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Abstract: The objective of this study is to validate reduced graphene oxide (RGO)-based volatile
organic compounds (VOC) sensors, assembled by simple and low-cost manufacturing, for the detec-
tion of disease-related VOCs in human breath using machine learning (ML) algorithms. RGO films
were functionalized by four different metalloporphryins to assemble cross-sensitive chemiresistive
sensors with different sensing properties. This work demonstrated how different ML algorithms
affect the discrimination capabilities of RGO–based VOC sensors. In addition, an ML-based disease
classifier was derived to discriminate healthy vs. unhealthy individuals based on breath sample data.
The results show that our ML models could predict the presence of disease-related VOC compounds
of interest with a minimum accuracy and F1-score of 91.7% and 83.3%, respectively, and discriminate
chronic kidney disease breath with a high accuracy, 91.7%.

Keywords: reduced graphene oxide; metalloporphyrin; breath biomarker; volatile organic com-
pound; machine learning; breath screening

1. Introduction

Exhaled breath contains a number of volatile organic compounds (VOC) as gaseous
molecules that are products of physiological and pathophysiological metabolic processes.
As many as 872 VOCs can be detected in human breath, including compounds that are
based on nitrogen, oxygen, sulfur, and hydrocarbons [1]. The concentrations of VOCs in
human breath may be altered due to infectious and metabolic diseases, genetic disorders,
and various cancers [2–7]. Therefore, VOC analysis can be used for health diagnosis as a
non-invasive, painless, inexpensive, and ubiquitous alternative to regular screenings for
the detection of disease onset and evaluation of therapeutic efficacy [8,9].

Several techniques have been applied for measuring breath biomarker VOCs, includ-
ing gas chromatography and mass spectrometry (GC–MS) [10], selected ion flow tube mass
spectrometry (SIFT–MS) [11], proton-transfer-reaction mass spectrometry (PTR–MS) [12],
ion mobility spectrometry–mass spectrometry (IMS–MS) [13], and Fourier transform–ion
cyclotron resonance mass spectrometry (FT–ICT MS) [14]. For example, Phillips et al.
collected breath samples of approximately one hundred pulmonary tuberculosis (TB) pa-
tients and healthy controls in sorbent traps, analyzed them using GC–MS, and identified
seven VOC biomarkers that were differentially present between the two groups [3]. Fu
et al. employed FT-ICR MS to detect lung cancer in exhaled breath, using four VOCs
(2-butanone, 2-hydroxyacetaldehyde, 3-hydroxy-2-butanone, and 4-hydroxyhexenal) that
were over-represented in the exhaled breath of lung cancer patients [14]. Kumar et al. used
SIFT–MS and showed higher concentrations of twelve VOCs in the exhaled breath of esoph-
agogastric cancer patients [11]. These techniques are difficult to deploy in clinical settings
due to challenges such as their need for equipment infrastructure, sample preparation, and
trained personnel [15].
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To tackle these challenges, nanomaterial-based VOC breath sensors have been de-
veloped [9]. Based on their characteristics, nanomaterial-based VOC sensors can be cat-
egorized as colorimetric [16], acoustic [17], and electrochemical [18–20]. They can either
be specific to a single VOC or cross-sensitive to multiple VOCs [21]. Wu et al. used a
cross-sensitive colorimetric sensor array that was assembled with nanoporous dimeric
metalloporphyrins to detect eight VOCs in the exhaled breath of lung cancer patients, with
a response time of 3 min [22]. In another study, Penza et al. coated a single-walled carbon
nanotube-based thin film on a quartz crystal microbalance (QCM) device to create an array
of cross-sensitive QCM sensors [17]. Their acoustic VOC sensors were able to discriminate
six different VOCs (ethanol, methanol, isopropanol, acetone, ethyl acetate, and toluene) of
public health relevance [17]. Electrochemical sensors, including metal oxide semiconduc-
tors (MOS) and chemiresistive sensors, measure electrical property changes in the sensing
material under the exposure of sensing VOC analytes. Machado et al. used an array of
carbon black-based chemiresistive sensors for detecting lung cancer with 71.4% sensitivity
and 91.9% specificity [20]. Zhou et al. assembled a selective MOS sensor using copper oxide
(CuO2)-functionalized graphene sheets (FGS) for hydrogen sulfide (H2S) detection [19].
The CuO2-FGS sensor detected a low H2S concentration (5 ppb) with a sensor sensitivity of
11%. Nanomaterial-based VOC sensors have been successfully used for disease detection
in breath samples for lung cancer [23,24], breast cancer [25], liver cirrhosis [26], head and
neck cancer [27], diabetes [28], Clostridium difficile infection [29], chronic kidney disease [30],
Alzheimer’s disease, and Parkinson’s disease [31], among others.

Current challenges in nanomaterial VOC sensors include miniaturization, large-scale
production, operation at room temperature, accuracy, sensitivity, and specificity [32,33].
Each sensor type may have different advantages and limitations: colorimetric sensors
are low cost but can only be used once due to the irreversible color change [34]; acoustic
sensors may be sensitive and lose accuracy due to an undesirable frequency shift [35];
electrochemical MOS sensors have shown high sensitivity to VOC detection [19], but
they require a high operating temperature (T > 300 ◦C) and have high power consump-
tion [33,36]. Some of these challenges can be addressed using carbon nanomaterials, such
as carbon nanotubes, carbon black, graphene, and reduced graphene oxide, due to their
low power consumption, high surface-volume ratio, high electron mobility, and high ca-
pability of gas adsorption [33,37]. The complexity of fabrication methods and insufficient
detection accuracy of VOC sensors remain outstanding challenges that hinder their clinical
utility [33].

Here, we present a carbon nanomaterial VOC sensor, based on reduced graphene-
oxide (RGO)/metalloporphyrin, that is easy and inexpensive to manufacture, and which
can accurately detect VOCs related to a variety of diseases that are usually present in
human breath. We fabricated an RGO–metalloporphyrin-sensing array using a drop
casting method and characterized it using scanning electron microscopy (SEM) and energy
dispersive spectra (EDS). The sensing array was then exposed to three disease-related
breath VOCs (acetone, ammonia, and isopropanol) and carbon monoxide. Further analysis
and integration of the results through machine learning (ML) models led to a method that
can predict the presence of the above compounds with an accuracy and F1-score of 91.7%
and 83.3%, respectively, and discriminate between healthy and chronic kidney disease
samples with 91.7% accuracy.

2. Materials and Methods
2.1. Materials

Graphene oxide aqueous dispersion was purchased from MSE supplies. L-ascorbic
acid (L-AA), acetone, 5, 10, 15, 20-Tetraphenylporphyrin-21H, 23H-cobalt (II) (CoTPP), 5, 10,
15, 20-Tetraphenyl porphyrin-21H, 23H-porphine zinc (ZnTPP), 5, 10, 15, 20-Tetraphenylpor-
phyrin-21H,23H-porphine iron (III) chloride (FeTPP), and 5, 10, 15, 20- Tetraphenylporphyrin-
21H,23H-porphine manganese (III) chloride (MnTPP) were all acquired from Sigma-
Aldrich. Chloroform and isopropanol were purchased from EMD Millipore (Burlington,
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MA, USA) and Fisher Scientific (Hampton, NH, USA), respectively. The interdigitated
electrodes were acquired from Newvision1981.

2.2. Sensor Fabrication

The RGO–based sensor fabrication started with the GO thin film assembly (Figure 1).
First, 5 mg/mL GO aqueous solution was diluted with deionized (DI) water to create a
2 mg/mL GO aqueous solution. A total of 100 µL of 2 mg/mL GO solution was pipetted
on the interdigitated electrodes and dried in an oven for 2 h at 50 ◦C. It should be noted
that, before coating, the interdigitated electrodes were cleaned with DI water, acetone,
and isopropyl alcohol to remove any residue. The interdigitated electrodes consisted of
10 finger pairs with 80 µm of spacing and electrode width and metal layers of Ti/Cu/Ni/Au.
Figure S1 describes the electrode dimensions in detail. Interdigitated electrodes increase
the signal-to-noise ratio and the contact area between the electrodes and the conductive
RGO film [38]. The GO thin film was then chemically reduced by L-AA solution, which
is a green reductant (i.e., eco-friendly and non-toxic), at 80 ◦C for 90 min [39]. Next, four
different types of metalloporphyrin solution were prepared by dissolving four different
metalloporphyrin powders (CoTPP, FeTPP, MnTPP, and ZnTPP) in chloroform for 90 min
of bath ultrasonication (80 W, 40 kHz) to create a 2 mg/mL concentration. RGO thin film
samples were noncovalently functionalized by pipetting 15 µL metalloporphyrin solution
onto the RGO thin film. The samples were left to air-dry in a fume hood for 12 h. Finally,
two electrodes were established by soldering two single-strand wires to the electrodes
(Figure 2).
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2.3. Material Characterization

The morphologies and chemical compositions of the as-prepared materials were
characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy
(EDS), respectively. An FEI Scios DualBeam SEM, equipped with Oxford X-max energy
dispersive X-ray spectroscopy detector, was used. Microstructures of RGO thin film and
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GO thin film were investigated using SEM images and EDS spectra. An accelerating voltage
of 10 kV and a secondary electron detector were used.

2.4. VOC-Sensing Characterization

The gas-sensing properties of the RGO–metalloporphyrin sensors were investigated
by subjecting sensors to three VOCs (ammonia, acetone, and isopropanol) and carbon
monoxide gas, while simultaneously measuring the change in electrical resistance of the
sensors. In this study, a static gas-sensing testing method was used (Figure 2). First, a sensor
was positioned inside a test chamber (4 L in volume). When the electrical resistances of the
sensors were stabilized, a pre-determined amount of gas analyte was then introduced into
the test chamber using a gas-tight micro-syringe through a laboratory septum. Next, the gas
concentration was determined by the volume ratio of the injected gas to air under standard
atmospheric pressure [40]. Throughout the entire test, an Agilent 34401A digital multimeter
was used to record the electrical resistance of the RGO–metalloporphyrin sensors. In
addition, an electric fan was installed in the test chamber to distribute the gas analyte
and have a homogeneous diffusion of gas inside the chamber. RGO–metalloporphyrin
sensors were then subjected to four different VOCs to simulate breath with disease states.
It should be noted that the temperature inside the chamber was maintained at ~21 ◦C.
The gas-sensing performance of the RGO sensors was investigated using the normalized
change in resistance as follows:

Rnorm[%] =
∆R
Ri
× 100 (1)

where Ri is the initial baseline resistance under ambient air condition, and ∆R is the change
in resistance between the bulk film resistance of the RGO–metalloporphyrin film at a certain
gas analyte condition with respect to its baseline resistance (Ri).

2.5. VOC-Sensing Pattern Recognition

The gas-sensing responses of the assembled RGO–metalloporphyrin sensors were
statistically analyzed to evaluate their discriminative capabilities. First, the dimensions
of the original data obtained from RGO–metalloporphyrin sensors were reduced using
principal component analysis (PCA) to visualize and explore the sensing data (in MATLAB).
Rnorm and the integral area under the curve (Area) from a sensing response curve were used
as variables for PCA. A PCA data matrix (n× p) consisted of the experimental measurements
(n = 24) and the measured feature values (Rnorm and Area) of each sensor (p = 8).

VOC classification analysis was then conducted using three ML algorithms, namely
logistic regression (LR) [41], support vector machine (SVM) [42], and artificial neural
network (ANN) [43], and their performances were compared (Figure 3). MATLAB, Scikit-
learn, and TensorFlow were used to implement LR, SVM, and ANN, respectively. LR
is a classification technique that assigns a probability to the relationship between input
features and a particular outcome using a sigmoid function (Figure 3a). SVM constructs a
hyperplane in high-dimensional feature space with the largest margin to separate different
classes (Figure 3b). Finally, ANNs are widely used to capture non-linear patterns in the data
through training of the weights carrying information from one node to another (Figure 3c).
The algorithms predicted the gas identity (output) using Rnorm and Area (input). A one-vs.-
rest multi-class classification was used, where a single classifier for each class was trained
considering the samples in the target class as positive and all other classes as negative
samples. The classification performance was evaluated using 3-fold cross-validation, where
the dataset was randomly partitioned into 3 equally sized bins. The first bin was then
used for the validation, while the remaining 2 bins were used for training to generate the
models. This process was repeated 3 times until all bins were used for the validation. The
performance of the classifier model was evaluated using the aggregate of all predictions of
the test datasets. LR with L1 regularization was used to prevent model overfitting. A linear
kernel was used for SVM. For ANN, 200 epochs with the learning rate of 0.001, the rectified
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linear unit activation function and the sparse categorical cross-entropy loss function were
used. Here, the number of epochs defines the number of times that ANN worked through
the entire training dataset. The number of hidden layers and nodes were the result of a
trial-and-error procedure; the optimal architecture had one hidden layer with three nodes.
To evaluate the predictive performance of the classification methods, accuracy, precision,
recall, and F1-score metrics were calculated using a confusion matrix [44].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 14 
 

generate the models. This process was repeated 3 times until all bins were used for the 
validation. The performance of the classifier model was evaluated using the aggregate of 
all predictions of the test datasets. LR with L1 regularization was used to prevent model 
overfitting. A linear kernel was used for SVM. For ANN, 200 epochs with the learning rate 
of 0.001, the rectified linear unit activation function and the sparse categorical cross-en-
tropy loss function were used. Here, the number of epochs defines the number of times 
that ANN worked through the entire training dataset. The number of hidden layers and 
nodes were the result of a trial-and-error procedure; the optimal architecture had one hid-
den layer with three nodes. To evaluate the predictive performance of the classification 
methods, accuracy, precision, recall, and F1-score metrics were calculated using a confu-
sion matrix [44]. 

 
Figure 3. Machine learning (ML) models of (a) logistic regression (LR), (b) support vector machine (SVM), and (c) artificial 
neural networks (ANN) are described. 

2.6. Healthy and Unhealthy Discrimination 
An ML-based chronic kidney disease classifier was developed using gas sensor sig-

nal intensities (Rnorm) as input (i.e., four numbers, one for each sensor), to discriminate be-
tween healthy and unhealthy individuals based on their breath sample. A balanced real-
istic synthetic dataset (n = 2004) was generated based on: (a) the reported distribution of 
breath ammonia concentration in healthy (mean = 0.356 ppm, SD = 0.300) and unhealthy 
individuals (mean = 3.863 ppm, SD = 2.6855) [45] and (b) the distribution of signal inten-
sities from four sensors given the ammonia concentrations that we tested. Normal distri-
butions were assumed for ammonia concentration and signal intensities. An SVM classi-
fier was then trained with linear kernel to discriminate between healthy and unhealthy 
subjects. 

3. Results 
3.1. A GO Thin Film was Chemically Reduced to Form an RGO Thin Film Using L-AA 

As shown in the SEM images of the GO and RGO thin films (Figure 4a,b), the sheets 
were uniformly distributed without agglomeration and completely covered the interdig-
itated electrodes. Several wrinkles can be found in both thin films, although the reduction 
process does not affect the topology of the samples. The EDS results can be seen in Figure 
4c,d. The atomic concentration of oxygen content in an RGO-film sample decreased from 
32.7% to 16.1%, and the atomic concentration of the carbon content increased from 67.3% 
to 83.9%, showing the oxygen content was effectively reduced. This supports the theory 
that an insulating GO film will become a conductive RGO film by partially restoring dou-
ble-bond conjunction and removing oxygen simultaneously [46]. 

3.2. RGO–Metalloporphyrin Sensors Showed Unique Sensing Responses upon Exposure to 
VOCs 

The VOC-sensing performance of RGO-based sensors was investigated by measur-
ing the electrical resistance response when the sensors were exposed to four different gas 
analytes. As mentioned in Section 2.4., three different VOCs of acetone, isopropanol, and 

Figure 3. Machine learning (ML) models of (a) logistic regression (LR), (b) support vector machine (SVM), and (c) artificial
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2.6. Healthy and Unhealthy Discrimination

An ML-based chronic kidney disease classifier was developed using gas sensor signal
intensities (Rnorm) as input (i.e., four numbers, one for each sensor), to discriminate between
healthy and unhealthy individuals based on their breath sample. A balanced realistic syn-
thetic dataset (n = 2004) was generated based on: (a) the reported distribution of breath
ammonia concentration in healthy (mean = 0.356 ppm, SD = 0.300) and unhealthy individ-
uals (mean = 3.863 ppm, SD = 2.6855) [45] and (b) the distribution of signal intensities from
four sensors given the ammonia concentrations that we tested. Normal distributions were
assumed for ammonia concentration and signal intensities. An SVM classifier was then
trained with linear kernel to discriminate between healthy and unhealthy subjects.

3. Results
3.1. A GO Thin Film Was Chemically Reduced to Form an RGO Thin Film Using L-AA

As shown in the SEM images of the GO and RGO thin films (Figure 4a,b), the sheets
were uniformly distributed without agglomeration and completely covered the interdigi-
tated electrodes. Several wrinkles can be found in both thin films, although the reduction
process does not affect the topology of the samples. The EDS results can be seen in
Figure 4c,d. The atomic concentration of oxygen content in an RGO-film sample decreased
from 32.7% to 16.1%, and the atomic concentration of the carbon content increased from
67.3% to 83.9%, showing the oxygen content was effectively reduced. This supports the
theory that an insulating GO film will become a conductive RGO film by partially restoring
double-bond conjunction and removing oxygen simultaneously [46].

3.2. RGO–Metalloporphyrin Sensors Showed Unique Sensing Responses upon Exposure to VOCs

The VOC-sensing performance of RGO-based sensors was investigated by measuring
the electrical resistance response when the sensors were exposed to four different gas
analytes. As mentioned in Section 2.4., three different VOCs of acetone, isopropanol, and
ammonia, and carbon monoxide were considered. Concentrations of breath biomark-
ers are summarized in Table 1. Acetone and isopropanol have been reported as VOC
biomarkers for diabetes. High levels of acetone exhalation have been reported in type 1
diabetes (2200–21,000 ppb) when compared with healthy individuals (500–2000 ppb) [2,47].
Isopropanol is a byproduct of acetone metabolism which is induced upon excess ketone
production that can occur due to reduced glucose levels in the liver of diabetic patients
with insulin deficiency or insulin resistance [48,49]. Ammonia in the exhaled breath of
chronic kidney disease patients is associated with high levels of blood urea nitrogen [50]. In
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a healthy liver, ammonia and ammonium ions are converted into urea. On the other hand,
urea is unable to be removed in renal patients, resulting in excessive ammonia buildup.
Carbon monoxide has been reported as an indicator of chronic obstructive pulmonary
disease [51]. In addition, healthy smokers had higher carbon monoxide concentrations
(17.13 ± 8.5 ppm) compared with healthy non-smokers (3.61 ± 2.15 ppm) [52].
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Table 1. Exhaled breath biomarkers for different health conditions.

Exhaled Biomarkers Healthy (ppb) Disease (ppb)

Type 1 diabetes Acetone 500–2000 [2] 2200–21,000 [2]
Isopropanol 784 (287–8963) [53] 1223 (481–15,011) [53]

Chronic kidney
disease Ammonia 356 (290–412) [45] 3863 (828–11,570) [45]

Smoking status Carbon monoxide 3610 ± 2150 (healthy
non-smoker) [52]

17,130 ± 8500
(healthy smoker) [52]

Figure 5a shows a representative sensing response of four different RGO–metallopor-
phyrin films subjected to 5 ppm of ammonia. Rnorm increased as all sensors were exposed
to ammonia. The slope of the transient response curve varied among the four different
sensors indicating different ammonia sensitivities. The Rnorm values (t~1000 s) of RGO–
metalloporphyrin sensors in four different gas analytes are shown in a radar plot (Figure 5b)
indicating the unique sensing responses of the sensors to different gaseous compounds.
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Figure 6 shows the sensing responses of four different RGO–metalloporphyrin sensors
under three different concentrations of gas analytes. A monotonic increase in Rnorm was
observed upon exposure of each sensor to higher gas analyte concentrations. The corre-
lation coefficients (CC) of Rnorm and VOC concentration were calculated to measure the
strength of their linear relationship. The CCs of all four sensors were > 0.97, showing a
linear relationship between Rnorm and VOC concentration.
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Figure 6. Sensing responses of the RGO–metalloporphyrin-sensor array were plotted as a function of different concentrations
of (a) ammonia, (b) acetone, and (c) isopropanol.

3.3. RGO Sensors Enabled Accurate VOC Classification Using Machine Learning

The sensing response curves (Figure 5a) from each sensor were used to calculate two
different features for pattern recognition analysis: Rnorm at t ~ 1000 s and the integral area
under the curve (Area) from gas injection to t ~ 1000 s. Four different sensors in the sensor
array were tested with 5 ppm of acetone, isopropanol, and ammonia, and 17 ppm of carbon
monoxide, which are within the concentration ranges of disease breath (Table 1), and six
data points were collected for each gas analyte. PCA plots are shown in Figure 7. PC 1,
PC2, and PC 3 explained 88.83%, 7.48%, and 2.35% of the variance, respectively. It should
be noted that, before the dimension reduction, z-score normalization was conducted to
remove the scale differences between different features.
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obtained.

After the sensing data visualization, three different ML algorithms (LR, SVM, and
ANN) were applied for gas classification. The classification performance results of the LR,
SVM, and ANN using 3-fold cross-validation are summarized in Table 2. All ML models
showed great performance for distinguishing ammonia, with accuracies and an F1-score
both of 1.0. This is due to the overall high sensitivity of the RGO–metalloporphyrin sensors
to ammonia, as mentioned in Section 3.2. The classification performance for the other
three gas analytes was varied among different classification methods. In general, the SVM
and ANN models outperformed the LR model. The SVM distinguished acetone better
than the others with an accuracy and F1-score both of 1.0, although it is expected that its
performance will drop when more data closer to boundary conditions will be collected.
The SVM and ANN models showed comparable performance for isopropanol and carbon
monoxide detection with an F1-score > 0.83.

Table 2. Classification performance evaluations using 3-fold cross-validation.

Acetone Isopropanol Ammonia Carbon Monoxide

LR SVM NN LR SVM NN LR SVM NN LR SVM NN

Recall 0.813 1.0 1.0 0.802 0.833 0.889 1.0 1.0 1.0 0.952 0.857 1.0
Accuracy 0.792 0.958 0.75 0.75 0.917 0.833 1.0 1.0 1.0 0.917 0.958 0.875

F1 0.871 1.0 0.857 0.837 0.833 0.889 1.0 1.0 1.0 0.944 0.857 0.923
Precision 0.944 1.0 0.75 0.889 0.833 0.889 1.0 1.0 1.0 0.944 0.857 0.857

Since the number of datasets was limited, the F1-score classification performance
was evaluated on bootstrapped samples to improve the robustness of the classification
models [54]. First, the dataset was randomly split into 3 folds. Then, 1000 training datasets
of equal sizes (n = 16) were generated through sampling by replacement. A classification
model was built from each training dataset with F1-score results summarized in Figure
S2. Consistent results with the 3-fold cross-validation can be found; for example, SVM
performed better than the other two classification methods for acetone detection, with
a mean F1-score of 1. All three classification models were able to successfully classify
ammonia with a mean F1-score of 1. For isopropanol and carbon monoxide detection, SVM
showed great performance with a mean F1-score of 1, but a considerable variation can
be seen.

3.4. RGO Sensors with ML Algorithms Can Discriminate the Healthy and Unhealthy Samples
with 91.7% Accuracy

An ML-based chronic kidney disease classifier was derived for discriminating healthy
and unhealthy groups. First, ammonia concentrations were generated for 334 healthy
and 334 unhealthy samples given the mean and SD of normal distributions (healthy:
mean = 0.356 ppm, SD = 0.300; unhealthy: mean = 3.863 ppm, SD = 2.6855). Next, the Rnorm
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values of the sensors at each ammonia concentration were generated using a regressor for
each sensor trained based on our experiments (Table S2). Finally, white noise was added to
generate three samples for each Rnorm, given the average SD of sensor signal at the same
concentration in the lab.

Based on this dataset, an SVM classifier was trained with a linear kernel that success-
fully discriminated healthy vs. unhealthy individuals using the sensor signal intensities
(Rnorm) with a 91.7% accuracy under 5-fold cross-validation settings. Figure 8 illustrates the
corresponding Precision-Recall and Receiver Operating Characteristic (ROC) curves with
0.97 and 0.96 as the areas under the curves (AUC) and an F1-score of 0.92.
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Figure 8. ML-based identification of kidney health using the signal intensity of the developed sensors. (a,b) illustrate the
Precision-Recall and ROC curves with corresponding areas under the curves (AUC) of 0.97 and 0.96 when a SVM with
linear kernel is used as the ML method under 5-fold cross-validation settings.

4. Discussion

In this study, room-temperature-operating RGO–metalloporphyrin VOC sensors were
assembled using a simple and low-cost fabrication method. The RGO thin films were
noncovalently functionalized by metalloporphyrin molecules via π–π stacking (Figure 9a).
We showed the cross-sensing behavior of RGO–metalloporphyrin sensors when exposed
to the disease-related VOCs in human breath. Different sensing properties of the RGO–
metalloporphyrin sensors were enabled by different metalloporphyrin molecules (Figure 9b).
To be specific, metalloporphyrin with different transition metals at the center of the por-
phyrin ring provided different sensitivity and selectivity to different gas molecules through
various interaction mechanisms of hydrogen bonds, polarization, and polarity interac-
tion [55]. The sensors′ higher sensitivity to ammonia can be explained by the synergis-
tic sensing behavior of RGO and metalloporphyrin. The RGO contains oxygen func-
tional groups, including carboxyl, epoxides, and hydroxyl groups on the graphene sheets
(Figure 9a). It was demonstrated that the oxygen functional groups effectively improve
ammonia absorption on RGO films [56]. It should be mentioned that recovery response
measurements were difficult with our static-sensing test setup because mechanical open-
ings of the chamber door affected the electrical measurements. Future work will use a
dynamic gas-sensing system, with mass flow controllers, to precisely control the gas flow
for sensor recovery tests. The thickness of RGO thin films was ~10 µm. The thickness
variation in µm-thick films is not expected to affect the sensing response because only the
outer surface of the RGO films becomes active for gas detection reactions [57].
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Unlike a selective VOC sensor, a cross-sensitive-type VOC sensor responds to mul-
tiple gaseous compounds, and selectivity is achieved through pattern recognition meth-
ods [21,58,59]. Therefore, finding an appropriate pattern recognition method is a crucial
process to detect and discriminate gas analytes of interest [60]. Despite the importance
of pattern recognition and classification analysis, many studies on nanomaterial-based
cross-sensitive VOC sensors focused on designing the VOC sensors and visualizing the
sensing data (mainly using PCA) [17,37,61–63], and integration with classification algo-
rithms was limited. This study provided a set of processes that can be applied to develop
VOC sensors and improve their VOC discrimination performance through a comparative
study on different ML methods.

For pattern recognition analysis, we applied two different features (Rnorm and Area)
from the sensing response curves of each sensor (eight features in total). Rnorm reflects the
reaction degree change in sensors to gas, and Area describes a transient response feature
that might represent the cumulative total of the reaction degree [64,65]. By considering
different features (Rnorm and Area) from the response curve, information about different
aspects of the reactions can be obtained [64]. PCA analysis showed that all eight features
have comparable importance for explaining variability (see PC1 weights in Table S1), while
Rnorm and Area of MnTPP showed slightly higher importance with PC1 weights of ~0.36.
This implies that all four sensors and their features played an important role in explaining
variance, and a single feature cannot be used solely for VOC discrimination [66].

ML algorithms of LR, SVM, and ANN were applied to detect three different VOCs and
carbon monoxides, and their performance was compared. Three ML algorithms showed
varied predictive performances suggesting the detection and discrimination capabilities of
VOC sensors are affected by classification analysis, which should be carefully investigated
for VOC sensor implementation. With the bootstrapped samples, SVM showed great
performance distinguishing isopropanol and carbon monoxide with an F1-score of 1.
However, considerable variation was observed, and the performance is clearly higher
than what is expected due to the insufficient sample size and overfitting, despite using
the necessary techniques (cross-validation and bootstrapping) to avoid it as much as
possible [67]. More sample collection and the addition of sensing elements with different
gas-sensing properties could improve the discrimination capabilities of the models [68].
We also derived an ML-based chronic kidney disease classifier to discriminate healthy
vs. unhealthy groups. The results show that an SVM classifier with linear kernel could
successfully distinguish healthy vs. unhealthy individuals with a 91.7% accuracy. Future
work will build on the presented preliminary results to test our RGO–metalloporphyrin
sensors with real human breath.
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