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ABSTRACT

Well-trained machine-learning models, which leverage large amounts

of open-source software data, have now become an interesting ap-
proach to automating many software engineering tasks. Several
SE tasks have all been subject to this approach, with performance
gradually improving over the past several years with better mod-
els and training methods. More, and more diverse, clean, labeled
data is better for training; but constructing good-quality datasets
is time-consuming and challenging. Ways of augmenting the vol-
ume and diversity of clean, labeled data generally have wide appli-
cability. For some languages (e.g., Ruby) labeled data is less abun-
dant; in others (e.g., JavaScript) the available data maybe more fo-
cused on some application domains, and thus less diverse. As a
way around such data bottlenecks, we present evidence suggest-
ing that human-written code in different languages (which per-
forms the same function), is rather similar, and particularly pre-
serving of identifier naming patterns; we further present evidence
suggesting that identifiers are a very important element of training
data for software engineering tasks. We leverage this rather for-
tuitous phenomenon to find evidence that available multilingual
training data (across different languages) can be used to amplify
performance. We study this for 3 different tasks: code summariza-
tion, code retrieval, and function naming. We note that this data-
augmenting approach is broadly compatible with different tasks,
languages, and machine-learning models.
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1 INTRODUCTION

Researchers in the NLP area have reported that multilingual train-
ing is beneficial for low-resource language [16, 23, 57, 63]. Several
papers show that multilingual-trained models show better perfor-
mance [36, 62] and are more practical to deploy [9]. However, this
is observed in two situations: 1) for low-resource languages and 2)
when the languages are related. We find that programs in differ-
ent languages solving the same problem use more similar identi-
fiers; furthermore different languages sometimes have similar key-
words and operators. High capacity deep learning models are ca-
pable of learning interlingua: shared semantic representation be-
tween languages [34]. Moreover, with tasks like summarization,
or method naming, we are dealing with a simplified, many-to-one
setting: translating multiple source languages to a single target lan-
guage), which is believed to be easier than multi-way task [20, 76].
We begin by introducing the code summarization task, which we
use to motivate multilingual training.

Developers often rely heavily on comments, to gain a quick
(even if approximate) understanding of the specification and de-
sign of code they are working on. An actual example of a com-
ment is shown in Figure 1. Such comments help a developer gain a
quick mental preview of what the proximate code does, and how it
might go about it; this helps the developer know what to look for
in the code. Knowing that such comments are useful to others (or
even later to oneself) incentivizes developers to create comments
that explain the code; however the resulting redundancy (viz., code
that does something, and some nearby English text that describes
just what the code does), with the same concept expressed in two
languages results in a bit of extra work for the original coder.
This extra work, of creating aligned comments explaining the code,
can be fruitfully viewed [21] as a task related to natural language
translation (NLT) (e.g., translating English to German). The mature
& powerful technology of NLT becomes applicable for comment
synthesis; ML approaches developed for the former can be used for
the latter. An effective comment synthesizer could help developers:
by saving them the trouble of writing comments; and perhaps even
be used on-demand in the IDE to create descriptions of selected bits
of code.

Comment synthesis is now an active research area, including
many projects such as CodeNN [30], DeepCom [26], Astattgru [40],
CopeBERT [18], Rencos [74], SecNN [42], PLBART [1], CoTexT [54],
ProphetNet-X [55], NCS [2], Code2seq [7], Re?Com [71], and many
more [19, 24, 25, 27, 28, 38, 39, 41, 49, 50, 66, 67, 69, 70, 72, 73].
All these approaches rely on datasets of aligned code-comment
pairs. Typically, these datasets are then used to train complex deep
learning models to model a probabilistic distribution of the form
p(comments | code) ; one can sample from these (usually generative)
models to create candidate comments for a given a piece of code.
Given a dataset of code-comment pairs in a specific language, e.g.,
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Java, or Python, or PHP, or Ruby, one can train models to translate
code in that language to comments. The quality of the translation
will depend largely upon the inductive power of the model, and
quality and diversity of the code-comment dataset.

//Returns the text content of

//this node and its descendants.

public String getTextContent() {
StringBuilder sb=new StringBuilder (getChildNodesCount()+1);
appendTextContent(sb);
return sb.toString ();

Figure 1: Example for code comment generation task

Of late, given the power of GPUs, and the capacity of the models,
the limitations largely arise from dataset quality and diversity, es-
pecially in languages for which limited, or rather specialized data
is available. For instance, CODEXGLUE [47] dataset consists of six
languages (i.e., Ruby, Java, JavaScript, Go, Php, Python). Most lan-
guages have well over 100,000 training examples, covering a wide
set of application domains. Some languages, particularly Ruby and
Javascript, have far fewer examples, and cover a narrower range of
application domains. As a result, state-of-the-art models perform
less well for these two languages. This is a well-known problem
for natural language translation: while training data for language
pairs like English <> French is abundant, resources may be lack-
ing for less-used languages like Quechua or Badaga. In such cases,
a common technique is adapt ML models to learn useful statis-
tics from abundant data in other, perhaps related languages [51].
This works well when languages often have similar grammars, and
share common word etymologies.

We propose an analogous approach to improve the diversity and
quality of training data for software-engineering tasks, exploiting
an interesting property of source code that human beings write.
It’s generally agreed that variable names help code comprehen-
sion [37]. Developers know this, and typically choose descriptive
variable names (reflective of code logic and purpose) regardless of
the language they are coding in. Thus, one could expect that devel-
opers coding the same functionality, using similar algorithms, even
in different languages, will use similar variable names. This suggests
that machine-learning approaches could sometimes leverage cor-
porain different programming languages. This paper a) shows that
this expectation actually has a sound empirical basis, and then b)
demonstrates that this approach in fact works not just for code
summarization, but also for several other tasks. We make the fol-
lowing contributions.

(1) Using the RoserTaCoDE dataset, we provide evidence that
programs solving the same problem in different languages
are more likely to use the same or similar identifier names.

(2) We show evidence suggesting that cross-language training
(e.g., train on Python, test on Ruby) can sometimes lead to
better performance than same-language training.

(3) We study the relative value of identifiers and syntax, using
ablation, and find that identifier names may matter more.

(4) We show that pooled multilingual training data improves
performance on several tasks, but especially for languages
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lacking in diverse and abundant data. We top a leaderboard
for code-comment synthesis!.

(5) We show that multilingual training helps for two other tasks:
code retrieval, and method name prediction.

(6) Finally, we evaluate a few different design choices for mul-
tilingual training, and discuss threats to our findings.

Overall, this paper a) shows that multilingual training is yet an-
other useful technique in the general arsenal of ML approaches to
exploit the naturalness of code, b) shows why it is useful, and c)
shows how to take good advantage of it.

Note: Technical details follow, but precisely: what we study here
is multilingual training in the fine-tuning stage of “foundation mod-
els" [12]. Foundation models for code, like CODEBERT, GRAPHCODE-
BERT [18, 22] already use multilingual data for pre-training. While
pre-training is self-supervised and is done with unlabeled corpora,
task-specific fine-tuning is usually supervised, using clean, hard-
won labeled data; multilingual pooling can be useful here.

2 BACKGROUND & MOTIVATION

We now present some motivating evidence suggesting the value
of multilingual training data for deep-learning applications to soft-
ware tasks. We begin the argument focused on code summariza-
tion.

Deep learning models have been widely applied to code summa-
rization, with papers reporting substantial gains in performance
over recent years [1, 2, 7, 18, 19, 24-28, 30, 38-42, 50, 54, 55, 66, 67,
69-74]. We focus here on what information in the code ML models
leverage for summarization (while we use summarization to mo-
tivate the approach, we evaluate later on 3 different tasks). Does
every token in the program under consideration matter, for the
code summarization task? Or, are the function and variable names
used in the programs most important? Since identifiers carry much
information about the program, this may be a reasonable assump-
tion.

Considering the content words? in the example in Figure 1 there
are four major terms (i.e., Returns, text content, node, and descen-
dants) used in the summary. The first 3 directly occur as tokens or
subtokens in the code. Though the word “descendants” is missing
in the program, high capacity neural models like BERT [17] can
learn to statistically connect, e.g., "descendant” with the identifier
subtoken “child”. This suggests that, perhaps, comments are recov-
erable primarily from identifiers. If this is so, and identifiers matter
more for comments than the exact syntax of the programming lan-
guage, that may actually be very good news indeed. If developers
choose identifiers in the same way across different languages (viz.,
problem-dependent, rather than language dependent) perhaps we
can improve the diversity and quality of dataset by pooling train-
ing set across may languages. Pooled data sets may allow us to
fine-tune using multilingual data, and improve performance, espe-
cially for low-resource languages (e.g., Ruby and JavaScript from

'This claim is based on publicly available evidence. Please check
https://microsoft.github.io/CodeXGLUE/

2“Content” words in linguistics, are words that carry meaning, as contrasted with
function words, such as prepositions, pronouns, and conjunctions, which denote gram-
matical relationships. See https://en.wikipedia.org/wiki/Content_word. In code, we
consider function words to be keywords, operators and punctuations, and content
words to be identifiers (functions, variables, types, etc)
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CopeEXGLUE [47]). Since this is a core theoretical background for
our work, we start off with two basic research questions to empiri-
cally gauge the possibility and promise of multilingual fine-tuning.

RQ1 What role do identifiers play in for code summarization?
RQ2 Do programs that solve the same problem in different lan-
guages tend to use similar identifier names?

2.1 RQ1: Role played by identifiers

We first examine the importance of identifiers for code summariza-
tion; specifically, we compare the relative value of identifier tokens
and other tokens. We use the CopEXGLUE dataset and pre-trained
CopeEBERT embeddings for the task [18]. We begin with a brief
backgrounder on CopEBERT [18] & BERT [17].

CopEBERT uses the pre-training + fine-tuning strategy of BERT,
RoBERTa etc [17, 45]. This approach begins with a self-supervised
“pre-training” step, to learn textual patterns from a large, unla-
beled, corpus using just the content; in the next step, “fine-tuning”,
task-specific labeled data is used to provide task-related supervised
training. This approach is known to achieve state-of-the-art perfor-
mance in both natural language processing, and software-related
tasks [3, 4, 11, 18, 22, 32, 33, 35, 50, 75].

We study the effect of identifiers in several steps. For the pre-
training step, we start with the available CODEBERT model, which
is pre-trained on a large, multilingual corpus of code. For the fine-
tuning step, for this task, we use the CobEXGLUE benchmark dataset
(see table 4 for languages and dataset sizes); we start with the orig-
inal set of code-comment pairs, and apply two different treatments
to create overall three different fine-tuning training datasets—1)
base case leaving code as is, 2) a treatment to emphasize identifiers,
and 3) a treatment to de-emphasize them. First, to emphasize identi-
fiers we abstract out the program’s keywords, separators, and oper-
ators by replacing those with three generic tokens (i.e., “key”, “sep”,
and “opt”), thus forcing the model (during fine-tuning) to rely more
on the identifiers, for the task. Next, to assess the importance of
keywords, separators, and operators, we abstract out the identifiers
with a generic token “id”. We fine-tune the model separately after
each of these abstraction steps, thus yielding 3 fine-tuned models:
the baseline, keyword-abstracted, and identifier-abstracted. We com-
pare the results (smoothed BLEU-4) across all three.

If a fine-tuned model’s performance is relatively unaffected by
an abstraction, one may infer that the model relies less on the
abstracted tokens. We perform these experiments with two lan-
guages with low-resource (i.e., Ruby and JavaScript, See table 4)
and two languages with high-resource (i.e., Java and Python ). We
train, validate, and test with the same dataset in each case. For each
test instance, we have one value from the complete program and
another one from each of the two abstracted versions. We com-
pared these values, using two distinct pair-wise Wilcoxon tests:
1) Alternative Hypothesis (AH): complete program > identifier de-
emphasis & 2) AH: complete program > identifier emphasis. We

also perform the same test with the keyword-abstracted and identifier-
abstracted versions (AH: identifier emphasis > identifier de-emphasis).

The data (table 1) suggests that abstracting the keyword, sepa-
rator, and operator has a smaller impact on the performance: the
BLEU-4 scores are rather similar (with effect size ranging from 0.002
to 0.033) to those from the unabstracted code. On the other hand,
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Complete Abstracting keyword, Abstracting
Dataset Program operator, separator identifiers
Effect  p-value Effect  p-value
BLEU-4 BLEU-4 BLEU-4
Size  (adjusted) Size  (adjusted)
Ruby 12.53 11.57 -0.028 0.008 7.94 -0.238 <0.001
JavaScript 13.86 13.06 -0.033  <0.001 9.06 -0.175  <0.001
Java 18.72 18.72 -0.002 0.344 11.41 -0.254 0
Python 18.25 18.10 -0.010 <0.001 11.68 -0.288 0

Table 1: Role played by identifiers

when de-emphasizing identifiers, the performance drops more, with
effect sizes 5x-100x larger. We find similar results while comparing
the emphasizing and de-emphasizing identifiers versions (omitted
for brevity).

Training
Language X
Ruby JavaScript Java Go PHP Python

Ruby 1253 11.84 13.42 1232 13.84 14.09
JavaScript 11.98 13.86 14.16 1255 13.90 14.09

. Java 1338 14.57 18.72 1420 1627 16.20

Testing

Go 11.68 11.24 13.61 1815 1270 13.53
PHP 17.52  19.95 2211  18.67 2548 21.65
Python 1410 14.44 16.77 1492 1641 18.25

Table 2: Intra and inter language training and testing

The results in table 1 suggests that syntax is less relevant that
identifier names. In all the prior works, the training and testing
were done in the same language. Since syntax is less important,
could we train and test with different languages? The CopEXGLUE
dataset enables just such an experiment. Using six different lan-
guages, we apply a CoDEBERT model fine-tuned in each language,
to a test set in another language. Table 2 shows that for high-resource
languages (i.e., Java, go, PHP, and Python), we achieve the best re-
sult (diagonal) when training and test data are from the same lan-
guage. However, the performance does not degrade to a very large
extent when trained with one language and tested on a different
one. Surprisingly we observe that for Ruby and JavaScript, we actu-
ally achieve higher performance while trained with Java, PHP, and
Python than the language itself. That indicates that code summa-
rization is not completely dependent on syntax (perhaps it relies
more on identifier similarity, which we shall explore next)

Finding 1. Code summarization sometimes appears to train quite
well with data sets from other languages, even if the syntax is dif-
ferent.

2.2 RQ2: Identifier similarity across Languages

Here, we evaluate RQ2: given a problem, do developers choose
similar, descriptive identifiers, regardless of the programming lan-
guage? Based on the findings in the previous section: if identifiers
were indeed used in similar ways, perhaps code-comment pairs
from any programming language could help train a code summa-
rization model, for any other language. As an example, Figure 2
presents that all the “indexOf” functions implemented in Java, PHP
and JavaScript use very similar identifiers “needle” and “haystack”.
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Quantitatively evaluating this hypothesis requires multiple im-
plementations of the same problem in different programming lan-
guages, where we could compare identifier names. Luckily, Roset-
TaCoDE provides just such a dataset. RosertaCope currently con-
sists of 1,110 tasks, 305 draft tasks and includes 838 languages®. We
collect the mined data? and study the same six languages (i.e., Ruby,
JavaScript, Java, Go, PHP, and Python) in the CopEXGLUE dataset.
We get 15 cross-language pairs from six languages and measure
identifier similarity between pairs of programs which solve the
same problem in each language (e.g., programs for graph diame-
ter problem in Java and Ruby). For baselining, we also compare
with a random pair (solving different problems) for the same two
languages (e.g. graph diameter in Java, and SHA-hashing in Ruby).
Fortunately, we found sufficient sample sizes for all our language
pairs in RosertaCopk. For example, for Java & Python we find 544

matched program pairs solving the same problem in both languages.

We then take the 544 Java programs and randomly pair them with
544 other Python programs. Therefore, we have two groups of
programs (i.e, same program implemented in different languages
and different programs implemented in different languages), and
we check the similarity level between the two groups. Note that
size-unrestricted random pairing may yield misleading results. Sup-
pose we have a Java & Python program matched pair with 100
Java subtokens and 40 Python subtokens. Now, if we replace the
matched python program with a random, bigger program (e.g., 500
subtokens), we may have more chance of finding matched identi-
fiers. Therefore, while choosing the random program, we try to
ensure it has a similar length to the program it is replacing in the
pair. We randomly select a program having the subtoken counts
within a 5% length range (e.g., 38-42 subtokens for a 40 subtoken
program) of the removed one. Fortunately, in 99.25% cases, we get
at least one example within the 5% range. On the remaining in-
stances, we select the program with the nearest subtoken count.
We measure identifier similarity thus:

(1) Remove all keywords, operators, and separators from the
programs.

(2) Break all CamelCase and snake_case identifiers and keep
only one copy of each sub token.

(3) Discard too-small programs with less than 5 sub-tokens.

(4) Calculate the mean Szymkiewicz-Simpson coefficient (over-
lap coeflicient) [65] for both groups (i.e., same program pair
and random pair) of programs.

(5) Repeat this process across all 15 language pairs, for all pro-
gram pairs.

Table 3 shows the common program pairs have 89%-235% ad-
ditional identifier overlap compared to random program pairs.
We compare the matched and random pair overlaps using the non-
parametric Wilcoxon signed-rank test (AH: random has less over-
lap than matched). We observe that the null hypothesis is rejected,

and Szymkiewicz-Simpson Overlap coefficient? is significantly higher

3Last Accessed August, 2021
“https://github.com/acmeism/RosettaCodeData
SThis is a measure of similarity like the Jaccard index; we use it here since sometimes

. o , |Xny|
the sizes of the programs are quite different. It’s calculated as (XY -
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for the common program pairs in all the cases. That indicates pro-
grams solving the same problem (even in different languages) are
much more likely to use the same or similar identifier names.

Language #of common Overlap coefficient Effect  p-value
pair programs  for random for common increased in % Size  (adjusted)
programs programs

Java & Python 544 0.10 0.32 +210.67% 0.747  <0.001
Java & Ruby 532 0.11 0.31 +174.97% 0.751  <0.001
Java & Javascript 411 0.13 0.36 +188.17% 0.774  <0.001
Java & Go 602 0.19 0.36 +89.24% 0.641  <0.001
Java & PHP 282 0.08 0.28 +235.01% 0.740  <0.001
Python & Ruby 538 0.11 0.35 +228.89% 0.780  <0.001
Python & Javascript 377 0.12 0.34 +190.09% 0.728  <0.001
Python & Go 601 0.13 0.31 +133.06% 0.664  <0.001
Python & PHP 267 0.09 0.29 +214.32% 0.679  <0.001
Ruby & Javascript 370 0.13 0.35 +167.02% 0.751  <0.001
Ruby & Go 571 0.12 0.28 +133.47% 0.724  <0.001
Ruby & PHP 262 0.09 0.28 +205.32% 0.716  <0.001
Javascript & Go 418 0.14 0.29 +110.96% 0.635  <0.001
Javascript & PHP 236 0.11 0.29 +175.03% 0.678  <0.001
Go & PHP 293 0.10 0.23 +121.25% 0.562  <0.001
Overall 6304 0.12 0.31 +158.94% 0.697 0

Table 3: Cross-language identifier similarity, when functionality is
preserved

We also calculate each pair’s Jaccard index [31] (similarity co-
efficient) and find 112%-309% more similarity between common
pairs than random ones, thus, giving essentially the same result.
However, we prefer to report the detailed result using the overlap
coefficient because Jaccard index can be affected by the differing
verbosity of languages. For example, on average, Java, Python, and
Ruby programs in RoseTtaCopt have 29.45, 17.93, and 17.63 iden-
tifier subtokens. Java has higher subtokens compared to Python
and Ruby because of the import statements, package naming etc.
Therefore, Jaccard index between Java and Python will be lower
than that of Python and Ruby even if the programs use very simi-
lar identifiers.

Finding 2. For a given problem, developers are likely to choose
similar identifiers, even if coding in different languages.

In this section, we have presented evidence suggesting that a)
identifiers are important for code summarization, that b) cross-
language training is promising, and also that c) identifiers tend to
be used in similar ways across languages. Taken together, these
findings present a strong argument to try multilingual fine-tuning
for SE tasks. Note that it is already well established that multi-
lingual pre-training is helpful, and most BERT-style SE pre-trained
models are multilingual [1, 18, 54, 55]. However, pre-training data
are unsupervised and easy to collect. Preparing clean data for the
supervised fine-tuning phase requires more time and attention. In
this paper, our aim is to prove that multilingual training is not
only effective in pre-training stage but also in fine-tuning stage
for SE models, which is already found to be beneficial for natural
language models [63].

3 BENCHMARK DATASETS AND TASKS

We evaluate the benefits of multilingual training in the context of
several tasks, and associated datasets. In this section, we discuss
the models and tasks used for our experiments.
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public static int indexOf(ByteBuf needle, ByteBuf haystack) {

// TODO: maybe use Boyer Moore for efficiency.

int attempts = haystack.readableBytes () - needle.readableBytes () +
(int i = 0; i < attempts; i++) {
if (equals(needle, needle.readerIndex (),

for

haystack, haystack.readerIndex () + i,
needle.readableBytes ())) {
return haystack.readerIndex () + i;
}
}
return -1;

}
(a) Java

public static function indexOf(string S$haystack,
int $offset=0):int

string $needle ,

{

$pos=self :: strpos($haystack , $needle, S$offset);
return is_int ($pos)?$pos:-1;
}
(b) PHP
function indexOf(haystack, needle) {

if (typeof haystack==='string')
return haystack.indexOf(needle);

for (let i=0, j=0, l=haystack.length, n=needle.length;
if (haystack[i]===needle[j]) {

j++s

i<l; i++) {

if (j===n) return i-j+1;
}
else {
j=0:
}
}

return -1;

}
(c) JavaScript

Figure 2: Usage of similar identifiers (e.g., needle, haystack) in “in-
dexOf” function in different programming languages

3.1 The Models

For our study of multilingual training, we adopt the BERT, or “foun-
dation model” paradigm. Foundation models [13, 15, 17, 45, 56]
have two stages: i) unsupervised pre-training with corpora at vast
scale and ii) fine-tuning with a smaller volume of supervised data
for the actual task. Foundation models currently hold state-of-the-
art performance for a great many NLP tasks. BERT [17] style mod-
els have also been adapted for code, pre-trained on a huge, multi-
lingual, corpora, and made available: CopEBERT and GRAPHCODE-
BERT are both freely available: both source code and pre-trained
model parameters. While these models for code have thus far gen-
erally been fine-tuned monolingually, they provide an excellent
platform for training experiments like ours, to measure the gains
of multilingual fine-tuning. CODEBERT & GrRAPHCODEBERT use a
multi-layer bidirectional Transformer-based [64] architecture, and
it is exactly as same as the RoBERTa [45], with 125M parameters;
we explain them further below.

Pre-training The CopEBERT [18] dataset, has two parts: a matched-
pairs part with 2.1M pairs of function and associated comment (NL-
PL pairs) and 6.4M samples with just code. The code includes sev-
eral programming languages. It was created by Hussain et al. [29].
CopeEBERT model is pre-trained with two objectives (i.e, Masked
Language Modeling and Replaced Token Detection) on both parts.
Mask language Modeling (MLM) is a widely applied and effective [17,

1;
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45] training objective where a certain number of (15%) tokens are
masked out, and the model is asked to find those tokens. For CoDE-
BERT training, Feng et al. apply this first objective only to bimodal
data [18]. The second objective, Replaced Token Detection (RTD) [14],
is a binary classification problem that is applied to both unimodal
and bimodal data. Two data generators (i.e.,, NL and PL) generate
plausible alternatives for a set of randomly masked positions, and
a discriminator is trained to determine whether a word is the orig-
inal one or not. We note that CODEBERT pre-training is all about
representation-learning: by learning to perform the task well, the
model learns a good way to encode the text, which is helpful during
the next, fine-tuning stage. The pre-training took about 12 hours
on a machine with 16 NVIDIA V100 cards, and would have taken
us very much longer, so we were grateful to be able to just down-
load the estimated parameters.

Pre-training GRAPHCODEBERT GRAPHCODEBERT augments source-

code with data flow, during pre-training. It uses a simple data flow

graph (DFG) encoding a where-the-value-comes-from relation be-

tween variables [22]. The DFG nodes are variable occurrences, edges
are value flow. GRAPHCODEBERT pretraining learns a joint repre-

sentation of 1) the DFG structure, 2) DFG alignment with source

code, and 3) the source code token sequences. GRAPHCODEBERT

is therefore pre-trained with three training objectives (i.e., Edge

Prediction, Node Alignment, and MLM) on 2.3M functions (PL-NL

pairs) from CodeSearchNet [29] dataset. For details see [22].

The pre-training+fine-tuning approach relies on VERY high ca-
pacity models, and are pre-trained over a large, multilingual cor-
pus. Thus, even before fine-tuning, the models already know a lot
about each language. Thus, fine-tuning on many languages should
not negatively impact what the model knows about any one lan-
guage. Thus we find that multilingual fine-tuning improves on mono-
lingual fine-tuning in most cases. We believe our proposed approach
would still consider the context surrounding the individual pro-
gramming language even after multilingual training because these
models have sufficient capacity to do so.

We now describe our tasks: in each, we describe the task, the
dataset, and the multilingual fine-tuning approach (if applicable).

3.2 Code Summarization

The Task: as described earlier, the goal is to generate a NL sum-
mary given code in some PL.

The Dataset: There are several different code summarization datasets;
we chose CoDEXGLUE?® [47], for two main reasons:

(1) CopeEXGLUE is carefully de-duplicated [60]. Prior datasets
like TL-CodeSum [28] have duplicates [60] in training, test-
ing, and validation partitions. Duplication can inflate mea-
sured performance [5, 60].

(2) We need a multilingual dataset to prove the effectiveness of
multilingual fine-tuning. None of the existing datasets [28,
40] is multilingual.

Table 4 presents the number of training, testing and validation in-
stances for each language. in CopEXGLUE.
Model & Fine-tuning Feng et al. use a transformer-based encode-

decoder architecture for the code summarization task [18]. The

CodeSearchNet [29] dataset is a standard benchmark, which has been incorporated
into CopEXGLUE
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Programming . Candidate
Training  Dev Test

language codes*
Ruby 24,927 1,400 1,261 4,360
JavaScript 58,025 3,885 3,291 13,981
Java 164,923 5,183 10,955 40,347
Go 167,288 7,325 8,122 28,120
PHP 241,241 12,982 14,014 52,660
Python 251,820 13,914 14,918 43,827

*Candidate codes are only used for code retrieval task

Table 4: CopeEXGLUE dataset

encoder is all ready well-trained in the pre-training stage; for fine-
tuning, the encoder is primed with weights from pre-training. Now,
the transformer model is given the input code token sequence and
asked to generate the comment, as in the Neural Machine Trans-
lation (NMT) problem. We fine-tune using the CopbEXGLUE paired
samples. During fine-tuning, the decoder is trained auto-regressively,
using next-token cross-entropy loss. Feng et al. use smooth BLEU-
4 [44] for the evaluations of the models. Subsequently, We replace
the pre-trained CopEBERT with pre-trained GRAPHCODEBERT in
the encoder while evaluating the effectiveness of multilingual fine-
tuning with GRAPHCODEBERT.

Why baseline with CoDEBERT for code summarization? Feng et al.

compare CopEBERT with other popular encoder-decoder based
(e.g., LSTM [61], Transformer [64], RoBERTa [45]) models; CODE-
BERT handily beats all of them [18]. Thus, CopeBERT is a good
baseline to measure the value of multilingual finetuning. CobE-
BERT also does very well on prior datasets: using smoothed Sen-
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code and parameters available, and so is fine-tunable. The fine-
tuning data is code (PL) matched with (NL) comments, from CODE-
XGLUE. The pre-trained GRAPHCODEBERT embedding vector is
calculated for each PL and NL part. During fine-tuning, Guo et al.
take a minibatch of (say n) NL query vector, along with n (correct
answers) PL answer vectors. n? dot products are calculated; the
embedding vectors are then full-stack trained to give "1" normal-
ized dot product for the matches, and "0" for the mis-matches. For
the actual retrieval, GRAPHCODEBERT calculates the vector embed-
ding of a given query, and simply retrieves candidates ranked by
the dot-product distance from the query vector.

3.4 Method Name Prediction

The Task as introduced by Allamanis et al. [6] as the “extreme sum-
marization” problem, the task is to predict the function name given
the body.

The Dataset: We adapt the CopEXGLUE dataset by extracting the
function name and asking the model to find the name given the
function body. Following [6], the function names are broken into
subtokens using BPE [59] (we’ve used BPE tokenization for all
tasks). This problem then becomes very similar to code summa-
rization.

Model & Fine-tuning Previously Code2Seq [7] and Code2Vec [8]
have worked on this problem. All prior works [6-8] use a mono-
lingual datasets, which are not suitable for our experiment. We use
the same model we used for summarization, except we now learn
to sequentially generate the method name, subtoken by subtoken.
We use F1-score for the evaluation. For example, the function name

tence BLEU-4, we found that CoDEBERT reaches 44.89 on TL-Codesum [zgireateLocal” is broken into two sub tokens (i.e., create and Local),

and 32.92 on Funcom [40]7. TL-Codesum has high degree of dupli-
cates; we found that Funcom also does, but just in the comments.
CopeEXGLUE has very little duplication, which makes it more chal-
lenging, and also more reliable. Note that GRAPHCODEBERT does
not report any performance on the code summarization task, and
so we had to measure it.

3.3 Code Search

The Task Given a natural language query, find the semantically
closest code sample from a large set of candidates. Vector-based
information retrieval methods can be used here along with BERT-
style encoders. CODEBERT was shown to perform quite well; the
best published performance is reported by GRAPHCODEBERT [22]
(CopeEBERT augmented with graph representations). We study the
value of multilingual fine-tuning for both CopEBERT and GRAPH-
CopEBERT (pre-training of both models was discussed earlier in
Section 3.1).

The Dataset: Guo et al. adapt the same CodeSearchNet [29] dataset,
with some additional data for candidate codes [22]. Note that it is
basically the same dataset we used for code summarization except
the candidate codes.

Model & Fine-tuning We use Guo et al.’s GRAPHCODEBERT model,
which at the time of submission is the best performing model with

7 As reported in [21, 60], measurement approaches vary across papers, and these num-
bers may differ from prior results: we use smoothed sentence BLEU-4 everywhere in
our paper.

and the model predicts only “create”. Hence, the precision, recall,
and F1-score are 1.0, 0.5, and 0.66, respectively.

4 RESULTS

In this section, we evaluate multilingual fine-tuning for the base-
lines for the tasks enumerated above.

4.1 Code Summarization

We apply multilingual fine-tuning on the CopEXGLUE dataset. We
first replicate the summarization task by (monolingually) fine-tuning
the available pre-trained CopEBERT model for six languages®. We
replicate the fine-tuning stage for 2 reasons:

(1) We want to account for any hardware or environmental bias
(e.g., we have a different set of GPUs than the original pa-
per. We fine-tune with NVIDIA TITAN RTX, while Feng et
al. [18] use NVIDIA Tesla V100).

(2) We use a pairwise two-sample statistical test (as described
in [58], it is more precise than just comparing test-set sum-
mary statistics) to gauge differences. This requires a perfor-
mance measurement for each test sample, which the repos-
itory did not include.

Our BLEU-4 numbers for monolingual training were close to re-
ported numbers, with some differences; but we do obtain the same
overall score (17.83) (table 5, leftmost 2 columns).

8We wuse the publicly available CopeBERT implementation and dataset,
https://github.com/microsoft/CodeXGLUE/tree/main/Code- Text/code- to-text
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We use the same, per-language test sets to compare monolingual
and multilingual fine-tuning. The validation set, however, is a sin-
gle multilingual one combining all the monolingual validation sets.
Table 5 shows that multilingual fine-tuning improves performance,
even for high-resource languages (with more than 100K training
instances). With CopeBERT, multilingual fine-tuning gains 2.5%-
17.5% over monolingual fine-tuning, for all languages, yielding a
6.90% overall improvement (4.48% weighted improvement)’. With
the more advanced GRAPHCODEBERT, we see smaller gains, al-
though the relative gains span a wide range.

We use a one-sided (AH: monolingual < multilingual) pairwise
Wilcoxon signed-rank test (thus avoiding the corpus-level mea-
surement pitfalls noted in [58]). Null hypothesis is rejected for all
six languages, for CODEBERT. For GRAPHCODEBERT, it’s rejected
overall, and for every language; except for Javascript, where the
p-value is 0.014 (all after B-H correction).

Thus our measurement indicates that multilingual fine-tuning
provides a statistically significant improvement over monolingual
training. We find rather low effect sizes using Cliff’s Delta [48].
While we report the effect size for the sake of completeness, this is
not a major concern: we note that all gains are statistically highly
significant. We also emphasize that even the minor improvements
provided here by multilingual training (which is broadly compati-
ble with a range of settings) constitute a relevant and potentially
widely useful result. Roy et al [58] have previously noted that small
gains in BLEU-4 may not be perceptible to humans as increased
text quality; nevertheless, we note that natural language transla-
tion (which is now widely used) attained high performance levels
based on decades of incremental progress; this result and others
below provide evidence that multilingual training could be an im-
portant step in the progress towards more useful automated tools.
Finally, we note that BLEU-4 gains are higher for low-resource lan-
guage (e.g., 17.7% for Ruby), and lower for high-resource languages
(e.g., 2.5% for Python), as expected.

Comparing multi-lingual CODEBERT with other models Code sum-

marization is widely studied—there are many models for this task;
our specific focus here is to understand if multilingual fine-tuning
provides benefits, using a high-quality token-sequence model and
dataset. So we focus comparisons on the papers which report per-
formance on CopEXGLUE dataset, and use a token-sequence in-
ductive bias: comparing against all models is beyond the scope of
this paper. We compare multi-lingual CopEBERT (#olyglot CODE-

BERT) and GRAPHCODEBERT (PolyglotGRaAPHCODEBERT) with other

models that have been published in peer-reviewed venues; among
them, four apply pre-training strategies [1, 18, 45, 55]. We achieve
the best overall performance (table 6), outperforming all the mod-
els, and for four specific languages (i.e., Ruby, Java, Go and PHP).

There is one other system, CoTexT [54] which claims (in an un-
published, non-peer-reviewed report) better performance than us
for just Python [54], but is worse overall. We will include it for
comparison once it is published in a peer-reviewed venue.

This table also provides evidence supporting the effectiveness
of multilingual fine-tuning.

9The CopeBERT paper simply averages the BLEU across languages to report the
“overall” number; our weighted average weights each BLEU by the number of sam-
ples in that language.
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4.2 Code Search

We study the gains from multilingual fine-tuning using two pre-
trained models (i.e., CODEBERT & GRAPHCODEBERT). We multilin-
gually fine-tune both models using the publicly available code &
dataset 9. As we did for code summarization, we re-trained the
baseline models, to get performance numbers for each case in the
test set (to enable pairwise two-sample testing). We use the same
test sets for both monolingual and multilingual training to evaluate
our approach. During the training, GRAPHCODEBERT uses a matrix
of dimension |query| = |candidate_codes|. We could not use the full
merged validation set (as we did for the code summarization task)
because that makes the query and candidate code sets too large;
the resulting matrix could not fit on our GPU server. We used a
down-sampled validation set comprising six monolingual valida-
tion sets with 10K query and 50K candidate codes each. However,
we did not face any issue while testing because we did not merge
the test sets.

We report both the published values, and our replication; we
need the replication to measure pairwise gains. Though CODEBERT

and GRAPHCODEBERT both work on sequence of code tokens, GRAPH-

CoDEBERT creates a rudimentary data-flow graph, once it’s told
the programming language.

Table 7 shows that multilingual fine-tuning improves the mean
reciprocal rank for all languages except Go with CopEBERT. The
improvement for Ruby, JavaScript, and Java are statistically signifi-
cant. We found similar results for GRaPHCODEBERT exhibiting im-
provement for Ruby, JavaScript, Java, and Python; but with GraPH-
CopeBERT both Go and PHP showed performance declines. How-
ever, overall, both showed statistically signficant improvements
(p < 0.001); but the improvement for GRAPHCODEBERT (1.54%) is
lower than CopEBERT (2.74%). Finally, we note that our numbers
for CopeBERT differ from the performance reported for on the
CopEXGLUE leaderboard. This is because CoDEXGLUE benchmark
uses only Python, and is based on a restricted setting where iden-
tifier names are left out. CoDEXGLUE team argues that this ab-
straction enables them to stress-test the generalization ability of
a model; however, here we consider an unmodified setting where
someone gives an natural language query and wishes to find “nat-
ural” code with variable names intact.

4.3 Method Name Prediction

As for the previous two tasks, we try multilingual fine-tuning for
method name prediction for CopEBERT. Here, too, we find ev-
idence supporting the conclusion that multilingual training pro-
vides improvement for all the languages (Table 8). Non-parametric
pairwise improvements are significant for Ruby, JavaScript, and
Java. We also note observe relatively greater effect size for Ruby

and JavaScript. Note that we achieve highest improvement for JavaScript

because many functions therein are anonymous lambdas, since
these functions have no names, they are not useful, and this dimin-
ishes available the JavaScript training set relative to other tasks
(lambdas still have summaries, and can be used for other tasks).
Therefore, multilingual fine-tuning increases the dataset diversity
and boosts JavaScript method name prediction performance.

Ohttps://github.com/microsoft/CodeBERT/tree/master/GraphCodeBERT/codesearch
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CopEBERT CopeBERT Effect  p-value Effect  p-value
Language . PolyglotCopEBERT  Improvement i . GRAPHCODEBERT  PolyglotGRAPHCODEBERT  Improvement i .
(reported)  (re-trained) Size  (adjusted) Size  (adjusted)
Ruby 12.16 12.53 14.75 +17.72% 0.055 <0.001 12.62 14.95 +18.46% 0.055 <0.001
Js 14.90 13.86 15.80 +14.00% 0.016 <0.001 14.79 15.79 +6.76% 0.016 0.014
Java 17.65 18.72 20.11 +7.43% 0.016 <0.001 19.22 19.91 +3.59% 0.016 <0.001
Go 18.07 18.15 18.77 +3.42% 0.010 <0.001 18.40 18.92 +2.83% 0.010 <0.001
PHP 25.16 25.48 26.23 +2.94% 0.012 <0.001 25.45 26.15 +2.75% 0.012 <0.001
Python 19.06 18.25 18.71 +2.52% 0.022 <0.001 18.02 18.90 +4.88% 0.022 <0.001
Overall 17.83 17.83 19.06 +6.90% 18.08 19.10 +5.64%
0.016 <0.001 0.016 <0.001
Overall Not
. 19.85 20.74 +4.48% 19.98 20.76 +3.90%
(weighted) Reported

*Evaluation criteria followed by CopEXGLUE [47] and CopEBERT [18]

Table 5: Effectiveness of multi-lingual fine-tuning for code summarization task. Note that p-values are B-H corrected

4.4 Two Illustrative Examples

We used the same dataset for all tasks; for illustration, we show
(Table 9) two test instances where all the tasks show improved per-
formance from multilingual fine-tuning. In code summarization
task, the monolingual fine-tuning scores 25 BLEU-4 in Example 1.
CopEBERT produces a semantically wrong comment where mul-
tilingual fine-tuning generates the semantically correct solution.
Note that the BLEU-4 is 84 for the second example because of the
missing period in the gold standard (BLEU-4 is case-insensitive).
Multilingual fine-tuning also helps the code search problem by in-
creasing the MRR from 0.33 (Rank:3) to 1.00 (Rank:1). We also ob-
serve performance improvement from the method name prediction
task. The gold standard consists of two sub tokens (i.e., set and Val-
ues), and mono-lingual fine-tuning generates three (i.e., set, Array,
and Value), one of them is exact match. On the other hand, multilin-
gual fine-tuning removes the extra “Array” subtoken and produces
two subtokens(i.e., set and Value) resulting in the F-score 0.50. We
observe a similar result in example 2. Note that like BLEU-4, our
method name prediction metric is also case-insensitive.

Finding 3. Multilingual fine-tuning is likely to increase diversity
and help the models perform better than those trained with smaller
mono-lingual datasets, especially for low-resource languages, irre-
spective of the task.

5 INTERPRETING RESULTS, AND THREATS

In this section we consider several issues that are relevant to the ob-
served performance of multilingual training, such as model choice,
dataset duplication, performance metrics, generalization, and dif-
ferent training strategies for the models.

Models Overall Ruby JavaScript Go  Python Java  PHP
PolyglotGRaPHCODEBERT ~ 19.10  14.95 15.79 18.92 18.90 19.91  26.15
PolyglotCobEBERT 19.06 14.75 15.80 18.77 18.71 20.11  26.23
ProphetNet-X [55] 18.54 14.37 16.60 18.43 17.87 19.39  24.57
PLBART [1] 18.32 14.11 15.56 18.91 19.30 1845  23.58
GrAaPHCODEBERT [22] 18.08 12.62 14.79 18.40 18.02 19.22 2545
CopEBERT [18] 17.83 12.16 14.90 18.07 19.06 17.65  25.16
RoBERTa [45] 16.57 11.17 11.90 17.72 18.14 16.47  24.02
Transformer [64] 15.56 11.18 11.59 16.38 15.81 16.26  22.12
Seq2Seq [61] 14.32 9.64 10.21 13.98 15.93 15.09  21.08

Table 6: Comparison to existing models, on CobEXGLUE dataset

5.1 Does multilingual fine-tuning help with
other models?
There are several models, including CoTexT [54], ProphetNet-X [55],

and PLBART [1] which report higher performance than CopEBERT [18]

model for the code summarization task. The models for all these
tasks were fine-tuned using monolingual datasets, so we might
expect that multilingual fine-tuning should improve performance.
These experiments would require a substantial investment of com-
pute energy and is left for future work. We focused on CODEBERT
(and also GRAPHCODEBERT on some tasks). We did some prelim-
inary experiments with multilingual fine-tuning on PLBART. In
our preliminary study, did see the same gains for low-resource
language (Ruby, 5% gain). However, we found a 0.55% overall loss,
which is inconsistent with what we observe with PolyglotCoDE-
BERT (6.90% overall improvement) & $olyglotGRAPHCODEBERT
(5.64% overall improvement). More study is needed.

Finding 4. Multilingual fine-tuning could benefit a broad range of
models. We find gains for CODEBERT and GRAPHCODEBERT, but
more data is required for other models.

5.2 Threats: Risk of data duplication?

Data duplication can lead to poor-quality estimates of performance,
especially when data is duplicated across training & test; even du-
plication just within test data risks higher variance in the estimates.
Allamanis finds that performance metrics are highly inflated when
test data has duplicates, and advocates de-duplicating datasets, for
more robust results [5]. Shi et al. also discusses the impact of du-
plication in code summarization task [60].

Sadly, there is a large amount of copied code on GitHUB [46];
inattentively combining different datasets harvested from GitHUB
can lead to undesirable levels of duplication in the merged dataset.
Fortnuately, CoDEXGLUE is atually a carefully de-duplicated dataset;
performance estimates therein are thus more robust. Combining
multilingual data is unlikely to introduce the same kind of exact
duplication in the dataset, because of syntax differences; There is
a possibility of cross-language clones [53]; the study of this is left
for future work.

Finding 5. Combining multilingual datasets is unlikely to cause
exact duplication, because of syntax differences. More study is
needed to study the effect of cross-language clones.
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CopeBERT CopeBERT Effect  p-value = GRaPHCODEBERT GraPHCODEBERT Effect  p-value
Language i ) PolyglotCopEBERT  Improvement ) ) X i PolyglotGRaPHCODEBERT  Improvement i R
(published) [22] (re-trained) Size  (adjusted)  (published) [22] (re-trained) Size  (adjusted)
Ruby 0.679 0.677 0.732 +8.12% 0.072 <0.001 0.703 0.708 0.738 +4.24% 0.039 <0.001
JavaScript 0.620 0.616 0.643 +4.38% 0.034 <0.001 0.644 0.644 0.660 +2.48% 0.019 0.004
Java 0.676 0.676 0.697 +3.11% 0.026 <0.001 0.691 0.693 0.710 +2.45% 0.022 <0.001
Go 0.882 0.885 0.885 0% -0.003 0.550 0.897 0.894 0.894 0% -0.002 0.724
PHP 0.628 0.629 0.635 +0.95% 0.009 0.003 0.649 0.648 0.646 -0.31% -0.002 0.904
Python 0.672 0.676 0.678 +0.30% 0.004 0.050 0.692 0.692 0.695 +0.43% 0.005 0.300
Overall* 0.693 0.693 0.712 +2.74% 0.713 0.713 0.724 +1.54%
0.013 <0.001 0.007 <0.001
Overall Not Not
. 0.692 0.702 +1.42% 0.709 0.715 +0.80%
(weighted) Reported Reported

*Evaluation criteria followed by GRapHCODEBERT [22]

Table 7: Effectiveness of multi-lingual fine-tuning for code search task. Note that p-values are BH-corrected

L CopeBERT PolyglotCopEBERT F-Score Effect  p-value
anguage
g Precision Recall F-Score Precision Recall F-Score Improvement Size (adjusted)
Ruby 0.44 0.40 0.41 0.53 0.49 0.49 20.59% 0.112 <0.001
JavaScript 0.30 0.24 0.26 0.45 0.40 0.41 59.00% 0.215 <0.001
Java 0.54 0.51 0.51 0.56 0.52 0.52 2.22% 0.016 <0.001
Go 0.54 0.52 0.52 0.56 0.53 0.52 1.67% 0.015 0.004
PHP 0.56 0.53 0.52 0.57 0.53 0.53 1.30% 0.009 0.004
Python 0.49 0.45 0.45 0.50 0.45 0.46 1.60% 0.011 0.002
Overall 0.48 0.44 0.44 0.53 0.49 0.49 10.09%
0.024 <0.001

Overall

0.52 0.48 0.48 0.54 0.50 0.50 3.37%
(weighted)

Table 8: Effectiveness of multi-lingual fine-tuning for method nam-
ing task. Note that p-values are adjusted using Benjamini-Hochberg

5.3 Threats: Other metrics?

Following CopEXGLUE benchmark recommendation, we evaluate

the code summarization task with smooth sentence BLEU-4 [44]

throughout this paper. However, other recognized metrics are are

available (e.g., ROUGE-L [43], METEOR [10]). Prior works [21, 58,
60] provide a careful analysis of the metrics, baselines, evaluations

for code summarization task. Table 10 shows ROUGE-L and ME-
TEOR data; we find that multilingual fine-tuning increases the over-
all performance by 4.89% and 5.61% in ROUGE-L and METEOR, re-
spectively. As with BLEU-4, we find that multilingual fine-tuning

shows similar performance gains with these metrics. We find 0.3%-
14.1% improvement in ROUGE-L and 1.2%-22.5% gains in METEOR
(except for PHP, were we see a 0.17% decline, not statistically sig-
nificant). We also see that Python shows the smallest improve-
ment, not as strongly statistically significant. These metrics also
indicate strong gains from multilingual training for low-resource
and narrow-domain languages (i.e., Ruby and JavaScript).

Finding 6. We observe performance improvement in all code sum-
marization metrics with multilingual fine-tuning.

5.4 Monolingual minibatches? or multilingual?

While training deep neural networks with stochastic gradient de-
scent, gradients (multivariate derivatives of loss w.r.t learnable pa-
rameters) are estimated over mini-batches, rather than calculating
loss gradients over the entire training set; these estimates are used
to adjust the weights in the network. Better choices of mini-batches
could improve convergence behavior. With multilingual training, a
natural question arises: is it better to sequentially interperse mono-
lingual mini-batches (e.g., first a Java minibatch, then Ruby mini-
batch and so on, before going back to Java?) or should we make
each minibatch per se multilingual?

Example:1

//set the values from an Array

public void setValues* ( Array arr ) {
//we omit intermediate lines to fit in the paper
//original code here

Code Summarization

Models & comments BLEU-4
Gold: set the values from an Array NA
CoDEBERT: Sets the values of the array . 25
PolyglotCopEBERT: Set the values from an array . 84
Code Search
Models MRR
GraPHCODEBERT 0.33
PolyglotGRAPHCODEBERT 1.00
Method Name Prediction
Models & method name Sub tokens F-Score
Gold: setValues set Values NA
CopEBERT: setArrayValue set Array Value 0.40
PolyglotCopEBERT: setValue set Value 0.50

Example:2

//Registers set injection point .

public void registerPetiteSetInjectionPoint* ( final String beanName, final String property ) {
//we omit intermediate lines to fit in the paper
//original code here

Code Summarization

Models & comments BLEU-4

Gold: Registers set injection point . NA

CoDpEBERT: Register a set of set InjectionPoint . 19

PolyglotCopEBERT: Register a set injection point . 60

Code Search

Models MRR

GRAPHCODEBERT 0.50

PolyglotGRAPHCODEBERT 1.00
Method Name Prediction

Models & method name Sub tokens F-Score

Gold: registerPetiteSetInjectionPoint register Pet ite Set In jection Point NA

CopeBERT: addPropertylnjectionPoint add Property In jection Point 0.50

PolyglotCopEBERT: setPropertylnjectionPoint  set Property In jection Point 0.57

*“registerPetiteSetInjectionPoint” & “setValues” tokens are abstracted for method name prediction task

Table 9: Examples exhibiting the effectiveness of multilingual train-
ing

In the previous experiments, we had randomly sort the dataset;
hence, our mini-batches are also multilingual. So we deliberately
tried sequentially monolingual minibatching during multilingual
fine-tuning. We find that sequentially monolingual minibatch train-
ing appears to somewhat degrade performance: we observe the
overall performance goes down by 1.05%. However, the change is
not statistically significant for any language. We omit the actual nu-
merical details, for space reasons, since we didn’t find any strong
results in either direction.


https://github.com/Unidata/thredds/blob/d2d68f9eee87f345625211324d71d5dc3e162ee1/cdm/src/main/java/ucar/nc2/Attribute.java#L548-L596 
https://github.com/oblac/jodd/blob/85ad7f813ec0e07ecd27042aeb47ff2047631fa5/jodd-petite/src/main/java/jodd/petite/PetiteBeans.java#L585-L598 
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ROUGE-L METEOR

Blfect  prvalue o) lotCoDEBERT Tmproves et prvalue
Size  (adjusted) Size  (adjusted)
Ruby 2436 +14.10% 0.087 <0.001 21.96 +22.54% 0.125 <0.001
JavaScript 24.30 +7.05% 0.022 <0.001 21.59 +11.40% 0.030 <0.001
Java 34.89 +3.32% 0.020 <0.001 31.73 +4.41% 0.020 <0.001
Go 37.36 +2.69% 0.024 <0.001 30.28 +3.73% 0.023 <0.001
PHP 38.81 +0.34% -8.65E-05 0.508 35.52 -0.17% -0.003 0.779
Python 32.86 +1.86% 0.015 <0.001 27.75 +1.24% 0.004 0.033

Overall 32.10 +4.89% 28.14 +5.61%
0.016 <0.001 0.013 <0.001
Overall
34.82 +2.24% 30.52 +2.59%
(weighted)

*Improvement reported over CODEBERT

Table 10: Performance improvement in ROUGE-L and METEOR for
code summarization task

Language

PolyglotCopEBERT  Improve’

Finding 7. We don’t find any clear difference between multilin-
gual mini batches and (interspersed) monolingual mini batches.

5.5 Multilingual model as pre-trained model

Our findings provide evidence supporting the claim that a multi-
lingual fine-tuned model is effective for code summarization task,
which outperforms all the models trained with monolingual datasets.
Could this this improved multilingual model further benefit from a
secondary, monolingual fine-tuning exercise, where it receives spe-
cialized fine-tuning for each language separately? To evaluate this
intriguing and promising idea, we load the model with the weights
from multilingual fine-tuning, and fine-tune it, again, for each indi-
vidual language. Table 11 shows that We found some minor perfor-
mance improvement for JavaScript and Python. However, the per-
formance goes down for other languages. We do not find evidence
that a secondary, monolingual fine-tuning is helpful; further work
is needed to understand why, and perhaps develop other ways this
idea might yield further improvement.

PolyglotCopEBERT Effect  p-value
Language  PolyglotCopEBERT . Improvement ) R
as pre-training Size  (adjusted)
Ruby 14.75 14.58 -1.15% -0.016  0.303
Js 15.80 16.47 +4.24% 0.024  <0.001
Java 20.11 19.81 -1.49% -0.003  0.303
Go 18.77 17.97 -4.26% -0.012 <0.001
Php 26.23 25.52 -2.71% -0.017 <0.001
Python 18.71 18.83 +0.64% 0.010  <0.001
Overall 19.06 18.86 -1.05%
-0.003  0.005

Overall

20.74 20.43 -1.47%
(weighted)

Table 11: Multilingual model as pre-trained model

Finding 8. We don’t find evidence that applying a secondary,
mono-lingual fine-tuning provides benefits for all languages.

—

6 RELATED WORK

Code summarization: Code summarization has recently been a hot
topic. More than 30 papers have been published in the last five
years that follow some form of encoder-decoder architecture [58].
Several works [21, 58, 60] discuss the evaluations, metrics, and
baselining. Roy et al. show that metric improvements of less than
2 points do not guarantee systematic improvements in summa-
rization and are not reliable as proxies of human evaluation [58].
We find more than 2 points of improvement for Ruby and almost
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2 points of improvement for JavaScript. We observe less than 2
points in other languages. It should also be noted that we don’t
use the corpus-level metrics which Roy et al. show is problematic;
we use pairwise comparisons on the test-sets. Finally, we note that
progress in both code & NLP occurs in small steps over decades,
and innovations (especially ones that could cumulate with oth-
ers) such as ours can be an important part of research commu-
nity’s long-term pursuit of practically relevant performance im-
provements.

Pre-trained models [1, 18, 45, 54, 55] are proven to be more ef-
fective than prior models. Different pre-trained models are trained
with the different pre-trained objectives even though fine-tuning
steps are almost similar for all the models. As discussed earlier
in Section 3.1, CopEBERT is an encoder model, pre-trained with
MLM and Repace Token Detection objectives. Unlike CODEBERT,
PLBART [1] is an encoder-decoder model which is trained as a de-
noising auto-encoder. Though all the models are pre-trained with
different training objectives, there is one thing common among all
the models: using Transformers as core architecture.

Parvez et al. very recently present an approach that augments
training data using relevant code or summaries retrieved from a
database (e.g., GitHub, Stack Overflow) [52]. They apply this ap-
proach on monolingual Java and Python datasets from CopEXGLUE
and claim gains over PolyglotCopEBERT & PolyglotGRAPHCODE-
BERT for code summarization. Prima facie, multilingual fine-tuning
is complementary to their approach; this needs to be studied.
Code retrieval and method name prediction: Code retrieval is also get-
ting attention recently. There are multiple datasets for this task.
CopeEXGLUE introduces a monolingual python dataset (taken ini-
tially from CodeSearchNet) abstracting the function names and
variables. Guo et al. modify the multilingual CodeSearchNet dataset
and achieve state-of-the-art performance on this task. However,
using multilingual training, we show that both CopeBERT and
GrAPHCODEBERT can be improved. There is one other very re-
cent paper, CLSEBERT [68] which reports (in an unpublished, non-
peer-reviewed report) better performance than us in all languages
except Ruby. We could not show the effectiveness of multilingual
training on CLSEBERT because the authors have not released the
code implementation yet. Note that like code summarization, we
focus only on the work using CodeSearchNet multilingual dataset.

CodeSearchNet dataset can be easily adapted to method name
prediction task. Several earlier works address method name pre-
diction, in a Java-only such as Code2Seq [7], Allamanis [6]. They
all use a conventional single-stage machine-learning approach (no
pre-training + fine-tuning). Our goal here is to simply demonstrate
that multilingual fine-tuning improves upon monolingual fine-tuning
for the method-naming task, so we demonstrate using CopEBERT.
Our numbers are roughly comparable with previously reported re-
sults, but we cannot make a precise comparison because of dif-
ferences in subtokenization, and because our datasets are multi-

lingual whereas previous work has largely been monolingual. We
are simply arguing here our data suggests that multilingual fine-
tuning is broadly beneficial in different tasks.

It would certainly be interesting to use same-domain data for
fine-tuning. For example, summarizing methods in Android apps
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might work better if trained on Android app corpora; however cu-
rated, domain-specific datasets for each domain are needed, and
may not always be possible, depending on the domain. However,
cross-language data is already available, and we show that it does
indeed help improve performance! The effect of domain-specific
corpora is left for future work.

7 CONCLUSION

We began this paper with three synergistic observations: First, when
solving the same problem, even in different programming languages,
programmers are more likely to use similar identifiers (than when
solving different problems). Second, identifiers appear to be rela-
tively much more important than syntax markers when training
machine-learning models to perform code summarization. Third,
we find that quite often a model trained in one programming lan-
guage achieves surprisingly good performance on a test set in a dif-
ferent language, sometimes even surpassing a model trained on the
same language as the test set! Taken together, these findings sug-
gest that pooling data across languages, thus creating multilingual
training sets, could improve performance for any language, partic-
ularly perhaps languages with limited resources, as has been found
in Natural-language processing [16, 23, 57, 63]. We test this theory,
using two BERT-style models, CoDEBERT, and GRaPHCODEBERT,
with encouraging results.

Foundation models [12] are currently achieving best-in-class
performance for a wide range of tasks in both natural language
and code. The models work in 2 stages, first “pre-training” to learn
statistics of language (or code) construction from very large-scale
corporain a self-supervised fashion, and then using smaller labeled
datasets to “fine-tune” for specific tasks. We adopt the multilingual
CopeXGLUE dataset, and the pre-trained CopEBERT and GrarH-
CopeEBERT models, and study the value of multilingual fine-tuning
for a variety of tasks. We find evidence suggesting that multilin-
gual fine-tuning is broadly beneficial in many settings. Our find-
ings suggest that multilingual training could provide added value
in broad set of settings, and merits further study.
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