+1 < tolROM then

calculate xn = Φrx̂n for all n ∈ Θ\Θin;
break;

end

5. update Θin = {Θin,nr+1};
6. compute xnr+1 to (13) at n = nr+1, orthogonalize it as basis wr+1, and update Φr = [Φr,wr+1];

// O(N2) operations at m-th iter.

end

operations for solving the FOM with multigrid V-cycles and obtaining a new basis vector. Therefore,
for each FGMRES iteration, the computation complexity for the Algorithm 1 with ROM dimension r ≪
N is O(r4K +2rN2 + rN2K + r2N2K) = O(r2N2K) operations, which is theoretically comparable to the
multigrid-based FOM solver with the O(N2K) operations, provided r is bounded by a mesh-independent
constant. Hence, the ROM-based solver requires the underlying dynamics to have a low-dimensional solu-
tion manifold, to be computationally competitive with the multigrid-based FOM solver.

In order to further improve the practical computational efficiency of the above greedy basis generation
algorithm, various heuristic approaches have been proposed in the past decade, see e.g. in [30, 53]. For
our greedy basis generation algorithm, we introduce the following algorithmic modifications to reduce its
computational complexity.

(i) Update reduced system matrices recursively. The reduced systems can be recursively assembled

by making use of the basis structure Φr = [Φr−1,wr]. Define A
(r)
n = Φ∗

r AnΦr, Br = Φ∗
r An, Cr = AnΦr, and

Fr = Φ∗
r S1, then we recursively construct them (with r ≥ 2) according to

A
(r)
n =

[
A
(r−1)
n Brwr

w∗
rCr w∗

r Anwr

]
, Br =

[
Br−1

w∗
r An

]
, Cr =

[
Cr−1 Anwr

]
, Fr =

[
Fr−1 w∗

r S1
]
,

starting with the initialization: A
(1)
n = w

⊺

1Anw1, B1 = w∗
1An, C1 = Anw1, F1 = w∗

1S1.
(ii) Sample Θ\Θin randomly. In steps 1 and 2 at each for loop, instead of testing the entire set Θ\Θin

for estimating the ROM approximation errors, we randomly choose P components from it. Define P = rpK

with rp ∈ (0,1]. Although one usually fixes a randomly sampled training parameter set in RBM, we vary
the sample set during the training process in order to achieve generalization. We refer to [11] for further
analysis on RBM using random training sets. Based on our numerical experiments, taking only 10 percent
(i.e. rp = 0.1) of all the indices in Θ\Θin for training is enough to obtain accurate approximation results.

(iii) Evaluate residual norm on a coarser mesh. In step 2, we compute the residual vectors at N2
s

points instead of all the N2 spatial grid points, with Ns < N, in order to reduce the complexity of evaluating
the residual norm. To define these points, one way is to sample spatial coordinates at random. However, it
could become unreliable if the distribution of residuals is far more uneven. In that case, structured random
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embeddings could be considered [3, 40]. Here, we propose to select the points from a coarser spatial mesh.
Based on our numerical experiments, it is sufficient to use a four times coarser mesh size (i.e. Ns = N/4 or
N2

s = N2/16) for obtaining reliable and accurate results cheaply.
With these modifications (i.e. P = rpK and Ns = N/4), the complexity of Step-(b) at each FGMRES

iteration now becomes O(r4P + 2rN2 + rN2P + r2N2
s P) = O(rpr4K + 2rN2 + rprN2K + (rp/16)r2N2K)

operations, which scales as O((r/16+1)rprN2K) if r ≪ N and hence improves the original complexity of
Algorithm 1 since rp ∈ (0,1]. Therefore, it has a great potential to become more efficient than the multigrid-
based FOM solver in practice, especially when r is relatively small. Such an improvement is conditional but
not surprising because the multigrid algorithm delivers the ‘optimal’ complexity for solving elliptic systems.

We also note that the number of outer FGMRES iterations might change when different solvers are
used in Step-(b). Based on our numerical tests in next section, the ROM-based solvers in Step-(b) always
lead to less number of outer FGMRES iterations than the multigrid-based FOM solver while achieving the
same approximation accuracy. Finally, we remark that steps 1-2 are parallelizable as individual problems
are independent, the involved matrix-vector products can also be implemented in a parallel fashion. One can
further divide all the K systems into disjoint subsets and then run the Algorithm 1 within each subset. Some
discussions on parallel computing in the RBM setting can be found in [32].

3.1. The motivating example revisited
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Figure 2: Exact errors and estimated errors of Step-(b) at iteration 1 (first row) and iteration 2 (second row) while varying the value
of rp = 1,0.5,0.1: (left) Ns = N and (right) Ns = N/4.
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We illustrate the error indicator En of our proposed ROM-based solver in Step-(b) by investigating
the same motivating example again. The aforementioned modifications for Algorithm 1 involve the use of
random training sets and evaluations of residual norms on a coarser spatial mesh. First, under the same dis-
cretization as in Section 2.1, we keep Ns =N but vary rp from 1, 0.5 to 0.1. In these cases, the preconditioned
FGMRES converges in 2 iterations.

Fig. 2 (left column) shows the evolution of estimated errors with respect to the increasing number of
reduced basis vectors during the greedy search algorithm, together with the exact errors. It is seen that: (1)
the error indicator gives a good approximation of the actual approximation error; (2) with the same stopping
criterion, the dimension of resulting reduced basis stays almost the same when different values of rp (or
equivalently P) are used. Therefore, as rp gets smaller, the computational efficiency improves but the overall
accuracy of the algorithm does not deteriorate. Using the same computational setting but decreasing Ns from
N to N/4, we observe similar numerical behaviors as shown in Fig. 2 (right column). This indicates the used
heuristic modifications for Algorithm 1 are practicable and effective.
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Figure 3: Distribution of dn for n ∈ Θin in Step-(b) at iteration 1 (first row) and iteration 2 (second row) while varying the value of
rp = 1,0.5,0.1: (left) Ns = N and (right) Ns = N/4.
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We plot the complex number dn’s associated to the selected basis indices n ∈ Θin as points in Fig. 3. The
points distribute on the circle centered at 1+ 0i with radius α

1
K ≈ 0.99 but concentrate near θn = 0 or 2π .

It matches our observations in Fig. 1 where more structures appear near n = 1 and n = K. This also implies
ROMs generated from evenly distributed snapshots (as commonly used in POD-based ROMs) may not be
effective enough for approximating such systems.

Compared with the MG-based FOM solver with 4 FGMRES iterations, the proposed ROM-based solver,
when rp = 0.1 and Ns = N/4, achieves the same accuracy 5.7× 10−5 with only 2 FGMRES iterations. As
expected, the total CPU time decreases about 9 times from 6.2 s to 0.7 s, in which 0.4 s (about 57%) is
spent on solving Step-(b). The reduced number of preconditioned FGMRES iterations also contributes to
the substantial saving of overall CPU times.

To further investigate the influence of the algorithmic parameters α , Ns, and rp on the ParaDIAG-ROM
preconditioner, we fix the mesh size (N = 128 and K = 1280) and check the numerical performance while
varying the parameter values. The convergence results are summarized in Table 2. Here ‘Iter’ means the
preconditioned FGMRES iteration numbers, ‘CPU’ represents the total CPU times (in seconds), ‘r̄’ denotes
the average reduced basis dimension, and ‘Vc’ stands for the average multigrid V-cycles used for solving the
selected full-order models. The approximation errors are not reported as they stay unchanged in all cases.
This is because the preconditioned FGMRES solver attains the same stopping tolerance and different ROM
reduced basis only affects the preconditioning step. Based on Table 2, we can make the following remarks:

• With a fixed (Ns,rp), the preconditioned FGMRES iteration numbers and reduced basis dimension r̄

are insensitive to the choices of α . A smaller α shows slightly faster convergence rate, but α should
not be taken too small since the round-off errors due to diagonalization will quickly dominate the
overall approximation errors; we refer to [8] for relevant technical discussion on the adaptive choice
of α in the framework of preconditioned Richardson iterations for faster convergence rates.

• With a fixed (Ns,α), the choice of rp = 0.05 or rp = 0.1 often leads to the lowest CPU times, while
a too small rp = 0.01 tends to generate inaccurate reduced basis approximations and hence results
in more preconditioned FGMRES iteration numbers. Finding the optimal rp ∈ (0,1] seems to be
difficult and problem-dependent, but a potential criterion is to steadily decrease the value of rp until
the preconditioned FGMRES iteration number starts to increase.

• With a fixed (rp,α), there is no significant change in the performance of the preconditioner when Ns

decays from N to N/8. However, for 3D problems, in which N is usually large, the use of a small Ns

could yield more obvious savings in CPU times (considering N3
s = N3/64 when Ns = N/4).

These numerical observations provide some evidence to support our empirical (though not optimal) param-
eter choice: α = 0.01,rp = 0.1 and Ns = N/4, to be used in all the following numerical examples.

4. Numerical examples

In this section, we present several 1D and 2D PDE examples to illustrate the effectiveness of our pro-
posed ROM-based preconditioning techniques. All simulations are implemented using MATLAB on a Dell
Precision 7520 Laptop with Intel(R) Core(TM) i7-7700HQ CPU@2.80GHz and 48GB RAM. The CPU
time (in seconds) for solving the whole system and all the sub-systems in Step-(b) are estimated separately
by using the timing functions tic/toc with our serial implementation. We employ the right-preconditioned
FGMRES [52] solver (without restarts) provided in the Tensor Train (TT) Toolbox 2 and choose a zero ini-
tial guess with a stopping tolerance tol = 10−6 based on the reduction in relative residual norms. To avoid

2https://github.com/oseledets/TT-Toolbox
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Table 2: Numerical behavior of the ParaDIAG-ROM preconditioner with different α , Ns, and rp for Example 2a (with a fixed mesh
size N = 128 and K = 1280). The lowest CPU time is 4.4 seconds (in bold) when α = 0.01,Ns = N/4, and rp = 0.05.

α = 1 α = 0.1 α = 0.01 α = 0.001
Ns rp Iter CPU r̄ (Vc) Iter CPU r̄ (Vc) Iter CPU r̄ (Vc) Iter CPU r̄ (Vc)

N

1.00 3 23.1 12 (5) 2 12.8 9 (5) 2 12.2 9 (5) 2 12.1 9 (5)
0.50 3 15.9 12 (5) 2 8.6 9 (5) 2 8.4 9 (5) 2 9.1 9 (5)
0.10 3 8.8 11 (5) 3 8.1 11 (5) 2 5.4 10 (5) 2 5.3 10 (5)
0.05 3 8.9 11 (5) 2 5.2 9 (5) 2 5.1 10 (5) 2 5.1 10 (5)
0.01 4 9.1 9 (4) 4 9.8 12 (5) 4 9.6 12 (4) 3 7.2 10 (4)

N/2

1.00 3 17.5 11 (5) 2 9.4 9 (5) 2 9.4 9 (5) 2 9.7 9 (5)
0.50 3 12.4 11 (5) 2 6.8 9 (5) 2 7.1 9 (5) 2 7.1 9 (5)
0.10 3 8.2 10 (5) 3 7.6 11 (5) 2 5.2 10 (5) 2 6.4 10 (5)
0.05 3 7.4 11 (5) 2 5.1 9 (5) 2 5.0 10 (5) 2 4.9 9 (5)
0.01 5 11.0 8 (4) 4 9.5 11 (4) 4 9.5 11 (4) 4 9.9 12 (4)

N/4

1.00 3 12.5 10 (5) 2 6.8 8 (5) 2 7.4 9 (5) 2 7.7 9 (5)
0.50 3 10.1 10 (5) 2 5.8 8 (5) 2 6.0 9 (5) 2 6.2 9 (5)
0.10 3 7.4 10 (5) 3 7.4 11 (5) 2 4.9 10 (5) 2 4.9 10 (5)
0.05 3 7.1 11 (5) 2 4.6 9 (5) 2 4.4 9 (5) 2 4.5 9 (5)
0.01 4 8.4 8 (4) 4 9.2 10 (4) 4 9.0 10 (4) 3 6.7 10 (4)

N/8

1.00 3 12.6 10 (5) 3 14.1 11 (5) 2 7.8 9 (5) 2 8.2 9 (5)
0.50 3 10.3 10 (5) 2 6.2 8 (5) 2 6.6 9 (5) 2 6.6 9 (5)
0.10 3 7.5 8 (5) 3 7.3 10 (5) 3 7.6 10 (5) 3 7.6 11 (5)
0.05 3 7.3 10 (5) 3 7.6 11 (5) 2 4.9 9 (5) 2 4.9 9 (5)
0.01 4 9.0 8 (4) 4 9.8 11 (4) 3 7.0 9 (4) 3 7.2 10 (4)

introducing possible round-off errors due to α being too small (as theoretically preferred), we will choose
the preconditioner Pα with a fixed small α = 10−2, which leads to only a small number of preconditioned
FGMRES iterations in all tested examples. With other moderately small α it leads to very similar results.

For the ROM-based solver, we choose the relative residual tolerance to be tolROM =
√
tol, which works

well for all the tested examples. In particular, we numerically observed that using a costly sparse direct
solver in Step-(b) yields the same outer FGMRES iteration numbers as our ROM-based preconditioner
(ParaDIAG-ROM). We highlight that a smaller ROM residual tolerance would lead to higher reduced basis
dimension and computational costs, which however will not improve the overall FGMRES accuracy. Within
the Algorithm 1, we will solve the selected full-order systems (13) by the backslash sparse direct solver
for 1D examples (with tridiagonal systems), and the geometric multigrid V-cycles with ILU smoother and
the same stopping tolerance tol = 10−6 for 2D examples. We set the random number generator using the
function rng(0,’v5uniform’), with a seed of 0 and the uniform generator ’v5uniform’.

For the compared multigrid-based ParaDIAG (ParaDIAG-MG) preconditioner, only one V-cycle (based
on the IFISS package [56]) is used to approximately solve inner linear systems in Step-(b), which gives
somewhat rough approximation and therefore requires more outer FGMRES iterations than the ROM-based
preconditioner with our chosen tolerance. In ParaDIAG-MG preconditioner, for a general comparison pur-
pose we will use the Gauss-Seidel (GS) smoother and incomplete LU(ILU) smoother for 1D and 2D exam-
ples, respectively. For 2D examples, the ILU smoother usually provides more robust and faster convergence
rate than the GS smoother. We have tried to optimize/vectorize the majority of our MATLAB codes when-
ever possible, but we acknowledge the reported CPU times are mainly for illustration purpose.

In all the numerical experiments, we compare the errors and CPU time between the ParaDIAG-MG and
ParaDIAG-ROM. The approximation errors are evaluated in discrete L2 norm in both space and time. The
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order of accuracy is estimated by the logarithmic ratio of the approximation errors between two successive
refined (halved) meshes, which should be close to 1 for the numerical scheme if solutions are sufficiently
smooth. The CPU time measures the efficiency of the two approaches in serial computing. Since the only
difference between them is the solver used in Step-(b), we also list the separate CPU time for this particular
step (displayed inside parentheses of the column ‘CPU’ in Tables 3-8 ).

4.1. 1D Examples.

Example 1a. Heat equation with constant diffusion coefficients. We first consider a linear heat equa-
tion with constant coefficients defined on the domain Ω = (0,π):

{
ut = εuxx + f , in Ω× (0,T ),

u = 0, on ∂Ω× (0,T ).
(24)

We choose f = 0, and a non-smooth triangle shaped initial condition

u(x,0) =

{
2x, 0 ≤ x ≤ π/2,

2(π − x), π/2 < x ≤ π,

with the exact solution is given by

u(x, t) =
8
π

∞

∑
n=0

cos((2n+1)(2x−π)/2)
(2n+1)2 e−ε(2n+1)2t .

The errors and convergence results are reported in Table 3, where the total CPU time of our proposed
ROM-based ParaDIAG (ParaDIAG-ROM) preconditioner is over 10 times faster than the multigrid-based
ParaDIAG (ParaDIAG-MG) preconditioner with the point-wise Gauss-Seidel smoother. The speed up ratio
in CPU time for computing Step-(b) is even higher than 20 times. Due to the non-smoothness of the initial
condition, the order of accuracy is expected to be slightly lower than one as the mesh refines. Since one
multigrid V-cycle very approximately solve the linear systems in Step-(b), which leads to more outer FGM-
RES iterations than our ParaDIAG-ROM preconditioner. The average dimension of the ROM reduced basis,
denoted by column ‘r̄’, shows very mild growth as the mesh is refined, which is reasonable considering the
full order models’ dimension increases by four times. Fig. 4 compares the exact solution and the numer-
ical solution computed by our ParaDIAG-ROM preconditioner, where the non-smooth initial condition is
smoothed out quickly due to the diffusion.

Table 3: Results of preconditioned FGMRES for Example 1a: 1D heat equation (ε = 0.1, T = 10)

ParaDIAG-MG(GS) Preconditioner ParaDIAG-ROM Preconditioner
(N,K) Error Order Iter CPU Error Order Iter CPU r̄

(256,2560) 8.5E-04 1.2 6 4.1 (4.0) 8.5E-04 1.2 2 0.2 (0.1) 10
(512,5120) 4.1E-04 1.1 6 12.5 (11.6) 4.1E-04 1.1 2 0.9 (0.5) 12

(1024,10240) 2.2E-04 0.9 6 42.3 (38.1) 2.2E-04 0.9 2 3.3 (1.8) 13

Example 1b. Convection-diffusion (C-D) equation. We also consider another convection-diffusion
equation defined on the domain Ω = (0,1):





ut = εuxx − cux, in Ω× (0,T ),

u(0, t) = 1, u(1, t) = 0, t ∈ (0,T ),

u(x,0) = 0, x ∈ Ω,

(25)
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Figure 4: The exact solution and computed numerical solution by ParaDIAG-ROM preconditioner in Example 1a.

where Pe = c/ε is the Péclet number that represents the ratio of the convection rate over the diffusion rate.
The exact solution is explicitly known [42] in terms of infinity series, which is used to measuring the errors.
The errors and convergence results are reported in Table 4, where our ParaDIAG-ROM preconditioner is
over 10 times faster than the ParaDIAG-MG preconditioner. Fig. 5 compares the exact solution and the
numerical solution computed by our ParaDIAG-ROM preconditioner. Due to a discontinuity at the corner
(0,0), our used finite difference scheme show a slightly degraded order of accuracy. Again, the boundary
layer leads to slightly larger r̄ for accurate approximation than the previous example.

Table 4: Results of preconditioned FGMRES for Example 1b: 1D C-D equation with upwind scheme and (ε = 0.1,c = 0.2, T = 10)

ParaDIAG-MG(GS) Preconditioner ParaDIAG-ROM Preconditioner
(N,K) Error Order Iter CPU Error Order Iter CPU r̄

(256,2560) 6.1E-03 0.7 5 3.5 (3.4) 6.1E-03 0.7 2 0.2 (0.1) 13
(512,5120) 3.7E-03 0.7 5 10.1 (9.4) 3.7E-03 0.7 2 0.7 (0.4) 14

(1024,10240) 2.3E-03 0.7 5 35.5 (32.1) 2.2E-03 0.7 2 2.9 (1.5) 16

4.2. 2D Examples.

Example 2a. Heat equation with constant diffusion coefficients. We consider the motivating example
used in Section 2.1 again. The errors and convergence results are reported in Table 5, where our ParaDIAG-
ROM preconditioner is about 8 times faster than the ParaDIAG-MG preconditioner. In the last column
‘r̄ (Vc)’, the first number r̄ indicates the average reduced basis dimension and Vc stands for the average
multigrid V-cycles used for solving all the chosen full-order models. The ParaDIAG-MG preconditioner
shows very fast and robust convergence rate due to the used ILU smoother, but the overall computational
cost is still high since it requires total K V-cycles to approximately solve all the K linear systems at each
iteration. In contrast, the ParaDIAG-ROM preconditioner only used in average r̄ × (Vc) ≪ K full-order
model V-cycles to find the reduced basis and then solved K reduced linear systems of much smaller sizes
cheaply. Fig. 6 compares the exact solution and the numerical solution computed by our ParaDIAG-ROM
preconditioner at the final time.

Example 2b. Heat equation with spatially variable diffusion coefficients. We also consider linear
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Figure 5: The exact solution and computed numerical solution by ParaDIAG-ROM preconditioner in Example 1b.

Table 5: Results of preconditioned FGMRES for Example 2a: 2D heat equation (ε = 0.01, T = 10)

ParaDIAG-MG(ILU) Preconditioner ParaDIAG-ROM Preconditioner
(N2,K) Error Order Iter CPU Error Order Iter CPU r̄ (Vc)

(642,640) 5.7E-05 1.2 4 6.2(5.5) 5.7E-05 1.2 2 0.7 (0.4) 8 (4)
(1282,1280) 2.7E-05 1.1 4 48.3(40.7) 2.7E-05 1.1 2 6.1 (2.6) 9 (5)
(2562,2560) 1.3E-05 1.0 4 378.5(301.5) 1.3E-05 1.0 2 43.1 (20.3) 10 (5)

Figure 6: The exact solution and computed numerical solution by ParaDIAG-ROM preconditioner at the final time T = 10 in
Example 2a.

heat equation with variable diffusion coefficients (in divergence form) on Ω = (0,1)2:

{
ut = ∇ · (a∇u)+ f , in Ω× (0,T ),

u = g, on ∂Ω× (0,T ).
(26)

We choose a(x,y) = 10−5 sin(πxy), the Dirichlet boundary condition g, the initial condition u0 and a suit-
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able f such that the exact solution is given as u(x,y, t) = e−t/10ecos(2πx)+sin(3πy). The errors and convergence
results are reported in Table 6, where our ParaDIAG-ROM preconditioner is about 10 times faster than
the ParaDIAG-MG preconditioner. In particular, it takes only two reduced basis vectors to accurately ap-
proximate the full-order model solutions in Step-(b). The variable diffusion coefficients does not affect
the convergence rate of both preconditioners. Our ParaDIAG-ROM preconditioner show very high compu-
tational efficiency, although the ParaDIAG-MG preconditioner based on ILU smoother indeed converges
faster than the 1D case based on the GS smoother. Fig. 7 compares the exact solution and the numerical
solution computed by our ParaDIAG-ROM preconditioner at the final time.

Table 6: Results of preconditioned FGMRES for Example 2b: 2D heat equation with variable coefficient (T = 10)

ParaDIAG-MG(ILU) Preconditioner ParaDIAG-ROM Preconditioner
(N2,K) Error Order Iter CPU Error Order Iter CPU r̄(Vc)

(642,640) 2.5E-03 1.0 3 4.4(3.8) 2.5E-03 1.0 2 0.5 (0.1) 2 (2)
(1282,1280) 1.3E-03 1.0 3 35.9(29.7) 1.3E-03 1.0 2 3.7 (0.8) 2 (2)
(2562,2560) 6.5E-04 1.0 3 289.7(223.2) 6.3E-04 1.0 2 27.0 (6.4) 2 (2)

Figure 7: The exact solution and computed numerical solution by ParaDIAG-ROM preconditioner at the final time T = 10 in
Example 2b.

Example 2c. Convection-diffusion (C-D) equation with internal layer. We consider another convection-
diffusion equation (adapted from [31]) defined on the domain Ω = (0,1)2:





ut = ε∆u−c ·∇u+ f , in Ω× (0,T ),

u(x,y, t) = 0, on ∂Ω× (0,T )

u(x,y,0) = u0(x,y), in Ω,

(27)

where c= (2,3), u0 = u(x,y,0), and f is chosen such that the exact solution reads

u = 16e−tx(1− x)y(1− y)
(

1/2+ arctan(2
√

1/ε(0.252 − (x−0.5)2 − (y−0.5)2))/π
)
.

In this problem, there is a hump changing its height over time and the steepness (or thickness) of the circular
internal layer depends on the diffusion coefficient ε (or

√
ε). The errors and convergence results are re-

ported in Table 7, where our ParaDIAG-ROM preconditioner is about 3 times faster than the ParaDIAG-MG
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preconditioner. Fig. 8 compares the exact solution and the numerical solution computed by our ParaDIAG-
ROM preconditioner at the final time. As also observed in [31], our used finite difference upwind scheme
indeed leads to spurious oscillations behind the hump in the direction of the convection, which may be
further suppressed by other specially designed schemes. In this example, the ParaDIAG-MG preconditioner
based on ILU smoother converges very fast in only 2-3 iterations, while our ParaDIAG-ROM preconditioner
shows slightly increasing r̄(V-cycles), which indicates the advantage of our ParaDIAG-ROM preconditioner
may become slightly less significant. This drawback of mildly increasing average reduced basis dimension
r̄ in our ParaDIAG-ROM preconditioner for convection-dominated problems deserves further investigation.

Table 7: Results of preconditioned FGMRES for Example 2c: 2D C-D equation with upwind scheme (ε = 10−4, T = 10)

ParaDIAG-MG(ILU) Preconditioner ParaDIAG-ROM Preconditioner
(N2,K) Error Order Iter CPU Error Order Iter CPU r̄ (Vc)

(642,640) 1.0E-01 0.8 2 3.0(2.6) 1.0E-01 0.8 2 0.8 (0.4) 13 (2)
(1282,1280) 6.1E-02 0.7 2 24.8(19.9) 6.1E-02 0.7 2 5.8 (2.8) 17 (2)
(2562,2560) 3.6E-02 0.8 3 285.9(221.9) 3.6E-02 0.8 2 46.9 (24.8) 21 (3)

Figure 8: The exact solution and computed numerical solution by ParaDIAG-ROM preconditioner at the final time T = 10 in
Example 2c.

Example 2d. Convection-diffusion (C-D) equation with boundary layer. In the last example, we
consider the prototype convection-diffusion equation [13, 35] defined on the domain Ω = (0,1)2:





ut = ε∆u−c ·∇u, in Ω× (0,T ),

u(x,y, t) = (1− e−10t)1{x=1}, on ∂Ω× (0,T )

u(x,y,0) = 0 in Ω.

(28)

where c = (2y(1 − x2),−2x(1 − y2)) is the circulating wind and the indicator function 1{x=1} denotes
one-side hot wall boundary condition at x = 1. Since the exact solution is unknown, we will only report
the relative residual norms of the computed solutions. The relative residual norms and convergence re-
sults are reported in Table 8, where our ParaDIAG-ROM preconditioner is about 8 times faster than the
ParaDIAG-MG preconditioner. Fig. 9 compares the exact solution and the numerical solution computed by
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our ParaDIAG-ROM preconditioner at the final time, where the boundary layer was accurately approximated
without any obvious spurious oscillations. Due to the boundary layer, our ParaDIAG-ROM preconditioner
requires even larger dimension r̄ (and slightly more V-cycles) for accurate approximation, which still deliver
much better computational efficiency than the ParaDIAG-MG preconditioner. We highlight that the mesh
size (N2 = 2562,K = 2560) gives over 167 million unknowns, which costs only about 2 mins.

Table 8: Results of preconditioned FGMRES for Example 2d: 2D C-D equation with upwind difference (ε = 1/200,T = 10)

ParaDIAG-MG(ILU) Preconditioner ParaDIAG-ROM Preconditioner
(N2,K) Rel. Res. Iter CPU Rel. Res. Iter CPU r̄ (Vc)

(642,640) 2.1E-07 9 13.5(11.9) 1.2E-08 4 4.1 (3.4) 34 (7)
(1282,1280) 2.8E-07 10 116.9(99.0) 1.1E-08 4 26.4 (20.3) 41 (9)
(2562,2560) 6.0E-07 10 900.6(742.4) 3.7E-07 3 124.4 (91.7) 42 (10)

Figure 9: The computed numerical solution by ParaDIAG-ROM preconditioner and its contour plot with N = 64 at the final time
T = 10 in Example 2d.

5. Conclusion

In this work, we developed a ROM-accelerated parallel-in-time preconditioner for solving all-at-once
systems from evolutionary PDEs. The ROM is used to reduce the computational cost for solving the se-
quence of complex-shifted linear systems arising from Step-(b) of the ParaDIAG algorithm. The reduced
basis method is applied to build the ROM online, in which a greedy basis selection algorithm with several
algorithmic improvements is used for finding the reduced basis efficiently. A variety of numerical examples
are tested that illustrate the efficacy of the proposed ROM-accelerated ParaDIAG preconditioner. Compared
with the state-of-the-art multigrid-based ParaDIAG preconditioner, the proposed approach gains more than
an order of magnitude speed-up in CPU times, although the former formally has the “optimal" complexity.
The dimension of the reduced basis seems to be moderately problem dependent, where the convection-
dominated cases require higher ROM dimensions than the diffusion-dominated ones. The practical perfor-
mance and scalability of our proposed ParaDIAG-ROM preconditioner in parallel computing setting deserve
further investigation, since our given greedy basis generation algorithm is sequential.

We plan to investigate more efficient RBM methods such as the reduced collocation methods [10] at
the next step. We have mainly focused on the backward Euler scheme in time, which has the first-order
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accuracy, but the generalization of our proposed approach to the second-order or higher-order time schemes
(i.e., BDF2 scheme [61]) is straightforward. The application of our current approach to the more difficult
hyperbolic wave equation [12, 17, 37] and its optimal control problem [62] is another ongoing work, where
the indefiniteness of complex-shifted linear systems in Step-(b) leads to dramatically enlarged reduced basis
dimensions and hence results in less efficiency. This is not surprising since the multigrid solvers would
also have convergence issues when solving such indefinite systems. It is also valuable to generalize our
approach to treat similar complex-shifted linear systems with varying right-hand-sides arising in the Laplace
transform-based parallelizable contour integral method (see e.g., [25, 29, 46, 54, 55]).
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