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Abstract. This paper develops and analyzes a general iterative framework for solving parameter-
dependent and random convection-diffusion problems. It is inspired by the multi-modes method of
[7, 8] and the ensemble method of [20] and extends those methods into a more general and uni-
fied framework. The main idea of the framework is to reformulate the underlying problem into
another problem with parameter-independent convection and diffusion coefficients and a parameter-
dependent (and solution-dependent) right-hand side, a fixed-point iteration is then employed to
compute the solution of the reformulated problem. The main benefit of the proposed approach is
that an efficient direct solver and a block Krylov subspace iterative solver can be used at each itera-
tion, allowing to reuse the LU matrix factorization or to do an efficient matrix-matrix multiplication
for all parameters, which in turn results in significant computation saving. Convergence and rates
of convergence are established for the iterative method both at the variational continuous level and
at the finite element discrete level under some structure conditions. Several strategies for establish-
ing reformulations of parameter-dependent and random diffusion and convection-diffusion problems
are proposed and their computational complexity is analyzed. Several 1-D and 2-D numerical ex-
periments are also provided to demonstrate the efficiency of the proposed iterative method and to
validate the theoretical convergence results.
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1. Introduction. Parameter-dependent problems arise from many engineering
and scientific applications such as fluid mechanics, porous media flow, wave propaga-
tion and various biological models (cf. [19] and the references therein). The parame-
ter could be deterministic (such as viscosity, diffusivity, permeability, frequency, and
birth/death rate) or random, they appear as parameters in their respective mathemat-
ical (i.e., PDE) models. As the solution of such a model depends on the parameter,
usually in a nonlinear manner even the PDE is linear, to compute approximate so-
lutions, one is forced to solve the same problem multiple times for a given set of
parameters. Such a direct (or brute force) approach may still be feasible if the pa-
rameter set is small even it is not efficient, however, it becomes too expensive to use
if the parameter set is large due to the sheer amount of computation required to solve
a complicated PDE problem tens, hundreds even thousands times.

To overcome the computational challenge, several approaches have been proposed
in literature including variants of the model order reduction (MOR) method [14, 17,
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1, 4], the ensemble method [15, 12, 11, 13, 20, 21] and the multi-modes method
[7, 8, 9]. The MOR methods aim to lower the computational complexity of the
underlying model/problem by approximating the solution manifold using a handful
of degrees of freedom, a low-dimensional surrogate to the original model is then built
which is usually cheaper to simulate and often referred to as a reduced order model.
Therefore, the computational saving is due to the dimensionality reduction. On the
other hand, noticing the similarity of solving the same type problems with different
parameters, a natural idea is to solve those problems together as a group and to reuse
the computation as much as possible, so the computational saving is due to reusing
a major portion of the computation for a set of parameters and requires designing
better algorithms. This is exactly the idea used by the ensemble and multi-modes
methods, and is also the approach adopted in this paper.

Inspired by the ensemble and multi-modes methods, the primary objective of this
paper is to develop and analyze a more general and unified iterative framework for
solving parameter-dependent (including the case of random parameters) convection-
diffusion problems in an abstract variational setting. Our main idea is to reformu-
late a given parameter-dependent problem into another problem with parameter-
independent convection and diffusion coefficients and a parameter-dependent (and
solution-dependent) right-hand side, its solution is then computed using a fixed-point
iteration algorithm. Since the convection and diffusion coefficients are parameter-
independent and iterate-independent, while the right-hand side term is parameter-
dependent and iterate-dependent, this presents an ideal set-up for us to employ an
efficient direct solver and a block Krylov subspace iterative solver at each iteration
for solving a linear system with multiple right-hand vectors. It is the reuse of the LU
matrix factorization and efficiently to compute matrix-matrix multiplication for all
parameters that results in significant computation saving, hence, leads to an efficient
overall numerical method.

The remainder of this paper is organized as follows. In Section 2 we present the
abstract variational setting for the parameter-dependent convection-diffusion prob-
lems to be considered in this paper. Structure conditions are stated to ensure the
well-posedness of the variational problem. Such an abstract setting allows the wider
applicability of the method and results of this paper, it also permits a clean and
concise presentation of the convergence analysis. In Section 3 we first present our
main algorithm in the variational continuous level and then establish the rate of con-
vergence of the algorithm under some structure conditions. Section 4 presents finite
element approximations of both the variational problem and the iterative algorithm.
The highlight of this section is to derive the rate of convergence for the discretized
algorithm. It worths noting that the finite element approximations are chosen for the
preciseness and ease of presentation, the convergence results are also valid for other
Galerkin-type approximations such as discontinuous Galerkin and spectral approxi-
mations. Section 5 is devoted to computational complexity analysis of the proposed
algorithm and to discussing an implementation strategy of the algorithm based on
a CVT (centroidal Voronoi tessellations) clustering method. Finally, in Section 6
we present three sets of numerical tests, the first one solves a parameter-dependent
diffusion problem and the second solves a random diffusion problem, and the third
computes a random convection-dominated convection-diffusion problem which is a
randomized double-glazing problem [18]. Both 1-D and 2-D numerical test results
are presented to demonstrate the efficiency of the proposed iterative method and to
validate the theoretical convergence results. In particular, the last two tests show that
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the proposed iterative method can successfully solve some strongly random diffusion
and convection-diffusion problems which the multi-modes method fails to do.

2. Variational problem setting. Let H be a Hilbert space and V ⊂ H be a
Banach space. V ∗ denotes the dual space of V , the space of bounded linear functionals
on V . We consider the following variational problem of seeking u ∈ V such that

A(ω;u, v) = F (ω; v) ∀v ∈ V,(2.1)

where F (ω; ·) ∈ V ∗ and A(ω; ·, ·) : V × V → R depends on a parameter ω, which
belongs to a (given) parameter space Ω and satisfies the following properties:

(i) Bi-linearity: A is bilinear mapping on V × V .
(ii) Boundedness: There exists an ω-independent constant Λ > 0 such that

|A(ω; v, w)| ≤ Λ‖v‖V ‖w‖V ∀v, w ∈ V.

(iii) Coercivity: There is an ω-independent constant λ > 0 such that

A(ω; v, v) ≥ λ‖v‖2V ∀v ∈ V.

Remark 1.

(a) Since A(ω, ·, ·) may be non-symmetric, then problem (2.1) contains both co-
ercive diffusion and coercive convection-diffusion problems which could be
convection-dominated, see Section 6.3-6.4 for more discussions.

(b) The parameter space Ω can be a deterministic or probability space, in the
latter case, equation (2.1) becomes a random PDE. Moreover, Ω can be finite
or infinite set.

(c) Applicable examples to be considered later are (i) parameter-dependent PDEs;
(ii) random PDE.

It is well known [3] that under the assumptions (i)–(iii), there holds the following
Lax-Milgram Theorem.

Proposition 2.1. Under the above assumptions, problem (2.1) has a unique
solution u(ω) ∈ V for each ω ∈ Ω and there holds

‖u(ω)‖V ≤ ‖F (ω)‖V ∗

λ
∀ω ∈ Ω.(2.2)

Remark 2. We note that ‖F (ω)‖V ∗ < ∞ for each ω ∈ Ω, however, the bound
may depend on ω. In the subsequent sections, unless stated otherwise, we shall assume
that there exists an ω-independent constant CF > 0 such that ‖F (ω)‖V ∗ ≤ CF for all
ω ∈ Ω, that is, the operator norm of F (ω) is uniformly bounded in Ω. This condition
will be relaxed to E[‖F (·)‖V ∗ ] < ∞ for random diffusion and convection-diffusion
applications in Section 6, namely, the expected value of the operator norm of F (ω) is
bounded.

As mentioned earlier, the aim of this paper is to develop efficient numerical meth-
ods/algorithms for computing the solution set u(ω) for all ω ∈ Ω.

3. The proposed iterative framework. The goal of this section is to formu-
late our main iterative algorithm for solving problem (2.1) and to establish the rate
of convergence for the algorithm.
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3.1. Formulation of the main algorithm. Let A0(·, ·) : V × V → R be an
ω-independent bilinear form, and set A1 = A−A0. Trivially

A(ω; ·, ·) = A0(·, ·) +A1(ω; ·, ·)(3.1)

is also a bilinear form on V × V . The equation (2.1) can be rewritten as

A0(u, v) = F (ω; v)−A1(ω;u, v).(3.2)

We now are ready to state our main iterative algorithm for solving (2.1).

Algorithm 1: Main Algorithm in Variational Setting

Step 1: Find U0 ∈ V by solving the following problem:

A0

(

U0, v
)

= F (ω; v) ∀v ∈ V.(3.3)

Step 2: For each ω ∈ Ω, determine {Un = Un(ω)}n≥1 ⊂ V recursively by solving

A0

(

Un, v
)

= F (ω; v)−A1

(

ω;Un−1, v
)

∀v ∈ V.(3.4)

To complete the construction of Algorithm 1, we need to specify the bilinear form
A0. As expected, it must be problem-dependent, hence, we will do so in Section
6 when we apply Algorithm 1 to specific application problems. We conclude this
subsection with the following remarks.

Remark 3. The main advantage of Algorithm 1 is that the left hand-side bilinear
forms in (3.3) and (3.4) are the same and independent of the parameter ω which allows
to design fast solvers for computing the solutions in both steps of Algorithm 1.

Remark 4. (a) To recover the multi-modes method of [7] for random diffusion
problems with the diffusion coefficients of the form a(ω, x) = a0(x) + η(ω, x) (see
Section 6.2 for the details), let a0(x) be the expected value of a(ω, x) and we further
assume that η = εξ, then define the nth mode function by

(3.5) u0 = U0, un :=
1

εn
(
Un − Un−1

)
for n ≥ 1,

which implies that

Un = Un−1 + εnun = u0 + εu1 + ε2u2 · · ·+ εnun.

Thus, the multi-modes method of [7] is recovered. We note that the multi-modes
method of [7] does compute the mode functions {uj}nj=1 in order to form the final ap-
proximate Un. On the other hand, Algorithm 1 does not compute the mode functions,
instead, it computes the approximate Un directly. We also note that the parameter
space Ω does not need to be given a priori but can be sampled on fly in simulations.

(b) To recover the ensemble method of [20] for parameter-dependent problems with
the leading-term coefficients a(ωj , x) and the parameter set Ω = {ωj}Jj=1 which are a
priori given (see Section 6.1 for the details), we simply choose a0 to be

a0(x) =
1

J

J∑

j=1

a(ωj , x) or a0(x) = max
1≤j≤J

a(ωj , x) ∀x ∈ D,

Algorithm 1 then leads to the ensemble method.
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3.2. Convergence analysis. To ensure the convergence of Algorithm 1, we
impose the following criterion (and practical guideline) for choosing A0 which would
ensure the convergence of the algorithm.

Criterion for selecting A0

(a) A0 must satisfy (i), (ii), (iii) from definition of A. That is,
(i) A0 is bilinear on V × V .
(ii) There exists a constant Λ0 > 0 such that

|A0(v, w)| ≤ Λ0‖v‖V ‖w‖V ∀v, w ∈ V.

(iii) There is a constant λ0 > 0 such that

A0(v, v) ≥ λ0‖v‖2V ∀v ∈ V.

(b) Relative dominance: There exists a ρ ∈ (0, 1) such that

‖A1(ω)‖L(V×V,R)

λ0
< ρ ∀ω ∈ Ω.(3.6)

Under the above assumptions, we have the following convergence theorem.
Theorem 3.1. Let u(ω) be the solution of (2.1) and {Un(ω)}n≥0 be generated

by Algorithm 1. Suppose the conditions of the above criterion hold. Then there exists
a constant C > 0 independent of Ω such that

(3.7) ‖u(ω)− Un(ω)‖V ≤ Cρn+1 ∀ω ∈ Ω.

Hence, Un(ω) converges to u(ω) strongly in V as n → ∞ for every ω ∈ Ω.
Proof. For each fixed ω ∈ Ω, let rn = rn(ω) = u(ω)−Un(ω) ∈ V for n ≥ 0. Then,

subtracting equation (3.3) from (3.2) yields the following error equation for n = 0:

A0

(
r0, v

)
= −A1(ω;u, v) ∀v ∈ V.(3.8)

Similarly, for any n ≥ 1 subtracting (3.4) from (3.2) gives the error equation

A0

(
rn, v

)
= −A1

(
ω; rn−1, v

)
∀v ∈ V.(3.9)

Choose v = r0 in (3.8) we obtain:

λ0‖r0‖2V ≤ A0

(
r0, r0

)
= −A1

(
ω;u, r0

)
≤ ‖A1(ω)‖L(V×V,R) ‖u‖V ‖r0‖V .(3.10)

This implies that

‖r0‖V ≤ ‖A1(ω)‖L(V×V,R)

λ0
‖u‖V ≤ ρ ‖u‖V .(3.11)

We also choose v = rn in (3.9) to obtain:

λ0‖rn‖2V ≤ A0

(
rn, rn

)
= −A1

(
ω; rn−1, rn

)
(3.12)

≤ ‖A1(ω)‖L(V×V,R) ‖rn−1‖V ‖rn‖V .
Therefore,

‖rn‖V ≤ ‖A1(ω)‖L(V×V,R)

λ0
‖rn−1‖V ≤ ρ‖rn−1‖V .(3.13)

By induction we have

‖rn‖V ≤ ρn+1 ‖u‖V ≤ ρn+1 1

λ
‖F‖V ∗ .(3.14)

The proof is complete.
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4. Finite element approximation. In this section, we first formulate the finite
element Galerkin approximation of (2.1) and then present a discrete analogue of
Algorithm 1 as a fast solver for computing the finite element solutions for all ω ∈ Ω.
To the end, let Th be a quasi-uniform triangulation of a bounded domain D ⊂ R

d (d =
1, 2, 3) with mesh size h ∈ (0, 1). Let V h

r (r ≥ 1) denote the finite element space
consisting of continuous piecewise rth order polynomials associated with Th. We
assume that V h

r is a subspace of V , which implicitly assumes that V ⊂ W 1,1(D) but
V 6⊂ W 2,1(D).

For each ω ∈ Ω, the standard finite element Galerkin approximation of (2.1) is
defined as seeking uh = uh(ω) ∈ V h

r such that

A
(
ω;uh, vh

)
= F (ω; vh) ∀vh ∈ V h

r .(4.1)

It is easy to show that (4.1) has a unique solution uh which also satisfies the stability
estimate (2.2). Moreover, there holds the following error estimate.

Proposition 4.1. Let u(ω) and uh(ω) denote the solutions of (2.1) and (4.1)
respectively. Then, there exists a constant C = C(ω) > 0 independent of h and a
positive integer ℓ(≤ r) such that

‖u(ω)− uh(ω)‖V ≤ C hℓ ∀ω ∈ Ω.(4.2)

Remark 5. The dependence of C on ω is through the norm ‖u(ω)‖Hr+1 and ℓ
depends on the space V . For example, if V = H1

0 (D), then ℓ = r.

Using the definition of A0 and A1, we can rewrite (4.1) as follows:

A0

(
uh, vh

)
= F (ω; vh)−A1

(
ω;uh, vh

)
∀vh ∈ V h

r .(4.3)

We then can easily formulate the discrete counterpart of Algorithm 1 for computing
the solution of (4.1) below.

Algorithm 2: Main Algorithm in Discrete Setting

Step 1: Find Uh
0 ∈ V h

r by solving the following problem:

A0

(

U
h
0 , vh

)

= F (ω; vh) ∀vh ∈ V
h
r .(4.4)

Step 2: For each ω ∈ Ω, determine {Uh
n = Uh

n (ω)}n≥1 ⊂ V h
r recursively by solving

A0

(

U
h
n , vh

)

= F (ω; vh)−A1

(

ω;Uh
n−1, vh

)

∀vh ∈ V
h
r .(4.5)

Remark 6. We note that the main advantage of Algorithm 2 is that the left
hand-side bilinear forms (or stiffness matrices) in (4.4) and (4.5) are the same and
independent of the parameter ω which allows to design fast solvers for computing the
solutions in both steps of Algorithm 2.

Similarly, there also holds the following convergence result for Algorithm 2.

Theorem 4.2. Let uh(ω) be solution of (4.3) and {Uh
n (ω)}n≥0 be generated by

Algorithm 2. Then there exists a constant C > 0 independent of ω such that

‖uh(ω)− Uh
n (ω)‖V ≤ Cρn+1 ∀ω ∈ Ω.(4.6)

Hence, Uh
n (ω) converges to uh(ω) strongly in V as n → ∞ for every ω ∈ Ω.
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Proof. For each fixed ω ∈ Ω, let ehn = uh(ω) − Uh
n (ω) ∈ V h

r for n ≥ 0. Then,
subtracting equation (4.4) from (4.3) yields the following error equation for n = 0:

A0

(
eh0 , vh

)
= −A1

(
ω;uh, vh

)
∀vh ∈ V h

r .(4.7)

Similarly, by subtracting (4.5) from (4.3), we obtain the following error equation for
n ≥ 1:

A0

(
ehn, vh

)
= −A1

(
ω; ehn−1, vh

)
∀vh ∈ V h

r .(4.8)

Choosing vh = eh0 ∈ V h
r in (4.7), we have

λ0‖eh0‖2V ≤ A0

(
eh0 , e

h
0

)
= −A1

(
ω;uh, e

h
0

)
≤ ‖A1(ω)‖L(V×V,R)‖uh‖V ‖eh0‖V .(4.9)

This implies that

‖eh0‖V ≤ ‖A1(ω)‖L(V×V,R)

λ0
‖uh‖V ≤ ρ‖uh‖V .(4.10)

In addition, setting vh = ehn ∈ V h
r in (4.8) yields

λ0‖ehn‖2V ≤ A0

(
ehn, e

h
n

)
= −A1

(
ω; ehn−1, e

h
n

)
(4.11)

≤ ‖A1(ω)‖L(V×V,R)‖ehn−1‖V ‖ehn‖V .

Therefore,

‖ehn‖V ≤ ‖A1(ω)‖L(V×V,R)

λ0
‖ehn−1‖V ≤ ρ‖ehn−1‖V .(4.12)

By induction we have

‖ehn‖V ≤ ρn+1‖uh‖V ≤ ρn+1 1

λ
‖F‖V ∗ .(4.13)

The proof is complete.
An immediate corollary is the following global error estimate.
Theorem 4.3. Let u(ω) be solution of (2.1) and {Uh

n (ω)}n≥0 be generated by
Algorithm 2. Then, there holds

‖u(ω)− Uh
n (ω)‖V ≤ C

(
hℓ + ρn+1

)
∀ω ∈ Ω.(4.14)

Proof. The proof follows from Proposition 4.1, Theorem 4.2 and an application
of the triangular inequality to the decomposition u− Uh

n = (u− uh) + (uh − Uh
n ).

5. Computational complexity and implementation strategies.

5.1. Linear solvers. Steps in Algorithm 2 solve linear systems with a coefficient
matrix independent of the parameter ω, which is a highly appealing feature when a
group of problems, associated to different ω’s, needs to be solved. Since their discrete
systems would share a common coefficient matrix, one can solve them simultaneously
from a single system with multiple right-hand-side (RHS) vectors. Suppose J prob-
lems are considered corresponding to {ω1, . . . , ωJ}. For jth problem, at the algebraic
level, Algorithm 2 finds uj

n such that: for n ≥ 0,

(5.1) A0u
j
n = bj

n =

{
f j if n = 0,

f j −A
j
1u

j
n−1 otherwise,
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where A0 is an N ×N matrix. The set of systems can be recast into a matrix form:

(5.2) A0Un = Bn,

where Un = [u1
n, . . . ,u

J
n] is the solution matrix and Bn = [b1

n, . . . ,b
J
n] contains RHS

information from individual problems.
Based on the structure and size of the coefficient matrix A0, a direct solver or an

iterative one can be used to find the solutions. Generally speaking, Algorithm 2 has
several computational advantages: (i) A0 only needs to be accessed once for all the
problems; when accessing or generating A0 represents a major bottleneck of a linear
solver, this leads to a significant computational advantage [2]; (ii) A factorization of
A0, if used, only needs to be implemented once in solving all the problems; (iii) The
multiple RHS vectors inBn lead to more efficient matrix-matrix products than matrix-
vector products [6, Section 5.6]. Moreover, if a block Krylov subspace algorithm
is used in solving (5.2), the multiple RHS vectors would enlarge the search space
for minimizing residuals and thus could accelerate the convergence. We consider
the direct solver in the paper and refer the readers to [16] and reference therein for
discussions of block iterative solvers.

A direct solver contains the build phase and the solve phase, in which the former
normally has higher complexity than the later. For a dense linear system, the factor-
ization takes O(N3) while the solve phase requires O(N2). Thus, using Algorithm 2 is
more efficient than solving problems separately as factorization is needed only once.
Since A0 is sparse and SPD in the finite element discretization, fast direct solvers
are available: using the nested dissection methods [10] or multi-frontal methods, the
complexity for building the LU/Cholesky factorization is O(N3/2) in 2-D problem
and O(N2) in 3-D (see, for instance, [6, Section 9.3] and [5, Section 7.6]). Solving
the resulting triangular systems has the complexity O(N logN) in 2-D and O(N4/3)
in 3-D. We next denote the cost of the build stage by O(Np) and that of the solve
stage by O(Cs), and analyze the total complexity of Algorithm 2 for solving J prob-
lems. Suppose the algorithm converges after K − 1 iterations, the total computation
complexity is O(Np +KJCs). For which, one factorization of A0 costs O(Np) and
KJ times solves of two triangular systems cost O(KJCs). But solving J problems
separately has the complexity O(J(Np + Cs)). The ratio of the latter to the former
provides a speedup factor

Sf =
J(Np + Cs)

Np +KJCs
=

1 + CsN
−p

J−1 +KCsN−p
.

Thus, given a finite K, for a fixed N , if J is big enough, the factor is on the order of
Np

KCs
that scales as O(

√
N(logN)−1K−1) in 2-D and O(N

2
3K−1) in 3-D; while for a

fixed J , as N becomes sufficiently large, the factor scales as J in both 2-D and 3-D.

5.2. Grouping. Given a group of problems, the convergence of the iterative
algorithm could be slow if ρ is close to 1. In such a case, we propose to divide
the problems into smaller groups to ensure a small ρ for each group. Motivated by
the Centroidal Voronoi tessellations (CVT) method [22], we introduce the following
algorithm.

Consider a set W ⊂ R
d̂. A set {Vi}nc

i=1 is a tessellation of W if Vi ∩ Vj = ∅ for
i 6= j and ∪nc

i=1Vi = W . Let | · | denote the Euclidean norm on R
N and, for any v with

magnitude greater than 0, define

r(x, v) =
|x− v|
|v| .
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Given a set of points Z = {zi}nc

i=1, define the set Vi by

Vi = {x ∈ W : r(x, zi) ≤ r(x, zj) for j = 1, . . . , k, j 6= i} ,

where the equality holds only for i < j. For any region V ⊂ R
d̂, z∗ denotes the center

of the region. In a discrete setting, suppose there are ns elements {xi}ns

i=1 ∈ V , we
have

z∗ =
1

ns

ns∑

i=1

xi.

Given a set of samples, we need to determine the regions Vi and centers zi. Thus,
we design an algorithm, presented in Algorithm 3, that uses iterations to find them.
First, it initializes the regions (also referred to be clusters) and centers (also referred
to be cluster generators). For each data point x ∈ W , the algorithm finds the nearest
generator z ∈ Z. If that does not match the cluster to which the data point is
currently assigned, the data point is “transferred” to the cluster associated with the
nearest generator. When all data points have been considered, the cluster generators
z are replaced by centers of the clustered data points. The process ends when there
is no further “transfers” occurred.

Algorithm 3: Grouping algorithm

Input: Sample set W , number of samples ns, number of centers nc, maximum
number of iterations itermax.

Output: Centers Z, Regions V1, . . . , Vnc .
Initialize centers Z = {z1, . . . , znc} uniformly spaced in the set;
Initialize regions {V1, . . . , Vnc} associated to each zj using the empty set, for
j = 1, . . . , nc;

for k = 1 : itermax do

for i = 1 : ns do

Take i-th sample xi = W (i) ;

Determine zj = argmin
v∈Z

r(xi, v), where r(xi, v) =
|xi−v|

|v|
;

Include xi into the j-th region Vj controlled by zj ;

end

Update zj by the center of Vj , for j = 1, . . . , nc;
if no transfers occurred then

Exit the loop
end

end

6. Applications. In this section, we conduct three sets of numerical tests on
three application problems. The first one solves a parameter-dependent diffusion
problem, the second solves a random diffusion problem, and the third simulates a
random convection-dominated convection-diffusion problem which is a randomized
double-glazing problem [18]. Both 1-D and 2-D numerical test results are presented
to demonstrate the efficiency of the proposed iterative method and to validate the
theoretical convergence results. Particularly, the last two tests show that the pro-
posed iterative method can successfully solve some strongly random diffusion and
convection-diffusion problems which the multi-modes method fails to do.
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6.1. Parameter-dependent diffusion problems. For a finite set of parame-
ters {ωj}Jj=1, let aj(x) = a(ωj , x), fj = f(ωj , x) and consider the following parameter-
dependent diffusion problems:

−∇ ·
(
aj∇uj

)
= fj in D,(6.1a)

uj = 0 on ∂D,(6.1b)

where D is a bounded Lipschitz domain in R
d for d = 1, 2, 3.

We assume the above PDE is uniformly elliptic, that is, there exist two constants
0 < λ < Λ such that the diffusion coefficient {aj(x)}Jj=1 satisfies

λ ≤ aj(x) ≤ Λ ∀x ∈ D, j = 1, 2, · · · , J.(6.2)

In addition, assume that aj(x) = a0(x) + ηj(x) with ηj(x) = η(ωj , x) and a0(x)
satisfies

(i) Uniform ellipticity: 0 < a0 ≤ a0(x) ≤ a0.
(ii) Relative dominance: there exists a number ρ ∈ (0, 1) such that

‖aj − a0‖L∞

a0
=

‖ηj‖L∞

a0
< ρ ∀j = 1, · · · , J.(6.3)

There are a couple of options to choose a0(x) which are given below (cf. [20]).
(a) a0(x) is chosen as the arithmetic average of {aj(x)}Jj=1, that is,

(6.4) a0(x) :=
1

J

(
a1(x) + a2(x) + · · ·+ aJ(x)

)
.

(b) a0(x) is chosen as the largest value of {aj(x)}Jj=1, that is,

(6.5) a0(x) := max
1≤j≤J

aj(x).

To fit the abstract framework, we set V = H1
0 (D) and define the bilinear forms

A,A0, A1 and the linear functional F respectively as

A(ω;u, v) =
(
a(ω, ·)∇u,∇v

)
, F (ω; v) =

(
f(ω, ·), v

)
,

A0(u, v) =
(
a0∇u,∇v

)
, A1(ω;u, v) =

(
η(ω, ·)∇u,∇v

)
.

It is easy to verify that A,A0, A1 and F satisfy the convergence criteria laid out in
Sections 3 and 4. Hence, Theorems 3.1, 4.2 and 4.3 apply to this problem with ℓ = r.

Two test cases are considered in this section: one is a 1-D diffusion with an
analytic solution, the other is a 2-D diffusion with more degrees of freedom but no
analytic solution. We use the former to illustrate the theoretical results and the latter
for checking the numerical efficiency. To investigate the numerical performance of the
iterative algorithm, we consider two metrics:

Ej = ‖uj − uh
j,n‖H1 and Eh

j = ‖uh
j − uh

j,n‖H1 ,

where uj is the exact solution, u
h
j is the finite element solution from individual simula-

tions and uh
j,n is the finite element solution at n-th iteration of the iterative algorithm.

Test 1. Consider a 1-D diffusion problem (with homogeneous boundary condi-
tion) on D = [0, 1] with the diffusion coefficient

aj(x) = 1 + x+ ǫj sin(x).
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The exact solution is given by u(x) = x(x − 1) + 0.5 sin(20πx) + ǫj sin(40πx), and
the source term is determined by plugging the exact solution in (6.1). For inves-
tigating the iterative algorithm, we consider J = 5 problems with the choices of
ǫj ∈ {0.1035, 0.0727,−0.0303, 0.0294,−0.0787}.

For the spatial discretization, the quadratic conforming finite elements (ℓ = 2)
are used on a uniform mesh with the size h. In the iterative algorithm, we set the
stopping criterion to be maxj ‖uh

j,n+1 − uh
j,n‖H1 < tol = 10−4, that is, the maximum

H1 norm of the differences between numerical solutions of adjacent iterations is less
than tol.

Firstly, we choose a0(x) = 1 + x + ǫ sin(x) with ǫ := 1
5

∑5
j=1 ǫj = 0.0193. The

iterative algorithm takes 4 iterations to complete for meshes with different resolutions.
The numerical errors Ej , for j = 1, . . . , 5, are listed in Table 6.1, which shows for each
of the five problems, the approximation error decays at the second order as mesh is
uniformly refined. The convergence history of Eh

j for the five problems is shown in

Figure 6.1 by taking the h = 2−10 case for example. Applying regressions on the
results shows Eh

1 ∼ O(0.032n+1) in problem 1, Eh
2 ∼ O(0.021n+1) in problem 2, Eh

3 ∼
O(0.019n+1) in problem 3, Eh

4 ∼ O(0.0039n+1) in problem 4, and Eh
5 ∼ O(0.038n+1) in

problem 5. The ratios ρj =
‖aj−a0‖L∞

a
0

for these five problems are 0.071, 0.045, 0.042,

0.009, and 0.083, respectively, which are close and proportional to the regression rates.
We found a better ratio that matches the regression analysis result can be defined by

ρ̂j =
∥∥∥aj−a0

a0

∥∥∥
L∞

, whose values are respectively 0.035, 0.022, 0.021, 0.004 and 0.041

for these problems. Further analysis in this aspect will be performed in a future work.

h E1 E2 E3 E4 E5

1
27

3.82× 10−1 3.03× 10−1 2.21× 10−1 2.19× 10−1 3.18× 10−1

1
28

9.62× 10−2 7.63× 10−2 5.54× 10−2 5.50× 10−2 8.00× 10−2

1
29

2.41× 10−2 1.91× 10−2 1.39× 10−2 1.38× 10−2 2.00× 10−2

1
210

6.03× 10−3 4.78× 10−3 3.46× 10−3 3.44× 10−3 5.01× 10−3

Table 6.1

Errors Ej , for j = 1, . . . , 5, of the iterative algorithm solutions at different h.

Fig. 6.1. Evolution of Eh
j , for j = 1, . . . , 5, during the iteration.

Secondly, we choose a0 = a∞ := maxj maxx∈D |aj(x)| = 2.0871 while keeping the
same computational setting as the previous case. The iterative algorithm achieves
the same errors listed in Table 6.1, which is not surprising because the same stopping
criterion is used in both tests. However, the total number of iterations increases to
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16 in this case. The evolution of Eh
j for the five problems during the iteration when

h = 2−10 is plotted in Figure 6.2. Regressions on the data shows Eh
j ∼ O(0.49n+1) in

these 5 problems. Note that the ratios ρj = ρ̂j in this case because a0 is a constant.
For the five problems, the ratios are about 0.52 that are close to the regression results.

Fig. 6.2. Evolution of Eh
j , for j = 1, . . . , 5, during the iteration.

It is observed that the numerical results match the theoretical analysis in Theo-
rems 4.2 - 4.3. In particular, Ej is dominated by the finite element discretization error,
that is of the order O(hℓ) with ℓ = 2; and Eh

j is of the order O(ρn+1
j ), for j = 1, . . . , 5.

Test 2. We consider a diffusion problem on the domain D = [−1, 1]2. Let D1 be
a disk centered at the origin of radius 0.5 and D0 = D\D1. The conductivity a(x) is
a piecewise constant on D:

a(x)|D1
= µ[1] and a(x)|D0

= 1.

The problem has zero forcing and is associated to a Dirichlet boundary condition on
the top edge and Neumann boundary conditions on the other sides. In particular,

u = 0 on Γtop = [−1, 1]× {1},
a∇u · n = 0 on Γside = {±1} × (−1, 1),

a∇u · n = µ[2] on Γbottom = [−1, 1]× {−1}.

Denote the parameter vector by µ = (µ[1], µ[2]), whose ranges is specified by

Ω := {µ ∈ R
2; 0.1 ≤ µ[1] ≤ 10, −1 ≤ µ[2] ≤ 1}.

In this case, the bilinear forms A,A0, A1 and the linear functional F have the following
form:

A(µ;u, v) =
(
µ[1]∇u,∇v

)
D1

+
(
∇u,∇v

)
D0

, F (µ; v) =
(
f(µ), v

)
+ 〈µ[2], v〉Γbottom

,

A0(u, v) =
(
µ
[1]
0 ∇u,∇v

)
D1

+
(
∇u,∇v

)
D0

, A1(µ;u, v) =
(
(µ[1] − µ

[1]
0 )∇u,∇v

)
D1

,

where we use a0|D1
:= µ

[1]
0 and a0|D0

:= 1. Since these forms have affine parame-
ter dependence, the assembly of the associated matrices and vectors can be greatly
simplified in computation.

We use the quadratic conforming finite element method for spatial discretization
on a triangulation of D with the mesh size h. For instance, the triangulation of
h = 1/8 is shown in Figure 6.3 (left), which contains 496 elements in total. In the
iterative algorithm, the stopping criterion tol = 10−4 is selected.
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Fig. 6.3. (Left) A finite element mesh with 496 elements; (Right) µ-samples.

There are ns µ-samples {µj = (µ
[1]
j , µ

[2]
j )}ns

j=1 randomly chosen in the parameter
domain, e.g., ns = 500 randomly selected samples are shown in Figure 6.3 (right).

Note that only µ
[1]
j appears in the bilinear form, the ratio ρj only depends on µ

[1]
j . In

such a case, choosing µ
[1]
0 := maxj µ

[1]
j requires many iterations as shown in previous

test, but choosing µ
[1]
0 := 1

J

∑ns

j=1 µ
[1]
j also will lead to a big ρj for some problems and

require many iterations as well. Therefore, we first divide the sample set into multiple
subgroups using Algorithm 3 and then apply the iterative algorithm to each of them.

We use a mesh of size h = 1
32 for spatial discretization, which contains 8,136

elements and 16,529 nodes. For the same set including ns = 500 samples, Algorithm 3

is fed with W := {µ[1]
1 , . . . , µ

[1]
ns} and finds nc = 10 regions and associated centers. The

evolution of centers during the process is shown in Figure 6.4 (left), which shows the
sample points stop transferring after 78 steps. Each sample from the set is assigned

to a region Vk with the center zk, for k = 1, . . . nc. The ratio r(µ
[1]
i , zk) for each µi is

shown in Figure 6.4 (right). It is seen that all these ratios are below 0.3. The iterative
algorithm is sequentially performed in the nc groups with a0|D1

:= zk for each group.
The entire simulation is completed in 29.48 seconds and the maximum number of
iterations for each group is 5. The detailed information for all the groups is listed in

Table 6.2, where ρ represents the maximum value of r(µ
[1]
i , zj) for elements in j-th

group. The maximum errors between the iterative solution and the finite element
solution, maxj Eh

j , in each group are plotted in Figure 6.5.

Next, we vary the number of samples and compare the iterative algorithm with
the individual simulations in terms of wall-clock times. Since the exact solution is
unknown, we measure the maximum difference in H1 norm between iterative algo-
rithm solutions and individual solutions. The results are listed in Table 6.3, where Tit

represents the time elapsed for integration in the iterative algorithm and Tind is that
for integrating individual systems. It is observed that as the size of sample set in-
creases, the efficiency of iterative algorithm improves. When ns = 2500, the iterative
algorithm saves about 50% simulation time.

Finally, we fix ns = 2500 while doubling the number of centers nc from 5 to 160.
The wall-clock times Tit are listed in Table 6.4, which shows the simulation time first
decreases then increases. The least computational time is achieved when nc = 80,
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Fig. 6.4. (Left) Evolution of centers of 10 subgroups; (Right) r(µ
[1]
i , zj) for each µi ∈ W

belongs to Vj and zj is the center of Vj .

group size µ[1]-region center ρ iterations max Eh
j time

1 4 [0.10, 0.13] 0.12 0.12 3 2.15× 10−7 0.49

2 15 [0.19, 0.32] 0.26 0.25 4 3.92× 10−6 1.06

3 14 [0.36, 0.54] 0.45 0.20 4 4.99× 10−6 1.05

4 17 [0.59, 0.94] 0.77 0.23 5 3.81× 10−6 1.37

5 33 [1.01, 1.55] 1.28 0.21 5 5.48× 10−6 2.18

6 32 [1.61, 2.33] 1.97 0.18 5 3.05× 10−6 2.12

7 50 [2.36, 3.39] 2.87 0.18 5 4.55× 10−6 3.07

8 68 [3.49, 4.97] 4.23 0.17 5 5.08× 10−6 3.90

9 111 [4.99, 7.06] 6.03 0.17 5 2.78× 10−6 6.15

10 156 [7.12, 9.97] 8.55 0.17 5 3.72× 10−6 8.09

Table 6.2

Information of subgroups: size, region, center and maximum ρ; performance of the iterative
algorithm including number of iterations, maximum errors and wall-clock time for simulations.

ns Tit Tind maxj E
h
j

100 8.09 8.74 7.2× 10−6

500 29.48 43.14 5.48× 10−6

2500 116.10 233.23 1.27× 10−6

Table 6.3

Comparison of the iterative algorithm with individual simulations at h = 1/32: wall-clock times
and maximum values of Eh

j for j = 1, . . . ns.

which saves over 60% simulation time compared to the individual simulations. It is
also observed that as the number of groups increases, the maximum difference between
iterative algorithm and individual simulation solutions, maxj Eh

j , decreases, which is
because ρ shrinks as the problems are divided into more groups.
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Fig. 6.5. Evolution of maxj E
h
j for each group during the iteration.

nc 5 10 20 40 80 160

Tit 187.5 116.1 102.64 93.01 89.69 111.75

maxj E
h
j 0.0000551 0.0000127 0.000005 0.00000327 0.00000328 0.00000167

Table 6.4

Wall-clock times and maximum values of Eh
j in the iterative algorithm for 2500 samples that

are divided into nc groups.

6.2. Random diffusion equations. In this subsection we consider the follow-
ing random diffusion test problem:

−∇ ·
(
a(ω, ·)∇u

)
= f(ω, ·) in D, P-a.s.(6.6a)

u = 0 on ∂D, P-a.s.(6.6b)

Where D is a bounded Lipschitz domain in R
d for d = 1, 2, 3. a(ω, x) and f(ω, x)

are random fields on the probability space (Ω,P,F) and they are assume to have
continuous and bounded covariance function. E[·] denotes the expectation operator.
In addition, a satisfies P-a.s. the following condition:

0 < λ ≤ a(ω, x) ≤ Λ ∀x ∈ D.(6.7)

Moreover, we assume that E[‖f‖L2(D)] < ∞. Below we propose two approaches for
utilizing the abstract framework for problem (6.6). The first approach mimics the
multi-modes method of [7] while the second one mimics the ensemble method of [20].

6.2.1. Approach #1. Suppose that there exists following decomposition of a:

a(ω, x) = a0(x) + η(ω, x) a.s. ∀x ∈ D,(6.8)

where a0 is independent of ω and also satisfies
(i) Uniform ellipticity: 0 < a0 ≤ a0(x) ≤ a0 for all x ∈ D.
(ii) Relative dominance: there exists a number ρ ∈ (0, 1) such that

P
{
ω ∈ Ω; ‖η(ω, ·)‖L∞(D) ≤ ρ a0

}
= 1.(6.9)

To apply the abstract framework, we define

A(ω;u, v) =
(
a(ω, ·)∇u,∇v

)
, F (ω; v) =

(
f(ω, ·), v

)
,

A0(u, v) =
(
a0∇u,∇v

)
, A1(ω;u, v) =

(
η(ω, ·)∇u,∇v

)
.
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It is easy to verify that A,A0, A1 and F satisfy P-a.s. the convergent criteria laid out
in Sections 3 and 4. Hence, Theorems 3.1, 4.2 and 4.3 apply to this problem with
ℓ = r. In particular, there holds

E
[
‖u− Uh

n‖H1

]
≤ C

(
hr + ρn+1

)
.(6.10)

It should be noted that C > 0 is independent of ω because E[‖f‖L2(D)] < ∞.
We remark that in this first approach we do not specify how to discretize the

stochastic variable ω. However, since the abstract framework suits best with the
random sampling method, in practice, the Monte Carlo method would be used to
discretize the right-hand sides in Step 1 and 2 of Algorithm 2.

Finally, we note that the choice of a0 depends on the structure of a (cf. [7]).
To verify the convergence rates in (6.10) of this approach, we consider the follow-

ing random coefficient boundary value problem [7] for our numerical tests:

− d

dx

((
1 + εX(ω)

)du(ω, x)
dx

)
= X(ω), 0 < x < 1,(6.11)

u(ω, 0) = 0, u(ω, 1) = 0,

where X(ω) is a uniformly distributed random variable defined in a probability space
(Ω,B,P), where the sample space Ω = [0, 1], B denotes the σ-algebra of the Borel sets
and P denotes the Lebesgue probability measure. In addition, we assume that ε > 0.
The true solution of (6.11) is given by

u(ω, x) =
X(ω)

2(1 + εX(ω))
(x− x2).(6.12)

We have that a(ω, x) = 1 + εX(ω) satisfies the elliptic condition with λ = 1,Λ =
1 + ε. In addition, a(ω, x) = a0(x) + η(ω, x), where a0(x) = 1 and η(ω, x) = εX(ω)
satisfies the conditions (i) with a0 = 1 and (ii) with ρ = ε. In order to fit the abstract
framework, in this example, we define V = H1

0 (0, 1) and

A(ω;u, v) =
(
(1 + εX(ω))u′, v′

)
, F (ω; v) =

(
X(ω), v

)
,

A0(u, v) =
(
u′, v′

)
, A1(ω;u, v) =

(
εX(ω)u′, v′

)
.

Let V h
1 denote the standard linear finite element subspace of V which is used for

the spatial discretization of (6.11). Let {Uh
n}n≥0 be the approximate solution from

Algorithm 2, where n is the number of iterations. Let

En
L2 := E

[
‖u− Uh

n‖L2

]
, En

H1 := E
[
‖u− Uh

n‖H1

]
.(6.13)

As mentioned above, we use the Monte Carlo method to discretize the stochastic
variable ω on the right-hand side in Step 1 and 2 of Algorithm 2. The number of the
Monte Carlo samples is chosen to be J = 104. To test the validity and accuracy of the
proposed iterative method, we set h = 0.01 for spatial discretization and then vary
the number of iterations n. Table 6.5 displays the H1-norm errors of the iterative
solutions for different values of n and ε. As expected, the computed solutions have
smaller errors for smaller ρ = ε, and the method converges as long as ε < 1 which is
predicted by our convergence theorem. In addition, our numerical tests show that the
method ceases to converge for ρ = ε > 1, this indicates that our convergence result is
sharp.



NUMERICAL METHOD FOR PARAMETER-DEPENDENT PROBLEMS 17

ρ n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

0.4 0.093 0.0033 0.0016 0.00123 0.00115 0.00114

0.6 0.0184 0.0089 0.0047 0.0027 0.0018 0.0014

0.8 0.0295 0.0187 0.0124 0.0086 0.0062 0.0046

0.9 0.0356 0.0253 0.188 0.0145 0.0115 0.0093

Table 6.5

Approach #1: Errors En
H1 of the computed solutions with different ρ and n.

h En
H1 Order En

L2 Order

0.2 2.43× 10−2 1.5000× 10−3

0.1 1.29× 10−2 0.92 4.0659× 10−4 1.88

0.05 6.60× 10−3 0.97 1.0443× 10−4 1.96

0.025 3.30× 10−3 1.00 2.6450× 10−5 1.98

Table 6.6

Errors En
H1 and En

L2 , for n = 10, of the iterative algorithm solutions at different h.

To test the convergence orders for the spatial discretization, we fix ρ = ε = 0.1
and the number of iterations n = 10, then vary the mesh size h. Table 6.6 shows
the H1- and L2-errors of the computed solution by Algorithm 2. We observe that an
O(h) order convergent rate in the H1-norm and an O(h2) order rate in the L2-norm
are obtained for the numerical solution Uh

n which is consistent with the theoretical
error estimate in (6.10).

Next, we verify the dependence of the errors on the parameter ρ = ε. To the end,
we fix ρ = 0.4, h = 0.01 and then vary the number of iterations n. We also use the
stopping criteria E

[
‖Uh

n+1 − Uh
n‖H1

]
< tol := 10−4. The H1- and L2-norm errors

of the computed solutions are shown in Figure 6.6. It is clear that the errors are
decreasing as the number of iterations increases and the convergence order O(ρn+1)
is indeed observed as predicted in (6.10). In addition, Figure 6.6 also shows that only
6 iterations is needed to trigger the stopping criterion.

Furthermore, we plot the errors of the first five Monte Carlo samples in Figure 6.7
to show that the errors for different samples are different and they are also different
from the expected value which is presented in Figure 6.6, but they all are decreasing
as n increases provided that ε is small.

Finally, to check the dependence of the iterative method on the parameter ε, we
fix n = 10, h = 0.01 and then consider ε = 2, 2.5, 3, 3.5, which all are larger than 1.
We note that in these cases, the relative dominant condition (ii) is violated, hence, our
convergence results do not apply anymore. Figure 6.8 shows evidently that the H1-
and L2-norm errors increase significantly as ε becomes larger, which clearly indicates
that the iterative method may diverge when ε > 1 and also shows that the relative
dominant condition (ii) is sharp.

6.2.2. Approach #2. In this subsection, we present a different approach to
utilize the proposed iterative method for solving the same random diffusion problem
(6.6) based on the Monte Carlo finite element discretization. To solve (6.6) by the
Monte Carlo method, let {ωj}Jj=1 be J samples from the sample space Ω, we then
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Fig. 6.6. Approach #1: Errors En
H1 (left) and En

L2 (right) for ρ = ε = 0.4, h = 0.01, tol

= 10−4 and different n.

Fig. 6.7. Approach #1: Errors En
H1 (left) and En

L2 (right) decay for the first 5 Monte Carlo
samples with ρ = ε = 0.4, h = 0.01 and different n.

consider (deterministic) problems for j = 1, 2, · · · , J

−∇ ·
(
a(ωj , ·)∇u

)
= f(ωj , ·) in D,(6.14a)

u = 0 on ∂D.(6.14b)

Hence, the Monte Carlo method converts the random diffusion problem (6.6) into the
parameter-dependent problem (6.14) which is of the same type as problem (6.1). As
a result, the method described in Section 6.1 readily applies to problem (6.14). The
only extra step is to bound the expected value of the error as follows:

∥∥E[u]− Emc[U
h
n ]
∥∥
V
≤

∥∥E[u]− E[Uh
n ]
∥∥
V
+
∥∥E[Uh

n ]− Emc[U
h
n ]
∥∥
V

(6.15)

≤ C
(
ρn+1 + hr

)
+ CJ− 1

2 ,

where Emc[·] denotes the Monte Carlo approximation of the expected value. In ad-
dition, unlike Approach #1 above, which is equivalent to the multimodes method of
[7] and imposes the restrictive condition 0 < ε < 1 for convergence because ρ = ǫ, we
like to show below that using Approach #2 the iterative method also converges for
ε > 1 because we can have ρ < 1 even ε > 1 in this approach.

We reconsider the random diffusion test problem (6.11) whose exact solution is
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Fig. 6.8. Approach #1: Errors En
H1 (left) and En

L2 (right) for different ε > 1 and n = 10.

given by (6.12). It is easy to check that

E[u] =
1

2

(1
ε
− 1

ε2
ln(1 + ε)

)
(x− x2).

The parameter-dependent problem (6.14) now becomes

− d

dx

((
1 + εX(ωj)

)du(ωj , x)

dx

)
= X(ωj), 0 < x < 1,

u(ωj , 0) = 0, u(ωj , 1) = 0,

for j = 1, · · · , J .
To fit the setup of Section 6.1, we also define the following bilinear forms:

A(ωj ;u, v) =
(
a(ωj , ·)u′, v′

)
, F (ωj ; v) =

(
X(ωj), v

)
,

A0(u, v) =
(
a0 u

′, v′
)
, A1(ωj ;u, v) =

(
η(ωj , ·)u′, v′

)
,

where a(ωj , x) = 1+ εX(ωj); a0 can be chosen as in Section 6.1. For example, we can
take a0(x) = max

1≤j≤J
a(ωj , x) or a0(x) = Emc[a(·, x)]. Then, η(ωj , x) = a(ωj , x)−a0(x)

will automatically satisfy the relative dominant condition (ii) with

ρ =

max
1≤j≤J

max
x∈D

|η(ωj , x)|

min
x∈D

a0(x)
< 1.

We also introduce the following error functions:

En
L2 = ‖E[u]− Emc[U

h
n ]‖L2 , En

H1 = ‖E[u]− Emc[U
h
n ]‖H1 .

We now want to verify the convergence rate given in (6.15) for the iterative
method. Notice that there are three terms in the error estimate (6.15). Since the

error (i.e., the term CJ− 1
2 ) due to the Monte Carlo method is standard and we omit

it here. In order to neglect this Monte Carlo error, we choose a large sample number
J = 106 in all the numerical tests below.

To verify the finite element method error term O(h), we consider ε = 2.0 and fix
n = 10 then choose different values of the mesh size h. It is easy to check that ρ =
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0.5003 when a0(x) = Emc[a(·, x)] and ρ = 0.6667 when a0(x) = max1≤j≤J a(ωj , x). In
both cases, ρ < 1, which satisfies the relative dominant assumption in the convergence
theorem. Table 6.7 displays the H1- and L2-norm errors for the first choice of a0 and
Table 6.8 shows the errors for the second choice of a0. We observe a convergence rate
O(h) for the H1-norm errors in both cases which is consistent with our error estimate
in (6.15). In addition, we observe that the L2-norm errors exhibit an O(h2) order of
the convergence.

h En
H1 Order En

L2 Order

0.2 1.17× 10−2 7.2850× 10−4

0.1 6.20× 10−3 0.93 1.8724× 10−4 1.96

0.05 3.20× 10−3 0.96 4.2524× 10−5 2.14

0.025 1.60× 10−3 1.00 6.9804× 10−6 2.61

Table 6.7

Approach #2: Errors En
H1 and En

L2 , for ε = 2.0, a0 = Emc[a] = 2.0011, ρ = 0.5003, n = 10
and different h.

h En
H1 Order En

L2 Order

0.2 1.17× 10−2 7.3323× 10−4

0.1 6.20× 10−3 0.93 1.9227× 10−4 1.93

0.05 3.20× 10−3 0.96 4.7262× 10−5 2.02

0.025 1.60× 10−3 1.00 9.9898× 10−6 2.24

Table 6.8

Approach #2: Errors En
H1 and En

L2 , for ε = 2.0, a0(x) = max
1≤j≤J

a(ωj , x) = 3.0, ρ = 0.6667,

n = 10 and different h.

To verify the iteration error term O(ρn+1), we fix h = 0.01, ε = 2.0 and also
consider two cases of a0 as in the previous test. A stopping criteria ‖Emc

[
Uh
n+1 −

Uh
n

]
‖H1 < tol := 10−4 is used to terminate the iteration. Figure 6.9 displays the

H1- and L2-norm errors of the computed solutions. We observe that the errors are
decreasing as the number of iterations increases. Figure 6.9 also shows that only 6
iterations are needed to trigger the stopping criterion.

Finally, we plot the errors of the first five Monte Carlo samples in Figure 6.10
for ε = 2.0, a0(x) = Emc[a(·, x)], h = 0.01 and various n. As expected, the errors are
different for different samples and they all are also different from the expected value
in Figure 6.9, but they all are decreasing as the number of iterations n increases.

6.3. 1-D random convection-diffusion problems. In this subsection, we
consider the following 1-D randomized double-glazing problem [18]:

− d

dx

((
1 + εX(ω)

)du(ω, x)
dx

)
+ 100

(
1 + εX(ω)

)du(ω, x)
dx

= f(ω, x),(6.16)

u(ω, 0) = 0, u(ω, 1) = 0,

where 0 ≤ x ≤ 1, ε > 0 and X(ω) is a uniformly distributed random variable on
a probability space (Ω,B,P) with B is the Borel σ-algebra. In addition, we choose
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Fig. 6.9. Approach #2: Errors En
H1 and En

L2 with a0(x) = Emc[a(·, x)] = 2.0011 (left) and

a0(x) = max
1≤j≤J

a(ωj , x) = 3.0 (right) for h = 0.01, ε = 2.0, tol = 10−4 and various n.

Fig. 6.10. Approach #2: Errors En
H1 (left) and En

L2 (right) decays for first 5 samples with

ε = 2.0, a0(x) = Emc[a(·, x)] = 2.001, ρ = 0.5003, h = 0.01 and various n.

f(ω, x) = X(ω)(51− 100x) so that the exact solution is again given by

u(ω, x) =
X(ω)

2(1 + εX(ω))
(x− x2).(6.17)

Its expected value is already given in previous subsection.
To apply the iterative method, we adopt Approach #2 proposed in Section 6.1

to (6.16). Namely, we consider the following parameter-dependent problem:

− d

dx

((
1 + εX(ωj)

)du(ωj , x)

dx

)
+ 100

(
1 + εX(ωj)

)du(ωj , x)

dx
= f(ωj , x),(6.18)

u(ωj , 0) = 0, u(ωj , 1) = 0,

for j = 1, · · · , J . To fit the setup of Section 6.1, we introduce the following coefficient
functions:

a(ωj , x) = 1 + εX(ωj), b(ωj , x) = 100(1 + εX(ωj))

a0(x) = Emc[a(·, x)], b0(x) = Emc[b(·, x)],
ηa(ωj , x) = a(ωj , x)− a0(x), ηb(ωj , x) = b(ωj , x)− b0(x),
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which result in the following bilinear forms:

A(ωj ;u, v) =
(
a(ωj , ·)u′, v′

)
+
(
b(ωj , ·)u′, v

)
, F (ωj ; v) =

(
f(ωj , ·), v

)
,

A0(u, v) =
(
a0 u

′, v′
)
+
(
b0u

′, v
)
, A1(ωj ;u, v) =

(
ηa(ωj , ·)u′, v′

)
+
(
ηb(ωj , ·)u′, v

)
.

Then, the relative dominant number ρ in the convergence criteria of Section 3 can be
estimated by

ρ ≈
max
1≤j≤J

max
x∈D

(|ηa(ωj , x)|+ |ηb(ωj , x)|)

min
x∈D

a0(x)
.

In this test, we use J = 104 number of samples for the Monte Carlo method, the
mesh size h = 0.01 and the maximum number of iterations n = 10. We also select
ε = 0.2, 0.005 in (6.18).

Fig. 6.11. 1-D random convection-diffusion problem: Plots of E[u] and Emc[Uh
n ] with h =

0.01, n = 10 and ε = 0.2 (left) and ε = 0.005(right).

ε ρ En
H1 = ‖E[u]− Emc[U

h
n ]‖H1 En

L2 = ‖E[u]− Emc[U
h
n ]‖L2

0.2 9.1912 0.5328 2.2100× 10−2

0.005 0.2522 0.0117 9.6119× 10−4

Table 6.9

1-D random convection-diffusion problem: Errors En
H1 and En

L2 with h = 0.01, n = 10 and
various ε.

Figure 6.11 shows the expected values Emc[U
h
n ] and E[u] of the computed and

exact solutions and Table 6.9 displays the expected values of the H1- and L2-norm
errors. We observe from Figure 6.11 and Table 6.9 that the proposed iterative method
performs well for problem (6.16) when ε is sufficiently small, but the errors become
larger as ε increases, which is expected. In addition, due to the contribution of the
convection term in (6.16), the relative dominance parameter ρ > 1 when ε = 0.2,
which explains the poor performance of the iterative method in this case.

6.4. 2-D randomized double-glazing problems. In this subsection, we con-
sider the random perturbation of the double-glazing problem given in [18]. Specifically,
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we consider

−δ∆u+ b · ∇u = f(ω, x, y) in D = (0, 1)2(6.19)

u(ω, ·) = 0 on ∂D,(6.20)

where b(ω, x, y) := (1+ εX(ω))
(
2y(1−x2),−2x(1− y2)

)
and 0 < δ << |b|, ε > 0. X

is a uniformly distributed random variable on [0, 1]. It is easy to check that divb = 0.
We set the right hand-side force function

f(ω;x, y) =
δX(ω)

1 + εX(ω)
(y − y2 + x− x2) +X(ω)y(y − y2)(1− x2)(1− 2x)

−X(ω)x(x− x2)(1− y2)(1− 2y)

so that the exact solution is given by

u(ω;x, y) =
X(ω)

2(1 + εX(ω))
(x− x2)(y − y2).

Thus,

E[u] =
1

2

(1
ε
− 1

ε2
ln(1 + ε)

)
(x− x2)(y − y2).

We again adopt Approach #2 of Section 6.1 to solve (6.19) with δ = 0.1 using
the proposed iterative method with J = 104 number of Monte Carlo samples. Conse-
quently, we need to solve the following parameter-dependent problem: for 1 ≤ j ≤ J

−δ∆u(ωj , x, y) + b(ωj , x, y) · ∇u(ωj , x, y) = f(ωj , x, y) in D = (0, 1)2(6.21)

u(ωj , ·) = 0 on ∂D.

To fit the setup of Section 6.1, we define

b0(x, y) := Emc[b(·, x, y)] = 2.001
(
2y(1− x2),−2x(1− y2)

)
,

ηηη(ωj , x, y) := b(ωj , x, y)− b0(x, y),

and the following bilinear forms and functional:

A(ωj ;u, v) = δ
(
∇u,∇v

)
+
(
b · ∇u, v

)
, F (ωj ; v) =

(
f, v

)
,

A0(u, v) = δ
(
∇u,∇v

)
+
(
b0 · ∇u, v

)
, A1(ωj ;u, v) =

(
ηηη · ∇u, v

)
.

h En
H1 Order En

L2 Order

0.2 5.4020× 10−3 3.4360× 10−4

0.1 2.7339× 10−3 0.9825 8.2969× 10−5 2.0501

0.05 1.3709× 10−3 0.9958 1.7666× 10−5 2.2316

0.025 6.8635× 10−4 0.9806 3.8150× 10−6 2.2112

Table 6.10

2-D random convection-diffusion problem: Errors En
H1 and En

L2 with ε = 2.0, n = 10 and
various h.
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Table 6.10 and Figure 6.12 show respectively the convergence orders of the spatial
discretization error and the iteration errors in bothH1- and L2-norm. We observe that
the proposed iterative method performs well for the random convection-dominated
convection-diffusion problem (6.19). From Table 6.10 we see that the optimal conver-
gence orders are achieved for the linear finite element method. In addition, Figure
6.12 shows that the H1- and L2-norm errors of the iterative solution rapidly decrease
as the number of iterations increases.

Fig. 6.12. 2-D convection-diffusion problem: Errors En
H1 and En

L2 with h = 0.01, ε = 2.0,

tol = 10−4 and various n.
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