
Electronic Journal of Statistics
Vol. 16 (2022) 3315–3342
ISSN: 1935-7524
https://doi.org/10.1214/21-EJS1971

Estimating the number of communities

by spectral methods

Can M. Le

Department of Statistics,
University of California, Davis
e-mail: canle@ucdavis.edu

Elizaveta Levina

Department of Statistics,
University of Michigan

e-mail: elevina@umich.edu

Abstract: Community detection is a fundamental problem in network
analysis with many methods available to estimate communities. Most of
these methods assume that the number of communities is known, which
is often not the case in practice. We study a simple and very fast method
for estimating the number of communities based on the spectral proper-
ties of certain graph operators, such as the non-backtracking matrix and
the Bethe Hessian matrix. We show that the method performs well under
several models and a wide range of parameters, and is guaranteed to be
consistent under several asymptotic regimes. We compare this method to
several existing methods for estimating the number of communities and
show that it is both more accurate and more computationally efficient.
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1. Introduction

The problem of clustering similar objects into groups is a fundamental problem
in data analysis. In network analysis, it is known as community detection ([34,
3, 10, 4]). Given a network, which consists of a set of nodes and a set of edges
between them, the goal of community detection is to cluster the nodes into
groups (communities) so that nodes in the same community share a similar
connectivity.

One of the simplest ways of modeling a community structure is the stochastic
block model (SBM), proposed by [17]. Given the number of communities K, n
node labels ci are drawn independently from a multinomial distribution with pa-
rameter π = (π1, ..., πK). The edges between pairs of nodes (i, j) are then drawn
independently from a Bernoulli distribution with parameter Pcicj and collected
in the n × n adjacency matrix A, with Aij = 1 if nodes i and j are connected
by an edge, and 0 otherwise. A limitation of the stochastic block model is that
all nodes in the same communities are equivalent and follow the same degree
distribution, whereas many real networks contain a small number of high-degree
nodes, the so called hubs. To address this limitation, [19] proposed the degree-
corrected stochastic block model (DCSBM). It assigns a degree parameter θi to
each node i, and edges between nodes are drawn independently with probabil-
ities θiθjPcicj . The community detection task is to recover the labels ci given
the adjacency matrix A.

A large number of methods have been proposed for finding the underly-
ing community structure ([28, 33, 3, 10, 37, 12, 4, 20, 42, 30, 38]). Most of
these methods require the number of communities K as input, but in practice
K is often unknown. To address this problem, a few likelihood-based meth-
ods have been proposed to estimate K under either the SBM or the DCSBM
([14, 21, 35, 39, 44]). These methods use BIC-type criteria for choosing the num-
ber of communities from a set of possible values, which requires computing the
likelihood, done using either MCMC or the variational method, which are both
computationally very challenging for large networks. A different approach based
on the distribution of leading eigenvalues of an appropriately scaled version of
the adjacency matrix was proposed by [9, 23]. Under the SBM, distributions
of the leading eigenvalues converge to the Tracy-Widom distribution; this fact
is used to determine K through a sequence of hypothesis tests. Since the rate
of convergence is slow for relatively sparse networks, a bootstrap correction
procedure was employed, which also leads to a high computational cost. Cross-
validation approaches were proposed by [13] and [24]. While they have good
properties under the SBM and the DCSBM, they require estimating communi-
ties on many random network splits, and are computationally costly.
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To the best of our knowledge, all existing methods are either restricted to
a specific model or computationally intensive. In this paper we study a fast
and reliable method that uses spectral properties of either the Bethe Hessian
or the non-backtracking matrices. Under a simple SBM in the sparse regime,
these matrices have been used to recover the community structure ([20, 38, 11]);
It was observed in the physics literature that the informative eigenvalues (i.e.,
those corresponding to eigenvectors which encode the community structure) of
these matrices are well separated from the bulk and can be used to estimate
the number of communities, but the properties of this estimator have never
been investigated, either theoretically or empirically. We show that the number
of “informative” (to be defined explicitly below) eigenvalues of these matrices
directly estimates the number of communities, and the estimate performs well
under different network models and over a wide range of parameter values,
outperforming existing methods designed specifically for estimating K under
either SBM or DCSBM. This method is extremely computationally efficient,
since all it requires is computing a few leading eigenvalues of just one typically
sparse matrix, and to the best of ourknowledge, is by far the fastest available
accurate method for estimating the number of communities.

Several new methods for estimating the number of communities K have been
developed concurrently with the present paper. For example, [36] use a variant
of the Chinese restaurant process to generate community assignments, which au-
tomatically yields a choice of K; this method is implemented via a Monte Carlo
sampling scheme, which is computationally intensive. A method based on semi-
definite programming, another very computationally intensive technique, was
derived and proved to be consistent for assortative networks by [45]. Improving
on [44], the authors of [18] proposed a corrected BIC criterion in [44] to correct
for under-estimation. More recently, [26] combined spectral clustering with bi-
nary segmentation to derive a new estimate of K. Compared to all these new
methods, the estimators based on Bethe Hessian or non-backtracking matrices
we study is still the most computationally efficient, arguably the simplest, and
competitive on estimation accuracy (see [26] for some numerical comparisons).
The theoretical analysis of the Bethe-Hessian and the nonbactracking matri-
ces we provide in this paper explain this performance and cover a wider range
of settings, including sparse, dense, assortative and disassortative networks; no
other method is known to be applicable under a wider range of settings, and
most are narrower.

2. Preliminaries

Recall A is the n×n symmetric network adjacency matrix. Let di =
∑n

j=1 Aij be
the degree of node i. Treating A as a random matrix, let EA be the expectation
of A (conditioned on ci and θi), and let d = 1

n

∑n
i=1 E di be the average expected

node degree.
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2.1. The non-backtracking matrix

Let m be the number of edges in an undirected network, 2m =
∑n

i,j=1 Aij . To
construct the non-backtracking matrix, we represent the edge between node i
and node j by two directed edges, one from i to j and the other from j to i.
The 2m × 2m non-backtracking matrix B̃, indexed by these directed edges, is
defined by

B̃i→j,k→l =

{
1 if j = k and i �= l
0 otherwise.

It is well-known [5, 20] that the spectrum of B̃ consists of ±1 and eigenvalues
of an 2n× 2n matrix

B =

(
A In −D
In 0n

)
. (2.1)

Here 0n is the n × n matrix of all zeros, In is the n × n identity matrix, and
D = diag(di) is n × n diagonal matrix with degrees di on the diagonal. It was
observed by [20] that if a network has K communities then the first K largest
(in absolute value) eigenvalues of B are real-valued and well separated from the
bulk, which is contained in a circle of radius

√
ρ(B), where ρ(B) is the spectral

radius of B. We refer to these K eigenvalues as informative eigenvalues of B. It
was also shown by [20] that the spectral norm of the non-backtracking matrix
is approximated by

d̃ =
( n∑

i=1

di

)−1( n∑
i=1

d2i

)
− 1. (2.2)

For a special case of a sparse SBM with a bounded expected node degree,
[11] proved that the leading eigenvalues of B concentrate around non-zero eigen-
values of EA and the bulk is contained in a circle of radius

√
ρ(B), and used

the corresponding leading eigenvectors to recover the community labels. The
spectrum of B for denser Erdős-Rényi graphs was later analyzed in [43]. In par-
ticular, if d � n5/6, then every eigenvalue of (d− 1)−1/2B is within a vanishing
distance from a limiting spectrum supported on the unit circle of the complex
plane (hereafter, we use an � bn or bn � an to denote that there exists a
sufficiently large constant C > 0 such that an > Cbn for all but possibly a finite
set of values of n). In Theorem A.1 below we extend this result to much sparser
and more general random graphs and require only that d � logn.

2.2. The Bethe Hessian matrix

The Bethe Hessian matrix is defined by

H(r) = (r2 − 1)I − rA+D, (2.3)

where r ∈ R is a parameter. In graph theory, the determinant of H(r) is the
Ihara-Bass formula for the graph zeta function. It vanishes if r is an eigenvalue
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Table 1

Spectral methods for estimating the number of communities.

Method Parameter Estimated number of communities K̂

NB None
∣∣∣{λ(B) ∈ R : λ(B) ≥

√
ρ(B)

}∣∣∣
BHm rm =

(∑n
i=1 d2i∑n
i=1 di

− 1

)1/2

max {k : λn−k(H(rm)) ≤ 0}

BHmc rm =

(∑n
i=1 d2i∑n
i=1 di

− 1

)1/2

max{k : tλn−k+1(H(rm)) ≤ λn−k(H(rm))}

BHa ra =
(
1
n

∑n
i=1 di

)1/2
max{k : λn−k(H(ra)) ≤ 0}

BHac ra =
(
1
n

∑n
i=1 di

)1/2
max{k : tλn−k+1(H(ra)) ≤ λn−k(H(ra))}

of the non-backtracking matrix [16, 6, 5]. The Bethe Hessian was used for com-
munity detection by [38] Under the SBM, they argued that the best choice of r
is rc = ±

√
d, depending on whether the network is assortative or disassortative;

for a more general network, they take rc = ±
√

ρ(B). For assortative sparse net-
works with K communities and a bounded d, they empirically showed that the
K eigenvalues ofH(rc) whose corresponding eigenvectors encode the community
structure are negative, while the bulk of H(rc) are positive. Thus, the number
of negative eigenvalues of H(rc) corresponds to the number of communities. In
Theorem 4.3 below, we prove that this method is indeed consistent for graphs
with d � logn. See also the discussion following Theorem 4.3 for more intuition
of why the number of negative eigenvalues of H coincides with the number of
communities.

3. Spectral estimates of the number of communities

The spectral properties of the non-backtracking and the Bethe Hessian matrices
lead to natural estimates of the number of communities, but they have not been
previously considered in this context. We next outline several spectral methods
to determine the number of communities K. They are based on simple counts of
eigenvalues of either the non-backtracking matrix or the Bethe Hessian matrix,
and therefore do not require any adjustment for different models such as SBM
or DCSBM. We list them in Table 1, and proceed to explain the motivation for
each one.

3.1. Estimating K from the non-backtracking matrix

As we will show in Theorems 4.1 and 4.2 under the SBM, the informative eigen-
values of the non-backtracking matrix are real-valued and separated from the
bulk of radius

√
ρ(B). Therefore we can estimate K by counting the number

of real eigenvalues of B that are at least
√
ρ(B). We denote this method by

NB (for non-backtracking). As shown by Theorem 4.2 and numerical results in
Section 5, this estimate of K also works under much more general models with
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low-rank structure such as DCSBM. When the network is balanced (commu-
nities have similar sizes and edge densities), NB performs well; however, the
accuracy of NB drops if the communities are unbalanced in either size or edge
density. Since B is not symmetric, computing the eigenvalues of B is slightly
more demanding than that of the Bethe Hessian matrix for large networks.

3.2. Estimating K from the Bethe Hessian matrix

The number of communities corresponds to the number of negative eigenvalues
of H(r); the challenge is in choosing an appropriate value of r. It was argued
by [38] that when r =

√
ρ(B), the informative eigenvalues of H(r) are negative,

while the bulk are positive; by [20], ρ(B) can be approximated by d̃ from (2.2).
Following these results, we first choose r to be rm = d̃1/2 and call the correspond-
ing method BHm. Simulations show that using r = rm and r =

√
ρ(B) produce

similar results; we choose r = rm because computing rm is less demanding than
computing

√
ρ(B).

Another choice of r is ra =
√

(d1 + · · ·+ dn)/n, which was proposed by [38]
for recovering the community structure under the SBM; we call the correspond-
ing method BHa. We have found that when the network is balanced, NB, BHm
and BHa perform similarly; when the network is unbalanced, BHa produces
better results.

Both BHm and BHa tend to underestimate the number of communities,
especially when the network is unbalanced. In that setting, some informative
eigenvalues of H(r) become positive, although they may still be far from the
bulk. Based on this observation, we correct BHm and BHa by also using posi-
tive eigenvalues of H(r) that are much close to zero than to the bulk. Namely,
we sort eigenvalues of H(r) in non-increasing order λ1 ≥ λ2 ≥ · · · ≥ λn, and
estimate K by

K̂ = max{k : tλn−k+1 ≤ λn−k}, (3.1)

where t ≥ 1 is a tuning parameter. Note that if λn−k0+1 < 0 then K̂ ≥ k0
because λn−k0+1 ≤ λn−k0 , therefore the number of negative eigenvalues of H(r)
is always upper bounded by K̂. Heuristically, if the bulk follows the semi-circular
law and λn−k ≥ 0 is given, then the probability that 0 ≤ λn−k+1 ≤ λn−k/t is
less than 1/t. When 1/t is sufficiently small, we may suspect that λn−k+1 is an
informative eigenvalue. In practice we find that t ∈ [4, 6] works well; we will
set t = 5 for all computations in this paper. Simulations show that K̂ performs
well, especially for unbalanced networks. The resulting methods are denoted by
BHmc and BHac, respectively. We will also use BH to refer to all the methods
that use the Bethe Hessian matrix. For a summary of these methods, see Table 1.

4. Consistency

The consistency of the non-backtracking matrix based method (NB) for esti-
mating the number of communities in the sparse regime under the stochastic
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block model with certain regularity conditions follows directly from Theorem 4
of [11]. We state this consistency result here for completeness. The proof given
by [11] is combinatorial in nature and this approach unfortunately does not
extend to any other regimes or the Bethe-Hessian matrix.

Theorem 4.1 (Consistency in the sparse regime). Consider a stochastic block
model with π = (π1, ..., πK) and P = (Pkl) = 1

nP
(0) for some fixed K × K

symmetric matrix P (0) of rank K. Assume that (diag(π)P )r has positive entries
for some positive integer r. Further, assume that E(di) = d > 1 for all i, and the
absolute values of all K non-zero eigenvalues of P are strictly larger than

√
d.

Then with probability tending to one as n → ∞, the number of real eigenvalues
of B that are at least

√
ρ(B) is equal to K.

To better understand the condition on the eigenvalues of P , consider the
simple model G(n, a

n ,
b
n ). This model assumes that there are two communities

of equal sizes and nodes are connected with probability a/n if they are in the
same community, and b/n otherwise. Since the two non-zero eigenvalues of P are
(a+ b)/2 and (a− b)/2, the condition on eigenvalues of P is (a− b)2 > 2(a+ b).
This matches the phase transition condition for the detectability in the sparse
regime [29, 31, 27].

Next, we prove the consistency of the proposed methods in the denser regime
d � logn, sometimes referred to as semi-dense in contrast to the dense regime
of d = O(n). For this regime, we make the following assumptions. Hereafter, we
use C to denote a positive constant that is sufficiently large and its value can
change from line to line.

Assumption 4.1. All nodes have the same expected degree satisfying

E

n∑
j=1

Aij = d ≥ C logn, 1 ≤ i ≤ n.

Assumption 4.2. Matrix EA is of rank K and nonzero eigenvalues of EA satisfy

|λ1(EA)| ≥ |λ2(EA)| ≥ · · · ≥ |λK(EA)| ≥ 4d1/2 + C(d1/4 + (log n)1/2).

Assumption 4.3. The expected degree d in Assumption 4.1 satisfies

d5 max
i,j

EAij ≤ n−1/13.

Following [11], we assume in Assumption 4.1 that all nodes have the same ex-
pected degree. This corresponds perhaps to the most challenging setting where
expected degrees alone do not contain information about the latent structure of
interest. As in [11] and [43], this assumption allows us to simplify our theoretical
analysis of the non-backtracking matrix considerably, although numerical results
in Section 5 show that the method still performs well and remains competitive
when this assumption no longer holds. If some communities have different ex-
pected degrees, we can first use node degrees to identify them and divide the
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network into sub-networks of similar expected node degrees and apply our re-
sults on the sub-networks. Note that for the degree-corrected stochastic block
model, if the underlying stochastic block model satisfies this assumption and
the degree parameters are drawn from the same distribution, then the degree-
corrected stochastic block model itself will also satisfy the assumption.

The lower bound on λK(EA) in Assumption 4.2 is of the form |λK(EA)| ≥
4(1 + o(1))

√
d when d � logn. Under G(n, a

n ,
b
n ), this bound is (a − b)2 ≥

32(1+o(1))(a+b). For a comparison, exact community recovery underG(n, a
n ,

b
n )

with known number of communities requires (a − b)2 > 2(a + b + 2
√
ab) log n

(see e.g. [1, Theorem 13]).
Assumption 4.3 guarantees a sharp bound on ‖A−EA‖, which is established

by [7]. We use this bound in the proofs of Theorem 4.2 and Theorem 4.3 below.
For the Erdős-Rényi model, Assumption 4.3 is equivalent to d ≤ n2/13. It is
unclear if this condition can be removed from the result of [7] and consequently
from Theorem 4.2 and Theorem 4.3.

Theorem 4.2 (Consistency of NB based method in the semi-dense regime).
Consider random graphs that satisfy Assumptions 4.1, 4.2 and 4.3. Then with
probability at least 1−1/n, the nonbacktracking matrix has exactly K real eigen-
values with magnitude at least (1 + ε)

√
d and the remaining eigenvalues are of

magnitude smaller than (1 + ε)
√
d, where

ε = C

[(
logn

d

)1/4

+

(
1

d

)1/8
]
.

According to Theorem 4.2, the K informative eigenvalues of the nonback-
tracking matrix are separated from the bulk by a circle of radius (1 + ε)

√
d,

where ε is vanishing if d grows faster than logn. Unlike in Theorem 4.1, K is
allowed to depend on n in Theorem 4.2.

To compute this estimator in practice, we simply set ε = 0 and estimate d
with the average observed degree d̄ = (d1 + · · ·+ dn)/n. It is straightforward to
show that d̄ is close to d with high probability.

Let us briefly describe the main ideas in the proof of Theorem 4.2. Denote
Γ = E(D − I). As pointed out in [43], B and the following conjugation matrix
admit the same spectrum:(

Γ−1/2 0n
0n In

)(
A In −D
In 0n

)(
Γ1/2 0n
0n In

)

=

(
Γ1/2 0n
0n Γ1/2

)(
Γ−1AΓ1/2 Γ−1(In −D)

In 0n

)

Under Assumption 4.1, Γ = (d − 1)In and the right-hand side of the above
equality greatly simplifies. Consequently, it is sufficient to study the spectrum
of the following matrix( 1√

d−1
A 1

d−1 (In −D)

In 0n

)
=

( 1√
d−1

A −In
In 0n

)
+

(
0n

1
d−1 (ED −D)

0n 0n

)
.
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The last term on the right-hand side of the above equality can be viewed as a
noise term. Thus, the spectrum of (d−1)−1/2B is a perturbation of the spectrum
of matrix ( 1√

d−1
A −In

In 0n

)
,

which is directly related to the spectrum of A via an explicit mapping; see
Appendix A.1 for detail.

The main difficulty in this analysis comes from the fact that the above matrix
is not symmetric, so many standard perturbation analysis techniques from ran-
dom matrix theory do not apply. To address this problem, [43] uses Bauer-Fike
theorem and the replacement principle [40] to show that for Erdős-Rényi ran-
dom graphs, the above idea works if d � n5/6. Using a more direct analysis, we
are able to replace this condition with the much weaker condition d � logn and
extend the validity of the result way beyond the Erdős-Rényi model. For detail,
see Theorem A.1 in Appendix A, which may also be of independent interest.

Note that when Assumption 4.1 does not hold, the spectrum of the non-
backtracking matrix depends on the node degree distribution through matrix(

Γ1/2 0n
0n Γ1/2

)
.

This explains why the performance of the method based on spectrum of B is
influenced by the severe heterogeneity of node degrees (simulations show that
other methods are affected as well).

For the Bethe Hessian, no formal results have been previously established.
We show in the following theorem that both BHm and BHa methods produce
consistent estimators of K = rank(EA), provided that the following stronger
version of Assumption 4.2 holds.

Assumption 4.4. Matrix EA is of rank K and nonzero eigenvalues of EA satisfy

λ1(EA) ≥ λ2(EA) ≥ · · · ≥ λK(EA) ≥ 4d1/2 + C(d1/4 + (log n)1/2).

Note that Assumption 4.2 allows networks to be disassortative, meaning prob-
abilities of connections between communities are higher than within communi-
ties, in which case the eigenvalues of EA may be negative. In contrast, Assump-
tion 4.4 requires all eigenvalues of EA to be non-negative.

Theorem 4.3 (Consistency of the Bethe Hessian matrix method). Consider
random graphs that satisfy Assumptions 4.1, 4.3 and 4.4. Then with probability
at least 1 − 1/n, the Bethe Hessian H(r) with r = (1 + ε)rm or r = (1 + ε)ra
and ε = C

√
logn/d has exactly K negative eigenvalues.

To describe the main idea in the proof of this result, let us rewrite H(r) as
follows:

H(r) = (r2 − 1)I − r(A− EA) +D − rEA =: Ĥ(r)− rEA.

Using a recent sharp concentration bound [7], it can be shown that both r‖A−
EA‖ and ‖(r2 − 1)I + D‖ are of order 2d if r =

√
d. Moreover, under some
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conditions, Ĥ(r) is positive semi-definite and Ĥ(r) is of smaller order than
rEA if they are restricted to the subspace formed by the first K eigenvectors
of EA. If rank(EA) = K and the network is assortative, this implies H(r) has
exactly K negative eigenvalues.

Note that to show the positive semi-definiteness of Ĥ(r), we need to compare
(1/d)D and In, and Assumption 4.1 is convenient for that purpose. It also indi-
cates that the accuracy of the proposed methods may drop as the node degree
heterogeneity increases. This is confirmed by numerical results in Section 5, al-
though our methods remain competitive and often outperform existing methods
even when Assumption 4.1 is violated.

Again in practice, we set ε = 0 to compute the estimator.
Theorem 4.2 and Theorem 4.3 show the consistency of the proposed methods.

Besides Assumption 4.1, they mainly require that the K-th eigenvalue of EA is
at least 4d1/2 and d � logn. To put them in perspective, let us discuss some
existing theoretical results for estimating K. Using a sequence of hypothesis
tests, [9] shows thatK can be consistently estimated if d grows linearly in n. This

requirement is relaxed to d � n1/2 in [13] and d � n1/3 log4/3 n in [24], where
network cross-validation is implemented. Another computationally demanding
method based on semi-definite programming by [45] requires d � logn, but it
is only consistent for assortative networks. The same condition is needed for
the likelihood-based method in [44], the corrected BIC criterion in [18] and the
binary segmentation method in [26], although they are computationally more
intensive than the proposed methods in this paper. Note also that none of these
results covers the sparse setting d = O(1) in which the method based on the
spectrum of the non-backtracking matrix remains consistent. Thus, compared to
these existing methods, our estimators are computationally more efficient and
often require weaker assumptions.

5. Numerical results

In this section, we briefly compare the empirical accuracy of estimating the
number of communities by using the non-backtracking matrix (NB), and all the
versions based on the Bethe Hessian matrix (BHm, BHmc, BHa, and BHac),
described in Section 3.1 and Section 3.2. We compare them with two other
methods representative of approaches in the literature to estimating the num-
ber of communities in networks: the network cross-validation method (NCV)
proposed by [13] and a likelihood-based BIC-type method (VLH, for variational
likelihood) proposed by [44]. We use NCVbm and NCVdc to denote the ver-
sions of the NCV method specifically designed for the SBM and the DCSBM,
respectively; VLH is only designed to work under the SBM, so it is not included
in the DCSBM comparisons. To make comparisons with VLH computation-
ally feasible, instead of using the variational method to estimate the posterior
of the community labels as done by [44], we first estimate the node labels by
the pseudo-likelihood method proposed by [4] and then compute the posterior
following [44]. In small-scale simulations where both approaches are computa-
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tionally feasible (results omitted) we found that substituting pseudo-likelihood
for the variational method has very little effect on the estimate of K. The tuning
parameter of VLH is set to one following [44]. We do not include the method of
[9] in these comparisons due to its high computational cost. Note that our the-
oretical analysis assumes for simplicity that all expected node degrees are equal
(Theorems 4.1, 4.2 and 4.3); however, we allow different expected node degrees
in simulations. In this section, d = 1

n

∑n
i=1 E di denotes the average expected

node degree.

5.1. Synthetic networks

To generate synthetic networks, we fix the labels c ∈ {1, ...,K}n so that ci = k
if nπk−1 + 1 ≤ i < nπk, where π0 = 0. The label matrix Z ∈ R

n×K , given by
Zik = 1(ci = k), encodes c by representing each node’s label with a row of K
elements, exactly one of which is equal to 1, and the rest are equal to 0. Let P̃
be a K ×K matrix with the diagonal w = (w1, ..., wK) and off-diagonal entries
β, and M = ZP̃ZT . Under the stochastic block model, we generate entries
of A using the edge probability matrix E(A) = ρnM ; the average degree d is
controlled by ρn. The parameter w controls the relative edge densities within
communities, and β controls the out-in probability ratio. Smaller values of β and
larger values of d make the problem easier. For the DCSBM, we generate the
degree parameters θi from a distribution that takes two values, P(θ = 1) = 1−γ
and P(θ = 0.2) = γ. Parameter γ controls the fraction of “hubs”, the high-degree
nodes allowed under the DCSBM, and setting γ = 0 gives back the regular SBM.
Given θ = (θi, ..., θn), the edges are generated independently with probabilities
E(A) = ρndiag(θ)Mdiag(θ), where diag(θ) is a diagonal matrix with θi’s on the
diagonal.

The number of nodes is set to n = 1200, the out-in probability ratio β = 0.2,
and we vary the average degree d, weights w, and community sizes determined by
the vector π. We consider three different values for the number of communities,
K = 2, 4, and 6. For each setting, we generate 200 replications of the network
and record the accuracy, defined as the fraction of times a method correctly
estimates the true number of communities K. The methods NCV and VLH
require a pre-specified set of K values to choose from; we use the set {1, 2, ..., 8}
for synthetic networks and {1, 2, ..., 15} for real-world networks.

We start by varying the average degree d, which controls the overall difficulty
of the problem, while keeping community sizes equal. Figure 1 shows the per-
formance of all methods for the balanced community density case, wi = 1 for
all 1 ≤ i ≤ K. Figure 2 shows the unbalanced case, with w = (1, 2) for K = 2,
w = (1, 1, 2, 3) for K = 4, and w = (1, 1, 1, 1, 2, 3) for K = 6. In every figure, the
top row corresponds to the SBM (γ = 0) and the bottom row to the DCSBM
(γ = 0.9, meaning 10% of nodes are hubs).

In general, we see that when everything is balanced (Figure 1), all spectral
methods perform fairly similarly and outperform both cross-validation (NCV)
and the BIC-type criterion (VLH). Also, for larger K and especially under
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Fig 1. The accuracy of estimating K as a function of the average degree. All communities
have equal sizes, and wi = 1 for all 1 ≤ i ≤ K.

Fig 2. The accuracy of estimating K as a function of the average degree. All communities
have equal sizes; w = (1, 2) for K = 2, w = (1, 1, 2, 3) for K = 4, and w = (1, 1, 1, 1, 2, 3) for
K = 6.

DCSBM, the corrected versions are somewhat better than the uncorrected ones,
and the best Bethe Hessian methods are better than the non-backtracking esti-
mator.

For networks with equal size communities but different edge densities within
communities (Figure 2), cross-validation performs poorly, but VLH relatively
improves. For larger K the spectral methods are also distinguishable, with all
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Fig 3. The accuracy of estimating K as a function of the community-size ratio r: π1 = r/K,
πK = (2 − r)/K, and πi = 1/K for 2 ≤ i ≤ K − 1. In all plots, wi = 1 for 1 ≤ i ≤ K; the
average degrees are λn = 10 (left), 15 (middle), and 20 (right).

BH methods dominating NB, and corrected versions providing improvement.
Overall, BHac is the best spectral method, with VLH comparable for the SBM
in this case. The BHac method is the best overall for DCSBM where VLH is
not applicable.

Communities of different sizes present a challenge for community detection
methods in general, and the presence of relatively small communities makes the
problem of estimating K difficult. To test the sensitivity of all the methods
to this factor, we change the proportions of nodes falling into each community
setting π1 = r/K, πK = (2 − r)/K, and πi = 1/K for 2 ≤ i ≤ K − 1, and
varying r in the range [0.2, 1]. As r increases, the community sizes become more
similar, and are all equal when r = 1. Figure 3 shows the performance of all
methods as a function of r. The top row corresponds to the SBM (γ = 0), the
bottom row to the DCSBM (γ = 0.9), and the within-community edge density
parameters wi = 1 for all 1 ≤ i ≤ K. Here we see that VLH is less sensitive
to r than the spectral methods, but unfortunately it is not available under the
DCSBM. Cross-validation is still dominated by spectral methods except for very
small values of r, where all methods perform poorly. The corrections still provide
a slight improvement for Bethe Hessian based methods, although all spectral
methods perform fairly similarly in this case.

5.2. Real world networks

Finally, we apply the proposed methods on several popular network datasets
which come with the “ground truth” node labels and the corresponding number
of communities. We note that the network structure itself can indicate a differ-
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Table 2

Estimates of the number of communities in real-world networks.

Dataset NB BHm BHmc BHa BHac NCVbm NCVdc VLH Truth
College football 10 10 10 10 10 14 13 9 12
Political books 3 3 4 4 4 8 2 6 3
Dolphins 2 2 2 2 2 4 3 2 2
Karate club 2 2 2 2 2 3 3 4 2
Political blogs 8 7 8 7 8 10 2 1 2

ent number of communities than those given in the ground truth, since those
are typically derived from one specific node attribute and there may be other
communities or sub-communities corresponding to different attributes. However,
these ground truth labels still provide a reasonable baseline against which to
compare estimators.

The college football network [15] represents 115 US college football teams and
the games they played in 2000. The “ground truth” communities are the 12 con-
ferences that the teams belong to. The political books network [32], compiled
around 2004, consists of 105 books about US politics; an edge is “frequently
purchased together” on Amazon. The K = 3 communities are “conservative”,
“liberal”, or “neutral”, labelled manually based on contents. The dolphin net-
work [25] is a social network of 62 dolphins, with edges representing social inter-
actions, and K = 2 communities are based on a split which happened after one
dolphin left the group. Similarly, the karate club network [46] is a social network
of 34 members of a karate club, with edges representing friendships, and K = 2
communities based on a split following a dispute. Finally, the political blogs
network [2], collected around 2004, consists of blogs about US politics, with
edges representing web links, and K = 2 communities are “conservative” and
“liberal”, based on manual labelling. For this dataset, as is commonly done in
the literature, we only consider its largest connected component of 1222 nodes.

Table 2 shows the estimated number of communities in these networks. All
spectral methods estimate the correct number of communities for dolphins and
the karate club, and do a reasonable job for the college football and political
books data. For political blogs, all methods but NCV and VLH estimate a
much larger number of communities, suggesting the estimates correspond to
smaller sub-communities with more uniform degree distributions that have been
previously detected by other authors. We also found that the VLH method was
highly dependent on the tuning parameter, and the estimates by NCVbm and
NCVdc varied noticeably from run to run due to their use of random partitions.

6. Discussion

The numerical experiments suggest that the spectral methods provide extremely
fast and reliable estimates of the number of communities K for balanced net-
works, with the Bethe Hessian based method with the threshold choice ra and
the correction described in (3.1) the best choice in most scenarios. With commu-
nities of significantly different sizes, they tend to underestimate K by combining



Estimating the number of communities 3329

small communities together, which seems to be an intrinsic limitation of spectral
methods. This suggests that their estimates can be used as a lower bound on
K and a starting point for a more elaborate and computationally demanding
likelihood-based method like VLH, in the same way that spectral clustering can
be used to initialize a more sophisticated community detection method. Hav-
ing a small set of plausible values of K to focus on can significantly reduce
the computational cost and improve the accuracy of estimating the number of
communities.

For semi-dense networks, we show in Theorems 4.2 and 4.3 that estimating
the number of communities is possible below the exact recovery threshold. For
example, under G(n, a

n ,
b
n ), our results require (a − b)2 ≥ 32(1 + o(1))(a + b)

while exact community recovery is feasible if (a − b)2 > 2(a + b + 2
√
ab) logn.

Determining the exact condition under which estimating the number of com-
munities is possible is an interesting and challenging question and we leave it
for future research.

Appendix A: Proof of Theorem 4.2

Following [43], we will work with the following rescaled conjugation of the non-
backtracking matrix B defined in (2.1) (which has the same eigenvalues as B/

√
α

where α = d− 1)

( 1√
α
A 1

α (I −D)

I 0

)
=

( 1√
α
A −I

I 0

)
+

(
0 1

α (ED −D)
0 0

)
=: H + E. (A.1)

The key result for proving Theorem 4.2 is Theorem A.1 below, which establishes
a connection between spectra of H + E and H. The spectrum of H is closely
related to the spectrum of the adjacency matrix, and is discussed in Section A.1.

To prove Theorem A.1, we only need a crude bound on ‖A − EA‖ that is
known to hold for very general graph models, including SBM, DCSBM and
inhomogeneous Erdos-Renyi models [22]. For clarity, we put this bound in As-
sumption A.1 below. We will replace it with a sharper bound in Theorem A.2
to prove Theorem 4.2.

Assumption A.1. With probability at least 1 − 1/n, the following inequality
holds

‖A− EA‖ ≤ C
√
d.

It is easy to see that Assumption A.1 implies ‖E‖ = O(1/
√
d) with high

probability while [43] shows that H is diagonalizable as follows.

A.1. Spectrum of H

Denote by v1, ..., vn and λ1, λ2, ..., λn eigenvectors and corresponding eigenvalues
of A/

√
α ordered so that |λ1| ≥ |λ2| ≥ ... ≥ |λn|. For each i, H has two
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eigenvalues μ2i−1 and μ2i that are solutions of equation μ2 − λiμ+ 1 = 0, that
is

μ2i−1 =
λi +

√
λ2
i − 4

2
, μ2i =

λi −
√

λ2
i − 4

2
. (A.2)

The corresponding left (unit) eigenvectors of H are

y∗2i−1 =
1√

1 + |μ2i−1|2
(−μ2i−1v

T
i , v

T
i ), y∗2i =

1√
1 + |μ2i|2

(−μ2iv
T
i , v

T
i )

and their inner product is

〈y2i−1, y2i〉 =
{

λ2
i+λi

√
λ2
i−4

4 , if |λi| < 2
2

|λi| , if |λi| ≥ 2
=

{
λiμ2i−1

2 , if |λi| < 2
2

|λi| , if |λi| ≥ 2.
(A.3)

The corresponding right eigenvectors of H are proportional to

x2i−1 =

√
1 + |μ2i−1|2
μ2i − μ2i−1

(
vi

μ2ivi

)
, x2i =

√
1 + |μ2i|2

μ2i−1 − μ2i

(
vi

μ2i−1vi

)
, (A.4)

with inner product

〈x2i−1, x2i〉 =

⎧⎨
⎩

λ2
i+λi

√
λ2
i−4

λ2
i−4

, if |λi| < 2
2|λi|
4−λ2

i
, if |λi| ≥ 2

=

{
2λiμ2i−1

λ2
i−4

, if |λi| < 2
2|λi|
4−λ2

i
, if |λi| ≥ 2

(A.5)

Note that x2i−1 and x2i are not unit vectors. Their squared norms are

‖x2i−1‖2 = ‖x2i‖2 =

⎧⎨
⎩

4
4−λ2

i
, if |λi| < 2

λ2
i

λ2
i−4

, if |λi| ≥ 2.
(A.6)

It is convenient to not normalize x2i−1 and x2i because H admits the decom-
position

H =

n∑
i=1

(
μ2i−1x2i−1y

∗
2i−1 + μ2ix2iy

∗
2i

)
.

Note that from the formulas above we have

x2i−1 ⊥ y2i, x2i ⊥ y2i−1, 〈x2i−1, y2i−1〉 = 〈x2i, y2i〉 = 1.

The space C2n can be decomposed as a direct sum of orthogonal two-dimensional
subspaces span{x2i−1, x2i} = span{y2i−1, y2i}, which are invariant under the
action of H. Moreover, the orthogonal projection onto span{x2i−1, x2i} is given
by x2i−1y

∗
2i−1 + x2iy

∗
2i.
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A.2. Spectrum of H + E

The main difficulty of analyzing the spectrum of H + E is that H and E are
not symmetric so standard Weyl’s inequalities do not apply even though ‖E‖
is small. Wang and Wood [43] use the Bauer-Fike theorem instead and show
that for Erdős-Rényi random graphs, the perturbation of E is negligible if the
average degree is at least of order n5/6. This strong assumption is likely an
artifact of their proof because the Bauer-Fike bound is often not tight. In fact,
by a direct and more careful analysis we show in the following theorem that the
spectrum of H + E is close to the spectrum of H for much sparser graphs.

Theorem A.1 (Connection between spectra of non-backtracking and adjacency
matrices). There exists a constant C > 0 such that the following holds. Consider
random graphs satisfying Assumptions 4.1 and A.1. Then with probability at
least 1 − 1/n, for each eigenvalue β of H + E, there exists an eigenvalue μ of
H such that

|β − μ| ≤ Cd−1/8.

For proving Theorem 4.2, we replace Assumption A.1 with the following
shaper bound on ‖A − EA‖, which holds under stronger assumptions. This
bound follows directly from [7] and [41]; see also [43].

Theorem A.2 (Concentration of adjacency matrix). There exists a constant
C1, C2 > 0 such that the following holds. Assume that

d ≥ C1 logn and d5 max
i,j

EAij ≤ n−1/13.

Then with probability at least 1− 1/n, we have

‖A− EA‖ ≤ 2
√
d+ C2

√
logn.

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let λ1(EA), ..., λK(EA) be the nonzero eigenvalues of
EA and λ1(A), · · · , λn(A) be eigenvalues of A, ordered so that |λ1(EA)| ≥
· · · ≥ |λK(EA)| > 0 and |λ1(A)| ≥ · · · ≥ |λn(A)|. Then by Weyl’s inequality
and Theorem A.2, with probability at least 1− 1/n we have

|λi(A)| ≤ 2
√
d+ C

√
logn for i ≥ K + 1,

|λi(A)− λi(EA)| ≤ 2
√
d+ C

√
logn for 1 ≤ i ≤ K.

Since |λK(EA)| ≥ 4
√
d + 4C( 4

√
d +

√
logn) by Assumption 4.2, it follows that

|λi(A)| ≥ 2
√
d + 2C( 4

√
d +

√
log n) for 1 ≤ i ≤ K. Therefore for 1 ≤ i ≤ K,

from (A.2) we have

max{|μ2i−1(H)|, |μ2i(H)|} ≥ 1 +
2C( 4

√
d+

√
logn)1/2

d1/4
> 1,

min{|μ2i−1(H)|, |μ2i(H)|} =
1

max{|μ2i−1(H)|, |μ2i(H)|} < 1.
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Similarly, for i ≥ K + 1 we have

max{|μ2i−1(H)|, |μ2i(H)|} < 1 + 2C

(
logn

d

)1/4

.

Theorem A.1 and the continuity of eigenvalues with respect to small perturba-
tion then imply that for 1 ≤ i ≤ K,

max{|μ2i−1(H + E)|, |μ2i(H + E)|} ≥ 1 +
2C( 4

√
d+

√
logn)1/2

d1/4
− Cd−1/8

≥ 1 + 2C

(
logn

d

)1/4

+ Cd−1/8,

while the remaining eigenvalues of H + E have magnitude at most

1 + 2C

(
logn

d

)1/4

+ Cd−1/8.

Since B =
√
α(H + E) by (2.1) and (A.1), it follows that the nonbacktracking

matrix has exactly K eigenvalues with magnitude at least (1 + ε)
√
d and the

remaining eigenvalues are of magnitude smaller than (1 + ε)
√
d.

To show that the K largest eigenvalues in magnitude of B are real, we use the
following deterministic inclusion bound for the spectrum of B; see [5, Theorem
3.7]. Let dmin ≥ 2 and dmax be the minimal and maximal degrees of a graph.
Then the spectrum of B satisfies

σ(B)⊆
{
λ ∈ C :

√
dmin − 1 ≤ |λ| ≤

√
dmax − 1

}
∩{λ ∈ R : 1 ≤ |λ| ≤ dmax − 1} .

In our setting, we bound dmax using standard Bernstein’s inequality: with prob-
ability at least 1− 1/n,

√
dmax − 1 ≤

√
d+ C

√
d log n ≤ (1 + ε)

√
d.

Since all complex eigenvalues of B are contained in a circle of radius at most√
dmax − 1, the K largest eigenvalues of B in magnitude, which are outside the

circle of radius (1 + ε)
√
d, must be real. The proof is complete.

The rest of this section is devoted to proving Theorem A.1. Besides the facts
listed in Section A.1, we need the following elementary lemmas, the proofs of
which are postponed until the end of this section.

Lemma A.3. Let x, y, v be unit vectors with |〈x, y〉| ≤ 1− ε for some ε ∈ [0, 1],
v ∈ span{x, y} and a, b ∈ C be any complex numbers. Then

‖ax+ by‖2 ≥ ε(|a|2 + |b|2), |〈v, x〉|2 + |〈v, y〉|2 ≥ ε.

Lemma A.4. Let x2i−1, x2i be right eigenvectors of H given by (A.4). Then
for any a, b ∈ C and 1 ≤ i ≤ n we have

‖ax2i−1 + bx2i‖ ≥ max{|a|, |b|}.
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Lemma A.5. Let x2i−1, x2i be right eigenvectors of H given by (A.4) and
denote Wi = span{x2i−1, x2i}. Then for any 1 ≤ i ≤ n we have

sup
w∈Wi

‖Hw‖ ≤ 4max{|λi|, 1} · ‖w‖.

We are now ready to prove Theorem A.1.

Proof of Theorem A.1. Denote by Pi the orthogonal projection onto span{x2i−1,
x2i}. Let u be a unit eigenvector of H +E with corresponding eigenvalue β and
ui = Piu/‖Piu‖. Note first that

u =
∑
i

Piu =
∑
i

(x2i−1y
∗
2i−1 + x2iy

∗
2i)Piu.

This allows us to write Eu as follows:

Eu = βu−Hu =
∑
i

[
(β − μ2i−1)x2i−1y

∗
2i−1 + (β − μ2i)x2iy

∗
2i

]
Piu.

Note that the terms in above sum belong to orthogonal subspaces of C2n. There-
fore

‖E‖2 ≥
∑
i

∥∥[(β − μ2i−1)x2i−1y
∗
2i−1 + (β − μ2i)x2iy

∗
2i

]
ui

∥∥2 ‖Piu‖2

=
∑
i

Ti‖Piu‖2 (A.7)

where Ti denotes the first factor of the corresponding term in the sum.

Let ε ∈ (0, 1/4) be a small number to be chosen later. Consider first the
eigenvalues λi with magnitude not close to 2, namely those satisfying ||λi|−2| >
ε. From (A.5) and (A.6) we have

|〈y2i−1, y2i〉| =
|〈x2i−1, x2i〉|
‖x2i−1‖ · ‖x2i‖

=

{
|λi|/2, if |λi| < 2− ε

2/|λi|, if |λi| > 2 + ε
≤ 1− ε/3. (A.8)

It also follows from (A.6) that ‖x2i−1‖ = ‖x2i‖ > 1. Since ui ∈ span{x2i−1, x2i} =
span{y2i−1, y2i}, if ||λi| − 2| > ε then by (A.8) and Lemma A.3 (applied to
‖x2i−1‖−1x2i−1, ‖x2i‖−1x2i first and then to y2i−1, y2i) we have

Ti ≥ ε/3 ·
(
|β − μ2i−1|2|y∗2i−1ui|2 + |β − μ2i|2|y∗2iui|2

)
· ‖x2i‖2

≥ ε2/9 ·min{|β − μ2i−1|2, |β − μ2i|2}. (A.9)

We now consider two cases of u, namely whether the following inequality holds:

∑
||λi|−2|>ε

‖Piu‖2 > ε. (A.10)
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We will show that in both cases there exists an eigenvalue of H that is close to
β. Assume first that (A.10) holds. Then from (A.7), (A.9) and (A.10) we have

‖E‖2 ≥
∑

||λi|−2|>ε

Ti · ‖Piu‖2

≥
∑

||λi|−2|>ε

ε2/9 ·min{|β − μ2i−1|2, |β − μ2i|2} · ‖Piu‖2

≥ ε2/9 · min
||λi|−2|>ε

{|β − μ2i−1|2, |β − μ2i|2} ·
∑

||λi|−2|>ε

‖Piu‖2

≥ ε3/9 · min
||λi|−2|>ε

{|β − μ2i−1|2, |β − μ2i|2}.

It follows that there exists i with ||λi| − 2| > ε such that

min{|μ2i−1 − β|2, |μ2i − β|2} ≤ 9‖E‖2
ε3

. (A.11)

We now consider the second case of u when (A.10) does not hold, or equiva-
lently ∑

||λi|−2|≤ε

‖Piu‖2 > 1− ε. (A.12)

We partition the set of indices i satisfying ||λi| − 2| ≤ ε as a union of J and I,
where J is the set of indices i such that ||λi|−2| ≤ ε and max{|y∗2i−1ui|, |y∗2iui|} >
ε, and I is the set of indices i such that ||λi|−2| ≤ ε and max{|y∗2i−1ui|, |y∗2iui|} ≤
ε. It follows from (A.12) that at least one of the following inequalities hold:∑

i∈J

‖Piu‖2 > ε,
∑
i∈I

‖Piu‖2 > 1− 2ε.

If the first inequality holds then by (A.7) and Lemma A.4 we have

‖E‖2 ≥
∑
i∈J

Ti · ‖Piu‖2

≥
∑
i∈J

max
{
|(β − μ2i−1)y

∗
2i−1ui|2, |(β − μ2i)y

∗
2iui|2

}
· ‖Piu‖2

≥ min
i∈J

max
{
|(β − μ2i−1)y

∗
2i−1ui|2, |(β − μ2i)y

∗
2iui|2

}
·
∑
i∈J

‖Piu‖2

≥ ε ·min
i∈J

max
{
|(β − μ2i−1)y

∗
2i−1ui|2, |(β − μ2i)y

∗
2iui|2

}
.

Since max{|y∗2i−1ui|, |y∗2iui|} > ε for i ∈ J , it follows that there exists i ∈ J such
that

min{|β − μ2i−1|2, |β − μ2i|2} ≤ ‖E‖2
ε3

. (A.13)

We now assume that the following inequality holds:∑
i∈I

‖Piu‖2 > 1− 2ε. (A.14)
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This inequality implies that |β| is bounded. Indeed, from identities (H +E)u =
βu and u =

∑
i ‖Piu‖ui we get∑

i

‖Piu‖Hui + Eu = β
∑
i

‖Piu‖ui. (A.15)

Note thatHui ∈ span{x2i−1, x2i} because ui ∈ span{x2i−1, x2i} and {x2i−1, x2i}
are eigenvectors ofH. Denote PI =

∑
i∈I Pi and apply PI to both sides of (A.15),

we have ∑
i∈I

‖Piu‖Hui + PIEu = β
∑
i∈I

‖Piu‖ui.

If i ∈ I then H is bounded on span{x2i−1, x2i} by Lemma A.5. Therefore
from (A.14) we obtain

(1− 2ε)1/2|β| ≤
∥∥∥β∑

i∈I

‖Piu‖ui

∥∥∥ ≤
∥∥∥∑

i∈I

‖Piu‖Hui

∥∥∥+ ‖PIEu‖ ≤ C + ‖E‖.

Since ε ≤ 1/4 and ‖E‖ ≤ 1, this implies |β| ≤ 2C. Applying PIc =
∑

i �∈I Pi to
both sides of (A.15), using (A.14) and the boundedness of β, we have∥∥∥∑

i∈Ic

‖Piu‖Hui

∥∥∥ ≤ ‖PIcEu‖+ |β| ·
∥∥∥PIc

∑
i∈Ic

‖Piu‖ui

∥∥∥ ≤ ‖E‖+C
√
2ε. (A.16)

Therefore using (H + E)u = βu and inequalities (A.14), (A.16) we have∥∥∥βu− (H + E)
∑
i∈I

‖Piu‖ui

∥∥∥ =
∥∥∥∑

i∈Ic

‖Piu‖Hui + E
∑
i∈Ic

‖Piu‖ui

∥∥∥
≤ (‖E‖+ C

√
2ε) + ‖E‖

≤ 2C(
√
ε+ ‖E‖). (A.17)

Denote x̄2i−1 = ‖x2i−1‖−1x2i−1 and x̄2i = ‖x2i‖−1x2i. Since x̄2i−1 ⊥ y2i, x̄2i ⊥
y2i−1 and max{|y∗2i−1ui|, |y∗2iui|} ≤ ε for i ∈ I, it follows that |〈ui, x̄2i−1〉| ≥
1 − 2ε and |〈ui, x̄2i〉| ≥ 1 − 2ε. By multiplying x̄2i with a complex number of
magnitude one if necessary, we may assume that 〈ui, x̄2i〉 ≥ 1−2ε for i ∈ I, and
consequently

‖ui − x̄2i‖2 ≤ 4ε. (A.18)

We are now ready to show that β is close to an eigenvalue of H. By (A.18),
(A.14), (A.17), the fact that β and μ2i are bounded for i ∈ I, and triangle
inequality we have∥∥∥∑

i∈I

‖Piu‖(μ2i − β)ui

∥∥∥ =
∥∥∥∑

i∈I

‖Piu‖μ2iui −
∑
i∈I

‖Piu‖βui

∥∥∥
≤

∥∥∥∑
i∈I

‖Piu‖μ2ix̄2i −
∑
i∈I

‖Piu‖βui

∥∥∥+ C
√
4ε

≤
∥∥∥∑

i∈I

‖Piu‖μ2ix̄2i−
n∑

i=1

‖Piu‖βui

∥∥∥+C(
√
4ε+

√
2ε)
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=
∥∥∥H∑

i∈I

‖Piu‖ x̄2i − βu
∥∥∥+ C(

√
4ε+

√
2ε)

≤
∥∥∥H∑

i∈I

‖Piu‖ ui − βu
∥∥∥+ C(2

√
4ε+

√
2ε)

≤
∥∥∥(H + E)

∑
i∈I

‖Piu‖ ui − βu
∥∥∥

+C(2
√
4ε+

√
2ε) + ‖E‖

≤ 2C(
√
ε+ ‖E‖) + C(2

√
4ε+

√
2ε) + ‖E‖

≤ 8C(
√
ε+ ‖E‖).

Together with (A.14) this implies

min
i∈I

|β − μ2i|2 ≤ 1

1− 2ε
·
∑
i∈I

‖Piu‖2|β − μ2i|2 ≤ C(ε+ ‖E‖2). (A.19)

Finally, it follows from (A.11), (A.13) and (A.19) that if β is an eigenvalue of
H + E then there exists an eigenvalue μ of H such that

|β − μ| ≤ C(‖E‖+ ε2)

ε3/2
= 2C‖E‖1/4

for ε = ‖E‖1/2. It follows from Assumption A.1 that ‖E‖ = O(1/
√
d) and

therefore the proof is complete.

Proof of Lemma A.3. We prove the first inequality:

‖ax+ by‖2 = |a|2 + |b|2 + 2 · Re{āb〈x, y〉}
≥ |a|2 + |b|2 − 2|ab|(1− ε)

= (1− ε)(|a| − |b|)2 + ε(|a|2 + |b|2)
≥ ε(|a|2 + |b|2).

To prove the second inequality, denote z = x− y and w = x+ y. Then z, w are
perpendicular and x = (z + w)/2, y = (w − z)/2. Therefore

|〈v, x〉|2 + |〈v, y〉|2 = v∗(xx∗ + yy∗)v = v∗(zz∗ + ww∗)v/2.

Note that the restriction of zz∗+ww∗ on span{x, y} is a positive definite matrix
with eigenvalues ‖z‖2 and ‖w‖2 because z and w are perpendicular. By the first
inequality

min{‖z‖2, ‖w‖2} = min{‖x− y‖2, ‖x+ y‖2} ≥ 2ε.

Since v ∈ span{x, y}, it follows that

v∗(zz∗ + ww∗)v/2 ≥ 2εv∗v/2 = ε.

The proof is complete.
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Proof of Lemma A.4. We decompose x2i−1 as x2i−1 = z+w where z ⊥ x2i and
w ∈ span{x2i}. Then

‖ax2i−1 + bx2i‖2 = |a|2‖z‖2 + ‖aw + bx2i‖2 ≥ |a|2‖z‖2.

To calculate z, denote x̄2i−1 = ‖x2i−1‖−1x2i−1, x̄2i = ‖x2i‖−1x2i and τ =
〈x̄2i−1, x̄2i〉. From (A.5) and (A.6) we get

τ =

{
−λ2

i+λi

√
λ2
i−4

4 , if |λi| < 2

− 2
|λi| , if |λi| ≥ 2.

Since ‖x2i−1‖ = ‖x2i‖, it follows that

z = x2i−1 − 〈x2i−1, x̄2i〉x̄2i = x2i−1 − τx2i.

Therefore by (A.6), we obtain

‖z‖2 = ‖x2i−1‖2 + |τ |2‖x2i‖2 − 2Re(τ〈x2i−1, x2i〉)
= ‖x2i‖2

(
|τ |2 + 1− 2Re(τ2)

)
=

⎧⎨
⎩

4
4−λ2

i

(
λ2
i

4 + 1− λ4
i−2λ2

i

4

)
, if |λi| < 2

λ2
i

λ2
i−4

(
1− 4

λ2
i

)
, if |λi| ≥ 2

=

{
λ2
i + 1, if |λi| < 2

1, if |λi| ≥ 2

≥ 1.

This implies ‖ax2i−1 + bx2i‖ ≥ |a| · ‖z‖ ≥ |a|. By decomposing x2i instead of
x2i−1 and repeating the same argument, we obtain ‖ax2i−1 + bx2i‖ ≥ |b|. The
proof is complete.

Proof of Lemma A.5. Since x̄2i−1 = ‖x2i−1‖−1x2i−1 and y2i form an orthonor-
mal basis of Wi, it is enough to bound ‖Hx̄2i−1‖ and ‖Hy2i‖. Note that the
restriction Hi of H on Wi has the formula

Hi = μ2i−1x2i−1y
∗
2i−1 + μ2ix2iy

∗
2i.

Therefore ‖Hix̄2i−1‖ = ‖μ2i−1x̄2i−1‖ ≤ |λi|. For the more involved calculation
of Hy2i we will repeatedly use identities

μ2i−1μ2i = 1, μ2i−1 + μ2i = λi (A.20)

which follow directly from the formulas of μ2i−1 and μ2i in (A.2).

The case |λi| < 2. From (A.3), (A.4) and identities |μ2i−1| = |μ2i| = 1,
μ2i−1μ2i = 1 we have

Hiy2i =
λiμ

2
2i−1√

2(μ2i − μ2i−1)

(
vi

μ2ivi

)
+

√
2μ2i

μ2i−1 − μ2i

(
vi

μ2i−1vi

)
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=
1√

2(μ2i − μ2i−1)

(
(λiμ

2
2i−1 − 2μ2i)vi

(λiμ2i−1 − 2)vi

)
.

Using (A.20) we get

λiμ
2
2i−1 − 2μ2i = (μ2i−1 + μ2i)μ

2
2i−1 − 2μ2i

= μ3
2i−1 + μ2i−1 − 2μ2i

= (μ2i−1 − μ2i)(μ
2
2i−1 + 1).

Similarly,

λiμ2i−1 − 2 = (μ2i−1 + μ2i)μ2i−1 − 2 = μ2
2i−1 − 1 = μ2i−1(μ2i−1 − μ2i).

Therefore
‖Hy2i‖2 = (|μ2

2i−1 + 1|2 + |μ2i−1|2)/2 ≤ 5/2.

The case λi ≥ 2. In this case μ2i−1 and μ2i are real positive numbers. Then
from (A.3), (A.4) and (A.20) we have

Hiy2i =
2μ2i−1

√
1 + μ2

2i−1

λi(μ2i − μ2i−1)

(
vi

μ2ivi

)
+

μ2i

√
1 + μ2

2i

μ2i−1 − μ2i

(
vi

μ2i−1vi

)
.

It follows from (A.20) that√
1 + μ2

2i−1 = μ2i−1

√
1 + μ2

2i.

Therefore

Hiy2i =

√
1 + μ2

2i

λi(μ2i − μ2i−1)

(
(2μ2

2i−1 − λiμ2i)vi
(2μ2i−1 − λi)vi

)
= −

√
1 + μ2

2i

λi

(
(μ2i−1 + λi)vi

vi

)
.

Note that μ2i ≤ 1 and μ2i−1 ≤ λi by (A.2). Hence

‖Hiy2i‖2 =
(1 + μ2

2i)(1 + (μ2i−1 + λi)
2)

λ2
i

≤ 10.

The case λi ≤ −2. In this case μ2i−1 and μ2i are real negative numbers. Then
from (A.3), (A.4) and (A.20) we have

Hiy2i =
2μ2i−1

√
1 + μ2

2i−1

λi(μ2i−1 − μ2i)

(
vi

μ2ivi

)
+

μ2i

√
1 + μ2

2i

μ2i−1 − μ2i

(
vi

μ2i−1vi

)
.

It follows from (A.20) that√
1 + μ2

2i−1 = −μ2i−1

√
1 + μ2

2i.
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Therefore

Hiy2i =

√
1 + μ2

2i

λi(μ2i − μ2i−1)

(
(2μ2

2i−1 − λiμ2i)vi
(2μ2i−1 − λi)vi

)
= −

√
1 + μ2

2i

λi

(
(μ2i−1 + λi)vi

vi

)
.

Note that μ2
2i ≤ λ2

i and |μ2i−1| ≤ 1 by (A.2). Hence

‖Hiy2i‖2 =
(1 + μ2

2i)(1 + (μ2i−1 + λi)
2)

λ2
i

≤ 10λ2
i .

The proof is complete.

Appendix B: Proof of Theorem 4.3

Proof of Theorem 4.3. We first rewrite the Bethe Hessian as follows:

H(r) = (r2 − 1)I − r(A− EA) +D − rEA =: Ĥ(r)− rEA.

We show that eigenvalues of Ĥ(r) are non-negative and are of smaller order
than non-zero eigenvalues of rEA. This in turn implies that K eigenvalues of
H(r) are negative while the rest are positive.

By Theorem A.2, with probability at least 1− 1/n we have

‖A− EA‖ ≤ 2
√
d+ C

√
log n. (B.1)

To bound the node degrees, we use the standard Bernstein’s inequality: with
probability at least 1− 1/n,

‖D − ED‖ ≤ C
√
d logn, |r2 − (1 + ε)2d| ≤ C

√
d log n. (B.2)

For square matrices X,Y we use X � Y to signify that X − Y is positive
semidefinite. Then by (B.1), (B.2) and Assumption 4.2, we have

Ĥ(r) �
[
(r2 − 1)− r

(
2
√
d+ C

√
logn

)
+ (1 + ε)2d− C

√
d logn

]
I

�
[(

r −
√
d
)2

+ (2ε+ ε2)d− C
√
d log n

]
I

� 0 (B.3)

because ε = C
√
logn/d.

For a subspace U ⊆ R
n, we denote by dim(U) the dimension of U , and by U⊥

the orthogonal complement of U . Also, let col(EA) be the column space of EA.
Using the Courant min-max principle (see e.g. [8, Corollary III.1.2]) and (B.3),
we have

ρn−K(H(r)) = max
dim(U)=n−K

min
x∈U,‖x‖=1

〈H(r)x, x〉

≥ min
x∈col(EA)⊥,‖x‖=1

〈H(r)x, x〉 ≥ 0.
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Therefore the n−K largest eigenvalues of H(r) are non-negative.
It remains to show that the K smallest eigenvalues of H(r) are negative.

From (B.1), (B.2), and a triangle inequality, we have

‖Ĥ(r)‖ ≤ 4d+ C
√
d logn. (B.4)

On the other hand, from (B.2) and Assumption 4.2 we get

λK(rEA) ≥ (1 + ε)
√
d
(
4
√
d+ C

√
logn

)
≥ 4d+ C

√
d logn. (B.5)

Combining (B.4), (B.5), and using the Courant min-max principle again, we
conclude that the K smallest eigenvalues of H(r) are negative, which completes
the proof.
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the Bethe Hessian. Advances in Neural Information Processing Systems 27 ,
pages 406–414, 2014.

[39] D. F. Saldana, Y. Yu, and Y. Feng. How many communities are there?
Journal of Computational and Graphical Statistics, 26(1):171–181, 2017.
MR3610418

[40] T. Tao and V. Vu. Random matrices: universality of esds and the circular
law. Ann. Probab., 38(5):2023–2065, 2010. MR2722794

[41] V. Vu. Random discrete matrices. Horizons of Combinatorics, pages 257–
280, 2008. MR2432537

[42] V. Vu. A simple SVD algorithm for finding hidden partitions. Combina-
torics, Probability and Computing , 27(1):124–140, 2018. MR3734334

[43] K. Wang and P. M. Wood. Limiting empirical spectral distribution
for the non-backtracking matrix of an Erdos-Renyi random graph.
arXiv:1710.11015, 2017.

[44] R. Wang and P. Bickel. Likelihood-based model selection for stochastic
block models. Ann. Statist., 45(2):500–528, 2017. MR3650391

[45] B. Yan, P. Sarkar, and X. Cheng. Provable estimation of the number
of blocks in block models. Proceedings of Machine Learning Research,
84:1185–1194, 2018.

[46] W. W. Zachary. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33:452–473, 1977.

https://arxiv.org/abs/1202.1499
https://www.ams.org/mathscinet-getitem?mr=3383334
https://www.ams.org/mathscinet-getitem?mr=3876880
https://www.ams.org/mathscinet-getitem?mr=2282139
https://www.ams.org/mathscinet-getitem?mr=2282139
https://www.ams.org/mathscinet-getitem?mr=2893856
https://www.ams.org/mathscinet-getitem?mr=3610418
https://www.ams.org/mathscinet-getitem?mr=2722794
https://www.ams.org/mathscinet-getitem?mr=2432537
https://www.ams.org/mathscinet-getitem?mr=3734334
https://arxiv.org/abs/1710.11015
https://www.ams.org/mathscinet-getitem?mr=3650391

	Introduction
	Preliminaries
	The non-backtracking matrix
	The Bethe Hessian matrix

	Spectral estimates of the number of communities
	Estimating K from the non-backtracking matrix
	Estimating K from the Bethe Hessian matrix

	Consistency
	Numerical results
	Synthetic networks
	Real world networks

	Discussion
	Proof of Theorem 4.2
	Spectrum of H
	Spectrum of H+E

	Proof of Theorem 4.3
	References

