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A B S T R A C T   

Artificial Intelligence (AI) has the potential to transform US food systems by targeting its biggest challenges: improving food yield, quality, and nutrition, decreasing 
resource consumption, increasing safety and traceability, and eliminating food waste. Despite big leaps in AI capacity, food systems present several challenges for the 
application and adoption of AI: (1) Food systems are highly diverse and biologically complex, (2) ground-truth data is sparse, costly, and privately held, and (3) 
human decisions and preferences are intricately linked to every stage of food system supply chains. To address these challenges and transform U.S. food systems, the 
AI Institute for Next Generation Food Systems (AIFS) aims to develop AI technologies and nurture the next generation of talent to produce and distribute more high- 
quality nutritious food with fewer resources. AIFS has six research clusters, including two Foundational Research Areas (Use-Inspired and Foundational AI, and 
Socioeconomics and Ethics) and four Application Research Areas spanning the entire food supply chain: Molecular Breeding, Agricultural Production, Food Pro
cessing and Distribution, and Nutrition. AIFS is developing generalizable, data efficient, and trustworthy AI solutions based on a knowledge-driven and human-in-the- 
loop learning paradigm designed to handle food system diversity and biological complexity, efficiently capture, and utilize food system data, and garner user trust via 
explainability, safety, privacy, and fairness.   

1. Introduction 

Artificial Intelligence (AI) has the potential to transform US food 
systems by targeting its biggest challenges: improving food yield, 
quality, and nutrition, decreasing resource consumption, increasing 
safety and traceability, and eliminating food waste. In the last decade, 
scientists and engineers have made significant headway in developing 
and deploying tools and devices that deliver a massive, yet too often 
raw, data stream to food system stakeholders at unprecedented spatio
temporal resolution. At the same time, AI algorithms repeatedly break 
benchmarks in computer vision, natural language processing, and 
automation, while AI-optimized hardware is enabling major advances 
from robotics to consumer electronics. 

A primary mission of the AI Institute for Next Generation Food 
Systems (AIFS) is to develop AI technologies for a sustainable food 
system and to nurture next generation talent to produce and distribute 
nutritious food with fewer resources. In the coming decades, AIFS aims 
to help transform US food systems by innovating AI technology that will 

generate actionable information for diverse stakeholders in food system 
supply chains, grounded in a robust ethical and socioeconomic frame
work. Toward this goal and addressing the above challenges, AIFS will 
develop generalizable, data-efficient, and trustworthy AI solutions to 
enable (1) Molecular breeders to discover and/or design the next gen
eration of high yielding, high-quality, consumer-focused foods, (2) 
Agricultural producers to maximize food quantity and quality, while 
minimizing resource consumption and waste, (3) Food processors and 
distributors to deliver highly traceable and safe food, while minimizing 
resource consumption and waste, and (4) Consumers to rapidly and 
precisely assess the nutrition of a meal, quantify the food’s molecular 
composition, and predict the impact on their health. AIFS will build 
these solutions using knowledge-driven and human-in-the-loop learning 
paradigms designed to handle food system diversity and biological 
complexity, efficiently capture, and utilize food system data, and garner 
user trust via explainability, safety, privacy, and fairness. Today, when 
AI is employed by food system researchers, engineers, and industry 
leaders, it is nearly exclusively as a technological byproduct of other 
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industries. By creating food system-specific AI solutions, AIFS will 
accelerate AI’s capacity to positively transform US food systems and 
impact stakeholders across the supply chain. 

AIFS has six research clusters, with two foundational research areas 
(Use-Inspired and Foundational AI, and Socioeconomics and Ethics) and 
four application research areas (ARA) (Molecular Breeding, Agricultural 
Production, Food Processing and Distribution, and Nutrition) in addition 
to programs in Education, Outreach, and Workforce Development 
(EOWD), Broadening Participation and Collaborations and Knowledge 
Transfer (Fig. 1). Application research areas span the entire food system. 
The Use-Inspired and Foundational AI cluster connects the six research 
clusters and develops AI tools through close communication and feed
back cycles. Social, economic, and ethical considerations will be inte
grated into the application of AI in all four applied research areas. AIFS 
also actively engages academic, stakeholder and public audiences 
through education, outreach, and broadening participation activities. 
The overall vision of AIFS is to address challenges in both foundational 
and use-inspired AI research, train the future AI workforce, and address 
some of society’s grand challenges across the food system. 

AIFS has brought together researchers from six institutions (Uni
versity of California, Davis [UCD]; University of California, Berkeley 
[UCB]; Cornell; and University of Illinois, Urbana-Champaign [UIUC], 
USDA-ARS, University of California, Agriculture and Natural Resources 
[UC ANR]) with a proven record of excellence in AI and food system 
science, engineering, outreach, and education. AIFS currently engages 
50 + faculty members and researchers, 40 + graduate students and 
postdocs, and 18 undergraduate fellows. It has established its scientific, 
education, and outreach advisory board, industrial board, and stake
holder board. AIFS serves as a national nexus point for collaborative 
efforts spanning higher education institutions, federal agencies, in
dustry, and nonprofits/foundations. 

2. R&D thrusts 

2.1. Foundational AI research 

AI and data-driven computational methods are the underlying fabric 
that connect the application research areas of AIFS. The objectives of 
this research area, in a logical progression of effort, are as follows: (a) 
identify key common challenges that underlie the entire pipeline of the 
food system; (b) establish theoretical frameworks within which these 
challenges can be systematically addressed; (c) develop use-inspired 
methods and algorithms that can be refined and extended to take into 
account the specifications and domain knowledge of each of the four 

application areas; (d) establish foundational principles and un
derstandings that are salient in an AI-enabled agricultural science and 
generalizable to other scientific fields. AIFS seeks to balance founda
tional research and agricultural application-specific solutions through a 
principled and systematic investigation that tackles critical challenges 
inherent in the food system. 

Challenges: Inherent challenges in an AI-enabled agricultural sci
ence are rooted in three salient features of the food system: (1) high 
variability and diversity in terms of crop traits, environmental condi
tions, multi-faceted quality measures, and consumer preferences; (2) 
high cost—in terms of both labor and time (e.g., the innate growth cycle 
of crops)—associated with data collection and the low quality of 
observational data (e.g., self-reported dietary intake data); (3) the 
complex human factor dictated by the primary ties between humans and 
food—a successful adoption of AI in the food system hinges on human 
trust and response to AI applications. 

The first challenge gives rise to a highly complex learning space that 
all AI solutions need to navigate through: high dimensional input and 
output, reward, and loss as feedback for adaptation and learning are 
difficult to define (e.g., the taste of a strawberry variety), and highly 
nonlinear and nonconvex objective function landscapes. Compounding 
this difficult learning task is the second challenge that constrains the AI 
models with few, noisy, and incomplete data points from which to learn. 
The third challenge further complicates the problem by demanding 
complex design constraints in terms of safety, fairness, privacy gua
rantees and understanding the socioeconomic consequences. 

Approach and Theoretical Frameworks: To address these chal
lenges, AI solutions need to be generalizable, trustworthy, and data 
efficient. The model must be effective in simultaneously addressing the 
challenges of high variability in the learning space and offset the high 
cost associated with data collection. Trustworthiness implies providing 
safety, fairness, and privacy guarantees and being mindful of socioeco
nomic consequences. Data privacy enables data sharing across supply 
chains to address the challenge in data availability. Data efficiency 
pertains to the effectiveness of utilizing limited and noisy data sources. 

To build generalizable, trustworthy, and data-efficient AI solutions, 
our overarching approach rests on a knowledge-driven and human-in- 
the-loop learning paradigm that allows active and real-time in
teractions between human and machine. This paradigm allows for 
building trust, obtaining subjective labels (e.g. sensory and flavor at
tributes) and for constructing reward/loss functions. 

2.2. Ethics research 

To achieve its goal of developing AI tools to transform US food sys
tems by targeting its biggest challenges, AIFS will require a clear ethical 
framework to guide the research and the researchers. This framework 
aims to assure socially responsible and trustworthy AI for agricultural 
applications. We aim to create a meaningful, transformative ethics 
framework that goes beyond what has been described by some AI 
scholars as “ethics-washing” to instead anticipate ethical standards and 
protocols that may be needed to keep pace with AI technologies. 

A clear ethical framework underlies a successful AI tool by demon
strating transparently what researchers and developers ask stakeholders 
to trust them with, how they will use it, and why their work warrants the 
trust of others. Moreover, social, ethical, and economic barriers may 
hinder successful deployment of AI tools. Understanding these barriers 
and how to overcome them in a way that improves societal welfare is 
crucial, not only for AIFS but for AI more broadly. 

Food is fundamental to the human experience. It plays a critical role 
in social interactions and personal wellbeing. Food preferences are 
embedded deeply in identity, emotions, and culture. For these reasons, 
concerns regarding AI in the food system are often personal, which 
makes trust fragile. Earning and maintaining trust is central to ethical 
AI, and its fragility in this setting makes it even more important to 
prioritize. 

Fig. 1. AIFS Organization. The institute clusters, including foundational and 
applied research areas, and public engagement. 
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For researchers and AI developers, data is the key resource in AI 
development and deployment. Researchers negotiate with industry 
participants over the terms to obtain and transfer data. They then 
leverage those data to develop and deploy AI tools. These negotiations 
and the resulting AI tools raise potential ethical challenges, including 
the risk of loss or injury from tools that fail to achieve their objective, the 
incentive to rush to publish or deploy tools prematurely, insecure, or 
unfair use of data, and inequitable effects on third parties such as small 
farmers, laborers, or low-income consumers. These challenges can be 
met by adherence to the principle that AIFS researchers seek to develop 
tools for which expected benefits outweigh the risks and for which the 
benefits and risks are shared equitably. Other important characteristics 
of ethical and trustworthy AI are transparency, vigilance, and clear 
communication. 

We begin with three projects. One project will generate a set of best 
practices that AIFS and its researchers can adopt to help assure the 
trustworthiness of their research. The second will create an ethics cur
riculum for AIFS researchers, graduate students, and post-doctoral fel
lows, with several foundations including Deep Questions (Yarborough 
and Hunter 2013). The third will study and survey stakeholders in in
dustry, labor, and the policy community to ascertain the social, eco
nomic, and ethical challenges in deploying AI tools successfully in the 
food system. We will work collaboratively with AIFS, its researchers, 
and its partners. 

2.3. Molecular breeding 

The molecular breeding cluster focuses on developing AI tools for 
breeding the next generation of high yielding, high-quality, consumer- 
focused varieties of vegetables, fruit, and nut crops. We aim to address 
the following three challenges unique to horticultural crop improve
ment: 1) The diversity of horticultural crops requires highly specialized 
breeding approaches. Specialized tools for breeding developed in one 
species do not necessarily perform well in another. 2) Yield data is 
collected by hand, incurring high labor costs. 3) Fruit and vegetable 
quality is multi-faceted and is subject to context-dependent consumer 
preferences whereas existing tools for AI-enabled breeding are best 
suited for a single trait target (e.g. yield). Furthermore, there are often 
tradeoffs between quality and yield which necessitates breeding for both 
traits simultaneously. 

Approach: Building on the developments in the AI cluster we aim to 
develop AI methods that are explainable to breeders, that are context- 
aware to adapt to consumer preferences, and that leverage data inte
gration to take full advantage of the wave of automated high-throughput 
phenotyping technologies currently being applied to diverse breeding 
programs. 

1) To address the challenge of the diversity of horticultural breeding 
programs we will develop multi-model algorithms that flexibly integrate 
genomic and phenotypic data (common to all crops) with domain- 
specific knowledge from breeders. By developing Explainable AI- 
algorithms, we will generate predictions that can be interpreted and 
vetted by breeders. 

2) To address the challenge of quantifying yield in horticultural crops 
we will develop multi-modal AI algorithms that can integrate the het
erogeneous and high-dimensional data from high-throughput pheno
typing technologies such as mobile or stationary hyperspectral cameras, 
video-imaging and 3D modeling, to predict yield throughout the season. 
Accurate predictions of yield from automated sensors will greatly reduce 
the labor costs of breeding programs, enabling more varieties to be 
tested simultaneously in more locations to better model the interaction 
between genotype, environment, and management. 

3) To address the challenge of improving crop quality and consumer 
preferences we will develop AI-architectures that can leverage multi- 
modal data to identify predictive features for consumer preference and 
use these features to select improved varieties. Because deep learning 
algorithms allow end-to-end prediction (e.g., from genetic and 

molecular data to the overall consumer appeal), it allows us to optimize 
breeding more effectively with multiple objectives, including subjective 
qualities such as consumer preference which can depend on flavor, 
smell, appearance, texture, and/or nutrition, among other factors. 

2.4. Ag production 

Agricultural production requires substantial inputs (e.g. water, fer
tilizer, pesticides, energy, and labor) to maximize the output of food 
quantity and/or quality. Agricultural production is extremely diverse in 
terms of environmental conditions, crop traits, and management 
strategies. 

The AIFS Agricultural Production cluster is focused on developing AI 
tools that enable agricultural producers to sustainably manage the di
versity of horticultural crops – maximizing food yield and quality, while 
minimizing resource consumption and waste. Specifically, we aim to 
address the following three challenges associated with agricultural 
production: 

Highly variable production conditions: Crop monitoring, forecasting, 
and mechanization is highly site-specific due to variability in crop traits, 
pathogen pressures, environmental conditions, and management stra
tegies making technological generalization very challenging. We are 
developing crop-generalizable AI frameworks that integrate multi- 
modal sensor data, mechanistic crop modeling, and robotic controls 
for precision agricultural management. We are building machine 
learning models that integrate the large existing knowledgebase of plant 
biologists, crop modelers, and agricultural producers. First, we have 
focused on using 3D biophysically based crop models to generate a large 
number of synthetic datasets that form the basis of transfer learning for 
inference, or additional fine-tuning, on real sensed data. Second, we are 
building digital twin technologies, integrating 3D crop and robotic 
simulation models, to train deep reinforcement learning models for 
autonomous navigation and implement control (e.g., irrigators, fertil
izers, pesticide applicators, pruners/thinners, and harvesters). Finally, 
we are developing novel deep learning architectures for predicting yield, 
quality, resource consumption, and waste generation capable of 
handling multi-modal model inputs with respect to signal type (e.g., 
pressure, visible/thermal/microwave radiation, electrical conductivity, 
etc.) and spatial–temporal scale (i.e., from mm to km). 

Low/no Internet connectivity: Agricultural production technology 
faces unique constraints as it often occurs in remote areas with low to no 
internet connectivity, limited memory, and limited power supply. To 
overcome this challenge, we are advancing energy and memory-efficient 
sensing hardware and algorithmic systems for high- performance edge 
AI in agricultural environments. We are working to engineer new agri
cultural sensor systems that integrate recent innovations in AI dedicated 
microprocessors, such as visual processing units (VPUs), tensor pro
cessing units (TPUs), and other types of AI accelerators. As we develop 
agriculture-specific deep learning architectures it is critical that we 
optimize them to run on AI-dedicated microprocessors which can run in 
low power, lower memory systems. 

Producer confidence: Our AI system could provide an end-user a list 
of actionable factors, e.g., irrigation and nutrients, as well as their 
contributions to the yield. It can also map out the causal relationships 
among multiple variables of interest and allow the user to ask questions 
in terms of counterfactual scenarios, e.g., climate conditions and man
agement practices not present in the training data set. 

2.5. Food processing and distribution 

The key challenges in the food processing and distribution are food 
safety, food loss and spoilage, and process innovation/optimization. To 
address the challenges of food safety, we will develop AI models that can 
flexibly integrate the existing food microbial ecology, chemometric and 
physical data sets for comprehensive assessment of food safety risks 
from farm to retail distribution. These existing data sets will be 
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supplemented with digital twin models of food processing operations 
including sanitation and food handling and transport to simulate 
transfer of pathogens between food and its environment including 
humans and food contact surfaces, such as an agent-based model we 
have developed previously [Zoellner et al 2019]. Together these data 
sets will create food safety scenarios for both training and validation of 
AI models. To develop human confidence in AI predictions, food systems 
wide AI models will also be tested against prior food safety outbreaks 
using data sets collected by national outbreak reporting systems (NORS), 
FoodNet and other public databases. To explain AI predictions, we aim 
to develop an interface that enables AI to explain the models and the 
output decisions using natural language sentences and data visualization 
approaches. In addition to predicting food safety risks, AI models will 
also be developed to optimize resource utilization (energy, water, and 
chemicals) and efficiency of various operations designed to promote 
food safety and minimize risks of outbreaks such as sanitation of food 
contact surfaces. 

To address the challenges of food loss, we will develop AI models that 
flexibly integrate microbial, physico-chemical and market data sets to 
predict food loss. The microbial and physico-chemical data sets will 
indicate the spoilage risks while the market data will predict consumer 
aspects including behavior and needs about food loss. We intend to 
integrate market data and data generated using digital twin models, 
such as simulation of plant respiration and growth of spoilage microbes 
during storage and retail display. 

To address the challenges of process innovation and optimization, we 
aim to develop AI models to predict outputs of food processing opera
tions and to optimize input resources including energy and water for 
food processing. These AI models will integrate datasets from various 
mechanical, thermal, and chemical inputs during food processing and 
their influence on food products. These AI models will predict the 
product quality outputs such as texture, color, and flavor of a selected 
product. To generate datasets for AI models of complex processing op
erations, we will develop digital twin simulations of food processing 
operations. Digital twin models also enable simulation of variability and 
diversity in the input conditions such as diverse fresh produce with 
variable farm residues for simulating washing and sanitation of fresh 
produce. These datasets simulating product and process variability will 
enable development of adaptive AI models. Furthermore, to reduce the 
operating failures in the food manufacturing industry and enable instant 
responses with feed-forward controls of production operations, these 
approaches will be enabled by combining data sets from diverse sensors 
and developing AI enabled predictive models to optimize process con
ditions and product quality in real time. 

2.6. Nutrition 

The endpoint of the food system is nutrition–the consumption of food 
to sustain human life and, preferably, to enhance health and well-being. 
AI technologies are advancing the field in several areas. AI/ML have 
been used to assess diet via food photography. Many challenges remain. 
Large-scale controlled feedings studies are prohibitively expensive and 
burdensome. Instead of being required to specify everything eaten and 
the quantities, what if participants just take a picture of a plate of food? 
Our team is currently conducting the Surveying Nutrient Assessment 
With Photographs of Meals (SNAPMe) Study (ClinicalTrials.gov) to 
prepare this benchmark dataset, which can then be used to evaluate the 
application of computer vision algorithms to food photos for the purpose 
of dietary assessment. 

Once a human participant’s food intake is known, those foods are 
translated to nutrients using food composition tables. While it is not 
feasible to analyze the composition of every food item, it should be 
possible to build models from labelled data sets to predict the compo
sition of new foods. Our team is currently preparing the labelled data 
sets necessary to build prediction models for the glycan composition of 
foods. Little is known about the glycans in foods even though they are 

the primary carbon sources for our gut microbes. The project is an 
essential step towards determining what people should eat to nourish 
the right gut microbes. 

The overall framework can be extended to other molecules. Much of 
the nutrient content of food is currently “dark matter” (Barabasi, 
Menichetti, and Loscalzo 2020) that does not yet exist in the USDA food 
composition tables accessed by dietary intake apps. Meanwhile, the 
analytical technologies needed to completely characterize the 
“nutriome” –all the compounds in food–are rapidly progressing. Each 
food ingredient potentially contains thousands of small molecules 
quantified and catalogued in the FooDB database (FoodB.ca). Other 
“omes” of food constituents such as lipidomes (all of the fats), pro
teomes/peptidomes (all of the proteins), etc. have yet to be fully char
acterized, although such technologies exist today. When the complete 
molecular characterization of food is incorporated into food composi
tion databases and integrated with data on the effects of these foods via 
cell models, animal models, or human feeding studies, this integrated 
data set can form the basis of clinical trials or for experiments with 
digital twins, or models. Results from experiments will then be aggre
gated into knowledge graphs which enable scientists to interrogate the 
information to translate it into new dietary guidance. In the future, this 
guidance will be both personalized–pertaining to individual people–and 
precise–recommending particular foods or varietals, rather than general 
food groups. 

2.7. Education, public Engagement, and workforce development 

Innovations in research are complemented by transformative and 
inclusive education and public engagement approaches to nurture the 
next generation of talent in a diverse workforce, as well as compre
hensive initiatives to broaden societal engagement including knowledge 
transfer and collaboration. AIFS nurtures the next generation of talent to 
enable a more resilient and productive society. AIFS aims to improve 
access, awareness, and interest amongst K-14 audiences, including non- 
traditional and underrepresented student populations; increase the 
number of highly-competent AI-trained and skilled new workforce en
trants across food and agriculture sectors and disciplines; implement 
effective industry and government partnerships to accelerate market 
adoption of AI food and agriculture technologies; and incorporate AI 
into existing outreach programs that train students and postdocs to more 
effectively engage with the public. 

To that end, AIFS launched its Career Exploration Fellowship pro
gram, which aims to prepare undergraduate students from diverse 
backgrounds for careers at the intersection of food, agriculture, and 
technology. This program pairs college students with companies, non
profits, and AIFS-affiliated university labs to work on exciting projects 
that are addressing critical challenges in food and agriculture using 
technology. 

Another significant component to nurturing next-generation talent is 
through training for graduate students and postdoctoral fellows. AIFS 
actively engages academic, stakeholder and public audiences through 
education, outreach and broadening participation activities (e.g. 
roundtables, seminars, panel discussions) led by graduate students and 
postdoctoral fellows, who receive training on effective science 
communication. Additional training is offered through AIFS workshops 
led by UC ANR, a statewide UC network of over 1,500 academics and 
staff with the mission to transfer science and technology to the people of 
California to inform and train industry professionals on the application 
of AI technologies. 

To equip the next generation of students with the skills and knowl
edge necessary for high-tech agricultural innovation, AIFS has also 
developed 21 educational modules with more on the way in future years. 
These modules include topics in data science, machine-learning, 
modeling, and simulation technologies. These module offerings will be 
expanded to cover more disciplines and will comprise a curriculum that 
spans high school, community college, 4-year undergraduate programs, 
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graduate school, through postdoctoral training. 

3. Building a strong organization 

We have established an institutional organization structure that en
sures business continuity, coverage of the broad spectrum of interests 
within the institute, provides access and advisory capacity to a panel of 
external experts, and adheres to the principles of inclusion, trans
parency, and meritocracy of AIFS. 

With an eye toward making a noticeable positive impact on the food 
system, AIFS is following a 5-year plan, which ultimately delivers scaled- 
up and translated AI technology to the food system as shown in Fig. 2. 

We see significant opportunities as well as challenges in the Institute 
activities. We present our SWOT (strengths, weaknesses, opportunities, 
threats) analysis as follows. Our key strengths are that we have multi- 
organizational connections already established and research projects 
which were able to hit the ground running. Additionally, there is 
considerable engagement between researchers and between staff and 
researchers. Among our weaknesses are the potential of spreading 
funding too thin for maximum effectiveness. There also needs to be focus 
on AIFS projects by all researchers, among other competing interests. 
We see some opportunities amidst a challenging landscape. With water 
and labor shortages and food cost increases, demand for technology- 
based solutions including those with AI foundations will increase. 
Additionally, many businesses are already looking to AIFS for leadership 
and authoritative answers. The threats we have identified include the 
potential of competing against narrow bands of venture capital in some 
areas. 

4. Discussion 

AIFS aims to develop food system-centric AI solutions for trans
forming productivity, sustainability, and safety of food systems as well 
as enhancing consumer health and wellness. These AI solutions will 
innovate algorithms and computational resources to model both di
versity and biological complexity of food systems, address key 

knowledge gaps in ground truth data, and create explainable and 
trustworthy predictions to engage humans in-the-loop. These in
novations are significantly and intellectually distinct from the current 
scenario where AI approaches in food systems are exclusively techno
logical by-products of other industries. By investigating and creating 
food system-specific AI technologies, AIFS will accelerate AI’s capacity 
to positively transform US food systems and impact stakeholders across 
the supply chain. AIFS has bought together researchers from six in
stitutions with a proven record of excellence in AI, food system sciences, 
and engineering. The research plan investigates original and trans
formative concepts at the intersection of foundational and application 
research areas that span the entire food system. Critically, AIFS in
stitutions represent leaders in AI innovation and agriculture and food 
systems research with significant resources including state-of-the-art 
compute, molecular sequencing, analytical, greenhouse, crop produc
tion, and engineering facilities as well as stakeholder engagement to 
enable success and transformative impact on society. Serving as a na
tional nexus point for collaborative efforts spanning higher education 
institutions, federal agencies, industry, and nonprofits/foundations, 
AIFS will accelerate the translation of AI innovations into the food sys
tem and nurture the next generation of talent to enable a more resilient 
and productive society. 
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