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Abstract

The basis generation in reduced order modeling usually requires multiple high-fidelity large-

scale simulations that could take a huge computational cost. In order to accelerate these

numerical simulations, we introduce a FOM/ROM hybrid approach in this paper. It is devel-

oped based on an a posteriori error estimation for the output approximation of the dynamical

system. By controlling the estimated error, the method dynamically switches between the

full-order model and the reduced-oder model generated on the fly. Therefore, it reduces the

computational cost of a high-fidelity simulation while achieving a prescribed accuracy level.

Numerical tests on the non-parametric and parametric PDEs illustrate the efficacy of the

proposed approach.
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1 Introduction

Reduced order modeling has been developed to provide an efficient computational model for

dynamical systems appeared in many scientific research and engineering application problems.
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Given a parametric, time-dependent problem, the projection-based model reduction method first

generates reduced basis at an offline stage from snapshots obtained at selected parameters and

time instances, and builds a low-dimensional model in which the matrices and vectors of the

system can be fully assembled; then at the online stage, this reduced-order model (ROM) can

be simulated at a very low cost, thus make fast or even real-time numerical simulations feasible

for many-query applications. Model reduction techniques have achieved many successes, but also

faces several issues.

On the one hand, to build ROMs for a complex system, one usually has to run large-scale, high

fidelity simulations for many times to find the reduced basis. Although the basis generation is part

of the offline process, its high computational effort makes reduced order modeling not attractive

in practice. Thus, it is desired to speed up this offline process. On the other hand, it is difficult

to build effective ROMs for certain problems. For instance, if problems with a large Kolmogorov

n-width are considered such as transport or convection-dominated phenomena, it is generally hard

to find a low-dimensional basis for approximating the solution manifold. Meanwhile, problems

with varying initial conditions or forcing can bring big challenges to the ROM as well because it is

impossible to parametrize the general initial condition or the forcing, and snapshots are not likely

to cover all the possible system responses. This also makes the prediction ability of ROMs pretty

weak: if the snapshots are collected over a given time interval, once the ROM evolves beyond the

interval, there is no accuracy guarantee of the reduced-order simulations.

Several approaches have been pursued to tackle these issues. To save the computational cost

for snapshot generation, a hybrid snapshot simulation methodology was proposed to accelerate

the high-quality data generation for the proper orthogonal decomposition (POD) ROM develop-

ment in [3, 2]. In this approach, the simulation alternates between full-order model (FOM) and

local ROM based on criteria related to the singular value distribution and the magnitude of POD

basis coefficients. Similarly, the equation-free/Galerkin-free approaches developed in [10, 24] also

chose between the fine-scale and coarse-scale models during the simulations. The fine-scale run

provides data by performing full-order simulations with a small time step size that finds a handful

of leading POD basis. The POD modes are used to parametrize the low-dimensional attracting

slow manifold; while the coarse-scale run evolves the coefficients of leading POD basis functions

by using a larger step size. The resulting reduced-order approximation can be constructed accord-

ingly, which then initializes the fine-scale simulations. However, the choice of the frequency for

switching between the two scale models is empirical. Note that the idea combining the ROM and

FOM has been used in parallel-in-time simulations, for example, in [12, 7, 20], where the ROM on

the fly is regarded as a coarse propagator. For problems with large Kolmogorov n-width, the idea

of adaptivity has been introduced for adjusting reduced basis dynamically. The adaptive h-refined

POD was developed in [4, 11]. In this approach, an adjoint-based error estimation is used to mark

basis vectors with major error contributions. Such basis vectors are then refined till the estimated

error becomes under a prescribed tolerance. The refined basis will be compressed online if the

refined-basis dimension exceeds a specified threshold or a prescribed number of time steps has

elapsed. An online adaptive bases and adaptive sampling was developed for transport-dominated
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problems in [22], in which both the state and the nonlinear term are projected onto the POD

basis subspace, and the existing POD basis is adjusted at every step. The basis update is of

low rank that is sought from an optimization problem for minimizing the POD/DEIM projection

error of the nonlinear term. A related approach has been proposed in [16] for Hamiltonian sys-

tems. Another research direction is to consider the data-driven ROMs, which first finds nonlinear

solution manifold by taking advantages of the expression power of deep neural network, and then

builds projection-based or machine learning-based ROMs in the nonlinear manifold, for instance,

in [19, 18, 17, 13, 23, 21].

In this paper, we focus on the projection-based ROMs and use the POD method for construct-

ing the reduced basis. In order to accelerate the snapshot generation and deal with situations for

which the ROM may be not effective, we propose a FOM/ROM hybrid approach. The main idea

is to dynamically update ROM on the fly and switch simulation between the FOM and the ROM,

which is close to the idea in [10, 24, 3], but we introduce a more rigorous criterion based on an

a posteriori error indicator. By comparing the estimated error with a user-defined tolerance, the

hybrid approach automatically alternates between FOM and ROM while controlling the output

approximation error.

The rest of the paper is organized as follows. In Section 2, we discuss the a posteriori error

indicator; in Section 3, we introduce the hybrid approach, which is numerically investigated in

Section 5. A few concluding remarks are drawn in the last section.

2 Error estimation of output approximation

Consider the following discrete input/output dynamical system: given the state xk and input uk

at time tk, to find the output yk+1 that satisfies

Ekxk+1 = Akxk + f(xk) +Bkuk, (2.1a)

yk+1 = Cxk+1. (2.1b)

The system in (2.1) is regarded as the full-order model (FOM). The first equation of the state may

come from a time-dependent PDE after discretizing the differential operators and state variable

in space and considering an explicit/semi-implicit time-stepping algorithm. In case an implicit

scheme is used for integrating a nonlinear PDE, this equation could appear in the linearized

system during nonlinear iterations. The second equation evaluates the output of the system,

which approximates linear functionals of the PDE solution – quantities of interest of the system.

Naming (2.1a) the primal equation and, to measure and further control the output approximation

error, we follow [5] and consider the following dual problem: to find xk+1
du at time tk+1 satisfying

(Ek)⊺xk+1
du = −C⊺. (2.2)

Based on the original system and choices of time step sizes, the coefficient matrices Ek, Ak and Bk

could vary with time. Here, for simplicity of presentation, we assume that they stay unchanged
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during the simulation in the sequel of discussion. Therefore, we instead consider the following

primal equation:

Exk+1 = Axk + f(xk) +Buk, (2.3)

together with the output equation (2.1b) and the dual equation:

E⊺xdu = −C⊺. (2.4)

But we emphasize that our approach could be directly applied to the general case represented by

(2.1) and (2.2).

To reduce the computational cost of the FOM simulations, model reduction techniques such as

the POD method can be used to generate a ROM. The POD method extracts a low-dimensional

set of orthonormal basis vectors from the snapshot data and uses it to build a low-dimensional

model based on projections. Indeed, given the POD basis Φk and the state xk at time tk, we find

a reduced-order state approximation x̂k+1 = Φkx
k+1
r to approximate xk+1 and further determine

a reduced-order output approximation yk+1
r . The associated Galerkin projection-based ROM has

the following form:

Erx
k+1
r = Arx

k
r + fr(Φkx

k
r ) +Bru

k, (2.5a)

yk+1
r = Crx

k+1
r , (2.5b)

where xkr = Φ⊺

kx
k, Er = Φ⊺

kEΦk, Ar = Φ⊺

kAΦk, Br = Φ⊺

kB, Cr = CΦk, and fr(Φkx
k
r ) =

Φ⊺

kf̂(Φkx
k
r ) with f̂(·) = f(·) if POD is used or f̂(·) = Pf(·) if an interpolation method is applied.

For instance, when DEIM is considered, P = Φf (P
⊺Φf )

−1P with Φf the DEIM basis and P the

matrix for extracting rows corresponding to the interpolation points.

The dual equation (2.4) needs to be considered for estimating the error, which has the same

dimension as the FOM. To avoid solving the large-scale discrete system, one can seek an approx-

imate solution x̂du, e.g., via a ROM of the dual equation. Let x̂du = Ψkx
du
r with Ψk the POD

basis of xdu, the ROM of dual equation reads:

E⊺

rx
du
r = −Ψ

⊺

kC
⊺. (2.6)

To derive a bound on the output error, we test (2.4) by xk+1 − x̂k+1 and have

(xk+1 − x̂k+1)⊺E⊺xdu = −(xk+1 − x̂k+1)⊺C⊺. (2.7)

Taking transpose on both sides yields

C(xk+1 − x̂k+1) = −x⊺duE(xk+1 − x̂k+1), (2.8)

in which the term on the left represents the output error of the reduced approximation and the

term on right is related to the solution of the dual problem and the residual of the primal problem.

Define

rk+1
pr := Axk + f(xk) +Buk − Ex̂k+1 (2.3)

= E(xk+1 − x̂k+1), (2.9)
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and define the residual of dual equation to be

rdu := −C⊺ − E⊺x̂du
(2.4)
= E⊺(xdu − x̂du). (2.10)

Therefore, combining (2.8), (2.9) and (2.10), we have

yk+1 − yk+1
r = C(xk+1 − x̂k+1) = −x⊺dur

k+1
pr

= [−(x⊺du − x̂⊺du)− x̂⊺du]r
k+1
pr

= −(r⊺duE
−1 + x̂⊺du)r

k+1
pr .

(2.11)

It leads to an upper bound for the output approximation:

|yk+1 − yk+1
r | ≤

(
‖rdu‖‖E

−1‖+ ‖x̂du‖
)
‖rk+1

pr ‖. (2.12)

However, evaluating rk+1
pr in (2.9) needs the FOM solution xk. To reduce the computational cost,

we replace rk+1
pr with the residual of the reduced-order approximation, i.e.,

r̂k+1
pr := Ax̂k + f(x̂k) +Buk − Ex̂k+1. (2.13)

Then the output error satisfies

|yk+1 − yk+1
r | ≤

(
‖rdu‖‖E

−1‖+ ‖x̂du‖
)
ρk+1‖r̂k+1

pr ‖, (2.14)

where

ρk+1 =
‖rk+1

pr ‖

‖r̂k+1
pr ‖

.

It is proved in [26] that, under mild conditions, e.g., f is bi-Lipschitz continuous, the ratio ρk+1

is bounded by positive constants from above and below. In particular,

‖rk+1
pr − r̂k+1

pr ‖ = ‖A(xk − x̂k) + f(xk)− f(x̂k)‖ ≤ (‖A‖+ Lf )‖x
k − x̂k‖.

When the reduced approximation is accurate enough, i.e., ‖x̂k − xk‖ is sufficient small, ‖rk+1
pr −

r̂k+1
pr ‖ becomes close to zero, and the ratio ρk+1 approaches 1. Indeed, this is true in our compu-

tational setting presented in the next section, as we aim at finding accurate numerical solutions

by combining the FOM and the ROM during the simulations. Therefore, we define

∆k+1 =
(
‖rdu‖‖E

−1‖+ ‖x̂du‖
)
‖r̂k+1

pr ‖, (2.15)

which gives an error estimation of |yk+1 − yk+1
r | for the system (2.3). We emphasize that ∆k+1

only serves as an error indicator at the step k because the numerical error accumulates over time

that may deflect xk, the initial condition of the very step, off the trajectory of a high-fidelity

simulation.
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3 A hybrid approach

Based on the error indicator presented in Section 2, we introduce a FOM/ROM hybrid approach

in this section. The goal is to accelerate numerical simulations while keeping an accurate output

approximations. The basic idea of this approach is to generate a ROM on the fly based on

snapshots available in a fixed-width time window, and apply the ROM whenever possible. The

associated output accuracy is measured by the error indicator ∆k. If it does not reach a user-

defined tolerance, one switches the model to the FOM, updates snapshots, and generates the

ROM that is to be used in the next step’s simulation. Therefore, this approach dynamically

switches the simulation model between the ROM and the FOM. For the system, (2.3) and (2.4),

the approach is detailed in Algorithm 1.

Algorithm 1: The hybrid approach for solving (2.3)-(2.1b)

Input: Initial condition x0, error tolerance tol, time window width w, total number of time steps nt.

Output: System output.

compute an approximate solution x̂du to the dual equation and evaluate Cdu = ‖rdu‖‖E
−1‖+ ‖x̂du‖;

run the FOM from t1 to tw and compute the output; generate snapshots S = [x1, x2, . . . , xw], SE = ES,

SA = AS and initialize a ROM;

for k = w : nt − 1 do

run the ROM on [tk, tk+1], obtain x̂k+1 and evaluate the estimated error ∆k+1 = Cdu‖r̂
k+1
pr ‖;

if ∆k+1 ≤ tol then

xk+1 = x̂k+1, flag = 1;

else

solve the FOM for xk+1;

set ∆k+1 = eps (in MATLAB notation) and flag = 2.

end

evaluate output yk, update time window data: S, SE and SA ;

if flag = 2 then

generate a ROM based on S, SE and SA.

end

end

Note that here we still assume time invariant coefficient matrices in system (2.3). Since the

dual problem (2.1b) only needs to be solved once, we use a full-order approximation and compute

Cdu = ‖rdu‖‖E
−1‖+ ‖x̂du‖ at the beginning of the simulation. The hybrid approach starts with

the FOM simulation over a fixed-width time window, [t1, . . . , tw]. Based on this time window

data S = [x1, x2, . . . , xw], a ROM is initialized; At each subsequent time step k, we first use the

available ROM to advance the simulation over a step, and evaluate the output error indicator. By

comparing it with a prescribed tolerance (tol), we will either accept the reduced approximation

x̂k+1 as xk+1 if ∆k+1 ≤ tol, or reject it if ∆k+1 > tol and run a full-order simulation to get xk+1

with a higher fidelity. In either case, xk+1 is used to update the time window data S. Whenever a

FOM solution is added, we shall update the ROM. Note that w and tol are algorithmic parameters

dependent on the underlying physics and the accuracy requirements in applications. We will

investigate their effects in Section 5.
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The computational saving stems from the replacement of FOM with ROM at all the possible

time steps. To determine when to use FOM, the error indicator ∆k+1 is evaluated where the major

computation is spent on calculating ‖r̂k+1
pr ‖. For updating the ROMs, the main computation is

spent on updating the POD basis Φk+1 from S and assembling coefficient matrices and vectors,

Ar, Er and fr, in the reduced system. Note that

r̂k+1
pr = AΦkx

k
r + f(Φkx

k
r ) +Buk − EΦkx

k+1
r ,

and Ar = Φ⊺

kAΦk, Er = Φ⊺

kEΦk, calculating AΦk and EΦk in a cheaper way would improve the

efficiency. On the other hand, the POD basis Φk is generated based on the available time window

snapshots S, which is a tall matrix in general. For such a case, the method of snapshots (MOS)

can be used to find the POD basis (i.e., left singular value vectors of S) quicker than the singular

value decomposition (SVD):

S⊺SV = V Λ and Φ = SV Λ−1/2.

The method can be further improved in efficiency as discussed in [25] by taking advantage of

parallel computing. Thus, at the end of the step k in the algorithm, besides updating the time

window snapshots S = [S(:, 2 : w), xk+1], we also update SE = [SE(:, 2 : w), Exk+1] and SA =

[SA(:, 2 : w), Axk+1]. It leads to a cheaper evaluation of

EΦk+1 = SEV Λ−1/2 and AΦk+1 = SAV Λ−1/2

at the next step.

The computational complexity at each step is dominated by the time window data updates

if flag = 1. There, the main complexity, O(nmax(r, a)) with r the dimension of ROM and a the

max nonzero numbers in each row of sparse matrices E and A, is used to update time window

data and evaluate error indicator. It generally dominates the cost for solving the reduced system.

When flag = 2, the computational complexity at each step is dominated by the FOM solution

and the ROM update. There, the FOM solution takes O(np) with p dependent on the choice

of numerical solver, assuming it dominates the nonlinear function evaluation cost O(α(n)). The

MOS takes O(nw2+rnw+w3), in which O(nw2) flops are needed for evaluating S⊺S, O(w3) flops

for the eigen-decomposition of S⊺S and O(nwr) flops for the calculation of the POD basis. Note

that, when the DEIM is used, additional computation is required for updating the DEIM basis

and interpolation points. Since r ≈ w and w ≪ n in general, the dominating complexity becomes

O(nw2). Assume the percentage of the FOM runs in the hybrid model simulation is c × 100%,

for c ∈ [0, 1], then the ratio of the complexity for the FOM to that of the hybrid approach is
np

c(np+nw2)+(1−c)(nmax(r,a))
. Obviously, this factor is bounded by 1

c from above and by 1 from below

when w2 ≤ (1− c)n(p−1).

The hybrid approach accelerates the FOM simulations, which has several applications: Firstly,

it can be used to speed up the offline snapshot generation for model order reduction (MOR) tech-

niques as it replaces the FOM simulations with the ROM simulations at certain steps; Secondly,

it can overcome the issue on the accuracy loss when using a ROM in a computational setting
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different from which the ROM was built. Next, we focus on the first application to illustrate the

usefulness of the approach.

4 Accelerating the offline stage of MOR

The application of ROM usually involves certain high-fidelity simulations to find reduced-order

basis vectors offline and/or update them at the online stages. When the system has a large

dimension, generation of snapshots using the FOM could be time-consuming. In this section we

show that the hybrid approach can be naturally employed at the offline stage of MOR.

In particular, when the reduced basis method (RBM) is applied to parametric time-evolution

problems, the basis to approximate the solution manifold can be found by using the POD-Greedy

algorithm [15]. Guided by an a posteriori error estimator ∆(·), the algorithm implements a

sequence of FOM simulations at selected parameter samples to obtain the corresponding trajectory

of the solution, i.e. the snapshots. At this point, the hybrid simulation in Section 3 can be applied

to accelerating the FOM simulation with accuracy loss being controlled by the error indicator. In

Algorithm 2, we present a modified, hybrid model-based POD-greedy algorithm. Here, we assume

a set of parameter samples is given, which can be generated by a statistical method such as the

Monte Carlo sampling or Latin hypercude sampling. The choice of training set is critical to the

success of the RBM, which is, however, beyond the scope of this paper. Interested readers are

referred to [8, 6] and references therein for discussions on the topic. It is worth mentioning that,

because the FOM runs occur at a portion of time steps, e.g., {t1, . . . , tK} in the hybrid model

simulations at µ∗ and the ROMs on the fly are essentially generated from them, one only needs

to collect the snapshots Xµ∗ at those steps, that are enough to represent the system information.

The orthogonalization step, orth, can be performed by a modified Gram-Schmidt procedure.

Algorithm 2: The hybrid model-based POD-Greedy algorithm
Input: Parameter training set Θ, tolerance tol.

Output: basis matrix Φ.

Initialize Φ = [ ], randomly choose µ∗ ∈ Θ;

while ∆(µ∗) > tol do

simulate the hybrid model at µ∗ and obtain snapshots Xµ∗ = [x(t1, µ
∗), . . . , x(tK , µ∗)];

find left singular vectors U of Xµ∗ = (I−ΦΦ⊺)Xµ∗ and define Φ = orth{Φ,U(:, 1)};

find µ∗ = argmaxµ∈Θ ∆(µ).

end

Based on the same idea, we can further apply the proposed hybrid method to the adaptive

basis construction approaches introduced in [5]. Especially, the adaptive POD-Greedy-DEIM

algorithm in [5] builds a nonlinear ROM offline, which chooses the POD basis vectors, the DEIM

basis vectors and interpolation points in an adaptive manner controlled by an a posteriori error

estimator ∆(·). Since high-fidelity simulations need to be performed at selected parameters for

updating basis, we replace the associated FOM simulations with the FOM/ROM hybrid ones.
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The modified, hybrid model-based algorithm is presented in Algorithm 3.

Algorithm 3: The hybrid model-based adaptive POD-Greedy-DEIM algorithm
Input: Parameter training set Θ, tolerance tol.

Output: POD basis Φ, DEIM basis Φf and interpolation points P.

solve the nonparametric dual system and obtain Cdu;

Initialize Φ = [ ], Iµ = [ ], ℓPOD = 1, ℓDEIM = 1, randomly choose µ∗ ∈ Θ;

while ∆(µ∗) /∈ zoa = [tol/10, tol] do

if ℓPOD < 0 then

remove the last ℓRB columns from Φ;

else

if µ∗ /∈ Iµ then

solve hybrid model at µ∗ for snapshots Xµ∗ and nonlinear snapshots Fµ∗ and store them;

else

load snapshots Xµ∗ ;

end

find left singular vectors U of Xµ∗ = (I−ΦΦ⊺)Xµ∗ and define Φ = orth{Φ,U(:, 1 : ℓPOD)};

end

update ℓDEIM DEIM basis Φf based on all the available nonlinear snapshots, and update interpolation

points P by Q-DEIM as Alg. 4 in the Appendix ;

update the POD-DEIM model and evaluate ∆(µ) = ∆POD(µ) + ∆DEIM (µ) for all µ ∈ Θ;

find µ∗ = argmaxµ∈Θ ∆(µ) and update Iµ = [Iµ, µ
∗];

ℓPOD = ℓPOD + ⌊log
(

∆POD(µ∗)
tol

)
⌋ ± 1, and ℓDEIM = ℓDEIM + ⌊log

(
∆DEIM(µ∗)

tol

)
⌋ ± 1.

end

5 Numerical results

To investigate the performance of the proposed hybrid method, we consider three test cases in this

section: the first one is the non-parametric Burger’s equation, the second one is the parametric

Burgers’ equation, and the last one is a nonlinear circuit problem with a step input signal. For

the first and third cases, we aim at achieving accurate numerical simulations; for the second one,

we combine the hybrid method with adaptive offline basis selection for reduced order modeling.

To check the behavior of the error indicator, we compare the estimated error ∆k+1 with the

“true” error that is referred to the value of |yk+1− yk+1
r | for the given data xk at the time step k.

For investigating the numerical performance of the hybrid approach, we quantify the accuracy of

its numerical simulation by Eo, the mean error of the approximate output over the time interval;

and measure the efficiency by Pf , the percentage of the number of FOM runs in the total number

of time steps for the hybrid simulation, and by the wall-clock time for integrating the hybrid

model, th, compared to that of the FOM, tf . All simulations are implemented in MATLAB and

the wall-clock time are estimated by the timing functions tic/toc.
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Test case 1. We first consider the 1D Burgers’ equation:

∂tq(x, t)− ν∂2
xq(x, t) + q(x, t)∂xq(x, t) = 0

for x ∈ [0, 1] and t ∈ [0, 1], where the viscosity coefficient ν is a constant. The problem is

associated with the zero Dirichlet boundary condition imposed at both endpoints of the domain

and the initial condition

q(x, 0) =

{
1, 0.1 ≤ x ≤ 0.2,

0, otherwise,

together with an output of interest y(t) =
∫ 1
0 q(x, t) dx.

When a full order simulation is performed, the semi-implicit Euler method is taken for time

stepping. The whole domain is equally partitioned by n = 2p−1 interior grid points and the time

interval is divided into Nt = 2p+1 uniform subintervals. The finite difference discretization using

central scheme leads to the following system:

EQk+1 = Qk + f(Qk),

where E = I − ∆tνL with L the discrete Laplacian and f(Qk) = −∆tQk ◦ (DxQ
k) with Dx

the discrete first-order differential operator and ◦ represents the Hadamard product. The output

quantity represents the average value of the state variable over the domain

Y k+1 = CQk+1,

where C = 1
n(1n)

⊺ with 1n denotes the all-ones column vector of dimension n.

Figure 1: Time evolution plots of Burgers’ equation at ν = 10−3: (left) FOM, (right) the hybrid

model when w = 20 and tol = 10−4.

Firstly, we set ν = 10−3 and p = 10 in the discretization. In the hybrid approach, we use

POD ROM, set the time window width w = 20 and the tolerance of output error at each step

to be 10−4. As the dual problem (2.4) only needs to be solved once, we compute it by a direct

solver. The time evolutions of the FOM and the hybrid model results are plotted in Figure 8,

respectively. The snapshots at t = 0, 0.25, 0.5, 0.75, 1 obtained by both approaches are plotted

in Figure 2. It is seen that, compared with the FOM, the hybrid approach obtains an accurate
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state approximation. Time evolutions of estimated errors ∆k+1 and “true” errors, plotted once

every 4 steps, are shown in Figure 3. Note that for some steps, the estimated error is of machine

precision that is because full order simulations are performed at those time steps. It shows that

∆k+1 provides a reliable indicator of the output approximation error.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1 FOM/ROM Hybrid

FOM

Figure 2: Time snapshots t = 0, 0.25, 0.5, 0.75, 1 of Burgers’ equation at ν = 10−3, w = 20.
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Figure 3: Estimated and true errors of Burgers’ equation at ν = 10−3, w = 20.

In this test, the number of FOM runs during the hybrid model simulation is Nf = 469 times,

which takes about Pf = 22.9% of the total number of time steps. The CPU time for integrating

the hybrid model is th = 2.03 seconds while the full order model simulation takes tf = 4.25

seconds. Overall, it is observed that the hybrid approach in this test is able to achieve accurate

state and output approximations close to those of the FOM at a lower cost.

Secondly, we investigate the numerical behavior of the hybrid model with respect to the output

error tolerance and the width of time window. To this end, we fix the estimated error tolerance

tol to be 10−3, 10−4 or 10−5 while varying the time window width w from 10, 20 to 40. The

results are listed in Table 1. It is seen that, for a fixed tolerance, varying w does not have a

significant influence on the output error and the number of full order simulations in the hybrid

approach. Meanwhile, for a fixed w, decreasing the tolerance would reduce the output error, but

resulting more FOM runs in the hybrid approach, which also cause more CPU time to complete

the simulation.

Remark 1 Note that ∆k+1 estimates the output error at the k-th step. Because the actual error

accumulates over time, the time average of output error Eo can be greater than the user-defined

error tolerance at each time step, tol.

11



w
tol = 10−3 tol = 10−4 tol = 10−5

Eo Pf th Eo Pf th Eo Pf th

10 1.26× 10−2 14.0% 1.30 8.87× 10−4 22.8% 1.73 6.41× 10−5 30.1% 2.20

20 1.28× 10−2 13.8% 1.40 8.79× 10−4 22.9% 2.03 6.57× 10−5 29.7% 2.49

40 1.28× 10−2 13.8% 1.77 9.04× 10−4 22.5% 2.89 6.62× 10−5 29.3% 2.93

Table 1: The hybrid model results at different choices of error tolerance tol and time window

width w for 1D Burgers’ equation with ν = 10−3.

Thirdly, we fix the parameters w = 20 and tol = 10−4 in the hybrid approach but enlarge

or shrink the viscosity coefficients of the Burger’ equation by 5 times. When ν = 5 × 10−3, we

set p = 10 in the discretization. The associated numerical results at selected time instances are

plotted in Figure 4. When ν = 2×10−4, we change p = 11 because the problem is more convection

dominated. Snapshots of numerical results at the same time instances are presented in Figure 5.

The output error, percentage of FOM runs, and the CPU times for both cases are listed in Table

2, respectively. It is seen that the FOM runs are conducted at 10.4% of the entire time steps in

the first case and about 32.1% in the second case.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 4: Time snapshots t = 0, 0.25, 0.5, 0.75, 1 of Burgers’ equation at ν = 5× 10−3, w = 20.
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Figure 5: Time snapshots t = 0, 0.25, 0.5, 0.75, 1 of Burgers’ equation at ν = 2× 10−4, w = 20.

Test case 2. We next consider the 1D parameterized Burgers’s equation. The computational

setting is the same as that in the first test case, except the diffusion coefficient ν ∈ [0.005, 1].

To build a ROM valid in the parameter domain, we employ the hybrid model-based adaptive
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ν Eo Pf th (tf ) ν Eo Pf th (tf )

2× 10−3 1.05× 10−3 10.4 % 1.16 (4.07) 2× 10−4 8.35× 10−4 32.1% 27.2 (44.4)

Table 2: The hybrid model results for Burgers’ equation when w = 20 and tol = 10−4.

POD-Greedy-DEIM method presented in Algorithm 3. Although the nonlinearity in the equation

is quadratic, which can be treated efficiently by tensor calculation, we use the DEIM approach

here. We compare the performance of the adaptive basis selection algorithm when the hybrid

model is used with that when the FOM is considered.

For the offline training, Θ is composed of 20 logarithmically spaced parameter values in

[0.005, 1] and the tolerance is set to be tol = 10−3. When the FOM is used as the high-fidelity

solver for the snapshot generation, after adaptively selecting the POD and DEIM basis, it ends

up with a final dimension (ℓPOD, ℓDEIM ) = (21, 21). The whole process takes 7 iterations and

involves 3 FOM runs. The CPU time for these 3 FOM runs takes 93.9 seconds in total. On

the other hand, when the FOM/ROM hybrid model is used as the high-fidelity solver, after the

greedy search, it ends up with a final dimensional (ℓPOD, ℓDEIM ) = (25, 26). The process takes 10

iterations and has 5 hybrid model runs. The CPU time for the hybrid model simulations is 30.6

seconds in total. The results are listed in Table 3. It is observed that using the hybrid model saves

about 2/3 of offline time compared with the FOM used in the adaptive basis selection algorithm.

FOM is used
(ℓPOD, ℓDEIM ) iterations FOM CPU of FOM

(21, 21) 7 3 runs 93.90 second

Hybrid is used
(ℓPOD, ℓDEIM ) iterations Hybrid CPU of hybrid

(25, 26) 10 5 runs 30.63 second

Table 3: Adaptive basis selection when the FOM and the hybrid model are respectively used for

snapshot generations.
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Figure 6: Outputs generated from the FOM and the ROMs. Either FOM or hybrid model is used

for adaptively selecting basis vectors.
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To check the performance of the ROM, we consider the ν = 0.005 case. The time evolution

of the output in the reduced-order approximations are plotted in Figure 6, together with the

output of the full-order simulation. It shows that the ROM generated by either the adaptive

POD-Greedy-DEIM or the hybrid model-based adaptive POD-Greedy-DEIM algorithm is able to

provide accurate outputs, which are close to the FOM outputs.

Test case 3. Next we consider a nonlinear circuit example with RC structure shown in Figure 7.

This is a widely used benchmark example for MOR of nonlinear systems [14, 1]. The diodes in the

v1
g(v)

v2 vn̄−2
g(v) vn̄−1

g(v)
vn̄

C
u(t) = i g(v) C C C C

Figure 7: RC circuit diagram.

circuit constitute the nonlinear part of the model, which characterized by g(v) = e40v − 1 with v

the nodal voltage. The voltage v1(t) at node 1 is the output and the current I is the input signal

u(t) of the system. After applying Kirchhoff’s current law at each of the n̄ nodes, and assuming

that the capacitance is normalized, i.e., C = 1, we obtain the nonlinear circuit model

v̇(t) = Av(t) + f(v(t)) + bu(t), y(t) = cv(t), (5.16)

where Taylor series expansion at v = 0 is applied to separate the linear part Av from g(v) so that

the proposed error indicator can be efficiently applied, i.e., g(v) = Av(t) + f(v(t)). The input,

output matrices are given by b = cT ∈ R
n̄, and b is a unit basis vector with 1 in the first entry

and all other entries are zeros. The input u(t) is a step signal, taken as u(t) = 0 if t ≤ 3 and

u(t) = 1 if 3 < t ≤ 10.

We consider n̄ = 401 and the simulation time interval t ∈ [0, 10] seconds in this test. For the

time integration, we use semi-implicit method with Nt = 400 uniform time steps. In the hybrid

approach, we use the POD ROM, set the time window width w = 20 and the tolerance of output

error at each step to be 10−4. The dual problem is solved once by a direct solver. The time

evolutions of the FOM and the hybrid model voltage values are shown in Figure 8 and the output

results are shown in Figure 9, respectively. It is seen that, compared with the FOM, the hybrid

approach obtains an accurate approximation. Time evolutions of the estimated error ∆k+1 and

“true” error are shown in Figure 10, which indicates that ∆k+1 provides a reliable indicator of

the output approximation error at each time step. Note that, because the system input is zero in

the first 3 seconds, the estimated error is zero, which matches the real error in the time interval.
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Figure 8: Time evolution plots of nonlinear circuit with the step input signal: (left) FOM, (right)

the hybrid model when w = 20 and tol = 10−4.

To make these errors visible in Figure 10 which has a log-scale y-axis, we set them to be the

floating-point relative accuracy (eps in Matlab notation).
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Figure 9: Time evolution of the outputs from the FOM and the hybrid model.
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Figure 10: Estimated and true errors of the circuit problem during the simulation.

The total number of FOM runs during the hybrid model simulation is Nf = 40 times, which

includes 20 initial FOM runs at the beginning of the simulation. The hybrid model takes Pf =

10% of the total number of time steps. The CPU time for integrating the hybrid model is

th = 4.22× 10−2 seconds while the full order model simulation takes tf = 9.47× 10−2 seconds.
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6 Conclusions

Multiple high-fidelity large-scale simulations are generally needed in building ROMs for complex

dynamical systems. These simulations provide snapshot data for which the reduced basis is

extracted and the solution manifold is approximated. In this paper, a FOM/ROM hybrid approach

is developed to accelerate such high-fidelity simulations. The development is based on an a

posteriori error estimation for the output approximation. By controlling the estimated error, the

method switches between the FOM and the ROM generated on the fly in a dynamical manner.

Numerical tests on the Burgers’ equation and a nonlinear circuit problem illustrates that the

hybrid approach is able to save the computational time while achieving a user-defined level of

accuracy. Our future work includes the hybrid MOR for systems with changing input signals, the

extension of the error indicator to state approximations and the design of more efficient algorithms

for updating the ROM on the fly, investigations of the hybrid approach to more complicated

problems such as ocean dynamics with multiple time scales.
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Algorithm 4: Selection of interpolation points by Q-DEIM [9]

Input: Orthonormal columns U.

Output: Interpolation points P.

Perform a QR decomposition on U⊺ and return a permutation vector P such that U(:,P) = QR;

P = P(1 : m) with m the number of columns of U.
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