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SUMMARY
Primary s70 factors are key conserved bacterial regulatory proteins that interact with regulatory DNA to con-
trol gene expression. It is, however, poorly understood whether s70 sequence diversity in different bacteria
reflects functional differences. Here, we employ comparative and functional genomics to explore the
sequence and function relationship of primary s70. Using multiplex automated genome engineering and
deep sequencing (MAGE-seq), we generate a saturation mutagenesis library and high-resolution fitness
map of E. coli s70 in domains 2–4. Mapping natural s70 sequence diversity to the E. coli s70 fitness landscape
reveals significant predicted fitness deficits across s70 orthologs. Interestingly, these predicted deficits are
larger than observed fitness changes for 15s70 orthologs introduced into E. coli. Finally, we use amultiplexed
transcriptional reporter assay andRNA sequencing (RNA-seq) to explore functional differences of severals70

orthologs. This work provides an in-depth analysis of s70 sequence and function to improve efforts to under-
stand the evolution and engineering potential of this global regulator.
INTRODUCTION

Bacterial gene expression is coordinated through interactions

between cis-regulatory DNA sequences and trans-regulatory

proteins to facilitate cell growth, adaptation, and response to

external stimuli (Browning and Busby, 2016; Phillips et al.,

2019). During transcription, regulatory proteins recognize

sequencemotifs in the 50 regulatory regions (e.g., promoters) up-

stream of protein-encoding genes to control their expression. A

key class of regulatory proteins in bacteria is the sigma factors

that control many essential functions in the cell. To coordinate

gene expression, sigma factors interact with an RNA polymerase

(RNAP) core enzyme (consisting of a2bb
0u subunits) to form the

RNAP holoenzyme and directs the complex to promoter regions

by recognizing specific regulatory signatures (Feklı́stov et al.,

2014; Paget and Helmann, 2003). There, sigma factors unwind

the DNA duplex and facilitate transcription initiation. Sigma fac-

tors are classified into either s70 or s54 protein families. The s70

protein family contains primary (group 1) and alternative (group

2–4) sigma factors and recognizes the �10/�35 promoter mo-

tifs. The s54 protein family has a different recognition domain

that recognizes the�12/�24 promoter motifs and is functionally,

structurally, and evolutionarily distinct from s70 (Merrick, 1993).

In most bacteria, the primary s70 protein is known as rpoD or

sigA and controls the expression of the largest fraction of genes

in the cell. The remaining alternative s70 factors regulate more

targeted cellular functions such as flagellar proteins or re-

sponses to environmental stressors (Feklı́stov et al., 2014; Paget
This is an open access article under the CC BY-N
and Helmann, 2003). In E. coli, the primary s70 factor accounts

for 60%–95%of all sigma factors present in the cell during expo-

nential growth and binds to >50% of all sigma factor binding

sites across the genome (Gama-Castro et al., 2016; Grigorova

et al., 2006; Ishihama, 2000).

Theprimarys70 factor encodes four conservedprotein domains

(Feklı́stov et al., 2014; Paget and Helmann, 2003). Domain 1 plays

an inhibitory role, preventing frees70 proteins frombinding toDNA

while not in complexwith the rest of the RNAP subunits. Domain 2

recognizes the�10promotermotif and facilitatesunwindingof the

DNA duplex for transcription initiation, while domain 3 interacts

with the extended�10promotermotif. Domain 4mediates recog-

nition of the �35 promoter motif. Since primary s70 is highly

conserved across bacteria, promoter motifs similar to the canon-

icalE.colis70motif havebeen reported fromdiversebacterial spe-

cies (Bottacini et al., 2017; Domı́nguez-Cuevas and Marqués,

2004; Jeong et al., 2016; Moran et al., 1982; Rosinski-Chupin

et al., 2015; Sharma et al., 2010). However, s70-associated regu-

latory sequencescanbequitediverseevenwithinasinglegenome

such that any single sequence motif will not necessarily predict

transcriptional output (Urtecho et al., 2019).

Changes to primary s70 factors have been shown to alter the

cellular transcriptome. Mutants of the E. coli s70 generated

through laboratory evolution exhibited genome-wide transcrip-

tional changes that yielded novel cellular phenotypes such as

improved tolerance to environmental stresses (Alper and Stepha-

nopoulos, 2007). Furthermore, many point mutations in s70

domain 2 or 4 have been generated and characterized in the
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Table 1. E. coli strains with s70 orthologs

Strain Class Genus Residue differences Expected aggregate fitness Measured fitness

EcJP1 Gammaproteobacteria Yersinia 3 0.968 0.957

EcJP2 Gammaproteobacteria Vibrio 9 0.985 0.999

EcJP3 Gammaproteobacteria Pseudomonas 17 0.943 1.020

EcJP4 Gammaproteobacteria Stenotrophomonas 26 0.924 0.948

EcJP5 Gammaproteobacteria Acinetobacter 31 0.864 0.953

EcJP6 Gammaproteobacteria Psychrobacter 31 0.820 0.961

EcJP7 Gammaproteobacteria Burkholderia 38 0.640 0.978

EcJP8 Betaproteobacteria Nitrosomonas 38 0.760 1.043

EcJP9 Betaproteobacteria Oligella 50 0.709 0.950

EcJP10 Betaproteobacteria Acetobacter 37 0.687 0.750

EcJP11 Alphaproteobacteria Brucella 40 0.636 0.811

EcJP12 Alphaproteobacteria Rhizobium 40 0.618 0.762

EcJP13 Alphaproteobacteria Sphingomonas 44 0.572 0.797

EcJP14 Deltaproteobacteria Myxococcus 51 0.488 0.479

EcJP15 Actinobacteria Bifidobacterium 96 0.099 0.469
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past several decades (Gardella et al., 1989; Siegele et al., 1989;

Waldburger et al., 1990). These studieshighlighted that singlemu-

tations in functional domains alone were sufficient to elicit altered

gene expression patterns from various model regulatory se-

quences. Furthermore, heterologous expression of as70 ortholog

inE. colialso resulted in recognitionof non-native regulatoryDNA,

highlighting the flexibility of many s70 factor orthologs to interact

with RNAP to recognize non-native transcriptional signatures

(Gaida et al., 2015; Tomko and Dunlop, 2017). While these results

suggest that s70 can be evolved or engineered to tune transcrip-

tion in a variety of ways, the impact of specific s70 mutations on

the global transcriptome is still not fully understood.

Here, we performed systematic computational and high-

throughput experimental studies to profile the sequence-func-

tion relationship of s70 and its impact on host gene expression

and fitness. Using comparative genomics, we first explored the

evolutionary diversity of s70 across the tree of life to understand

the functional conservation of key residues and domains of this

global regulator. We then employed deep mutational scanning

to systematically dissect the impact of individual residue muta-

tions on s70 function in E. coli to build out the most comprehen-

sive experimentally generated fitness landscape of a bacterial

s70 to date. Variants from these fitness measurements could

be mapped to natural s70 orthologs to assess functional selec-

tion during s70 evolution. Replacement of the endogenous

E. coli s70 with natural orthologs revealed large-scale transcrip-

tome rewiring that could be further probed using a multiplexed

transcriptional reporter assay to dissect determinants of

transcription. These results offer a high-resolution map of the

evolutionary landscape of a bacterial primary s70 factor and its

transcriptomic function during evolution.

RESULTS

Evolutionary diversity of s70 across bacteria
We first sought to systematically profile bacterial s70 diversity by

mining group 1 s70 orthologs of E. coli RpoD from the KEGG or-
2 Cell Reports 36, 109590, August 24, 2021
tholog database (Kanehisa et al., 2016; see STAR Methods),

which yielded �4,700 sequence variants from mostly Proteo-

bacteria (�42.6%), Firmicutes (�15%), Actinobacteria (�15%),

and Bacteroidetes (�8%). A phylogenetic tree based on multiple

sequence alignment (MSA) of these s70 orthologs closely reca-

pitulated the phylum- and class-level organizations of their

respective genomes of origin (Figure S1A). In addition, the phylo-

genetic distances between E. coliRpoD and s70 orthologs corre-

lated well with the 16S divergence of E. coli to their correspond-

ing bacteria, as expected for a conserved protein that has also

been used as a phylogenetic marker (Gruber and Bryant, 1997;

Figure S1B). At the residue level, the highest amino acid conser-

vation (as measured by Jensen-Shannon divergence; Capra and

Singh, 2007) was observed in RpoD throughout domains 2–4,

but not in domain 1, with the exception of domain 1.2 (Figure 1A).

These evolutionary conservation patterns reflect key functional

regions of RpoD, with domain 2 (residues 379–449) binding to

the �10 promoter motif and unwinding the DNA duplex, domain

3 (residues 458–535) interacting with the extended �10 motif,

and domain 4 (residues 547–600) binding to the �35 motif (Fe-

klı́stov et al., 2014; Paget and Helmann, 2003). Next, we used

the E. coli RpoD, one of the most extensively studied primary

s70 orthologs (others being SigA from Thermus aquaticus; Feklis-

tov and Darst, 2011; Murakami and Darst, 2003; and Mycobac-

terium tuberculosis; Manganelli et al., 2004; Rodrigue et al.,

2006) as a ‘‘reference sequence’’ to study s70 sequence diver-

sity, in part also because of the possibility to experimentally alter

E. coli RpoD by genome engineering. Each of the four s70 do-

mains in diverse RpoD orthologs had varying amounts of residue

differences (i.e., substitutions) from E. coli RpoD (Figure 1B). Do-

mains 2 and 4 had the lowest fraction of residue differences,

which reflected strong evolutionary conservation in these do-

mains. Furthermore, the degree of residue differences in each

domain was well correlated with the 16S phylogenetic distances

of s70 orthologs to E. coli as well as the full-length s70 phyloge-

netic distances to E. coli s70 (Figures S2A and S2B). Given the

functional importance and high evolutionary conservation of



Figure 1. Evolutionary sequence analysis of primary s70 orthologs

(A) Evolutionary conservation of primary s70 (by Jensen-Shannon divergence) based on alignment of 4,702 s70 sequences. Residue positions are based on E. coli

s70 with different domains shown (s70
1, s

70
2, s

70
3, and s70

4).

(B) Distribution of amino acid substitution counts of s70 orthologs for domains 2–4 compared to the E. coli s70 sequence. Colors in each bar correspond to

ortholog host phylogeny at the phylum level, with the exception of Proteobacteria, which are separated at the class level.

(C) Cumulative distribution of orthologs clustered to 90% sequence identity for each domain.

(D) Pairwise comparisons of substitution count ratios between s70 domains. Dashed lines denote 1:1 ratio.
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domains 2–4, we limited our subsequent analyses and studies to

these domains (matching to amino acid positions 379–613 of

E. coli RpoD) and used a subset of 2,833 unique RpoD variants.

The distribution of residue differences in domain 2 of s70 or-

thologs exhibited three distinct peaks centered on zero, �15,

or �33 substitutions, which suggests three major branches of

sequence variants. Comparatively, a more uniform distribution

of substitutions was observed in domains 3 and 4, with peaks

near the median residue difference counts, corresponding to

�35 and �20 substitutions, respectively. Next, we sought to

further analyze domain-level diversity with amore unbiased anal-

ysis method that does not depend on a starting reference

sequence variant. By clustering domain sequences by similarity,

we observed that in domain 2 majority of orthologs (1,575 out of

2,833) could be captured by four major sequence clusters map-

ping to Proteobacteria, Firmicutes, Actinobacteria, and Bacter-

oidetes (Figure 1C). As expected, domains 3 and 4, on the other

hand, required additional sequence clusters to capture diversity

of similar number of orthologs as domain 2. These analyses sug-

gest that molecular evolution in domains 3 and 4 produced a

more continuous spectrum of sequence variations than that in

domain 2. Lastly, the number of unique amino acids observed
at each residue position across domains 2–4 also showed that

domain 2 residues had access to fewer unique amino acids

compared to residues in domains 3 or 4 (Figure S2C).

To better understand inter-domain s70 evolution, we per-

formed pairwise comparisons of the substitution ratios between

domains (Figure 1D). Substitution ratios were calculated by

dividing substitution counts in each domain by the length of its

specific s70 domain; this normalization allowed us to compare

the degree of substitution between domains. Higher substitution

ratios were observed in domain 3 than in domain 4, and higher

ratios were observed in domain 4 than in domain 2. This obser-

vation suggests that, compared to E. coli RpoD as reference,

phylogenetically closest orthologs have only domain 3 diversity,

more distant orthologs have greater domain 3 and 4 diversity,

and the most phylogenetically distant orthologs exhibit diversity

in all three domains. As functionally important residues are more

likely to have fewer viable substitutions available, the observed

domain diversity pattern may reflect functional ordering of s70

domains, with domain 2 being more important than domain 4

and domain 4 being more important than domain 3. Lastly, to

map and compare domain divergence against phylogenetic di-

versity, we compared substitution ratios of each domain
Cell Reports 36, 109590, August 24, 2021 3
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stratified by phyla (Figure S3A) and found that domain-specific

relationships between substitution ratios and phyla were largely

similar among all three domains. These results highlight impor-

tant domain-specific patterns of sequence diversity reflecting

evolutionary diversification of s70.

Next, we explored whether various genomic signatures could

help explain the observed patterns of s70 diversity. While

genomic GC content has a strong influence on gene expression

(Johns et al., 2018), we did not observe any relationship between

GC content and RpoD residue substitution patterns (Figure S3B).

We then analyzed the cis-regulatory regions (i.e., upstream of

start codons), which are bound by s70 during transcription initia-

tion, to determine if sequence motifs identified in the cis-regions

correlated with s70 diversity. Sequences upstream of putative

s70-regulated genes in diverse bacteria were used to predict

s70-associated regulatory sequence motifs using BioProspector

(Liu et al., 2001; see STAR Methods). Hierarchical clustering of

the motif score correlations showed that as expected, many

bacteria used similar canonical �10 and �35 s70 motifs, while

some had more divergent motifs (Figure S3C). Interestingly, we

observed aweak but significant inverse relationship between de-

gree of similarity to the E. coli �10/�35 motif and degree of

divergence from E. coli RpoD (Figure S3D). At the domain level,

domain 4 showed the strongest relationship between RpoD

conservation and motif similarity, suggesting that this domain

co-evolved with the regulatory DNA more than the other do-

mains. Together, our results so far provide insights into global

s70 evolution from a comparative genomics lens that could be

further contextualized with systematic experimental data to

reveal relationships between s70 sequence and function.

Systematic dissection of the E. coli s70 fitness
landscape
To better understand the functional differences between s70 var-

iants, we sought to systematically profile its sequence-function

relationship by high-throughput mutagenesis and phenotypic

measurements. Because s70 initiates a majority of cellular tran-

scripts during exponential growth, cellular fitness is significantly

affected by any s70 mutations that alter its function as a global

transcription factor. To systematically interrogate the impact of

s70 mutations on cellular fitness and gene expression, we used

the E. coli RpoD as a model and targeted the single-copy rpoD

gene in the E. coli genome for saturation mutagenesis. We previ-

ously showed that high-efficiency oligo-recombineering enables

direct genomic mutagenesis and fitness measurements of essen-

tial genes in a pooled format (Kelsic et al., 2016). Accordingly, we

used MAGE-seq (multiplex automated genome engineering and

deepsequencing;Wanget al., 2009) to generate a comprehensive

mutagenesis library of RpoD along domains 2–4, the most func-

tionally interesting regions (Figures S4A and S4B). 236 MAGE oli-

gos were designed to each target a single-residue position tiled

across domains 2–4 (residues 379–613 and stop codon) of

RpoDwith degenerateNNN sequences to create all 64 codon var-

iants (see STAR Methods). This oligo library yielded a total of

�15,000 nucleotide variants or �4,700 amino acid variants. After

six rounds ofMAGE inE. coli using this oligo library, the rpoD gene

was amplified from the mutagenized cell population by PCR and

analyzed by deep sequencing, which showed that �18% of the
4 Cell Reports 36, 109590, August 24, 2021
population carried single-codon rpoDmutations (Figure S4C). Af-

ter correcting for sequencing errors (STARMethods; Figure S4D),

14,576 out of 14,868 total possible variants could be detected in

the population, representing a >98% coverage of the mutational

sequence space.

To determine the fitness of individual rpoD variants, we per-

formed pooled growth competition on the mutagenized popula-

tion over time. Competition experiments were carried out in a

turbidostat with at least 108 cells under exponential growth to

prevent population bottlenecks and maintain a constant growth

selection pressure. The cell population was sampled at regular

intervals, and rpoD variant frequencies were assessed by deep

sequencing. The relative fitness of each mutant was determined

by fitting the relative change in variant frequency over time to a

log-linear regression compared to wild-type (WT) rpoD (Fig-

ure S4B). A fitness of 1 meant that a mutant had an equivalent

growth rate as WT RpoD, while a fitness of 0 represented no

measurable growth and subsequent loss from the population

at the turbidostat dilution rate. These growth measurements

yielded a near-comprehensive fitness landscape of all single-

codon variants of RpoD (Figures 2A, S5A, and S5B).

The RpoD fitness map showed both expected and novel fea-

tures of the protein. As anticipated, premature stop codons had

a lowmean fitness of 0.23, with a standard deviation of 0.25 (Fig-

ure S5C). The non-zero fitness of premature stop codons could

be attributed to experimental noise at low-growth regimes and

residual RpoD proteins that may have contributed to some back-

ground growth. Interestingly, premature stop codons were toler-

ated in the last three residues, suggesting that RpoD could

support C-terminal truncations of the last three residues without

any negative functional impact. On the other hand, sense muta-

tion of the WT rpoD stop codon showed reduced fitness, sug-

gesting that a C-terminal translational run-on is not well tolerated

(i.e., the next in frame downstream stop codon is 49 residues

away). As expected, synonymousmutations showed little fitness

impact, while non-synonymous mutations had a wide range of

fitness effects (Figure S5D). Notably, proline substitutions, which

increase conformational rigidity and often significantly change

protein secondary structure, exhibited low fitness throughout

RpoD. Using principal-component (PC) analysis, we further as-

sessed the global biochemical determinants of RpoD and found

that the first four PCs could explain �85% of the variance in the

fitness data (Figure S6). These PCs matched key amino acid

biochemical properties including free energy (PC1), hydropho-

bicity (PC2), steric hinderance or size (PC3), and helices (PC4).

To better assess the RpoD fitness landscape, we analyzed its

distribution of fitness effects (DFEs) (Figure 2B). The RpoDDFE is

bimodally distributed, with a narrow fitness peak centered near 1

(i.e., neutral mutations) and a wide fitness peak centered at

�0.25 (i.e., detrimental mutations) (Figure S5B). From other sys-

tematic mutagenesis studies (Firnberg et al., 2014; Jacquier

et al., 2013; Kelsic et al., 2016; Konaté et al., 2019; Sarkisyan

et al., 2016; de Visser and Krug, 2014), bimodal DFEs are

commonly observed in fitness landscapes of many proteins

that are essential for cellular function, confer antibiotic resis-

tance, or produce fluorescence. Using a fitness threshold of

0.95 (i.e., 3 standard deviations below themean fitness of synon-

ymous mutations) to separate between neutral (R0.95) and
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Figure 2. Mapping the fitness landscape of E. coli s70

(A) Fitness landscape of E. coli s70 at residues 379–613 profiled by MAGE-seq. Columns of the heatmap correspond to positions along the s70 protein and rows

correspond to all 20 amino acid residues plus stop codons (*). Open circles denote the wild-type E. coli s70 residue at each position. Gray squares denote data not

available. Regions of structured alpha helices, relative solvent accessibility, and average fitness at each residue position are displayed above the heatmap.

(B) Histogram of the distribution of fitness effects (DFEs) for each s70 domain. Dotted lines denote fitness of 0.95, deemed as the separation between neutral and

detrimental fitness.

(C) Scatterplot of s70 evolutionary conservation and mean fitness for each residue position. Neutral residues (fitness R 0.95) are displayed in gray, while

detrimental residues (fitness < 0.95) are colored by their respective domains. Colored dash lines indicate linear regressions of detrimental residue positions in

each domain.

(D) Protein structure of s70 (ribbon model) bound to an open DNA complex (stick model) using PDB: 6CA0. Red color scale represents mean fitness at each

residue position on the s70 structure; dark gray regions are residues not profiled with MAGE-seq.
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deleterious (< 0.95) mutations, we find that 52.9% of RpoD mu-

tants were deleterious. In comparison, 48% and 38% of muta-

tions in essential proteins IF1 andDHFR, respectively, were dele-

terious based on similar MAGE-seq fitness measurements

(Kelsic et al., 2016; Konaté et al., 2019). At the domain level,

70.9% of domain 3 mutations were near neutral (R0.95)

compared to 22.4% and 36.6% for domain 2 and domain 4,

respectively (Figure 2B). Therefore, the mutational paths that

do not yield significant negative fitness effects are notably

more restricted in domains 2 and 4 than in domain 3.

The mutational fitness patterns of E. coli RpoD also matched

natural RpoD evolution. Generally, neutral residues are not

evolutionarily conserved, while functionally important residues

are highly conserved. As expected, plotting the mean fitness of

all amino acid substitutions against the evolutionary conserva-

tion for each residue position revealed an inverse correlation

(Figure 2C). To determine the relationship between mean fitness

of substitutions and conservation between RpoD domains, we

compared the linear regression slopes of non-neutral (mean

fitness < 0.95) residues in each domain. Upon further stratifica-

tion by domain, we observed that the slopes between fitness

and conservation were different between domains. Domain 3

had the flattest slope (�0.65 ± 0.22) followed by domain 2

(�1.26 ± 0.45) and then domain 4, which had the steepest slope

(�2.12 ± 0.34). These slopes suggest that fitness impacts

differed between domains for residues with similar degrees of

conservation. As such, different selective forces may be driving

the evolution of each RpoD domain separately.
We next sought to better contextualize the RpoD fitness land-

scape at a residue position level resolution by leveraging the

wealth of structure-function literature available for primary s70.

First, to facilitate straightforward comparisons between litera-

ture-derived functional residues and fitness landscape derived

functional residues, we applied hierarchical clustering to the

fitness landscape, yielding three discrete types of residue posi-

tions, with 37 positions (15% of the protein) being highly delete-

rious (almost all substitutions exhibit fitness costs), 76 positions

(33%) being variably deleterious (some amino acid substitutions

exhibit fitness costs while others are neutral), and 118 positions

(51%) being near neutral (most substitutions are neutral) (Fig-

ure S7A). From the literature, a set of 63 residue positions that

been reported to be important for RpoD function was compiled

(Bae et al., 2015; Campbell et al., 2002; Feklistov and Darst,

2011; Feng et al., 2016; Fenton et al., 2000; Hook-Barnard and

Hinton, 2007; Panaghie et al., 2000; Zhang et al., 2012; Fig-

ure S7B). One of the core RpoD function is�10motif recognition,

which is mediated through residues in domain 2. Specifically, the

stretch of residues between positions 383 and 389, which is

known to mediate interactions with the �7 position of the �10

motif, and positions 414–429, which are reported to mediate in-

teractions with the �12 and �11 position, were regions associ-

ated with high fitness defects. DNA duplex unwinding at

the �10 motif is mediated through the two tryptophan residues

at 433 and 434; mutagenesis of residue 433 yielded highly dele-

terious phenotypes (no variants with mutations at position 434

were recovered). Furthermore, the extended �10 motif, is
Cell Reports 36, 109590, August 24, 2021 5
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another cis-regulatory motif that can regulate transcription,

especially for promoters that lack a �35 motif (Paget and Hel-

mann, 2003). This interaction is mediated by residues 455H

and 458E, both of which were associated with highly deleterious

phenotypes, highlighting that the extended�10motif interaction

is a critically important function of RpoD in E. coli. In domain 4,

which recognizes and binds to the �35 motif, the fitness land-

scape confirmed the previously known functional importance

of arginine rich regions 583–589, all of which displayed highly

deleterious fitness costs (Figure S7C). Additionally, RpoD also

interacts with the core RNAP through various residues across

all three domains, including 384L, 387V, and most residues be-

tween 402 and 413 in domain 2; 504P and 506S in domain 3;

and 563F, 565I, and 598L in domain 4. Almost all of these resi-

dues, which included many branched chain amino acids, had

highly or variably deleterious phenotypes, illustrating that these

RNAP interaction residues are functionally important at a sin-

gle-residue level. Overall, of the 63 residues compiled from the

literature, we confirmed fitness defects for all residues except

for 7; of these 7 residues, 1 was related to core binding (487M)

(Campbell et al., 2002), 2 were related to DNA duplex binding

(401F and 446Q) (Fenton et al., 2000; Zhang et al., 2012), and

4 were related to �3 and �4 non-template strand binding resi-

dues (514D, 516D, 517S, and 522F) (Zhang et al., 2012). While

these residues still may be associated with proper RpoD func-

tion, we did not observe any fitness effects associated with

disruption of these positions through single-residue mutagen-

esis. Together, these data highlight that specific residues the

DNA-binding structural elements as well as core RNAP binding

are major determinants of sigma factor impact on cellular fitness

(Figures 2D and S7D).

Importantly, the fitness landscape also identified residues with

fitness effects that were not compiled in our literature search.

Domain 2 residues 408G, 411G, 415A, 431A, 450I, and 453P

and domain 4 residues 576V, 577G, 582V, 590I, and 591E all ex-

hibited highly deleterious phenotypes. For domain 2 residues,

we suggest potential associated functions based on nearby an-

notated residues, including 408G, 411G, and 415A for core

RNAP-binding-related functions; 431A for proper �10 motif

DNA melting; and 450I and 453P for proper extended �10 pro-

moter motif interaction. Domain 4 residues were all located

within the helix-turn-helix motif mediating the�35motif recogni-

tion. Furthermore, of the 76 variably deleterious residue posi-

tions identified through MAGE-seq, only 28 residue positions

had been known to be functional, meaning 48 novel functional

residue positions were potentially discovered. Together, our

RpoD fitness landscape map paints a rich residue-level picture

of protein function and evolutionary diversity.

Predicting fitness landscapes of s70 orthologs
Given that the primary s70 factor has rich sequence diversity

across bacterial genomes yet has highly conserved essential

functions, we explored ways to functionally map diverse s70 or-

thologs at the sequence level. We assumed that within a

genome, the native s70 protein has evolved to a near-optimal

sequence. Thus, we wondered whether the protein fitness land-

scapes of different s70 orthologs (as measured by global cellular

fitness) were similar and if we could use the E. coli RpoD satura-
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tion mutagenesis data to assess the fitness impact of sequence

variations in different orthologs. We first took the subset of 2,833

unique s70 orthologs from the �4,700 sequence set and identi-

fied residue differences compared to the E. coliRpoD sequence.

A total of 236,101 residue differences (i.e., variants) were found,

with an average of �83 residue variants per ortholog. We then

mapped each ortholog residue variant to the E. coli RpoD fitness

values generated from the saturation mutagenesis data to

assess fitness of observed natural residue variants. In general,

the majority of variants exhibited a fitness values of R0.95

across domains 2–4 (Figure 3A), suggesting that mostly residues

with near-neutral fitness impact were observed in s70 orthologs.

Interestingly, �21% of residue variants had lower fitness values

(<0.95) compared to 53% of all possible variants. At the individ-

ual-domain level, domain 4 (33%) had more residues with lower

fitness than domain 2 (30.4%) and domain 3 (14%) compared to

all possible domain variants (63%, 78%, and 29%, respectively)

(Figure S8A). This result implies that domain 4 acquired seem-

ingly deleterious mutations more frequently than expected, as

compared to domains 2 and 3. Furthermore, we find that evolu-

tionarily distant orthologs (measured in 16S divergence) tended

to accumulate more deleterious mutations (Figure 3B).

To assess how observed residue variants behave together in

an ortholog, we explored a simple ‘‘additive’’ fitness model. We

calculated the expected aggregate fitness of each ortholog by

integrating the fitness values of individual residue variants

together, under the assumptions that residues do not interact

and that each residue’s function is independent of one another.

In this simple model, the expected aggregate fitness is the prod-

uct of fitness values of all observed residues in each ortholog

(Figure S8B). For example, the expected aggregate fitness of

an ortholog with four observed residue variants, each with a

fitness value of 0.99, 1.01, 0.90, and 0.80, would be 0.72

(0.993 1.013 0.903 0.80). We calculated the expected aggre-

gate fitness for the 2,833 s70 orthologs and plotted these values

against their sequence diversity as measured by the number of

residue differences with E. coli RpoD (Figure 3C). Interestingly,

orthologswith fewer than 20 residue differences had near-neutral

expected aggregate fitness values (R0.95). Orthologs with more

diversity (>20 residue differences) had lower expected aggregate

fitness values, ranging down to 0.01 for the most distant ortho-

logs (>100 residue differences or less than�57%sequence iden-

tity to E. coli). These results suggest that neutral mutations are

more often observed in phylogenetically similar organisms, while

more distant organisms can contain seemingly deleteriousmuta-

tions. To contextualize this pattern to a naive model, we gener-

ated synthetic orthologs of varying degrees of sequence diversity

to E. coli RpoD with random residue differences and calculated

their aggregate fitness (Figure 3C). As expected, the aggregate

fitnessof natural orthologswasmuchhigher than that of synthetic

orthologs across all sequence diversity distances.

We also calculated domain-level aggregate fitness and found

distinct domain-specific patterns. Particularly, the aggregate

fitness for domain 4 reached a lower value relatively faster than

domain 2, suggesting that more seemingly deleteriousmutations

are acquired faster (Figure S8B). This result was somewhat sur-

prising given that overall, domain 2 mutations in general had

lower individual fitness values than domain 4 mutations. Upon
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Figure 3. Fitness predictions of orthologous s70 sequences using E. coli s70 fitness landscape

(A) DFEs of residue variants observed in natural ortholog sequences (top) compared to DFEs of all possible single-residue mutations in s70 (bottom). Fitness

threshold of 0.95 is designated by the dotted line.

(B) Plot of residue fitness in s70 orthologs versus binned 16S phylogenetic distance to E. coli showing higher fraction of deleterious fitness variants at greater

evolutionarily distance from E. coli.

(C) Blue boxplots show expected aggregate fitness (EAF) distributions of natural orthologs (pink) with increasing binned number of residue differences to E. coli

s70. Fitness at 0.95 is denoted by the dotted line. Gray boxplots show null EAF distributions of synthetically generated s70 sequences with random mutations at

each residue difference bin.

(D) EAF for each s70 domain against the total binned number of residue differences across domains 2–4.
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plotting the domain-level aggregate fitness against sequence di-

versity across the entire ortholog (i.e., domains 2–4), we found

that domain 2, and to some extent domain 4, contained residue

variants that impacted aggregate fitness in more distant ortho-

logs (Figure 3D). Even thoughmany orthologs had low calculated

aggregate fitness, we expected all s70 orthologs to be optimally

fit for their respective natural genetic backgrounds (e.g., fitness

of 1). Therefore, we can consider a ‘‘fitness deficit’’ metric for

each ortholog compared to E. coli RpoD through a simple trans-

formation of (1� expected aggregate fitness). This fitness deficit

can arise from differences in the fitness landscapes between the

ortholog and the E. coli RpoD due to compensatory or epistatic

mutations. We speculate that neutral mutations may alter the

fitness landscape to facilitate otherwise detrimental mutations

that incur prohibitive fitness costs. In turn these results suggest

that domain 3 residue variants, which are observed more

frequently in closely related organisms to E. coli, may explain

the fixation of seemingly detrimental mutations observed in

more distant orthologs.

Functional characterization of s70 orthologs in E. coli

In previous studies, s70 orthologs heterologously expressed on a

plasmid led to changes in host gene expression, showing that or-

thologs could interact with non-native transcriptional machinery

(Gaida et al., 2015; Tomko andDunlop, 2017). Tomore rigorously
measure the degree of functional conservation of s70 orthologs

in a non-native host, we replaced the endogenous E. coli

RpoD with different RpoD sequences from other bacteria and

measured growth and transcriptional changes in the resulting

strains. For s70 orthologs with high functional conservation to

E. coli s70, we expected minimal growth and transcriptional

changes. On the other hand, differences in growth rate and tran-

scriptional responses would reflect differences in s70 function.

We used recombineering and CRISPR selection to replace the

chromosomal E. coli RpoD with orthologs from diverse bacteria

(see STAR Methods). E. coli mutants (EcJP1-15), each carrying

one of 15 orthologs with 3- to 96-residue differences from

E. coli RpoD, were successfully generated (Table 1). These or-

thologs represented a diverse panel of s70 sequences mostly

belonging to Proteobacteria (six Gammaproteobacteria, four Al-

phaprotepbacteria, three Betaproteobacteria, and one Deltapro-

teobacteria) and one Actinobacteria (Figure S9A) and contained

residue differences of varying fitness impacts (Figure 4A).

Tomeasure the global fitness impact of each ortholog on E. coli

growth, we pooled all strains with the WT E. coli and grew them in

a turbidostat. Sampling from the population over time and ampli-

con sequencing the rpoD region yielded relative fitness measure-

ments of eachs70 ortholog, which showed high correlation across

two independent competition assays, and also matched growth

rates derived from individual growth assays (Figure S9B). We
Cell Reports 36, 109590, August 24, 2021 7
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Figure 4. Characterization of orthologous s70 sequence variants in E. coli

(A) Residue-level fitness map in the 15 s70 orthologs measured in E. coli.

(B) Plot of EAF of eachs70 ortholog and their measured fitness in E. coli. Measured fitness values represent the average from two independent fitness competition

experiments.

(C) Plot of fitness differential (measured fitness minus EAF) and proportion of residue differences of orthologs from E. coli RpoD.

(D) Number of differentially expressed genes in Mx s70 and Ou s70 transcriptomes compared to Ec s70.

(E) The number and grouping of essential genes that are differentially upregulated or downregulated in Mx s70 and Ou s70.
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compared the measured fitness with the expected aggregate

fitness derived from the saturation mutagenesis data and found

a good positive correlation (Figures 4B and S9C). We noted that

the measured fitness values were generally higher than the ex-

pected aggregate fitness values, which implied that residue differ-

ences in orthologs had positive synergistic effects on fitness.

Importantly, this fitness differential (i.e., fitness differencebetween

expected aggregate fitness and measured fitness) positively

correlated with the number of residue differences (Figure 4C).

Furthermore, we analyzed the evolutionary coupling scores for

all pairs of residue positions in rpoD in an attempt to identify

strongly coupled residue positions that might explain the differ-

ences between measured and predicted fitness. While we

observed that the sum of evolutionary coupling scores of ortho-

logs correlatedwith fitness differentials as expected, no individual

residue pairs made significant contributions to the coupling score

sum, suggesting that it was the cumulative effects of weakly

coupled residue pairs that yielded the observed fitness differen-

tials (Figure S9D). These results demonstrate that distant ortho-

logs can function in a non-native host and that synergistically

beneficial interactions between residues likely buffer against

otherwise deleterious mutations as sequences diverge over time.

To further probe the effects of s70 orthologs on cellular fitness,

we performed detailed gene expression profiling on two strains

(EcJP9 and EcJP14) that contained a s70 ortholog derived from

either Myxococcus xanthus (Mx s70) or Oligella urethralis (Ou

s70). While these orthologs had a similar number of residue differ-

ences from E. coli s70 (51 for Mx s70 and 50 for Ou s70), their

measured fitness differentials were quite different. Mx s70 ex-

hibited a low measured fitness (�0.49), similar to its expected

aggregate fitness (�0.48). In contrast, Ou s70 exhibited a high
8 Cell Reports 36, 109590, August 24, 2021
measured fitness (�0.95), while its expected aggregate fitness

was much lower (�0.71). We therefore performed RNA

sequencing (RNA-seq) of the Mx s70 and Ou s70 strains to profile

their transcriptional changes compared to WT E. coli (Ec s70)

across biological replicates. Interestingly, compared to Ec s70,

the number of differentially expressed genes (DEGs) for Ou s70

was fewer than the number of DEGs for Mx s70 (Figures 4D and

S10A), in line with what might be expected from the measured

fitness data. Accordingly, the transcriptome of Ou s70 was also

more similar to Ec s70 than that of Mx s70 (Figure S10B).

In general, about three times more DEGs were observed in

Mx s70 than in Ou s70, but there was not a big difference in

the direction of gene expression change (approximately half

were upregulated and half were downregulated) (Figures 4D

and S10C). Among the �300 essential E. coli genes (Baba

et al., 2006), both Mx s70 and Ou s70 upregulated a similar num-

ber of essential genes (8 for Mx and 5 for Ou), while Mx s70

downregulated 33 essential genes compared to just 2 in Ou

s70 (Figure 4E). The larger number of downregulated essential

genes in Mx s70 likely contributed to the significant fitness

decrease observed in the strain. While it might have been ex-

pected that the transcriptional differences in Mx s70 and Ou

s70 could be due to differences in their respective optimal s70

binding motif, we could not identify any significant motif differ-

ences from the regulatory regions of their DEGs. Together,

these results highlight the complex functional and fitness con-

straints that shape s70 evolution in bacteria.

Transcriptional activation potential of s70 orthologs
To more deeply profile the global transcriptional changes due to

different s70 factors in E. coli, we utilized a multiplexed reporter



Figure 5. Multiplexed transcriptional mea-

surements of a metagenomic regulatory

sequence library in E. coli strains with or-

thologous s70

(A) Distribution of normalized Tx values of regula-

tory sequences transcribed by strains expressing

Ou s70 (EcJP9), Mx s70 (EcJP14), and Ec s70.

Regulatory sequences grouped by their genomic

origins is shown in the boxplots in each graph.

(B) Expression fold change by Ou s70 and Mx s70

normalized to Ec s70 data (statistical significance

based on KS test; p values shown in key).

(C) Relationship between GC content and Tx

values of regulatory sequences using different s70

proteins. Linear regression for each dataset is

plotted.
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assay to characterize the activity of a library of diverse regulatory

sequences in strainsEcJP9 (Ous70), EcJP14 (Mxs70), andEcNR2

(Ec s70). Measurement of non-native regulatory sequences in

E. coli that possess alternatives70 orthologs allowed us todirectly

determinedifferences ins70 specificity or function independent of

the endogenous regulatory network. We thus mined for 50 inter-
genic sequences that are >100 bp in the E. coli, M. xanthus, and

O. urethralis genomes to yield a library of �6,000 regulatory se-

quences (Figure S11A; see STARMethods). This library was syn-

thesized as a pool of barcoded oligonucleotides, cloned into a

reporter vector, and transformed into strains EcJP9, EcJP14,

and EcNR2, which possessed different s70 factors (Figure S11B).

We next performed targeted DNA sequencing (DNA-seq) and

RNA-seq to yield relative abundance measurements of DNA

and RNA levels that were then used to compute a relative tran-

scription activity (Tx value) for each regulatory sequence. Tx

values were normalized to qPCR-derived expression levels of

an invariant control gene, infC, which enabled comparisons of

Tx activity between different E. coli strains (i.e., TxO, TxM, and

TxE). These Tx measurements showed high correlation between

replicates (both biological and barcode replicates) (Figure S11C)

and with qPCR-based expression measurements (Figure S11D)

and spanned over three orders of magnitude.

Comparing s70 orthologs, we observed that the median TxM
was lower than the median TxE or median TxO (Figure 5A), sug-

gesting that Mx s70 had lower transcriptional output overall,

which is in agreement with its observed reduced fitness

(�0.49). Interestingly in all orthologs, regulatory sequences
C

derived from the Ou genome had the

highest expression, followed by Ec- and

Mx-derived sequences. Given the

genomic GC content of Ou, Ec, and Mx

(46%, 50%, and 69%, respectively), our

observed Tx trends are in agreement

with previous studies that found that

lower GC regulatory sequences yield

higher gene expression (Chen et al.,

2007; Johns et al., 2018; Figure S12B).

To understand how the s70 orthologs’ Tx

activity changed compared to WT

E. coli, we normalized TxO values for
each regulatory sequence with their corresponding TxE values

(TxO/E) and similarly for TxM with TxE (TxM/E) and further sub-

grouped these values by the genomic source of the regulatory

sequences (i.e., TxO/E
O, TxO/E

E, TxO/E
M, etc.). We observed that

TxO/E
M was notably higher than TxO/E

O, and TxO/E
E (Kolmo-

gorov-Smirnov [KS] test, p < 10�104 and p < 10�168, respectively)

(Figure 5B), indicating that Mx sequences had a higher activity

with Ou s70 than Ec s70. We also observed small but statistically

significant differences in the distributions of TxM/E
O, TxM/E

E, TxM/

E
M (KS test: TxM/E

M and TxM/E
E, p < 10�22; TxM/E

M and TxM/E
O,

p < 10�22; TxM/E
O and TxM/E

E, p < 0.0164), indicating not only

that GC content inversely affected expression within eachs70 or-

thologs as previously known, but also that the magnitude of GC

content effect seemed to vary by s70 ortholog.

To better understand the differences in the relationships be-

tween GC content of regulatory sequences and the resulting

gene expression patterns from different s70s, we performed a

linear regression to identify correlations between GC content

and Tx values between s70 orthologs. The slope of the Mx s70

regression indicated the strongest inverse relationship between

GC content and Tx levels, while the Ou s70 slope showed the

weakest relationship (t test, p < 0.05 for all pairwise slope com-

parisons) (Figure 5C). This result suggested that the same de-

gree of decrease in regulatory sequence GC content generally

yielded a larger transcriptional increase in Mx s70 compared to

Ec s70 or Ou s70. Interestingly, this relationship also correlated

with genomic GC content, implying that the gene expression

patterns from higher GC genomes may be more sensitive to
ell Reports 36, 109590, August 24, 2021 9
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GC content in the regulatory region. We speculated that this GC-

dependent sensitivity may be due to the fact that the canonical

s70motif is rich in A/T bases. In a GC-rich genome, simply having

higher AT content in intergenic regions may be sufficient to facil-

itate recognition and binding. In contrast, AT-rich genomes may

require a more stringent sequence similarity to the optimal s70

motif for recognition and binding by s70 factors, as there is an

abundance of A/T bases throughout. Therefore, in GC-rich ge-

nomes, s70 binding sites should have more A/T bases than the

background GC distribution of intergenic regions and a higher

variance in GC content in the intergenic regions than in AT-rich

genomes. Indeed, when we mined 50 upstream intergenic re-

gions of coding sequences from �1,300 bacterial genomes

(see STAR Methods) and compared the GC content against

the GC variance, we observed significantly higher variance in

GC content for GC-rich genomes (Figure S12C). Together, these

results suggest that higher GC variance in intergenic regionsmay

be a consequence of s70 evolution that is influenced by genomic

GC content of the organism.

DISCUSSION

Here, we explored the evolutionary sequence diversity of the pri-

mary s70 and its fitness landscape in E. coli and compared its

functional capacity with s70 orthologs. While there is generally

high evolutionary conservation of s70, domain-level differences

suggested different evolutionary forces driving diversification

of this global regulator. Using MAGE-seq, we generated a satu-

ration mutagenesis library that tiled across domains 2–4 of the

E. coli s70 and characterized the resulting fitness landscape.

By contextualizing evolutionary sequence divergence with the

E. coli s70 fitness landscape, we found that E. coli s70 tolerated

most individual residue differences found in natural orthologs.

Interestingly, residues that incurred significant fitness costs

were observed in orthologs that were phylogenetically distant

from E. coli, suggesting reshaped fitness landscapes that

compensated for these otherwise predicted fitness deficits.

Accordingly, when natural orthologs were used in place of the

endogenous E. coli s70, we found that fitness losses were gener-

ally lower than predicted from a simple aggregate fitness model.

Decreased cellular fitness with different s70 orthologs could be

attributed to downregulation of essential genes based on tran-

scriptomic measurements. Finally, we used a regulatory

sequence library to identify differences in regulatory activation

capacity of two s70 orthologs compared to E. coli s70 and iden-

tified unique patterns of expression that were dependent on both

regulatory GC content and the source species of the s70

orthologs.

Bacterial genomic GC content appears to correlate with

genome size and regulatory complexity (McCutcheon and

Moran, 2011). Genomic GC drift is thought to arise from muta-

tional processes and selective biases (Hershberg and Petrov,

2010; Hildebrand et al., 2010; Musto et al., 2006; Raghavan

et al., 2012) that also affect GC content of intragenic UTRs

(Muto and Osawa, 1987). In this study, we observed that s70 or-

thologs derived fromMyxococcus and Oligella species with very

different GC content exhibited distinct patterns of transcription

activation potential. While s70 appeared to be largely functionally
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conserved and portable between bacteria within the phylum

level, s70 of GC-richMyxococcus yielded a stronger inverse rela-

tionship between regulatory GC content and expression levels

than that of s70 of AT-rich Oligella. GC-rich genomes were also

observed to have UTRs with larger variances in GC content,

which further supports the link between the magnitude of GC

content effect on transcription and s70 functionality.

In this study, fitness effects of single amino acid mutations

were used in a simple additive model, assuming each mutation

contributes to fitness independently, to extrapolate fitness of or-

thologs with multiple amino acid differences. In reality, epistasis,

the notion that functional consequences (e.g., fitness) of amino

acid changes depend on the specific protein sequence context,

is likely involved ins70 evolution (Starr and Thornton, 2016; Storz,

2018). The role of epistasis is suggested in the observation that in

orthologs with few amino acid differences to E. coli s70 (more

similar protein sequence context), fitness effects of amino acid

differences were neutral in the E. coli s70 sequence background.

Conversely, in orthologs with many amino acid differences (less

similar protein sequence context), fitness effects of amino acid

differences were more deleterious in the E. coli s70 sequence

background. Furthermore, fitness differentials between pre-

dicted and measured fitness of the 15 ortholog mutant strains

are also suggestive of possible epistatic effects. Efforts to more

systematically profile epistasis, such as using pairwisemutagen-

esis or saturation mutagenesis across multiple sequence back-

grounds, will yield more insights into the relationship between

epistasis and s70 evolution. Lastly, s70 is a DNA-binding protein,

unlike many enzymes that have substrates that do not evolve.

Therefore, a complete model of s70 fitness would not only incor-

porate epistasis but also accurately incorporate covariation and

co-evolution of cognate promoter sequences.

For practical reasons, we mainly focused on domains 2–4 of

s70 in our study. However, domain 1, which is more variable

than domains 2–4, may further contribute to shaping the evolu-

tionary trajectory of s70 not accounted for here. Another caveat

of this study is that the s70 orthologs were characterized in the

context of E. coli and that suboptimal interactions of specific

residues in s70 orthologs with the native E. coli RNAP could

impede the global transcriptome in very complex ways. For

instance, Mx s70 exhibited a lower overall transcription level

based on our promoter library measurements, which may

have been caused by one of its many residue differences

from E. coli s70, potentially reducing its ability to bind or interact

with the E. coli RNAP. Exploration of other bacterial back-

grounds could shed light on host-specific differences to better

explore s70 orthologs beyond Proteobacteria. In this study, ef-

forts to introduce s70 variants from more phylogenetically

distant bacteria were mostly unsuccessful, highlighted by sig-

nificant fitness costs and functional differences that may be

found in these more distant s70 orthologs. Lastly, we note

that MAGE-seq protocol used here only allowed grow at 30�C
(i.e., the recombineering system is induced at 37�C–42�C). As
environmental selection pressures can dictate fitness, some de-

gree of fitness variations may be observed at different growth

temperatures; MAGE-seq using arabinose-inducible pKD46

(Datsenko and Wanner, 2000) could enable fitness measure-

ments at other growth temperatures. Further explorations could
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propel understanding and better modeling of bacterial regula-

tion to allow precise control and engineering of gene regulation

in a variety of non-model bacteria while accounting for complex

evolutionary forces driving the selection of global regulators.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

E. coli ECNR2 Addgene / Wang et al., 2009 26931

RpoD ortholog mutants This paper See Table S1

Chemicals, peptides, and recombinant proteins

Kanamycin Fisher Scientific BP9065

anhydrous tetracycline Cayman 10009542

Critical commercial assays

Genomic DNA prep kit GE 28904259

Q5 polymerase NEB M0543L

Maxima H minus reverse

transcriptase

Thermo Scientific EO0751

Sybr Green Invitrogen S7567

SPRI beads Beckman Coulter A63881

NextSeq 300-cycle kit Illumina 20024905

Miseq 300-cycle kit Illumina MS-103-1002

Deposited data

RpoD ortholog mutants RNA-seq

raw data

ArrayExpress E-MTAB-9099

MAGE-seq raw data ArrayExpress E-MTAB-9103

Metagenomic regulatory

sequence library raw data

ArrayExpress E-MTAB-9111

Oligonucleotides

MAGE oligos This study See Data S2

Oligos used in this study This study See Data S2

Regulatory sequence oligo library Agilent/This study G7721A / See Data S5

Recombinant DNA

Orthologous sigma factor sequences This study See Table S2

Software and algorithms

Clustal Omega Sievers et al., 2011 NA

FastTree2 Price et al., 2010 NA

iTOL Letunic and Bork, 2019 NA

BioProspector Liu et al., 2001 NA

Trimmomatic Bolger et al., 2014 NA

Bowtie Langmead et al., 2009 NA

HTSeq Anders et al., 2015 NA

DEseq2 Love et al., 2014 NA

MAGE-seq analysis code files This study https://github.com/jiminpark66/

MAGEseq

Regulatory sequence library

analysis code files

This study https://github.com/jiminpark66/

regulatorysequence_library

Other

Turbidostat This Study NA

eVOLVER Wong et al., 2018 NA
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Harris Wang (hw2429@

columbia.edu).

Materials availability
Requests for plasmids and strains described in this study can be made to the Lead Contact, Harris Wang (hw2429@columbia.edu).

Data and code availability

d All sequencing data have been deposited at ArrayExpress and are publicly available as of the date of publication. Accession

numbers are listed in the Key resources table.

d Code used for analysis are publicly available as of the date of publication. Github repository links are listed in the Key resources

table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacteria culture
E. coli MegaX DH10B strain was cultured in liquid medium (LB) at 37�C. E. coli EcNR2 strain and all its derivatives were cultured at

30�C.

METHOD DETAILS

Saturation Mutagenesis of E. coli RpoD
E. coli EcNR2 strain was used to generate a saturation mutagenesis library of rpoD using MAGE. 236 70-mer oligonucleotides were

designed to systematically mutate all positions between 379-613 (which covers Domains 2-4) and the stop codon ofE. coli rpoD gene

(Synthego). Each oligonucleotide was designed with 34 and 33 base pairs of 50 and 30 homology to rpoD respectively. Homology re-

gions flanked an NNN codon for mutagenesis of all 64 codon variants. Mutagenesis region (positions 379-613) was split into six bins

and MAGE oligos were pooled accordingly to achieve full sequencing coverage. First two bins covered 44 and 48 amino acids,

respectively, while the subsequent four bins covered 36 amino acids each. Six iterative rounds of MAGE were carried out. EcNR2

strain was inoculated from a glycerol stock and cultured overnight at 30�C. Next morning, 100uL of the overnight culture was inoc-

ulated into 3mL of LB with 50 ug/mL carbenicillin (Fisher Scientific, BP26485) and grown until 0.5 OD600 was reached. Then the cul-

tures were transferred into a 42�C shaking water bath for 15 minutes to induce recombineering proteins. Following induction, the

culture was chilled down immediately in an ice-slurry. 1mL of cells were pelleted in a pre-chilled centrifuge (Eppendorf, 5424R)

and then washed twice with pre-chilled distilled water (ThermoFisher, 15230162). Washed cell pellet was resuspended in 50uL of

5uM MAGE oligo pool, transferred to a 0.1cm electroporation cuvette (Bio-Rad, 1652089), electroporated at 1.8kv (Bio-Rad, Micro-

Pulser), and recovered in 3mL LB at 30C until 0.5 OD600 was reached. This protocol was repeated until 6 total MAGE cycles were

performed at which point resulting populations were transferred immediately to a turbidostat for competition experiments.

Competition Experiments
Competition experiment with the saturation mutagenesis library was performed on a custom built turbidostat in a 30�C incubator. A

single competition was performed for each MAGEmutagenesis bin. An LED and a photodiode were used to monitor the optical den-

sity of the culture over time. When an OD600 threshold of 0.4 was reached, turbidostat automatically diluted the culture by half to

OD600 of 0.2 through peristaltic pumps that added fresh LB and removed excess media. This ensured that the competition cultures

were constantly maintained at exponential growth phase, between OD600 0.2-0.4. Cells from the final MAGE round were inoculated

into a culture tube containing 10mL LB and then placed in the turbidostat. First time point was collected when the population reached

0.4OD600 for the first time. Subsequent time points were collected at 1, 2, 3, 4, 5, 6, 9, and 12 hours after the initial time point for a total

of 9 time points. To collect time point samples, we removed 1mL of the culture with using a 1mL Luer-Lok syringe (BD, 309628) with a

blunt needle (Air-Tite, NB18212), pelleted in a pre-chilled centrifuge (Eppendorf, 5424R), washed once with pre-chilled PBS (GIBCO,

10010049), pelleted again, removed supernatant, and stored the pellet at �20�C until all samples were collected. For competition

experiments with E. coli strains expressing ortholog s70 variants, we used the eVOLVER (Wong et al., 2018) on the turbidostat

mode. All parameters for the turbidostat were kept same. Overnight cultures of sigma factor ortholog variants were pooled to equal

volume and used to inoculate an eVOLVER culture tube containing 20mL LB. Samples were harvested using the same regimen as

described above for MAGE mutants.
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Library Preparation and Sequencing
Genomic DNA was prepped from each time point sample (GE life sciences, 28904259). 1uL gDNA (�20ng) was used to amplify the

mutagenesis loci of each MAGE bin in a 20uL PCR reaction with 1x Q5 Hot start HiFi Master Mix (NEB, M0543L), 1x SYBR Green

(Invitrogen, S7567) and 0.5uM of forward and reverse primer pools (Data S2). PCR (95�C 30 s, cycle: 95�C 10 s, 65�C 10 s, 72�C
10 s; and 72�C 2min) was performed on a real time PCR machine (Bio-Rad, CFX-96) and the reaction was terminated during expo-

nential amplification. Same PCR steps were used to amplify gDNA prepped from ortholog competition samples using primers (Data

S2) designed to amplify a region (corresponding to RpoD residues 532-581) that could differentiate all ortholog sequence variants.

0.1uL of the first PCR was used to perform a second 20uL (1x Q5 Hot start HiFi Master Mix, 1x SYBR green, 0.5uM of p5_X and p7_X

amp2 primers;Data S2) PCR (95�C 30 s, cycle: 95�C 10 s, 72�C 30 s; and 72�C 2min) reaction (ran on real time PCRmachine to termi-

nate reaction during exponential amplification) to add sample barcode indexes and Illumina p5 and p7 adaptor sequences. Samples

were pooled together for sequencing following quantification of dsDNA concentration (Invitrogen, Q32851) of each sample, cleaned

up using 2x SPRI beads (Beckman Coulter, A63881), and sequenced according to Illumina sequencing protocols. Three Illumina

NextSeq 300-cycle (150 pair-end) mid-output kits were used to sequence six RpoD MAGE mutagenesis bins (two bins each) (Illu-

mina, 20024905). Ortholog competition library was sequenced using an Illumina MiSeq 300-cycle micro-output mode (200 single-

end) (Illumina, MS-103-1002).

Cloning RpoD Ortholog Sequence Strains
To generate orthologous sigma factor strains we first generated an EcNR2 strain lacking carbenicillin resistance by inserting three

stop codons and a frameshift mutation into the bla gene through MAGE (EcJP0) (Wang and Church, 2011). Next, plasmid pMA7CR

encoding an inducible cas9 gene was introduced into EcNR2 through electroporation using standard transformation protocols. Plas-

mids encoding gRNA targeting different rpoD loci (rpoD_pam0, rpoD_pam1, rpoD_pam4, rpoD_pam6) were cloned into pMAZ-SK

plasmid using USER cloning as previously described (Ronda et al., 2016) (pMAZ-rpoD_pam0, pMAZ-rpoD_pam1, etc.). Dual gRNA

plasmid constructs were cloned through Gibson assembly (NEB, E5520S) of gRNA expression cassette of one gRNA plasmid into a

linearized plasmid encoding a different gRNA sequence. Specifically, pMAZ-rpoD_pam14 plasmid was made through Gibson as-

sembly of pam1 expression loci (amplified from pMAZ-rpoD_pam1 plasmid with primers JP559 and JP560 and pam4 linearized

plasmid (amplified from pMAZ-rpoD_pam4 plasmid with primers JP561 and JP562). pMAZ-rpoD_pam06 gRNA plasmid was con-

structed using the same approach with pMAZ-rpoD_pam0 and pMAZ-rpoD_pam6 plasmids in place of pMAZ-rpoD_pam1 and

pMAZ-rpoD_pam4 plasmids respectively.

Ortholog sigma factor sequence variants were synthesized as dsDNA fragments (IDT, gBlocks). To generate orthologous sigma

factor strains, dsDNA fragment encoding sigma factor variant and a dual gRNA plasmid (pMAZ-rpoD_pam14 for all fragments except

for construct F9Y183 which was cloned with pMAZ-rpoD_pam06) were electroporated together into EcNR2 strain with pMA7CR.

Following electroporation, samples were inoculated into 3mL LB + 100ug/mL carbenicillin and recovered at 30�C for 1 hour.

Then, kanamycin (Fisher Scientific, BP9065) was added to the culture at 50ug/mL final concentration and was recovered for another

2 hours at 30�C. Then, anhydrous tetracycline (Cayman, 10009542) was added to the culture at 200ng/mL final concentration and

recovered for another 2 hours at 30�C. Dilutions of the recovered culture was used to plate on LB-agar plates with 100ug/mL carbe-

nicillin and 50ug/mL kanamycin and was incubated at 30�C overnight. Recombinant RpoD clones were screened via sanger

sequencing with primers JP130 and JP131.

Regulatory Sequence Library Construction
Intergenic regions from 50 upstream of start codons of every annotated gene coding sequence were mined from the genomes of Es-

cherichia coli (NC_000913), Myxococcus xanthus (NC_008095), Oligella urethalis (NZ_AQVB00000000.1). Upstream sequences

shorter than 100 base pairs were discarded and 100 base pairs directly upstream of each start codon of the remaining sequences

were compiled. To each regulatory sequence, we added a start codon, a unique 12-mer barcode (> 1 hamming distance to all other

barcodes), and flanking restriction digest cut sites (BamHI and Pstl) and common amplification sequences to yield a final 165bp

construct. Each regulatory sequence was synthesized twice with two unique barcodes to yield a 12,254-member library which

was synthesized as an oligonucleotide pool (Agilent, G7721A). The oligo pool was amplified in 16 parallel 20uL reactions (1x Q5

Hot start HiFi Master Mix (NEB, M0543L), 0.5uM each primer JP194, JP195) for 7 cycles to prevent overamplification (95�C 30 s,

7 cycles: 95�C 10 s, 72�C 30 s; and 72�C 2min). PCR reactions were pooled and cleaned up with beads (Beckman Coulter,

A63881). Purified library and pNJ7 plasmid (Johns et al., 2018) were digested with BamHI (NEB, R0136M) and PstI (NEB,

R0140M), PCR purified (Zymo, D4033), and ligated with T4 DNA ligase (NEB, M0202M). Resulting ligation reaction was PCR purified,

mixed into a 100uL aliquot of E. coli MegaX DH10B electrocompetent cells (Invitrogen, C640003), and aliquoted into four prechilled

1mm cuvettes (BioRad, 1652089) and electroporated. Following recovery, we used 5uL of the culture and plated dilutions to quantify

cloning coverage (> 1000x cloning coverage). Rest of the recovery culture was inoculated to 1:25 ratio into LB with 20ug/mL chlor-

amphenicol (Sigma, C0378). Following an overnight incubation, 1mL of the culture was used to inoculate 100mL LB with 20ug/mL

chloramphenicol. The culture was incubated until mid-log growth was reached (OD600 0.5) and 50mL was used to prep plasmid

DNA (Zymo, D4200). Rest of the culture was used to generate frozen stocks. Plasmid DNA was used to transform EcJP9, EcJP14

and EcNR2 strains at > 100x coverage.
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Regulatory Sequence Library Sequencing Preparation
Overnight culture of each library was prepared by adding 1mL of thawed frozen library glycerol stock to 25mL LB and was grown

overnight at 30C. 2mL of the overnight culture was used to inoculate 60mL LB and was grown until mid-log phase was reached.

5mL of the culture was used to isolate plasmids (QIAGEN, 27106). Rest of the culture was pelleted, washed once with PBS and har-

vested for RNA using the RNAsnap (Stead et al., 2012) protocol and cleaned up with RNA clean and concentrator kit (Zymo, R1018).

DNA library was prepared through the same two-step amplification asMAGE libraries using 1uL of plasmidminiprep. RNA library was

prepared by first digesting DNA with turbo DNase and cleaned up using RNA clean and concentrator. RNA samples were reverse

transcribed with Maxima H minus reverse transcriptase (Thermo Scientific, EO0751) using gene specific primers against sfGFP re-

porter gene (12.5uL of RNA, 1uL of primer JP750, 1uL of 10mMdNTPs incubated at 65C for 5minutes, then on ice 1min, then add 4uL

5x RT buffer, 0.5uL RNase inhibitor (Thermo Scientific, EO0381), 1uL Maxima RT, then incubate with the following protocol: 42�C
90 minutes, cycle 9 times: 50�C 2 minutes, 42�C 2 minutes; 85�C 5 minutes, 4�C hold). 1uL RNase A (Thermo Scientific, EN0531)

and 1uL RNase H (NEB, M0297S) were added to the reaction and incubated for 30 minutes at 37�C. Then, bead cleanup was

used to purify cDNA. Adaptor was ligated using T4 RNA ligase (NEB, M0437M) (5.1uL cDNA, 2uL 40mMDNA adaptor oligo, incubate

75�C for 3 minutes, 1 minute on ice, add 2uL 10x T4 RNA ligase buffer, 0.8uL DMSO, 0.2uL 100mM ATP, 8.4uL 50% PEG, 1.5uL T4

RNA ligase, and incubate at 22C for 16 hours). Adaptor ligated cDNA samples were then purified with beads. Sequencing library was

then prepared through a two-step amplification, using the same protocol as for DNA samples. For measuring expression of regula-

tory element isolates, total RNA was harvested from a 5mL cell culture in mid log growth phase. cDNA was prepped using the same

protocols as above. qPCR was performed with primers against sfGFP reporter gene and infC gene was used as a reference house-

keeping gene.

QUANTIFICATION AND STATISTICAL ANALYSIS

Evolutionary Sequence Divergence Analysis
Orthologs of E. coli RpoD were initially mined using the KEGG (Kanehisa et al., 2016) orthology database (K03086, RNA polymerase

primary sigma factor). We refined the ortholog set by limiting the scope to bacterial proteins that also encoded the following Pfam (El-

Gebali et al., 2019) domains: Sigma-70 region 2 (PF04542), Sigma-70 region 3 (PF04539), Sigma-70 region 4 (PF04545). Furthermore,

alternative sigma factors entries (e.g., rpoH, sigS, rpoS) were removed from the ortholog set. Sequences and corresponding UniProt

accessions were downloaded on 2020-08-25 to yield a final ortholog set of 4,703 sequence variants. Taxonomic data of each ortho-

logs were extracted from each UniProt entry’s metadata. GC contents of each coding sequences were extracted from parsing

through linked nucleotide refseq accessions. Amino acid sequences of orthologs were used to generate a multiple sequence align-

ment (MSA) with Clustal Omega (Sievers et al., 2011) using the following parameters:–full,–full-iter,–iter = 5. Resulting MSA was used

to quantify s70 conservation via Jensen-Shannon divergence (Capra and Singh, 2007). Maximum Likelihood phylogenetic tree was

constructed using FastTree2 (Price et al., 2010). Phylogenetic tree was visualized through iTOL (Letunic and Bork, 2019). We ex-

tracted RpoD evolutionary divergence distances using the branch length distances between E. coli RpoD and all other orthologs

on the phylogenetic tree. Corresponding 16S sequence for each UniProt RpoD ortholog entry was extracted from Greengenes data-

base by matching the NCBI taxa IDs from Greengenes accessions and Uniprot metadata for each entry. Compiled 16S sequences

were aligned with MAFFT (Katoh et al., 2002) using default settings. Resulting MSA was used to generate a phylogenetic tree with

FastTree2. 16S evolutionary divergence distances were compiled using the branch length distance between E. coli 16S and all other

16S sequences. To normalize for uneven phylogenetic sampling bias in the databases and account for over-represented sequences,

we collapsed sequences down to unique Domain 2-4 sequences to yield a set of 2,833 sequence variants which were used to study

domain level sequence divergence.

s70 Sequence Motif Analysis
To screen for genes regulated by primary s70 we sought to identify cellular functions under s70 regulation. From regulonDB (Gama-

Castro et al., 2016), we isolated all genes regulated by E. coli s70 and compared their COG functional categories (Galperin et al., 2015)

against all E. coli genes and found that F/K COGs (nucleotidemetabolism and transcription categories, respectively) were enriched in

s70 regulated genes (Figure S3E). Next, we mined 50 upstream regions (from 25 to 100 base pairs upstream of start codons) of all F/K

COG genes in each bacterial genome in the COG dataset. BioProspector (Liu et al., 2001) was used to generate bipartite sequence

motifs for each genome using the following standard parameters: -d 1 -n 200 -w 8 -W 8. Each motif search was background normal-

ized using its cognate genomic sequence. 12 motifs were generated for each genome with varying maximum and minimum gap

parameters (min gap: 13-16, max gap: 19-21) and the best motif from each set was selected by comparing the sum of all motif cor-

relations against all other motifs. Next, each motif was subjected to score (BioProspector score > 2) and counts (upstream region

counts > 50) thresholds. Lastly, we selected a subset of motifs from genomes which primary s70 were present in our s70 ortholog

dataset, yielding a final set of 188 motif and s70 ortholog pairs.

Saturation Mutagenesis Library Sequencing Analysis
Raw reads from each sample were pair-end merged with SeqPrep using default settings. Next, expected error score was calculated

for each read and any reads with expected error score > 1 was designated as low quality read and then discarded from further
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analysis. Then each high-quality read was tallied as a WT sequence or a mutant sequence. Any sequences with mutations in more

than one codonwere discarded. Counts of each sequence variantswere used to calculate relative frequencies ofWT andmutants. To

correct for miscalls, relative frequencies of mutants from sequencing of the control WT was used to subtract the relative frequencies

of mutants from each time point. For each mutant sequence, corrected relative frequencies from each time points were used to

generate a log linear regression. The slope of the regression was normalized to the dilution rate of the culture during the competition

experiment to yield a fitness metric from 0 to 1. Fitness of 1 means that the mutant has the same growth rate as the WT sequence

while fitness of 0 means that the mutant does not grow.

Transcriptomic analysis of orthologous rpoD mutants
EcNR2 strains encoding three different s70 sequence variants (Ec s70, Mx s70, Ou s70) strains were grown overnight from a glycerol

stock. 166uL of the overnight culture was used to inoculate a 5mL culture and was harvested for total RNA when the culture reached

mid-log growth (OD600 0.5). For each strain, a total of four biological replicates were harvested across two independent days via

RNAsnap (Stead et al., 2012). DNA was removed from the total RNA with turbo DNase (Invitrogen, AM2239). Next, rRNA was

depleted with the Ribo-Zero magnetic kit for Bacteria (Illumina, MRZB12424). DNA free, rRNA depleted RNA samples were used

to prep a sequencing library with NEBnext ultra directional RNA library kit (NEB, E7420L). Sequenced on the Illumina Nextseq plat-

formwith 300 cycle mid output kit. Analysis of resulting RNaseq data was carried out with Trimmomatic (Bolger et al., 2014) for clean-

ing up reads, bowtie (Langmead et al., 2009) for alignment, HTSeq (Anders et al., 2015) for RNA counts, and DEseq2 (Love et al.,

2014) for differential gene expression analysis.

Regulatory Sequence Library Analysis
Raw sequencing reads were pair end merged using SeqPrep. Then using a custom python script, merged reads with low quality

scores were removed (expected error > 2 for the full merged read). Next, counts of each regulatory sequence construct with correct

barcode identifiers were tallied with up to 4% mismatch tolerance in regulatory sequence regions and no mismatch allowed in

barcode regions. Counts of each construct were divided by the total sum of all constructs to yield relative abundancemeasurements.

For constructs with 10+ DNA and RNA counts, we calculate a Tx value by dividing its relative RNA abundance by its relative DNA

abundance. To enable comparison of Tx values between samples, Tx values were normalized using the qPCR expression ratios.
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Supplementary Table 2. List of gBlock sequences used to generate E. coli RpoD strain variants. 

Related to Figures 4, and 5. 

Supplementary Table 3. Fitness characterization of RpoD ortholog sequence mutants. Related 

to Figure 5. 

 

 

 

 

Supplementary Figures 



Supplemental Figure S1. Evolutionary diversity of primary σ70 orthologs. Related to Figure 

1. (A) Maximum likelihood phylogenetic tree inferred from multiple sequence alignment of σ70 

orthologs with FastTree and visualized with iTOL. Ortholog’s phyla classification were assigned 

based on UniProt metadata. Top 15 most abundant phyla each with more at least 20 orthologs 

are denoted with unique colors. (B) Comparison of 16S and σ70 based phylogenetic distances 

based on 3,156 bacterial species and σ70 ortholog pairs. 16S distances were quantified as the 

sum of the branch lengths between E. coli 16S and an orthologous 16S. σ70 distances were 

quantified as the sum of the branch length between E. coli σ70 and an orthologous σ70.   



 

 

Supplemental Figure S2. Domain level σ70 evolutionary diversity. Related to Figure 1. (A) 

Pairwise scatterplot comparisons of substitutions in domains 2-4 and each domain compared 

against σ70 evolutionary distance. (B) Pairwise scatterplots of substitutions in domains 2-4 and 

each domain compared against 16S evolutionary divergence distance of bacterial hosts of σ70 

orthologs. (C) Number of unique amino acids observed in each σ70 position in the multiple 

sequence alignment. Lighter blue bars denote amino acid variants that are observed in less than 

1% of all orthologs.  

 

 



Supplemental Figure S3. Phyla level σ70 sequence diversity, and GC content and motif 

correlations.  Related to Figure 1. (A) Substitution ratio distributions of each domain of σ70 

orthologs from different phyla. (B) Comparison of GC content and substitution counts in different 

domains of σ70 orthologs. σ70 ortholog coding sequences’ GC content is used as a proxy for the 

genomic GC content. Orthologs’ phyla are denoted using the same coloring scheme as in panel 

A. (C) Cluster map of correlations between predicted σ70 motifs from 188 genomes. Column 

representing the E. coli motif is highlighted. Row colors on left denote GC content of genomes 

while column colors on top represent substitutions in each domain. (D) Scatterplots between 

domain substitutions and motif correlations to E. coli σ70 motif. (E) Ratio of E. coli genes regulated 

by σ70 (from regulonDB) to genes not regulated by σ70 genes for each functional COG category. 



 

Supplemental Figure S4. MAGE-seq overview and sequencing library statistics. Related to 

Figure 2. (A) Overview of σ70 saturation mutagenesis via MAGE and a graphical representation 

of σ70 bound to the RNAP holoenzyme and the canonical promoter sequence. (B) Overview of the 

high-throughput fitness measurements. Sampled timepoints during the pooled competition 

experiments are used to quantify the relative abundances of each mutant at every timepoint. The 

slope of the log-linear regression of relative abundances is normalized to the dilution rate of the 

culture during competition to yield a relative fitness measurement of a mutant variant. (C) Ratio 

of reads of each sequencing libraries (each covering different regions of σ70) corresponding to 

wildtype and mutant σ70 variants. (D) Ratio of reads of each wildtype control sequencing libraries 

categorized correctly as wildtype or miscalled as mutants (left). Relative abundance of wildtype 

sequences, and miscalled mutants with 1, 2 or 3 base pair changes found within wildtype control 

sequencing libraries (right).   



 

Supplemental Figure S5. E. coli σ70 fitness landscape. Related to Figure 2. (A) 

Comprehensive fitness landscape of σ70 residues 379-613. Each column corresponds to a residue 

position and each row corresponds to a codon mutation. Codons are organized by the respective 

amino acid translations and are then by biochemical properties of amino acids (see right). 

Wildtype codons at each residue position are denoted with an open circle. Gray squares denote 

no data. (D) Distribution of fitness effects (DFEs) of all codon mutations. (C) Comparison of DFEs 

of stop codons mutants and non-stop codon mutants. (D) Comparison of DFEs of synonymous 

codon mutations and non-synonymous codon mutations. 

 



 

Supplemental Figure S6. E. coli σ70 fitness landscape PC analysis. Related to Figure 2. (A) 

Fitness landscape used for principal components analysis to quantify major fitness determinants 

(top). Principal component weights for first four principal components at each residue position 

(bottom). (B) Proportion of variance explained by the first four principal components. (C) 

Correlations between each principal components and various biochemical properties. (D) 

Principal component vectors of the first four principal components showing contributions from 

each amino acid.  

 



 

Supplemental Figure S7. Clustering the E. coli σ70 fitness landscape. Related to Figure 2. (A) 

Hierarchical clustering of σ70 fitness landscape. Rows of amino acids generally clustered by amino 

acid biochemical properties. Residue position columns cluster by fitness mean fitness. Green 

cluster identifies positions in which mutation to any amino acid results in a fitness defect (i.e. 

highly deleterious). Blue cluster identifies positions in which varying number of amino acid 

mutations are tolerated (i.e variably deleterious). Orange cluster identifies positions in which 

mutation to almost any amino acid is tolerated (i.e. neutral). Below the clustermap, mean fitness 

of each position is plotted and colored by the cluster identity. (B) σ70 amino acid fitness landscape 

plotted with cluster associations from hierarchical clustering in panel A. Set of residue positions 

previously reported to be functionally or structurally important denoted. (C) Distribution of amino 

acids (in E. coli RpoD) and their cluster identities (left). Mean fitness costs associated with 

mutating each amino acid (middle left). Distribution of amino acids and cluster identity of each 

functional domain (middle right). Mean fitness of mutating each amino acid in each functional 



domain (right). (D) Structure of σ70 colored by the cluster associations from hierarchical clustering 

in panel A. 

Supplemental Figure S8. Orthologous σ70 DFE and fitness prediction overview. Related to 

Figure 3. (A) Distribution of fitness effects of amino acid mutations observed in orthologs in each 

functional Domain (top). Distribution of fitness effects of all amino acid mutations each functional 

Domain (bottom).  Dashed lines corresponding to 0.95 fitness separate detrimental and neutral 

mutations. (B) Overview of expected aggregate fitness calculation. First, each residue position 

that encodes a different amino acid than E. coli RpoD is identified. Then, the fitness 

measurements of the mutations at the variant residue positions are multiplied together to yield 



the expected aggregate fitness. (C) Expected aggregate fitness of orthologs in each domain. In 

gray we denote expected aggregate fitness of synthetic sequences that were randomly generated 

with the corresponding number of residue differences from E. coli RpoD.  

 

  

Supplemental Figure S9. RpoD ortholog variant generated in E. coli fitness analysis. 

Related to Figure 4. (A) Multiple sequence alignment of the 15 ortholog sequence variants 

generated in E. coli and the E. coli RpoD reference sequence. (B) Comparison of fitness 

measurements between two independent turbidostat competition experiments (Left). Comparison 

of fitness measurements between turbidostat and plate reader (Right). Four biological replicates 

growth curves were used to determine the average fitness measurement from the plate reader. 

(C) Expected aggregate fitness and measured fitness of ortholog mutants in E. coli plotted against 

proportion of residue differences from E. coli RpoD. (D) Evolutionary coupling score analysis of 

σ70 orthologs. Heatmap displaying the subset of residue position pairs that are significantly 

coupled (threshold displayed in orange) and their coupling scores (left). Significance threshold 

was established as previously described(Hopf et al., 2017). Briefly, the coupling score distribution 

was modeled as a mixed distribution (skew normal and lognormal distribution) and threshold was 

identified at a 10% posterior probability of belonging to the lognormal distribution. Histogram 

displaying all pairwise position coupling score distribution (bottom right). Scatterplot displaying 

the correlation between the sum of evolutionary coupling scores and the measured and predicted 

fitness differentials of the 15 ortholog sequence variants (top right). 



 

 

Supplemental Figure S10. RNA-seq of generated RpoD ortholog variants. Related to Figure 

4. (A) Volcano plot showing differentially expressed genes in E. coli strains expressing different 

σ70 orthologs. Genes denoted as differentially expressed if they display expression change of 

greater than 2-fold and has an adjusted p-value of lower than 0.05. (B) Principal component 

analysis clusters the transcriptomes of three strains expressing different σ70 sequence. (C) 

Heatmap and cluster map showing fold change in expression of the set of genes that were 

differentially expressed in strains expressing either Myxococcus σ70 (Mx σ70) or Oligella σ70 (Ou 

σ70).  

 



 

Supplemental Figure S11. Metagenomic regulatory sequence library characterized in RpoD 

ortholog strains. Related to Figure 5. (A) Stacked histogram illustrating GC content distribution 

of the three regulatory sequence libraries mined from Oligella, Escherichia, and Myxococcus 

genomes. (B) Distribution of DNA barcodes in each strain expressing different σ70 factors displays 

an unbiased coverage of the three regulatory sequence libraries. (C) Biological and barcode 

replicate measurements of transcriptional levels from the regulatory sequence library show high 

correlations. (D) qPCR expression measurements of regulatory sequence isolates show robust 

correlation to pooled library measurements from sequencing. RNA-seq expression 

measurements represents two independent RNA level measurements via two unique barcodes 

for each regulatory sequence. qPCR measurements were normalized against infC expression. 

Each qPCR measurement represents an average of three technical replicates. 

 



 

Supplemental Figure S12. Regulatory sequence library expression distributions. Related 

to Figure 5. (A) Normalized transcriptional activity distributions of the regulatory sequence library 

measured in three strains expressing different orthologous σ70 variants. (B) Pairwise scatterplots 

comparing of regulatory sequence expression levels with different σ70 variants. GC content of 

each regulatory sequence is denoted with the red-blue color scheme. (C) Mean GC content of 

regulatory sequences of diverse genomes are correlated to variance of GC content in upstream 

intergenic sequences.  

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Tables 
Supplementary Table 1. List of strains and plasmids used in this study. Related to Figures 2, 4, 

and 5. 

Table 1A. Strains 
Strain Description Source Reference 
EcNR2 E. coli background sequence for MAGE-seq 

experiments 
32 

NEB Turbo Cloning strain NEB (C2984H) 
MegaX DH10B Cloning strain for regulatory sequence library Invitrogen (C640003) 
EcJP0 EcNR2 strain with 3 premature stop codons 

and a frameshift in the bla gene 
This work 

EcJP1 EcNR2 derivative with native RpoD replaced 
with RpoD from Yersinia 

This work 

EcJP2 EcNR2 derivative with native RpoD replaced 
with RpoD from Vibrio 

This work 

EcJP3 EcNR2 derivative with native RpoD replaced 
with RpoD from Pseudomonas 

This work 

EcJP4 EcNR2 derivative with native RpoD replaced 
with RpoD from Stenotrophomonas 

This work 

EcJP5 EcNR2 derivative with native RpoD replaced 
with RpoD from Acinetobacter 

This work 

EcJP6 EcNR2 derivative with native RpoD replaced 
with RpoD from Psychrobacter 

This work 

EcJP7 EcNR2 derivative with native RpoD replaced 
with RpoD from Burkholderia 

This work 

EcJP8 EcNR2 derivative with native RpoD replaced 
with RpoD from Nitrosomonas 

This work 

EcJP9 EcNR2 derivative with native RpoD replaced 
with RpoD from Oligella 

This work 

EcJP10 EcNR2 derivative with native RpoD replaced 
with RpoD from Acetobacter 

This work 

EcJP11 EcNR2 derivative with native RpoD replaced 
with RpoD from Brucella 

This work 

EcJP12 EcNR2 derivative with native RpoD replaced 
with RpoD from Rhizobium 

This work 

EcJP13 EcNR2 derivative with native RpoD replaced 
with RpoD from Sphingomonas 

This work 

EcJP14 EcNR2 derivative with native RpoD replaced 
with RpoD from Myxococcus 

This work 

EcJP15 EcNR2 derivative with native RpoD replaced 
with RpoD from Bfidobacterium 

This work 

 
 
 
 



 
 
 
 
 
 
Table 1B. Plasmids 
Plasmids Description Source/reference 
pMA7CR Inducible cas9 plasmid construct 64 
pMAZ-SK Inducible gRNA expression construct 64 
pNJ7 Regulatory sequence library vector 29 
pMAZ-
rpoD_pam0 

rpoD_pam0 targeting gRNA expression 
vector 

This work 

pMAZ-
rpoD_pam1 

rpoD_pam1 targeting gRNA expression 
vector 

This work 

pMAZ-
rpoD_pam4 

rpoD_pam4 targeting gRNA expression 
vector 

This work 

pMAZ-
rpoD_pam6 

rpoD_pam6 targeting gRNA expression 
vector 

This work 

pMAZ-
rpoD_pam14 

rpoD_pam1 and rpoD_pam4 targeting dual 
gRNA expression vector 

This work 

pMAZ-
rpoD_pam06 

rpoD_pam0 and rpoD_pam6 targeting dual 
gRNA expression vector 

This work 

 
 
 
Supplementary Table 2. List of gBlock sequences used to generate E. coli RpoD strain 

variants. Related to Figures 4, and 5. 

Strain  Nucleotide sequence 

Ec
JP

1 GCCGTGCGAAGAAAGAGATGGTTGAAGCGAACTTACGTCTCGTTATTTCTATCGCTAAGAAATACACCAACCGTGGCTTGCAGTTCCTTGACC
TGATTCAGGAAGGCAACATCGGTCTGATGAAAGCGGTTGATAAATTCGAATACCGCCGTGGTTACAAGTTCTCCACCTACGCAACCTGGTGGA
TCCGTCAAGCGATCACCCGCTCTATCGCGGATCAGGCGCGCACCATCCGTATTCCCGTGCATATGATTGAGACCATCAACAAGCTCAACCGTA
TTTCTCGCCAGATGCTGCAAGAGATGGGCCGTGAACCGACGCCGGAAGAACTGGCTGAACGTATGCTGATGCCGGAAGACAAGATCCGCAAAG
TGCTGAAGATCGCCAAAGAGCCAATCTCCATGGAAACGCCGATCGGTGATGATGAAGATTCGCATCTGGGGGATTTCATCGAGGATACCACCC
TCGAGCTGCCGCTGGATTCTGCGACCAGCGAAAGCCTGCGTTCGGCAACGCACGACGTGCTGGCTGGCCTGACCGCGCGTGAAGCAAAAGTTC
TGCGTATGCGTTTCGGTATCGATATGAACACCGACCACACGCTGGAAGAAGTGGGTAAACAGTTCGACGTTACCCGCGAACGTATCCGTCAGA
TCGAAGCGAAAGCGCTGCGCAAACTGCGTCACCCGAGCCGTTCTGAAGTGCTGCGTAGCTTCCTGGACGATTAATCGGTAGGCCGGATCA 

Ec
JP

2 GCCGTGCGAAGAAAGAGATGGTTGAAGCGAACTTACGTCTCGTTATTTCTATCGCTAAGAAATACACCAACCGTGGCTTGCAGTTCCTTGACC
TGATTCAGGAAGGCAACATCGGTCTGATGAAAGCGGTTGATAAATTCGAATACCGCCGTGGTTACAAGTTCTCCACCTACGCAACCTGGTGGA
TCCGTCAAGCGATCACCCGCTCTATCGCGGATCAGGCGCGCACCATCCGTATTCCCGTGCATATGATTGAGACCATCAACAAGCTCAACCGTA
TTTCTCGCCAGATGCTGCAAGAGATGGGCCGTGAACCGCTGCCGGAAGAACTGGCTGAACGTATGCAGATGCCGGAAGACAAGATCCGCAAAG
TGCTGAAGATCGCCAAAGAGCCAATCTCCATGGAAACGCCGATCGGTGATGATGAAGATTCGCATCTGGGGGATTTCATCGAGGATACCACCC
TCGAGCTGCCGCTGGATTCTGCGACCGCCACAAGCCTGAAAGCGGCAACGCGCGACGTGCTGGCTGGCCTGACCCCGCGTGAAGCAAAAGTTC
TGCGTATGCGTTTCGGTATCGATATGAACACCGACCACACGCTGGAAGAAGTGGGTAAACAGTTCGACGTTACCCGCGAACGTATCCGTCAGA
TCGAAGCGAAAGCGCTGCGCAAACTGCGTCACCCGAGCCGTTCTGAAGTGCTGCGTAGCTTCCTGGACGAATAATCGGTAGGCCGGATCA 

Ec
JP

3 GCCGTGCGAAGAAAGAGATGGTTGAAGCGAACTTACGTCTCGTTATTTCTATCGCTAAGAAATACACCAACCGTGGCTTGCAGTTCCTTGACC
TGATTCAGGAAGGCAACATCGGTCTGATGAAAGCGGTTGATAAATTCGAATACCGCCGTGGTTACAAGTTCTCCACCTACGCAACCTGGTGGA
TCCGTCAAGCGATCACCCGCTCTATCGCGGATCAGGCGCGCACCATCCGTATTCCCGTGCATATGATTGAGACCATCAACAAGCTCAACCGTA
TTTCTCGCCAGATGCTGCAAGAGATGGGCCGTGAACCGACGCCGGAAGAACTGGGTGAACGTATGGAGATGCCGGAAGACAAGATCCGCAAAG
TGCTGAAGATCGCCAAAGAGCCAATCTCCATGGAAACGCCGATCGGTGATGATGAAGATTCGCATCTGGGGGATTTCATCGAGGATAGCACCA
TGCAGTCGCCGATAGATGTTGCGACCGTCGAAAGCCTGAAAGAGGCAACGCGCGACGTGCTGTCTGGCCTGACCGCGCGTGAAGCAAAAGTTC
TGCGTATGCGTTTCGGTATCGATATGAACACCGACCACACGCTGGAAGAAGTGGGTAAACAGTTCGACGTTACCCGCGAACGTATCCGTCAGA
TCGAAGCGAAAGCGCTGCGCAAACTGCGTCACCCGACCCGTTCTGAACACCTGCGTAGCTTCCTGGACGAATAATCGGTAGGCCGGATCA 



Ec
JP

4 GCCGTGCGAAGAAAGAGATGGTTGAAGCGAACTTACGTCTCGTTATTTCTATCGCTAAGAAATACACCAACCGTGGCTTGCAGTTCCTTGACC
TGATTCAGGAAGGCAACATCGGTCTGATGAAAGCGGTTGATAAATTCGAATACCGCCGTGGTTACAAGTTCTCCACCTACGCAACCTGGTGGA
TCCGTCAAGCGATCACCCGCTCTATCGCGGATCAGGCGCGCACCATCCGTATTCCCGTGCATATGATTGAGACCATCAACAAGCTCAACCGTA
TTTCTCGCCAGATGCTGCAACAGTACGGCCGTGAAGCGACGCCGGAAGAACTGGCTAAAGAAATGGACATGCCGGAAGACAAGATCCGCAAAG
TGATGAAGATCGCCAAAGAGCCAATCTCCATGGAAACGCCGATCGGTGATGATGAAGATTCGCATCTGGGGGATTTCATCGAGGATACCAACG
TCGAGTCGCCGATAGAAAATACGACCAACATAAACCTGAGTGAGACAGTGCGCGACGTGCTGGCTGGCCTGACCCCGCGTGAAGCAAAAGTTC
TGCGTATGCGTTTCGGTATCGATATGAACACCGACCACACGCTGGAAGAAGTGGGTAAACAGTTCGACGTTACCCGCGAACGTATCCGTCAGA
TCGAAGCGAAAGCGCTGCGCAAACTGCGTCACCCGAGCCGTTCTGAACAGCTGCGTAGCTTCCTGGACATTTAATCGGTAGGCCGGATCA 

Ec
JP

5 GCCGTGCGAAGAAAGAGATGGTTGAAGCGAACTTACGTCTCGTTATTTCTATCGCTAAGAAATACACCAACCGTGGCTTGCAGTTCCTTGACC
TGATTCAGGAAGGCAACATCGGTCTGATGAAAGCGGTTGATAAATTCGAATACCGCCGTGGTTACAAGTTCTCCACCTACGCAACCTGGTGGA
TCCGTCAAGCGATCACCCGCTCTATCGCGGATCAGGCGCGCACCATCCGTATTCCCGTGCATATGATTGAGACCATCAACAAGATCAACCGTG
TTTCTCGCCAGCTGCTGCAAGAGATGGGCCGTGAACCGACGCCGGAAGAACTGGGTGAACGTCTGGAGATGGACGAAGTCAAGGTCCGCAAAG
TGCTGAAGATCGCCAAAGAGCCAATCTCCATGGAAACGCCGATCGGTGATGATGAAGATTCGCATCTGGGGGATTTCATCGAGGATAGCAACA
TCACGTCGCCGGTGGATGCTGCGACCAGCGAAGGCCTGAAAGAGGCAACGCGCGAAGTGCTGGAAAACCTGACCGAGCGTGAAGCAAAAGTTC
TGAAAATGCGTTTCGGTATCGATATGCCCACCGACCACACGCTGGAAGAAGTGGGTAAACAGTTCGACGTTACCCGCGAACGTATCCGTCAGA
TCGAAGCGAAAGCGCTGCGCAAACTGCGTCACCCGAGCCGTTCTGAACACCTGCGTAGCTTCCTGGAAAATTAATCGGTAGGCCGGATCA 

Ec
JP

6 GCCGTGCGAAGAAAGAGATGGTTGAAGCGAACTTACGTCTCGTTATTTCTATCGCTAAGAAATACACCAACCGTGGCTTGCAGTTCCTTGACC
TGATTCAGGAAGGCAACATCGGTCTGATGAAAGCGGTTGATAAATTCGAATACCGCCGTGGTTACAAGTTCTCCACCTACGCAACCTGGTGGA
TCCGTCAAGCGATCACCCGCTCTATCGCGGATCAGGCGCGCACCATCCGTATTCCCGTGCATATGATTGAGACCATCAACAAGATCAACCGTG
TTTCTCGCCAGCTGCTGCAAGAGATGGGCCGTGAACCGACGCCGGAAGAACTGGGTGAACGTCTGGAGATGGACGAAGTCAAGGTCCGCAAAG
TGCTGAAGATCGCCAAAGAGCCAATCTCCATGGAAACGCCGATCGGTGATGATGAAGATTCGCATCTGGGGGATTTCATCGAGGATGGCACCA
TCTCGTCGCCGGTGGATGATGCGACCGCCGCAGGCCTGCAAGAGGCAACGCGCGACGTGCTGGGTAACCTGACCGAGCGTGAAGCAAGAGTTC
TGAAAATGCGTTTCGGTATCGATATGCCCACCGACCACACGCTGGAAGAAGTGGGTAAACAGTTCGACGTTACCCGCGAACGTATCCGTCAGA
TCGAAGCGAAAGCGCTGCGCAAACTGCGTCACCCGAGCCGTTCTGAACACCTGCGTAGCTTCCTGGAAAATTAATCGGTAGGCCGGATCA 

Ec
JP

7 GCCGTGCGAAGAAAGAGATGACTGAAGCGAACTTACGTCTCGTTATTTCTATCGCTAAGAAATACACCAACCGTGGCTTGCAGTTCCTTGACC
TGATTCAGGAAGGCAACATCGGTCTGATGAAAGCGGTTGATAAATTCGAATACCGCCGTGGTTACAAGTTCTCCACCTACGCAACCTGGTGGA
TCCGTCAAGCGATCACCCGCTCTATCGCGGATCAGGCGCGCACCATCCGTATTCCCGTGCATATGATTGAGACCATCAACAAGATGAACCGTA
TTTCTCGCCAGATACTGCAAGAGACGGGCCTTGAACCGGACCCGGCAACACTGGCTGAAAAAATGGAGATGCCGGAAGACAAGATCCGCAAAA
TAATGAAGATCGCCAAAGAGCCAATCTCCATGGAAACGCCGATCGGTGATGATGACGATTCGCATCTGGGGGATTTCATCGAGGATACCAACA
CCGTGGCGCCGGCGGATGCTGCGCTCCACGCAAGCATGCGTGACGTAGTGAAAGACGTGCTGGATAGCCTGACCCCGCGTGAAGCAAAAGTTC
TGCGTATGCGTTTCGGTATCGAAATGAGCACCGACCACACGCTGGAAGAAGTGGGTAAACAGTTCGACGTTACCCGCGAACGTATCCGTCAGA
TCGAAGCGAAAGCGCTGCGCAAACTGCGTCACCCGAGCCGTTCTGACAAGCTGAAAAGCTTCCTGGAAGGTTAATCGGTAGGCCGGATCA 

Ec
JP

8 GCCGTGCGAAGAAAGAGATGACTGAAGCGAACTTACGTCTCGTTATTTCTATCGCTAAGAAATACACCAACCGTGGCTTGCAGTTCCTTGACC
TGATTCAGGAAGGCAACATCGGTCTGATGAAAGCGGTTGATAAATTCGAATACCGCCGTGGTTACAAGTTCTCCACCTACGCAACCTGGTGGA
TCCGTCAAGCGATCACCCGCTCTATCGCGGATCAGGCGCGCACCATCCGTATTCCCGTGCATATGATTGAGACCATCAACAAGATGAACCGTA
TTTCTCGCCAGATACTGCAAGAGACGGGCCAAGAACCGGAGCCGGCAGTACTGGCTGAAAAAATGGAGATGACGGAAGAAAAGATCCGCAAAA
TACTGAAGATCTCCAAAGAGCCAATCTCCATGGAAACGCCGATCGGTGATGATGAAGATTCGCATCTGGGGGATTTCATCGAGGATGTCAGCA
CCATGGAGCCGGCGGATGCTGCGATCTACGCAGGCCTGCGTACGGTAACGAAAGACGTGCTGGATAGCCTGACCCCGCGTGAAGCAAAAGTTC
TGCGTATGCGTTTCGGTATCGAAATGAACACCGACCACACGCTGGAAGAAGTGGGTAGACAGTTCGACGTTACCCGCGAACGTATCCGTCAGA
TCGAAGCGAAAGCGCTGCGCAAACTGCGTCACCCGGCCCGTTCTGACAGGCTGCGTAGCTTCCTGGACAGTTAATCGGTAGGCCGGATCA 

Ec
JP

9 GCCGTGCGAAGAAAGAGATGATTCAAGCGAACTTACGTCTCGTTATTTCTATCGCTAAGAAATACACCAACCGTGGCTTGCAGTTCCTTGACC
TGATTCAGGAAGGCAACATCGGTCTGATGAAAGCGGTTGATAAATTCGAATACCGCCGTGGTTACAAGTTCTCCACCTACGCAACCTGGTGGA
TCCGTCAAGCGATCACCCGCTCTATCGCGGATCAGGCGCGCACCATCCGTATTCCCGTGCATATGATTGAGACCATCAACAAGATGAACCGTA
TTACTCGCCAGATACTGCAAGAGACGGGCGCTGAACCGGACCCGGCAACAATAGCTCAAAAAATGGACATAACGGAAGACAGGGTCCGCAAAA
TACTGAAGATCGCCAAAGAGCCAATCTCCATGGAAACGCCGATCGGTGATGATGACGATTCGCATCTGGGGGATTTCATCGAGGATACCACCA
CCATGTCGCCGGAGGAAGCTTCGACCTACAAAAGCATGCAAGAGGTATTCGACGAAGTGCTGAATAGCCTGACCGAGCGTGAAGGAAAAGTTC
TGCGTATGCGTTTCGGTATCGGTCTGAGCAGCGACCAAACGCTGGAAGAAGTGGGTAAACAGTTCGACGTTACCCGCGAACGTATCCGTCAGA
TCGAAGCGAAAGCGCTGCGCAAACTGCGTCACCCGAGCCGTGCTGACAAGCTGAAAAGCTTCCTGGACAGTTAATCGGTAGGCCGGATCA 

Ec
JP

10
 GCCGTGCGAAGAAAGAGATGATTGAAGCGAACTTACGTCTCGTTATTTCTATCGCTAAGAAATACACCAACCGTGGCTTGCAGTTCCTTGACC

TGATTCAGGAAGGCAACATCGGTCTGATGAAAGCGGTTGATAAATTCGAATACCGCCGTGGTTACAAGTTCTCCACCTACGCAACCTGGTGGA
TCCGTCAAGCGATCACCCGCTCTATCGCGGATCAGGCGCGCACCATCCGTATTCCCGTGCATATGATTGAGACCATCAACAAGCTCGTCCGTA
CTTCTCGCCAGATGCTGCACGAGATAGGCCGTGAACCGGCGCCGGAAGAACTGGCTGAAAAACTGGGGATGCCGCTAGAAAAGGTCCGCAAAG
TGCTGAAGATCGCCAAAGAGCCAATCTCCCTGGAAACGCCGATCGGTGATGAAGAAGATTCGCATCTGGGGGATTTCATCGAGGATAAAACCG
CCATAATACCGCTGGATGCTGCGATCCAAACAAACCTGCGTGAGGCAACGACCCGCGTGCTGGCTAGCCTGACCCCGCGTGAAGAAAGAGTTC
TGCGTATGCGTTTCGGTATCGGTATGAACACCGACCACACGCTGGAAGAAGTGGGTCAACAGTTCAACGTTACCCGCGAACGTATCCGTCAGA
TCGAAGCGAAAGCGCTGCGCAAACTGAAACACCCGAGCCGTTCTAGAAAGCTGCGTAGCTTCCTGGACGATTAATCGGTAGGCCGGATCA 

Ec
JP

11
 GCCGTGCGAAGAAAGAGATGGTTGAAGCGAACTTACGTCTCGTTATTTCTATCGCTAAGAAATACACCAACCGTGGCTTGCAGTTCCTTGACC

TGATTCAGGAAGGCAACATCGGTCTGATGAAAGCGGTTGATAAATTCGAATACCGCCGTGGTTACAAGTTCTCCACCTACGCAACCTGGTGGA
TCCGTCAAGCGATCACCCGCTCTATCGCGGATCAGGCGCGCACCATCCGTATTCCCGTGCATATGATTGAGACCATCAACAAGATCGTCCGTA
CTTCTCGCCAGATGCTGCACGAGATAGGCCGTGAACCGACGCCGGAAGAACTGGCTGAAAAACTGGCGATGCCGCTAGAAAAGGTCCGCAAAG
TGCTGAAGATCGCCAAAGAGCCAATCTCCCTGGAAACGCCGGTCGGTGATGAAGAAGATTCGCATCTGGGGGATTTCATCGAGGATAAAAACG
CCCTGCTGCCGATAGATGCTGCGATCCAAGCAAACCTGCGTGACACAACGACCCGCGTGCTGGCTAGCCTGACCCCGCGTGAAGAAAGAGTTC
TGCGTATGCGTTTCGGTATCGGTATGAACACCGACCACACGCTGGAAGAAGTGGGTCAACAGTTCAGCGTTACCCGCGAACGTATCCGTCAGA
TCGAAGCGAAAGCGCTGCGCAAACTGAAACACCCGAGCCGTTCTAGAAAGCTGCGTAGCTTCCTGGACAGTTAATCGGTAGGCCGGATCA 



Ec
JP

12
 GCCGTGCGAAGAAAGAGATGGTTGAAGCGAACTTACGTCTCGTTATTTCTATCGCTAAGAAATACACCAACCGTGGCTTGCAGTTCCTTGACC

TGATTCAGGAAGGCAACATCGGTCTGATGAAAGCGGTTGATAAATTCGAATACCGCCGTGGTTACAAGTTCTCCACCTACGCAACCTGGTGGA
TCCGTCAAGCGATCACCCGCTCTATCGCGGATCAGGCGCGCACCATCCGTATTCCCGTGCATATGATTGAGACCATCAACAAGATCGTCCGTA
CTTCTCGCCAGATGCTGCACGAGATAGGCCGTGAACCGACGCCGGAAGAACTGGCTGAAAAACTGGCGATGCCGCTAGAAAAGGTCCGCAAAG
TGCTGAAGATCGCCAAAGAGCCAATCTCCCTGGAAACGCCGGTCGGTGATGAAGAAGATTCGCATCTGGGGGATTTCATCGAGGATAAAAACG
CCCTGCTGCCGATAGATGCTGCGATCCAAGCAAACCTGCGTGAGACAACGACCCGCGTGCTGGCTAGCCTGACCCCGCGTGAAGAAAGAGTTC
TGCGTATGCGTTTCGGTATCGGTATGAACACCGACCACACGCTGGAAGAAGTGGGTCAACAGTTCAGCGTTACCCGCGAACGTATCCGTCAGA
TCGAAGCGAAAGCGCTGCGCAAACTGAAACACCCGAGCCGTTCTAGAAAGCTGCGTAGCTTCCTGGACAGTTAATCGGTAGGCCGGATCA 

Ec
JP

13
 GCCGTGCGAAGAAAGAGATGGTTGAAGCGAACTTACGTCTCGTTATTTCTATCGCTAAGAAATACACCAACCGTGGCTTGCAGTTCCTTGACC

TGATTCAGGAAGGCAACATCGGTCTGATGAAAGCGGTTGATAAATTCGAATACCGCCGTGGTTACAAGTTCTCCACCTACGCAACCTGGTGGA
TCCGTCAAGCGATCACCCGCTCTATCGCGGATCAGGCGCGCACCATCCGTATTCCCGTGCATATGATTGAGACCATCAACAAGCTCGTCCGTA
CTTCTCGCCAGTTCCTGCACGAGCAGGGCCGTGAACCGACGCCGGAAGAAATGGCTGAACGTCTGTCGATGCCGCTAGAAAAGGTCCGCAAAG
TGATGAAGATCGCCAAAGAGCCAATCTCCCTGGAAACGCCGATCGGTGATGAAGAAGATTCGCATCTGGGGGATTTCATCGAGGATAAAAACG
CCATAATACCGGTGGATGCTGCGATCCAAGCAAACCTGAAAGAGACAGTGACCCGCGTGCTGGCTAGCCTGACCCCGCGTGAAGAAAGAGTTC
TGCGTATGCGTTTCGGTATCGGTATGAACACCGACCACACGCTGGAAGAAGTGGGTCAACAGTTCAGCGTTACCCGCGAACGTATCCGTCAGA
TCGAAGCGAAAGCGCTGCGCAAACTGAAACACCCGAGCCGTTCTAGAAAGATGCGTAGCTTCCTGGACCAATAATCGGTAGGCCGGATCA 

Ec
JP

14
 GCCGTGCGAAGAAAGAGCTGGTTGAAGCGAACTTACGTCTCGTTGTTTCTATCGCTAAGAAATACACCAACCGTGGCTTGCAGTTCCTTGACC

TGATTCAGGAAGGCAACATCGGTCTGATGAAAGCGGTTGATAAATTCGAATACAAACGTGGTTACAAGTTCTCCACCTACGCAACCTGGTGGA
TCCGTCAAGCGATCACCCGCGCTATCGCGGATCAGGCGCGCACCATCCGTATTCCCGTGCATATGATTGAGACCATCAACAAGCTCATCCGTA
CTTCTCGCTACCTGGTGCAAGAGATAGGCCGTGAACCGACGCCGGAAGAAATAGCTGAAAAAATGGAGCTGCCGCTAGACAAGGTCCGCAAAG
TGCTGAAGATCGCCAAAGAGCCAATCTCCCTGGAAACGCCGATCGGTGAAGAAGAAGATTCGCATCTGGGGGATTTCATCGAGGATAAAAGCC
TCGTGTCGCCGGCGGATGCTGTGATCAACATGAACCTGGCTGAGCAAACGCGCAAAGTGCTGGCTACCCTGACCCCGCGTGAAGAAAAAGTTC
TGCGTATGCGTTTCGGTATCGGTGAGAAAAGCGACCACACGCTGGAAGAAGTGGGTCAAGACTTCGAAGTTACCCGCGAACGTATCCGTCAGA
TCGAAGCGAAAGCGCTGCGCAAACTGCGTCACCCGAGCCGTTCTAAAAGGCTGCGTAGCTTCGTGGAAAGTTAATCGGTAGGCCGGATCA 

Ec
JP

15
 CCTGCAAAAACTGCAGCAGATTGAAGAAGAAACCGGCCTGACCATCGAGCAGGTTAAAGATATCAACCGTCGTATGTCAATCGGTGAAGCGAA

AGCCCGCCGTGCGAAGAAAGAGCTGCTTGAAGCGAACTTACGTCTCGTTGTTTCTCTCGCTAAGAGATACACCGGCCGTGGCATGCTGTTCCT
TGACCTGATTCAGGAAGGCAACCTCGGTCTGATAAGAGCGGTTGAAAAATTCGACTGGAAAAAAGGTTTCAAGTTCTCCACCTACGCAACCTG
GTGGATCCGTCAAGCGATCACCCGCGCTATGGCGGATCAGGCGCGCACCATCCGTGTTCCCGTGCATATGGTTGAGGTCATCAACAAGCTCAG
CCGTGTTCAACGCCAGATGCTGCAAGACCTGGGCCGTGAACCGACGCCGGACGAACTGGCTAGAGAACTGGACATGCCGGTAGAAAAGGTCCA
AGAAGTGCAGAAGTACGGCAGAGAGCCAATCTCCCTGCACACGCCGCTCGGTGAAGATGGAGATTCGGAATTCGGGGATCTCATCGAGGATAC
CGACGCCATAGCGCCGTCGGATGCTGTGGCCTTCTCACTCCTGCAAGAGCAATTCAAACAAGTGCTGGAAACCCTGAGCCCGCGTGAAGCAGG
AGTTATAAAAATGCGTTACGGTCTCGAAGACGGCCAACCCAAAACGCTGGACGACATAGGTAGAGTGTACGGCGTTACCCGCGAACGTATCCG
TCAGATCGAATCGAAAACGATGAGCAAACTGCGTCACCCGAGCCGTTCTCAAACGCTGCGTGACTTCCTGGACCAATAATCGGTAGGCCGGAT
CAGGCGTTACGCCGCACCCGGCACTATGCCCTCTGCACAAACGCCACCTTTTCGGTGGCGTTTTTTATCGCCCACGC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 3. Fitness characterization of RpoD ortholog sequence mutants. Related 

to Figure 5. 
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