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Abstract

In this paper, we study smooth stochastic multi-level composition optimization problems,
where the objective function is a nested composition of T' functions. We assume access to
noisy evaluations of the functions and their gradients, through a stochastic first-order oracle.
For solving this class of problems, we propose two algorithms using moving-average stochastic
estimates, and analyze their convergence to an e-stationary point of the problem. We show that
the first algorithm, which is a generalization of [20] to the T level case, can achieve a sample
complexity of Or(1/€®) by using mini-batches of samples in each iteration, where Op hides
constants that depend on T'. By modifying this algorithm using linearized stochastic estimates
of the function values, we improve the sample complexity to Or(1/€*). This modification not
only removes the requirement of having a mini-batch of samples in each iteration, but also
makes the algorithm parameter-free and easy to implement. To the best of our knowledge,
this is the first time that such an online algorithm designed for the (un)constrained multi-level
setting, obtains the same sample complexity of the smooth single-level setting, under standard
assumptions (unbiasedness and boundedness of the second moments) on the stochastic first-order
oracle.

1 Introduction

We consider multi-level stochastic composition optimization problems of the form

;Iéi}l(l{F(x):flou‘ofT(x)}, (1)
where f; : R% — R%-1 for i = 1,...,T (dyp = 1) are continuously differentiable functions, the

composite function F' is bounded below by F* > —oo, and X is a closed convex set. We assume
that the exact values and derivatives of f;’s are not available. In particular, we assume that f;(y) =
E¢, [Gi(y,&)] for some random variables &; € R%. Note that when T = 1, the problem reduces to
the standard stochastic optimization problem which has been well-explored in the literature; see,
for example |5, 18, 19, 21, 26, 33|, for a partial list. In this work, we consider stochastic first-order
algorithms for solving (1) when 7" > 1. Note that the gradient of the function F(z) in (1), is
VFE(z) =V fr(yr)V fr—1(yr—1)--- Vfi(y1), where V f; denotes the transpose of the Jacobian of f;,
Yi = fix10---0 fr(x) for 1 <i < T, and yr = x. Our goal is to solve the above optimization
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problem, given access to noisy evaluations of V f;’s and f;’s. Precise assumptions on our stochastic
first-order oracle considered will be stated later in Section 2. Because of the nested nature of the
gradient VF'(z), obtaining an unbiased gradient estimator in the online setting, with controlled
higher moments, becomes non-trivial.

Although problems of the form in (1) have been considered since the work of [14], recently there
has been a renewed interest in this problem due to applications arising in mathematical finance,
nonparametric statistics, deep generative modeling and reinforcement learning. We refer the reader
to [3, 4, 9, 15, 20, 24, 34, 35, 36, 38| for such applications and various algorithmic approaches
for solving problem (1). In particular [34] and [36] considered the case of T = 2 and general
T respectively, and analyzed stochastic gradient-type algorithms. Such an approach leads to level-
dependent and sub-optimal convergence rates. However, large deviation and Central Limit Theorem
results established in [15] and [9], respectively, show that in the sample-average or empirical risk
minimization setting, the argmin of the problem in (1) based on n samples, converges at a level-
independent rate (i.e., dependence of the convergence rate on the target accuracy is independent
of T') to the true minimizer, under suitable regularity conditions. Hence, it is natural to ask the
following question: Is it possible to construct iterative online algorithms for solving problem (1)
with level-independent convergence rates? Recently, for the case of T = 2, [20] proposed a single
time-scale Nested Averaged Stochastic Approximation (NASA) algorithm. The authors showed that
by modifying the specific Lyapunov function, defined in [29] for nonsmooth single-level stochastic
optimization, the convergence analysis of the NASA algorithm can be established such that its
complexity bound matches the case of T'= 1. This resolved the above question for T' = 2. However,
constructing similar algorithms for the case of general T remained less investigated.

Main contributions. In this work, we propose two algorithms for solving problem (1) with
level-independent convergence rates in the stochastic first-order oracle setting, under mild assump-
tions. Our algorithms are applicable to both unconstrained and constrained cases, as we do not
make any boundedness assumption on the feasible set X. Their complexity results are summarized
in Table 1. The first algorithm is based on an extension of the NASA algorithm from [20] (proposed
for the case of T = 2) to the general T' > 1 setting, requiring a mini-batch of sample in each
iteration. Although this algorithm has level-independent convergence rates, the sample complexity
(i.e., the number of calls to stochastic first-order oracle) does not match that of standard stochastic
gradient algorithm for T' = 1 or the NASA algorithm for 7' = 2. The second algorithm is based
on a modification to the NASA algorithm by adding a linear bias correction term in evaluating
the inner function values, motivated by the recent work [31] for nonsmooth multi-level composition
problems. For any 7" > 1, we show that this algorithm has the same oracle complexity as that
of the regular stochastic gradient algorithm for the case of T = 1, thereby providing a complete
answer to the question above. We emphasize that unlike our first algorithm, this algorithm does
not require a mini-batch of samples in any iteration and hence is more suitable to the online set-
ting. Furthermore, it works with any positive constant step-size parameter choice (independent of
problem parameters), thus making it easy to implement.

Comparisons to related works. A summary of our results, in comparison to the most related
work of [36] is provided in Table 1. We use O(-) to represent the fact that the constants involved
are only numerical constants that are independent of 7. However, when the constants involved are
dependent on T', we use Op(+).

The approach and the results in [36] are provided only for the unconstrained setting. Further-
more, [36] requires an additional bounded fourth moment assumption on the stochastic Jacobian
matrices. In an earlier version of our work uploaded to arXiv, we also made the same assump-
tion, which however, we do not require in this work, thereby widening the applicability of the



Method [36] Algorithm 1 | Algorithm 2

Convergence Rate Or (N —4/ (7+T)) Op (N~1/2)

Oracle Complexity | Or (1/e™1)/2) Or (1/€°) Or (1/€*)
Mini-batch No Yes No
Feasible Set X =R? General case

Oracle Assumption | Finite 4th moment Finite 2nd moment

Table 1: Convergence rates and Oracle complexity results for finding an e-pair (z,z) of (1); see
Definition 2.1 for details. Convergence rate refers to the upper bound on E[/V (z, z)] and oracle
complexity refers to the number of calls to the stochastic first-order oracle to obtain a e-pair. The
constants in [36] and our work have exponential dependency on 7" in the worst case. See Remark 1
and Remark 3 for more details.

proposed method.  We also highlight the related work of [38] which considered problems of the
form min,  pa, {F(x)+ H(x)}, with F(z) being a multi-level composite function as in (1) and H(x)
being a convex and lower-semi-continuous function. Typically H(z) could be considered as an in-
dicator function of the constrained set X to relate the above problem to our setup in (1). The
algorithm proposed in [38] is a proximal variant of SPIDER variance reduction technique [16] and is
a double-loop algorithm. Hence, it is predominantly applicable for finite-sum problems and is not so
suitable for the general online problems that we focus on. Indeed, they assume that for a fixed batch
of samples, one could query the oracle on different points, which is not suited for the general online
stochastic optimization setup. Furthermore, [38] assume a much stronger mean-square Lipschitz
smoothness assumption on the individual functions f; and their gradients, to obtain a complexity
bound of O (T6 pl/ 63), where p is a problem dependent constant factor. To obtain their result, they
also need a mini-batch of samples, with batch sizes of the order 72p”, which makes their approach
impractical to use even for moderately large values of T'. As mentioned above, our second algorithm
does not have any such requirements, making it easy to be practically applicable for large values of
T.

As mentioned above, our Algorithm 2 is related to a concurrent work [31]. In this work, the
author focuses on nonsmooth multi-level composition problems and provides asymptotic conver-
gence of the proposed algorithm to a stationary point of the problem by analyzing a system of
differential inclusions which requires the compactness of the feasible set X. By further making the
smoothness assumption, the author also establishes a sample complexity of Or(1/¢?), similar to
that of Algorithm 2 in Theorem 3.1. However, our convergence analysis here is distinct since we
do not require the boundedness assumption of the feasible set which makes our method applicable
to both unconstrained constrained problems.’

After our first draft appeared on arXiv, [6] also proposed an approach for stochastic multi-level
compositional optimization problems and obtained similar rates as us, albeit only for unconstrained
problems and under the stronger assumption that the stochastic functions G;(y,&;) are Lipschitz,
almost surely.?

!We also remark that the finite-time convergence analysis of [31], from our communication with the author, was
not complete in the first version released on arXiv. However, more recently, after release of the first version of our
paper on arXiv, the author has refined the convergence analysis in [31].

2Tt is worth noting that [6] was released several months after the first draft of [31].



1.1 Motivating Applications

We now provide two motivating applications of stochastic multi-level composition optimization
problems.

1.1.1 Risk-averse Optimization

Our first motivating example to consider multilevel stochastic composite optimization problems
is from the field of risk-averse stochastic optimization [32, 36]. Specifically, the mean-deviation
risk-averse optimization is given by the following form:

min {E[U(x, )] + A (E [max [0,U(z,€) — E[U(z, g)]}QDW} . 2)

As noted in [31, 36], the problem in (2) is a stochastic three-level composition optimization problem
with

fa(@) = (@ BU@O),  folys,ya) = (ya. B |max {0,U(ys,€) — ya}?] ).
Filyr,y2) = y1 + Ay + 6.

Here, § > 0 is added to make the square root function smooth. We consider a semi-parametric data
generating process given by a single-index model of the form b = g(a'z*) + ¢, where g : R — R
is called the link function. Such single-index models are widely used in statistics, machine learning
and economics [28]. Here, X is the input data which is assumed to be independent of the noise .
The goal is to estimate the index * in a risk-averse manner, as they are well-known to provide
stable solutions [36]. In this case, £ := (a,b) and the function U(z,§) depends on the loss function.
We will revisit this example in Section 4 for numerical experiments.

1.1.2 Training large-scale Graph Neural Networks (GNNs)

Our second motivating example is training GNNs, which has been formulated as a stochastic multi-
level compositional optimization problem in |7]. Each layer of a GNN is given by a matrix H (i—1) =
Lo(HOW ¢ R for 2 < i < T. Here, L is the normalized graph Laplacian matrix (calculated
as D™1/2AD=1/2 or D=1 A, where D is the degree matrix and A is the adjacency matrix given the
data matrix U € R"*%), W is the weight matrix at layer 4, and ¢ is the activation function,
which either is a sigmoidal function o(s) := 1/(1 + e™®) or the ReLU function o(s) := max{0, s}
operating entry-wise on matrices. Furthermore, H (T) .= U. When the size of the data set n is large,
subsampling methods are used to train the GNN [7].

In our notatlon the optimization variable x = {W L, w1 } The function f; is given
by f® (H(’H))W(Z), fori=2,...T —1, with f(T) = U Furthermore, f(!) will be the user-
defined loss function based on the label vector Y € R™. The stochasticity in the problem is due to
the fact that the data is subsampled when constructing the graph. Specifically, we have the random
function given by L(—1) (H(i))W(i), where L0~D is a stochastic approximation of the matrix L
such that E[L(~Y] = L. We refer the interested reader to |7, Section 3|, for additional details. We
also remark that while the ReLLU activation does not satisfy the smoothness assumptions we make
in this work, the sigmoidal function does.



1.2 Organization

The rest of our paper is organized as follows. In Section 2, we present our first algorithm and
analyze its convergence for solving (1) with any 7" > 1. In Section 3, we present a modification
of this algorithm and show that it can recover the best-known sample complexity for (single-level)
smooth stochastic optimization. In Section 4, we present some numerical experiments and conclude
the paper with some remarks in Section 5.

2 Multi-level Nested Averaging Stochastic Gradient Method

In this section, we present our first algorithm for solving problem (1). As mentioned in Section 1,
the previously proposed stochastic gradient-type methods suffer in terms of the convergence rates
when applied for solving this problem [36]. The main reason is the increased bias when estimating
the stochastic gradient of F', for T > 2. Our proposed algorithm has a multi-level structure — in
addition to estimating the gradient of F', we also estimate the values of inner functions f; by a mini-
batch moving average technique, extending the approach in [20] for any 7" > 1. This will enable us
to provide an algorithm with improved convergence rates to the stationary points compared to the
prior work [36]. Our approach is formally presented in Algorithm 1.

Algorithm 1 Multi-level Nested Averaging Stochastic Gradient Method
Input: Positive integer sequences {by, Tk }r>0, step-size parameter 3, and initial points 20 €
X, 20 e Rir, w) € REi-1 1 <4 < T, and a probability mass function Pg(-) supported
over {1,2,..., N}, where N is the number of iterations.

0. Generate a random integer number R according to Pr(-).
for k=0,1,2,...,R do

1. Compute
o = angmin { (¥, =) + Gl - 2t} )
yeX 2
stochastic gradients Jf“, and function values Gf]ﬂ at wf_i_l fori={1,...,T},7={1,...,b}
by denoting w:’}H = gk,
2. Set
2F T = (1 = m)a® + mult, (4)
T
F =1 =)+ [ [ 75 (5)
=1
wit = (1 — mp)wk + 7, GF 1<i<T, (6)
where
] &
Ak+1 _ k+1
G = > Gt (7)
j=1
end for
Output: (2, 2% wlt ... ,w?).

We now add a few remarks about Algorithm 1. First, note that at each iteration of this algo-
rithm, we update the triple (z¥, {w* zT:p z¥), which are the convex combinations of the solutions to



subproblem (3), the estimates of inner function values f;, and the stochastic gradient of F' at these
points, respectively. It should be mentioned that we do not need to estimate the values of the outer
function f;. However, we include fw’f for the sake of completeness. Second, when T'= 2 and b = 1,
this algorithm reduces to the NASA algorithm presented in [20]. Indeed, Algorithm 1 is a direct
generalization of the NASA method to the multi-level case T' > 3. However, to prove convergence
of Algorithm 1, we need to take a batch of samples in each iteration to reduce the noise associated
with estimation of the inner function values, when 7' > 2. We now provide our convergence analysis
for Algorithm 1. To do so, we define the following filtration,

G 0 k 0 k .0 k 0 k ,0 k
Fpi=o({x”, ... 2% 2" 2wy, wy L wpy L wpu LUt ).

Next, we state our main assumptions on the individual functions and the stochastic first-order oracle
we use.

Assumption 2.1. All functions f1,..., fr and their derivatives are Lipschitz continuous with Lip-
schitz constants Ly, and Lvyy,, respectively.

Assumption 2.2. Denote w:],i+1 = zF. For each k, wa being the input, the stochastic oracle
outputs Gf“ e R% and Jfﬂ € R%*diw1 sych that

1. Fori € {1,...,T}, we have E[JF %] = Vfi(wk ), and E[GF | ) = fi(wk ).

2. Forie {1,...,T}, we have B[|GH = fi(uwh, ) P1F] < o2, E[IJ5 = O fi(uh,) P17 <
(31, and E[||JF2.%] < a?]i. Here || - || denotes the Euclidean norm for vectors and the
Frobenius norm for matrices.

3. Given Zy,, the outputs of the stochastic oracle at each level i, Gf“ and Jf“, are independent.

4. Given Fy, the outputs of the stochastic oracle are independent between levels i.e., {G§+1}i:1,...,T
are independent and so are {Jf+1}i:17_._7T.

Assumption 2.1 is a standard smoothness assumption made in the literature on nonlinear op-
timization. Similarly, Parts 1 and 2 in Assumption 2.2 are standard unbiasedness and bounded
variance assumptions on the stochastic gradient, common in the literature. At this point, we re-
emphasize that the assumptions made in [38] are stronger than our assumptions above, as they
require mean-square smoothness of the individual random functions G; and their gradients. Parts 3
and 4 are also essential to establish the convergence results in the multi-level case; similar assump-
tions have been made, for example, in [36]. In the next couple of technical results, we provide some
properties of composite functions that are required for our subsequent results.

Lemma 2.1. Define Fi(x) = f; o fix10--- fr(z). Under Assumption 2.1, the gradient of F; is
Lipschitz continuous with constant

T

j—1 T
Lvr, =Y |Lvg [12s 11 L}

j=i =i I=j+1

Proof. We show the result by backward induction. Under Assumption 2.1, gradient of Fpr = fr is
Lipschitz continuous and so is that of Fp_q since for any x,y € X, we have

IVFr_1(z) = VEr_1(y)ll = IV fr(x)V fr-1(fr(x)) = Vfry)V fr-1(fry))l
<NV fr(@) IV fr-1(fr(x)) — Vr—a(fr))l



IV o (fr )V fr(z) = Vi (y)|l
< (L?”TLVfT—l + LfT—lvaT)Hx -yl

Now, suppose that gradient of F;,; is Lipschitz continuous for any ¢ < T — 1. Then, similar to the
above relation, VF; is Lipschitz continuous with constant

LVFZ' :L%HlLVfi + LfiLVFiJrl

T T 7j—1 T
2 2
=Lvy, [] Ly, + Ly, > oALvs I 2a 11 23
j=i+1 j=it+1 I=i+1 I=j+1
T j—1 T
2
:Z vaj H Lfl H sz
j=i I=i  l=j+1

We remark that the above result has also been proved in [38], Lemma 5.2., with a slightly
different proof.

Lemma 2.2. Define Fi(z) = fio fit10--- fr(z) and the gradient term
Vfi($,’tz)i) = VfT(l‘)VfT_l(wT) . 'Vfi(wi+1) wz’th ?IJZ' = (le,. .. ,wT) fOT any T c X, wj S
R% j=i+1,...,T. Then under Assumption 2.1, we have

T-1

— _ va
IVF(@) = Vi o)l < 3072 Ly Ll @) = wisall

Jj=t J

Proof. We show the result by backward induction. The case i = T is trivial. When i = T — 1,
under Assumption 2.1, we have

|V Fr_1(x) = Vfr(2)V fro1(wr)|| = IV fr(@)[V fr-1(fr(z)) = V fr—1(wr)]
< Lyfr_ Ll fr(z) —wr.

Now assume that for any i < T — 2,

T-1

; . Lvy,
IV Fi1() = V fipa(z, )| < ) T Lt LipllFja(@) — wiall
j=i+1 I

We then have
IVFi(z) = V fi(z, @;)|| = [[VF1(2)V fi( B (2)) = V filz, @) |
<NV fi(F (@) [[|VFip1(x) = V fig1(z, wig) ||
+ |V fiza(z, i) ||V fi(Fig1(z)) — V fi(wigr) ||
< Ly |\ VEi1(x) = Vfipr (o, Wig1)|| + Ly g, Ly, - Ly | Figr (@) — wig ||

T-1
Lyy,
SLp Y, 7 L L Fia (@) — il

j=ivr i
Ly
FLvpLp o Lyl P o) —wial = 3 75 Ly L Fyn @) = wiaal)
j=i



Lemma 2.3. Under Assumption 2.1, for any j € {1,...,T — 1}, we have

T /—1
500 fr(@) —wjll < | f5(wjrn) —will + Y [ TTZs | Ife(werr) —well.
=j+1 \i=j

Proof. We show the results by backward induction. For j =T — 1, we have

| fr—1 o fr(wry1) — wr—1||
< |[fr-10 fr(wrs1) — fr—1(wr)|| + || fr—1(wr) — wr—1]|
< Ly |l fr(wrsr) — wr| + || fr—1(wr) — wr-1]|.

Now suppose the result holds for j + 1,5 € {1,...,7 — 2}. Then, we have

Ifj o fjrr 0 fr(wrir) — wyll
<|Ifjo-- frlwryr) — fi(wjr1) + fij(wjv1) — wyl|
<Lgllfj+1 0o frwrsr) — wipll + [ f(wjt1) — wjl|
T

<Lg |1 (wire) —winall + D> | T Za | Ife(werr) = wl
=j+2 \i=j+1

+ [ £ (wjr1) — wyl]

T /—1
=t wis) —wil + D> | ] Zs | Ifelwerr) = well,
(=j+1 \i=j

where the third inequality follows by the induction hypothesis.
Lemma 2.4. Define

Ry =Ly Ly, --- Ly,, Rj=1Ly ...Ly_ Lyg Ly, Ly /Ly, 2<j<T—1,
j—2 j—1
Cy = Ry, Cj:ZRZ(H Lf,> 3<j<T.
i=1 l=i+1
Assume that Assumption 2.1 holds. Then for T > 3,

VF(x) = Vfr(z vaT—i-l —i(wry2-i)

=2

< ZC | fi(wjs1) — w;| + Crl fr(z) — wr||

Proof. By Lemma 2.2 and Lemma 2.3, we have

T T—
VF(z) -V fr(z vaTJrl i(wrie—g)|| < Z illfjs1 00 fr(x) — wjs]|
=2 j=1
T—-2
=Y Rjllfjr10--0 fr(x) — wipa| + Rooal fr(z) — wr|
7=1
T—2 T—2 T -1
= > Rillfi(wie) —winll+ >Ry Y | T Lo | I felwerr) —well
j=1 j=1  f=j+2 \i=j+1



+ Ry_1|| fr(z) —wr|.

Aggregating the constants for || f;(w;y+1) — wj||, we get the result. ]

The following result also shows the Lipschitz continuity of the gradient of the objective function
of the subproblem (3). One can see [20] for a simple proof.

Lemma 2.5. Let n(z, z) be defined as

ez =iy ey o)+ Sl —al?}.

yeX

Then the gradient of n w.r.t. (x,z) is Lipschitz continuous with the constant

Luy =2y/(1+8)2 + (1+ )2
In the next result, we provide a recursion inequality for the error in estimating f;(w;y1) by w;.
Lemma 2.6. Let {z*}>0 and {wf}i>0 1 <i < T be generated by Algorithm 1. Denote
d*=uF —aF wh =2 VE>0,  Ag= fiwiE) - fiwhy) 1<i<T. (9)

a) Forany i€ {1,...,T},

Ifiwi) = wi P < (U= 7o)l fiw) — fHQJriHAk,z'HZ+T;§H€?+1ll2+7’f+la (10)
loi = wf | < 7 | fiwhia) = wf P + e 1P = 2(ef ™, filwli) —w)] (11)

where
it =om et A+ (L= m) (filwh) —wl)), et = filwha) - GFTL (12)

b) If, in addition, f;’s are Lipschitz continuous, we have

k k+1 k k k+1 k+1
1@ = WP < (= 7)) —wb P + Lpmlld® P + 2P+ o5 (13)
k k k k —k
1 filwk) = wh P < (1= mll (k) — wb I + 2llef 2 4 b
k k .
+ L3 | fim () — b+ P 1<i<T-1 ()
where
7k+1 =27y, L2 < z+117fi+1(w£€+2) - wf+1> + Tf“- (15)

Proof. Noting (6), (10), and (12), we have

1fi(wit) = wi TP = Ak + fiwhin) = (= mo)wf — me(fi(wiy) — e )2
= || Ak + (1= 7o) (fi(wiyy) — wf) + mef ™2
= [| Ak + (1= 7 (fi(wf 1) — w1 + i llef P + i

Then, in the view of (12), (10) follows by noting that

1Ak + (1= 7o) (fi(wiy) — wi)]®



AP+ (= 72 () — wFIP + 20— 7 (Awa, filwiy) — wh)
1
<Aeall? + (L= 72 i (e y) — ] + (k - 1) 1wl
(L= Tl falwhsy) — wh?

1
=(1— 7|l fi(wh 1) — wF|* + ;kHAk,i 2

due to Cauchy-Schwarz and Young’s inequalities. Also, (11) directly follows from (6) since

(2

=it |I1fi(wiyy) = wil + e TP = 2(ef ™ filwiiy) —wf) |-

k ~k k
lwi ™ = wf|? = 7 (GFT = wh)l? = | filwiy) = w — e

To show part b), note that by (4), (9), and Lipschitz continuity of f;, we have

k k k k
1Ak 7l < Lypllwpth = whll = Lepmlld®lls Akl < Ly i —wiall,
for 1 <4 <T — 1. The results then follows by noting (10) and (11). ]
We remark that the mini-batch sampling in (7) is only used to reduce the upper bound on the

expectation of TkHefjllHQ in the right hand side of (14). Moreover, we do not need this inequality

for ¢ = 1 when establishing the convergence rate of Algorithm 1. Thus, when T' < 2, this algorithm
converges without using mini-batch of samples in each iteration, as shown in [20].

Recalling the definition of F* from Section 1 and denoting w := (ws,...,wr), we define, for
some positive constants v = (v1,...,7r), the merit function
T—1
Wz, z,w) = F(z) = F* = n(z,2) + Y ill fiwit1) = wil* + v/l fr(z) —wr|®,  (16)
=1

which will be used in our next result for establishing convergence analysis of Algorithm 1. It is
worth noting that W, (z, z,w) > 0 due to that facts that F'(z) > F*,n(x,2z) < 0 (by Lemma 2.5),
and v > 0. The precise values of the constants ~i,...,yr will be set later in our analysis. We
should also mention that the above summation can start from ¢ = 2, in which case the convergence
analysis is slightly simpler. However, we use (16) in our analysis since, as a byproduct, it gives us
an online certificate for the stochastic values of the objective function. The above function is an
extension of the one used in [20] for the case of T' = 2, to the multi-level setting of 7' > 1. A variant
of this function (including only the first two terms in (16)) was used in the literature as early as
[29] and was used later in [30] for nonsmooth single-level stochastic optimization.

Lemma 2.7. Suppose that the sequences {x*, ¥, uk,w’f, . ,w’%}kzo are generated by Algorithm 1

and Assumption 2.1 holds.
a) If
NZA>0,  y—yali  —A>0,
AB=A =)y = valy =N 2TC} j=2,....T, (17)

where C;’s are defined in Lemma 2.4, we have
N-1 T-1
A (1P + D I filwhiy) = wf P + 1 fr(@®) — wil* | < Wy (a?, 2% w”)
k=0 i=1

10



N-—1
£ R
k=0

where
T T-1 T-1
e SIS e YEI LN et
i=1 i=1 i=1

Lyr + Lv,)7# L
b, ) o BT LN gz D ey
T

=Vfr(z HVfT+1 i(Whiag) = T 00

=2 i=1

and r* 7Y are defined in (12) and (15), respectively.

b) If parameters are chosen as

T maxo<i<T Cz-2
4N ’

Vs ::2j_1(Lf1---ij71)2\/T 2<5<T, B>A+r+

ming<;<7 Y

min (v; —yi-1L3,_,) = 4

1
2 2<i<T
Then, conditions in (17) are satisfied.

Proof. First, note that by Lemma 2.1, we have

L
F(karl) < F(xk) + <VF(xk),xk+1 _ xk) + %kaﬂ . kaz

L 2
= F(a") + n(VF(ab), d¥) + =27k a2
Second, note that by the optimality condition of (3), we have
(2" + B — 2¥), 2% — u¥) > 0, which implies (z*,d*) + 8| d*||* < 0.

Then, noting (4), (5), and in the view of Lemma 2.5, we obtain

n(z*, 25) —n(x

< {2k o Bt — ak), 2R — k) — (b — g A k)

L
4 2V [Hmk-‘rl k|2 Zk||2]

k+17 zk+1)

2
= (22" + Bd*, d") — 7 (d" HJW+1 [||xk+1 — |2 ]2 - 2]
< —prllat|? - mi(d* HJff}H LI [P+ 1A - 4.

Third, noting Lemma 2.6.b), we have
T-1
>~ i [k = wh 2 = [ faluwkin) - wf|P]
=1

11

(21)

(24)



a1 (1@t = wh 2 — | fr(at) - wh]?]
T-1
lc k k
%{ — Tk Hfz 2+1) w; H2 - L2¢Hfi+1(wi+2) - wi+1”2
=1
_ L2¢ HeécifHQ] 7 Hek‘+1”2 ‘k—&—l}
v { =i |1 Fr(a*) = whl? = L, 1d 1] + 7R b2 + v |

T-1
k k k
=— Tk{’anl(wz) —wfl® + Dby — v LG (W) — wf|?
j=2

T-1

+ [yr — 01 L3, I fr(2®) — w:erQ} + ) gt
=1
T—1
+ 7 | Y ulF e P+l | + 7 Z Yillef 2. (25)
=1

Combining the above relation with (24), (22), noting definition of merit function in (16), and in the
view of Lemma 2.4, we obtain

W'y(xk-i-l’zk‘-f—l k:+1 .fL' ,Z ,’UJ

-1

< —7(B - 7T)dk2+7kdk[ Cjll fi(wfia) = wil| + Crll fr(x) — wrl|
Jj=

T-1

~ned llaCud) = WP+ S — a2 A f) - b
=2

- L, (et - ww} R,

where RF*1 is defined in (19). Now, if (17) holds, we have
B—nr
- (T 1d°1% — (35 = 21 LG, _DIf5(wfin) = wi I + Cilld® |l f5(wfyr) — wi |

< [ I+ k) —udlP] vie 1Ty,
which together with the above inequality imply that

Wy(m‘k—i_l,zk—i_l,wk—i_l) _ Wv(xk,zk,wk)
T-1
k k k k k
< AT llld 12+ fiCwi) = wf P + | fr(a*) — wh)?

=1

+ RFHL

Summing up the above inequalities and re-arranging the terms, we obtain (18). It can be easily
verified that condition (17) is satisfied by the choice of parameters in (21). L]
The next technical result helps us to simplify our convergence analysis.

Lemma 2.8. Consider a sequence {7 }r>0 € (0,1], and define

— 1 if 7o =1
Ne=T1 [J0-7) k=2, rlz{ 0T (26)

1—79 otherwise.

12



a) For any k > 1, we have

T3 . — ]- Zf T = 17
Qg = I 1<i<k, Qi f =
L P z_: ok {1 — Ty otherwise.

b) Suppose that qp1+1 < (1 — 7)qr + pr k> 0 for sequences {qx, px}k>0. Then, we have

k-1 .
; 0 fmo=1,
aqO+EF?z], a:{l /7o ‘

i+1 otherwise.

qr < T

Proof. To show part a), note that

To show part b), by dividing both sides of the inequality by I'x+; and noting (26), we have

@ (1—70)610-%290’ Ghtt o Gk | Pk
I' I' Feyr — T Th
Summing up the above inequalities, we get the result. [

The next result shows the boundedness of the error terms in the right hand side of (18) in
expectation. This is an essential step in establishing the convergence analysis of the algorithm.

Proposition 2.1. Suppose that Assumption 2.2 holds and (for simplicity) 1o =1, 8 > 0 for all k.
Then, for any k > 1, we have

T
“E(lld 1% 7] < ElI=(%17] < [] o5, (27)
i=1
T
E[|l2** = 2*)° (73] < an [ ] o3, (28)
i=1

If, in addition, the batch size by, in Algorithm 1 is set to

maxq<;<p L%
- {Kﬁ’ﬂ . (29)
Tk

we have

E[RF .7 < 72 [

T
<H UJZ-) (LVF + (lﬁt 43?) Lvn> Z%UG ] — 713027 (30)

=1

N | —

where RF1 is defined in (19).

13



Proof. The first inequality in (27) directly follows by (23) and Cauchy-Schwarz inequality. Noting
(5), the fact that 79 = 1, and in the view of Lemma 2.8, we obtain

k—1 T

k_ +1

z = E :ai,k H‘]%-H—l
i=0 =1

By convexity of || - ||? and conditional independence, we conclude that
k-1 TP k-1 T .
B[l 1%2%] < 3 eisk || [TZ) | 2 <> i [TEI 17
i=0 =1 i=0 =1
k—1 T T
<3 o (114) - 114
i=0 =1 =1

Noting (27), we have

2

T
B[l — 241217 < 28 || =TT 6| | %
(=1
T 2
<272 CE[IFIAZ +E | [T |
/=1

T T T
< 271¢ (H O'?]e + HO’?IZ> = 471} (H a%@) .
=1 =1 =1
Now, observe that by (12), (15), the choice of by in (29), and under Assumption 2.2, we have

E[A*|.%] = 0, Elef™ %] =0, implying E[r"™ %] = EFFT 2] =0,
b,

Elllef™|*.7%] = E[

2
k 7a;
Gy = SiwE) P17 <

E
b

. Tk
< min 1, 13 O‘éi.
maxi<;<T sz

Noting (19), (27), (28), and the above observation, we obtain (30). (]

Observe that Lemma 2.7 shows that the summation of ||d*| and the errors in estimating the
inner function values are bounded by summation of error terms R¥ which is in the order of Zévzl 7']?
as shown in Proposition 2.1. This is the main step in establishing the convergence of Algorithm 1.
Indeed, z € X is a stationary point of (1), if u =z and Z = VF(Z), where

1
a—arguin { .y~ 2} + 3y - alP}. (31)
yeX 2

Thus, for a given pair of (Z, z), we can define our termination criterion as follows.

14



Definition 2.1. A pair of (z, Z) generated by Algorithm 1 is called an e-stationary pair, if E[\/V(Z, z)] <
€, where

V(#,2) = [la - z|* + ||z — VF ()|, (32)
and @ is the solution to (31).

We emphasize that in Definition 2.1, we consider a unified termination criterion for both the
unconstrained and constrained cases. When X = R97, V(Z, %) provides an upper bound for the
|[VF(z)||?. This can be simply seen from the fact that @ —Z = Z in (31) for unconstrained problems
and hence from (32), we have

V(z,2) = 21> + 112 - VF@)|* > S |[VF(@)]*.

N

We also refer the reader to [20] for the relation between V(Z,Z) and other common gradient-based
termination criteria used in the literature such as gradient mapping (|17, 22, 23|) and proximal
mapping (|12]). Furthermore, as shown in [20], we have

V(a®, ) < max(1, B%)[[u® — 2¥||* + ||zF — VF ("), (33)

where (2, u¥, 2¥) are the solutions generated at iteration k& — 1 of Algorithm 1. Noting this fact,
we provide the convergence rate of this algorithm by appropriately choosing § and 75 in the next

results.

Theorem 2.1. Suppose that {xk,zk}kzo are generated by Algorithm 1, Assumption 2.1 and As-
sumption 2.2 hold. Also assume that the parameters satisfy (21) and step sizes {7y} are chosen such
that

N
Z 7l < g1 Vk >0 and VN > 1,c is a positive constant. (34)
i=k+1

(a) For every N > 1, we have

N
> nE[|VF(2%) — 2F|°|. %] < Bi(0®, N), (35)
k=1
where N1 . N1
4eL*(T -1 — —
Bi(o®,N) = C()\) [WV(ZEO,ZO,U)O) +0? Z |+ CHO-?]Z Z 2, (36)
k=0 =1 k=0
o2 is defined in (30) and
2 _ 2 2
L? = max {LVF, 221;3%}% C; } : (37)
(b) As a consequence, we have
1 max(1, 5%) ol
E[V(xR,zR)] < S 31(02,]\7) + f’ Wv(xo,zo,wo) + o2 ZT,? , (38)
k=1"k k=0

15



where the expectation is taken with respect to all random sequences generated by the method and an

independent random integer number R € {1,..., N}, whose probability distribution is given by
Tk
PR=Fkl = ——
Zj:l 7j
(c) If, in addition, the stepsizes are set to
1
=1 mn=— Vk=1,...,N, 39
0 k N (39)
we have
1 [4L2(T = 1) [W (9, 20, u®) + 20?] T
E[|VF(zf) — 27|?] < SRR +21[ 2
IVF@E") - 1P < — ; 117
By(0?)
_ : 40
VN (40)
1 max(1, 32)
E[V (27,25 < — |Ba(0® (W (22, 2%, w”) + 207 41
V) < e (Bt + 2 e et 2] )
1
E[l| f;(w? ;) — wk||? —— (W (2, 2°, w®) 4 202 1=1,...,T 42
1A0fa) = 0l < S W (a2 0) 4 207 (42

Proof. We first show part (a). Noting (5), we have
VF(@Mh) = M = (1= 7)) (VE(@Y) = 2F) + (67 + 6% + AP),
where A* is defined in (19) and

T N i
¥ = VF(z*) = V fr(a") H VfT+17i(w§“+2—z’)v & = VEE@T) ~ VF(@ )
i=2

Tk

Denoting Ay = (AF, (1 — ) (VE(2F) — 2F) + 73,(6% + %)), we have

HVF(QS‘k+1) _ Zk+1H2
=[1(1 = ) (VE(2*) = &%) + 7,(8° + 0%)|* + 1 A" + 27 Ay,
<= )V F(h) = 252 4 27 [116%)2 + L gl + Ay + 72I1AK2,

where the inequality follows from convexity of |- ||* and Lipschitz continuity of gradient of F. Thus,
in the view of Lemma 2.8, we obtain

Ti

i i A Ti A
(16712 + Zorlla’)? + B + Z1A72),

k—1
VF(zF) = 2F12 < or
[VF(2") — 27[|° < kZFiH

=0

which implies that E{Ll || VF(2F) — 2F||2 =

N k—1
2 Z Ny Z -
k=1 =0

T . . _ T .
(16 + L3P + A+ A7)
1+1 2

16



N
— T
=2 Z ( 2 F) (16912 + 2 plla¥)? + Ay + T 1A%

Fk“ i=k+1

<2 Z i (1% + Lo plld® ) + By + 2 A%|2) (43)
k=0

where the last inequality follows from (34).
Now, observe that under Assumption 2.2, we have

EALZ] =0,  E[|Ak]*Fx] < J’“+1

T
Fil < HO'?]
/=1

Moreover, by Lemma 2.4 and the fact that (31, a;)? <n Y ", a? for nonnegative a;’s, we have

2

T
641> = |V F(2) = V fr (@) [ VFrra-iwrya i)

=2

~
L

<2AT-1), Gl fi(wss1) — wil|* + 207 fr(z) — wr|*.

<.
Il
N

Combining the above observations with (43) and in the view of (37), we obtain

N T N-1

> RE[VF(®) = 2P\ F) < c[[oF, D 77

k=1 =1 k=0
N 1 T-1

+ 4cL(T i | D0 I (wign) = wyl? + [ fr(x) — wel|* + |||
k::O j=2

Then, (35) follows from the above inequality, (18), and (30).
Part (b) then follows from part (a), (33), (18), and noting that

ZN: Tkv($k’zk)
E[V (27, 27)] = =k=1 .
Vi) = S

Part (c) also follows by noting that choice of 73 in (39) implies that

ensuring condition (34) with ¢ = 1.
"

Remark 1. The result in (41) implies that to find an e-stationary point of (1) (see, Definition 2.1),
Algorithm 1 requires O(p" T*/€*) number of iterations, where p is a constant depending on the

17



problem parameters (i.e., Lipschitz constants and noise variances). Thus, the total number of used

samples is bounded by
T T 6
pt T 1
>n-o(5)-or(3)
k=1

due to (29) and (39). This bound is much better than Or (1/e+1)/2) obtained in [36] when T > 43
. In particular, it exhibits the level-independent behavior as discussed in Section 1. Note that, we
obtain constants of order p*, for example, when J?]i in (30) are all equal. We emphasize that [36]
and [38] also have such constant factors that depend exponentially on T, in their proofs and the final
results.

Remark 2. The bound in (42) also implies that the errors in estimating the inner function values
decrease at the same rate that we converge to the stationary point of the problem. This is essential
to obtain a rate of convergence similar to that of single-level problems. Moreover, (40) shows that
the stochastic estimate z* also converges at the same rate to the gradient of the objective function
at the stationary point where zF converges to.

Although our results for Algorithm 1 show improved convergence rates compared to [36], it is
still worse than Or (1/64) obtained in [20] for the case of T' = 2. Furthermore, the batch sizes by is
of order p” for some constant p which makes it impractical. In the next section, we show that both
of these issues could be fixed by a properly modified variant of Algorithm 1.

3 Multi-level Nested Linearized Averaging Stochastic Gradient
Method

In this section, we present a linearized variant of Algorithm 1 which can achieve the best known
rate of convergence for problem (1) for any 7' > 1, under Assumptions 2.1 and 2.2. Indeed, when
T > 2, we have accumulated errors in estimating the inner function values. Hence, in Algorithm 1
we use mini-batch sampling in (6) to reduce the noise associated with the stochastic function
values. However, this increases the sample complexity of the algorithm. To resolve this issue,
instead of using the point estimates of f;’s, we use their stochastic linear approximations in (44).
This modification reduces the bias error in estimating the inner function values which together
with a refined convergence analysis enable us to obtain a sample complexity of Or(1/e*) with
Algorithm 2, for any 7' > 1 without using any mini-batches. Furthermore, Algorithm 2 works with
any constant choice of step-size parameter [ (independent of the problem parameters), making
it easy to implement. As mentioned previously, Algorithm 2 is motivated by the algorithm in [31]
proposed for solving nonsmooth multi-level stochastic composition problems. However, [31] assumes
that all functions f; explicitly depend on the decision variable & which makes the composition
function a variant of the general case in (1). It is also worth mentioning that other linearization
techniques have been used in [8, 13] in estimating the stochastic inner function values for weakly
convex two-level composition problems.

To establish the rate of convergence of Algorithm 2, we first need the next result which provides
the recursion on the errors in estimating the inner function values.

Lemma 3.1. Let {2¥};>0 and {wF}ir>o be generated by Algorithm 2. Define, for 1 <i < T,

ei = filwiyy) = GEFL &M= Vii(wly) - I (45)

Ay = fi(wlE) = fiwh ) — Vi) Tk —wl ). (46)

3Following the presentation in [36], we only present the e-related T' dependence for their result.
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Algorithm 2 Multi-level Nested Linearized Averaging Stochastic Gradient Method

Set by, = 1 in Algorithm 1 and replace (6) with

Wit = (1 — m)wh + 7 GEFL 4 (T T (whHE —wh ), 1<i<T. (44)

a) Under Assumption 2.1, we have, for 1 <i < T,

k k k k k
1fi(wi) = wi P < (U= 7o) fi(wly) — il + m2flef 12+

+ |8LF, + Ly pllfiwhi) — wfl| + 1652wy — wi 1%, (47)
A= 2m e A+ (L= ) (fi(whiy) —wf) + (65 T (Wi —wiiy)
+ 26N T —wii), A + (1= 70 (filwfi) — wl)). (48)

b) Furthermore, we have for 1 <i < T, ||w§ngl — wf”2 <

k k k k k ok
T [2||fz( wiy) = wf|® + e 1P + 2||JZ- Pt —wmllﬂ +2it,
Tk

k+1

where i+ = (e T m(fi(whiy) — wf) + (I T (il - wiy).

Proof. We first prove part a).
When 1 <@ < T, by definition of Ay ;, é;F Gf“, k+1 , and rkH we have

k k
Ifi(wi) —wi

—||A;“ + fi(w z+1) + V fi(w z+1)T(wfj11 - wfﬂ)
— (1 = m)wk — 7, GEFL — (g T ("wffﬂl —wfyy)|?

=l Ak + @) (Wit = wia) + (1 =) (fi(whia) = wf) + mef TP (49)
=@ T (Wit = wi )1 + Ak + (1= ) (filwiy) — wi)IP + 72 e P + 7
<N Aki + (1= 7o) (fi(wiyr) = wil? + mlle; T2+ i+ &P ol — i
<1 =)l fiwhir) = wfI? 4+ [ Aga 1 + 201 = 7) (A, filwhin) — wf) + e ™2
GNP — wilP. (50)

Now, noting that under Assumption 2.1, we have

i L. k k k k
[ Akl < 5 min {4Lfi||w¢f11 —wi |, Loy, Jlwit! — wi+1||2} ; (51)

and using Cauchy—Schwarz inequality in (50), we obtain (47).
To show part b), noting definition of (44) and (45), Cauchy-Schwartz and Young’s inequality,
for 1 <i<T,

lwf ™ = wf|?
k+1 k k+1\T ¢, k+1 2
=7 (GFH =) + () (i —wi)
=T GE = wl P+ I (TF D T = wi I+ 20(GE = wf, (IF) T (wiy = wiy)

k k k k k
—13 il_ i2 i P i+11_ z‘+12 klJi\Wir1) — i2
<TRNGE —wf|? + 20 T P lwl — i |® + 72 fi(wl) — wfl
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k: k k
+ 27 (—ef ! (J; T (w z—:_ll_warl»
k k k
=27¢|| fi(w z+1) wi | + T2 el + 20 T P lwi — wh )

+2mp(—ef T T(fiwiy) —wf) + (T T (W - wia)).

"
In the next result, we show how the moments of [|Jwf™ — w¥|| decrease in the corresponding order

of 7. This is a crucial step on bounding the errors in estimating the inner function values.

Lemma 3.2. Under Assumption 2.1, Assumption 2.2, for 1 <i < T, and with the choice of 9 = 1
(for simplicity), we have

B[l fi(wif!) = wi TP F]) < 02, + (ALF, +67,)cirn, (52)
Efllwf ™" — wi|*F) < e 77, (53)
where, for 1 <i < T,
T
i =300, +2(4L%, + 67, + 05, )ciy1, with cpiq = <H Ui) B2, (54)
i=1

ghtl and, for 1 <1 < T, define

[

Proof. Recall the definitions of flk,i, ef“
Dpi = Api + mpef ™ + e (Wl — wfyy). (55)

Then, by (49), for 1 <i < T, we have
fi(wfjll) — it = (1= ) (fi(wfy 1) — wf) + Diy, (56)

which together with the convexity of || - [|?, imply that

1
I fi(wiE) = wf 12 < (1= m) [l fi(whig) — wf* + ?k||Dk,i”2- (57)
Moreover, we have

1Dwll* = 1Akl + 7ille; 2+ 11e) T (wiy — w1 + 2rk s, (58)

T;c, <Ak i) TkekH + (é?H)T(wﬁf - werl)) + 7i(e k+17 (eiﬁl) (“}ffﬂl - wf+1)>a

which together with the fact that E[r} ;|#k] = 0 under Assumption 2.2, imply that

B[ D121 74] = Elll Ay 21 2] + 2Bl 1225 + Elllef ! (whf! = wh)IP1#4]
< B[l 25 + (423, + Bl 215) Bllwk - wia |25, (59)

where the second inequality follows from (51). Hence, noting (27), wf., ; = 2*, we have

0, + (4L, +67) (HJJ> ]

E[| Dz |?|.75] < i
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Using (57) with ¢ = T, the above inequality, and Lemma 2.8 with the choice of 79 = 1, we have
T
E[l| fr (") — wh|?| %] < 0, + (4L}, +67,) <H Gi) 52 (60)
i=1

Moreover, by Lemma 3.1.b) and under Assumption 2.2, we have IE[Hwk+1 —wF|?F] <

2
28 |2 A(utin) = bR+ bR + PP - ubalP| ] (61)
k
implying that
T
Bkt — b 215 < 7 [s +20L3, 453, +0%) (H) /32] @

This completes the proof of (52) and (53) when ¢ = T". We now use backward induction to complete

the proof. By the above result, the base case of i = T holds. Assume that ]E[wafll — w12 F) <

ci+17¢ for some 1 < i < T. Hence, by (58) and under Assumption 2.2, we have
E[| Duil*|Fx] < 710, + (4L, + 67 )ciral,
which together with Lemma 2.8, imply that

E[| fi(wfsy) — wf|*|Fa] < 0, + (4L, + 67 )cita)-

Thus, by (61), we obtain

E[l|wf ! — wi|?|Fx] < 77[308, + 2(4L%, + 65, + 07,)citl,
which together with the definition of ¢; in (54), complete the proof. ]
The next result is the counterpart of Lemma 2.7 for Algorithm 2.
Lemma 3.3. Recall the definition of the merit function in (16). Define w* := (wf, ..., wk) for
k>0. Let {xk, 2k uk, w’f, cee wikp}kzo be the sequence gemerated by Algorithm 2. Suppose that
N=A>0, B>A (B-XN(y—A)=4TC;,  jef2,....T}, (63)

where C;’s are defined in Lemma 2.4. Then, under Assumption 2.1 and Assumption 2.2, we have
AZTk [!\dk||2+2\ wiy) = w2+ (| fr(a®) — wi|?

<szw

MZ

(64)
k=0

where, for any k > 0,
. L
R = (Z%A’“ﬂ B [(Lor + Loyl +mld, ) + S22 (65)
P = [813, + Lyl fi(whir) — whl + 11657 k) — wb )2
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+Tller I i,
and Ay and ff“ are, respectively, defined in (20) and (48). Furthermore, notice that (63) is

satisfied, when we pick

n=A=vVT, B=2VT, 4;=VT(1+4C}) 2<;j<T. (66)

Proof. Noting Lemma 3.1 and definition of ff“, we have, Vi € {1,2,...,T},

k+1 k k k k k Ak+1
Hfi(wi—:_l ) — wi+1||2 - ||fi(wi+1) - w; ”2 < _Tkai(wi+1) — W H2 + Ti+ :

Combining the above inequalities with (22), (24), noting definition of the merit function in (16),
and in the view of Lemma 2.4, we obtain

W7($k+1, Zk+1,wk+1) _ W,y(xk, Zk, wk)

T—-1
< = Brlld®(* + > mCylldM | £ (whir) — will + Corlld®||[ fr(2*) — wh|
j=2
T—-1
= il £ (k) — Wk 12 = el fr(ab) — wh ) + R
j=1

Now if condition (63) holds, for any i € {1,...,T}, we have
B
=l + Cilld* [ i (wier) = will = vl fiwiyy) = wi |
1
< = AP + 1 fiwier) = wi]?]-

Combining the above inequalities, we obtain

ny(xlﬁ&’ zk+17wk+1) _ Wy(xk, Zk, wk)
T-1
< = om [ + 37 Ay wk) — b ? + () - whl?] + R
j=1

Thus, by summing up the above inequalities and re-arranging the terms, we obtain (64). Finally,
it is easy to see that (63) holds, by picking the parameters as in (66). ]

In the next result, we show the error terms in the right hand side of (64) is bounded in the order
of N 77 in expectation.

Proposition 3.1. Let R¥ be defined in (65). The, under Assumption 2.2, we have
E[RFZ] < 6277, Vk>1,

where

T
6% = Z%’ ([SL?«Z, + Lyy, \/Uéi + (4L3ci + 631_)0141 + (7(2]2} Cit+1 + O'?;i)
i=1

T

+ 2;2 (I[l ai) [(1+48%) Ly, + Lvr]. (67)
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Proof. Under Assumption 2.2, we have, for 1 <1i < T,

E[AclZk] =0, EfiTF] =0, E[ll6 P17 < of,,  Ellle™ %] < 67,

Moreover, by Lemma 3.2 and Holder’s inequality, we have E[||wf ! — w¥|?|.7] < ¢; 72 and

)

k k k
E[ll fi(wi) = wi T wi™h = wi*. 73]

1
< (Bl i) = o 1P120) " Elllwf ! - w217

<¢; \/O'%i + (4[% + &3i)ci+1713

The result then follows by noting the definition of 62 in (67) [

We are now ready to state the convergence rates via the following theorem.

Theorem 3.1. Suppose that {z*, zk}kzo are generated by Algorithm 2, and Assumption 2.1 and As-
sumption 2.2 hold. Also assume the parameters satisfy (66) and the step sizes {1} satisfy (34).

(a) The results in parts a) and b) of (35) still hold by replacing o by &2.
b) If 1, is set as in (39), the results of part c) of (35) also hold with 52 replacing o2.

Proof. The proof follows from the same arguments as in the proof of (35) by noticing (64), and
Proposition 3.1, hence, we skip the details.
]

Remark 3. Note that Algorithm 2 does not use a mini-batch of samples in any iteration. Thus,
(41) (in which o? is replaced by 62) implies that the total sample complexity of Algorithm 2 for
finding an e-stationary point of (1), is bounded by O(cI'T*/e*) = Or(1/e*) which is better in the
order of magnitude than the complexity bound of Algorithm 1. Furthermore, this bound matches the
complezity bound obtained in [20] for the two-level composite problem which in turn is in the same
order for single-level smooth stochastic optimization. Finally, it is worth noting that this complexity
bound for Algorithm 2 is obtained without assuming boundedness of the feasible set or any dependence
of the parameter 8 on Lipschitz constants. Indeed, 8 can be set to any positive number in the order
of O(VT) due to (66), and 73, depends only on the total number of iterations N due to (39). This
makes Algorithm 2 parameter-free and easy to implement.

4 Numerical Experiments

In this section, we provide numerical results for the risk-averse stochastic optimization problem
introduced in Section 1.1.1. The link function g is set to be the square function and U(x,§) == —(b—
g(aTx))2. In this case, (2) becomes a non-convex stochastic three-level composition optimization
problem. For our experiments, we assume a € R? is a zero-mean Gaussian random vector with
covariance matrix Y; = 0.56_‘%“, following [36]. Furthermore, ¢ is a standard normal random
variable. The true parameter z* € R? is drawn from a standard Gaussian distribution and fixed.
We compare our Algorithm 2 with the accelerated T-level stochastic compositional gradient
descent (a-TSCGD) from [36]. For our algorithm, the parameter 73, was set at ¢/v/N (with ¢ being
0.5, 1 and 1.5) and the step-size 3 was set to 4 (as it is close to 2¢/T and empirically worked the best).
The parameters for a-TSCGD were set according to the suggestion from [36]. We estimated the

expected gradient size empirically, based on an independent dataset of size 10,000, so as to reduce

23



a-TSCGD vs Algorithm 2 (d=100) a-TSCGD vs Algorithm 2 (d=500)

— a-TSCGD — a-TSCGD
— =05
— c=1.0
— =15

— =05
— c=1.0
— =15

Empirical Gradient Norm Squared
o Rk N W A U oo N o®
Empirical Gradient Norm Squared

100 150 200 250 300 350 400 450 500 200 300 400 500 600 700 800 900 1000
Iteration Iteration

a-TSCGD vs Algorithm 2 (d=1000)

—— a-TSCGD
— ¢=0.5
— c=1.0
— c=15

e
[N

=
1)

Empirical Gradient Norm Squared

o N & o o

500 750 1000 1250 1500 1750 2000 2250 2500
Iteration

Figure 1: Comparison between Algorithm 2 and a-TSCGD [36]: Empirical gradient size squares
versus iterations for d = 100 (top left), d = 500 (bottom) and d = 1000 (top right). Here, c refers
to the choice of numerator in the tuning parameter 7, given by 7, :==: ¢/v/N.

any fluctuations in this estimation process. Furthermore, we reported the average over 100 Monte-
Carlo trails, to reduce the fluctuations over the data generating process. Figure 4 plots the empirical
gradient norm squared as a function of iteration, for the values of dimension d € {100,500,1000}.
As can be seem from the plots, Algorithm 2 outperforms a-TSCGD from [36] numerically as well.
Furthermore, our algorithm is almost insensitive to the choice of ¢ in the definition of 7.

5 Concluding remarks

In this paper, we proposed two algorithms, with level-independent convergence rates, for stochastic
multi-level composition optimization problems under the availability of a certain stochastic first-
order oracle. We show that under a bounded second moment assumption on the outputs of the
stochastic oracle, our first proposed algorithm, by using a mini-batch of samples in each iteration,
achieves a sample complexity of Or(1/€%) for finding an e-stationary point of the multi-level com-
posite problem. By modifying this algorithm with a linearization technique, we show that we can
improve the sample complexity to Or(1/€*) which seems to be unimprovable even for single-level
stochastic optimization problems, without further assumptions [2, 11]. For future work, it would
be interesting to establish CLT and normal approximation results for the online algorithms we
presented in this work for stochastic multi-level composition optimization problems, similar to the
results in [1, 10, 25, 27, 37| for the standard stochastic gradient algorithm when 7" = 1.
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