
Multibody System Dynamics (2022) 54:399–414
https://doi.org/10.1007/s11044-022-09816-1

End-to-end learning for off-road terrain navigation using the
Chrono open-source simulation platform

Simone Benatti1 · Aaron Young1 · Asher Elmquist1 · Jay Taves1 · Alessandro Tasora2 ·
Radu Serban1 · Dan Negrut1

Received: 24 August 2021 / Accepted: 14 February 2022 / Published online: 10 March 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
This contribution (i) describes an open-source, physics-based simulation infrastructure that
can be used to learn and test control policies in off-road navigation; and (ii) demonstrates
the use of the simulation platform in an end-to-end learning exercise that relies on simulated
sensor data fusion (camera, GPS and IMU). For (i), the 0.5 million lines of open-source code
support vehicle dynamics (wheeled/tracked vehicles, rovers), deformable & non-deformable
terrains, and virtual sensing. The library has a Python API for interfacing with existing Ma-
chine Learning frameworks. For (ii), we use a Gator off-road vehicle to demonstrate how
a policy learned on non-deformable terrain performs when used in hilly conditions while
navigating around a course of randomly placed obstacles on deformable terrain. The hilly
terrain covers an 80×80 m patch and the soil can be controlled by the user to assume vari-
ous behavior, e.g. non-deformable, deformable hard (silt-like), deformable soft (snow-like),
etc. To the best of our knowledge, there is no other open-source, physics-based engine that
can be used to simulate off-road mobility of autonomous agents operating on deformable
terrains. The results reported herein can be reproduced with models and data available in
a public repository (UW-Madison Simulation Based Engineering Laboratory, Supporting
models, scripts, data, https://go.wisc.edu/arflqq, 2021). Animations associated with the tests
run are available online (UW-Madison Simulation Based Engineering Laboratory, Support-
ing simulations, https://go.wisc.edu/256xb9, 2021).

Keywords Simulation · Reinforcement learning · Off-road autonomous vehicles ·
Deformable terrain

1 Introduction

There are many applications in which controller design can benefit substantially from the
use of simulation. Off-road navigation is arguably one such application. Indeed, it is difficult
to test autonomous rovers, light robots and heavy-duty vehicles in off-road conditions for
several reasons. Many times, they do not exist at the time the controller is designed. If they
do exist, it is costly (in terms of time and money) to take them out in the field and test
candidate control policies. Even if this can be done in principle, it can be daunting since
a multitude of testing scenarios may be necessary. For instance, unlike on-road driving,

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11044-022-09816-1&domain=pdf
http://orcid.org/0000-0002-4219-905X
https://go.wisc.edu/arflqq
https://go.wisc.edu/256xb9

400 S. Benatti et al.

off-road navigation takes place in very unstructured environments, e.g. rocky terrain, mud,
sand, obstacles (ditches, fallen trees, etc.), snow, etc. In addition to cost savings, shortening
of design time and the ability to do exhaustive testing, there are two other advantages for
simulation use in controller design: repeatability and safety. If a scenario is problematic, it
can be recreated in simulation to gauge whether a better control policy addresses the issue at
hand. As for safety, simulation eliminates hazards (both to the human and hardware) that are
sometimes associated with physical testing. However, simulation is not a silver bullet. Many
times, control policies designed in simulation fail to transfer to the real world owing to the
so called simulation-to-reality gap [3]. It is also a source of frustration to anticipate when
the gap is insurmountable, and when simulation is helpful. Enhancing the transferability
attribute of simulation-learned control policies represents an area of active research [4–6];
however, this rich topic falls outside the scope of this contribution.

Herein, we describe a physics-based simulation platform and demonstrate it in conjunc-
tion with the task of producing an end-to-end policy for controlling autonomous vehicle
(AV) navigation directly from raw sensory data. The AVs operate in a hilly, off-road con-
ditions with randomly placed obstacles (rocks) obstructing safe navigation. The training is
based on a curriculum learning approach; the complexity of the environment is increased
as the policy converges. The training is exclusively done with non-deformable terrain since
these simulations run faster than in real time [7]. The deformable terrain implementation
used here is approximately 4-5× slower than the non-deformable terrain simulation coun-
terpart. As such, learning on deformable terrain is expensive. The control policy derived is
tested on deformable soils that have different textures and soil deformation attributes. The
deformable soils are of two categories: deformable but hard (silt-like) and deformable but
soft (snow-like). The end-to-end approach to navigation is certainly not new; see for in-
stance [8, 9]. However, to the best of our knowledge, (a) this is the first example of off-road
navigation (driving control + reaching a goal) with reinforcement learning; and (b) the sim-
ulation environment developed is the first open-source, physics-based platform that brings
together tracked/wheeled vehicle dynamics, sensor and terrain simulation.

Our goal is to demonstrate that off-road mobility of AVs can rely, in principle (see the
sim-to-real caveat above), on simulation for the development of control policies and to re-
port on tests that assess the effectiveness of these policies. Thus, in Sect. 2 we provide an
overview of similar ongoing efforts in the simulation-in-robotics area. Section 3 provides
an outline of the simulation environment developed by this group. Section 4 presents the
end-to-end learning approach for off-road AV mobility. Simulation results are described in
Sect. 5. Concluding remarks and directions of future work round up the contribution.

2 Related work

This section provides a summary of the state of the art in simulation environments (see
Sect. 2.1), and learning techniques for autonomous navigation (see Sect. 2.2). The discussion
of simulation environments is restricted to those commonly used for training reinforcement
learning algorithms.

2.1 Simulation environments for reinforcement learning

Gazebo [10], one of the most broadly used simulators in robotics, has been used for re-
inforcement learning by leveraging the open-source nature and tight integration with the

End-to-end learning for off-road terrain navigation using the Chrono. . . 401

Robot Operating System (ROS). Gazebo exposes an environment that wraps multiple dy-
namics engines and sensors. However, it lacks specific support for vehicle modeling and
deformable terrain for off-road scenarios.

Widely used for “in-doors robotics” reinforcement learning, MuJoCo [11] is a dynam-
ics engine that supports Universal Robot Description Format (URDF)-based modeling. Mu-
JoCo does not support vehicle dynamics. The sensing support is also limited due to the noise
models applied to the sensors, most of which are restricted to be dynamics-based and intero-
ceptive. An alternative to MuJoCo is PyBullet [12], which provides an interface to generate
the specific sensor data desired by the user. The strengths of PyBullet are in rigid-body dy-
namics and ease of use, making it a convenient choice for Reinforcement Learning (RL)
applications outside the realm of autonomous vehicles. For AV simulation, CARLA [13],
AirSim [14], LGSVL [15], and Torcs [16] support vehicle simulation for training and test-
ing control algorithms. While these are vehicle-focused, they cannot perform off-road sim-
ulation and have limited sensor fidelity. Torcs, which builds off a racing game, provides
limited support for sensing, allowing access to a camera and simplified lidar, with dynamic
information available directly from the physics engine. CARLA, LGSVL and AirSim are
designed for on-road applications and support an array of sensors. The sensors include basic
distortions and noise. Due to the limited geometric fidelity and time-resolution of collision-
based ray-casting, sensor data is typically overly clean or has obvious discontinuities or
modeling artifacts. None of these on-road simulation environments support complex off-
road navigation. CARLA and AirSim build off Unreal Engine [17], while LGSVL is based
on Unity [18]. Unreal and Unity are video gaming engines that provide the aforementioned
simulators with high-quality rendering and basic physics simulation tools. In turn, both Un-
real and Unity internally use NVIDA’s PhysX physics engine [19]. Vehicle dynamics are
thus simulated very quickly, as PhysX is designed for speed. The drawback is that CARLA,
LGSVL, AirSim all have the level of fidelity associated with video gaming. For instance,
tire models are basic and display a level of fidelity good enough for gaming. Adding, for
instance, new bushing elements to better capture suspension dynamics or a more accurate
terrain model is difficult and not available with the PhysX capabilities exposed by Unreal
and Unity.

2.2 Learning techniques

The use of Deep Reinforcement Learning (DRL) has met with great success since its in-
troduction [20]. In particular, DRL has found a niche in vision-based robotic manipulation
tasks. Robots controlled by DRL-trained neural networks (NN) have been shown to solve
complex tasks in unstructured environments with [21] or without [22] the use of imitation
learning. End-to-end DRL approaches have also been successfully applied to on-road au-
tonomous driving. One of the major challenges in this area is the gap between the RGB
images generated by simulators and the real world camera images, which can cause au-
tonomous driving policies trained in the simulation to perform poorly in the real world.
This has been addressed in various ways, e.g. by using synthesized realistic images [23] or
tools to generate images directly from real-world sampling [24]. Sensor fusion with DRL
techniques has shown promising results in controlling small indoor robots with camera and
lidar [25, 26]. RL in conjunction with imitation learning has been used in off-road driving
to teach a vehicle to race quickly on a course [27]. However, to the best of our knowledge,
there has been no demonstration of an end-to-end, off-road driving policy capable of reach-
ing a target position while avoiding randomly placed obstacles on deformable soil and hilly
terrain.

402 S. Benatti et al.

3 Chrono simulation environment

The physics-based simulator used in conjunction with this work is called Chrono. It is ac-
tively developed, is open source, and is released under a permissive BSD3 license for un-
fettered use, change, and distribution [28]. A full description of the simulation platform
falls outside the scope of this document; for an overview, see [29]. Chrono provides sup-
port for multibody dynamics (multi-core), nonlinear finite element analysis (multi-core),
fluid-solid interaction (GPU), granular dynamics (multi-core/GPU), terramechanics (multi-
core/GPU/MPI), sensing (GPU) and simulation of large collections of AVs running in one
joint scenario (MPI). Hardware support includes multi-core CPUs via OpenMP, GPU com-
puting via CUDA and distributed memory (clusters/supercomputers) via Message Pass-
ing Interface (MPI). The four Chrono components relevant herein are: Chrono::Engine,
Chrono::Vehicle, terramechanics, and Chrono::Sensor. Chrono::Engine is the solver that
advances the simulation in time. Chrono::Vehicle provides support for rapidly setting up
and analyzing vehicles (tracked or wheeled) via a library of templates for vehicle subsys-
tems [30]. The terramechanics support comes in three flavors: semi-empirical expeditious
approaches [31], continuum representations [32], and discrete element method approaches
(fully resolved granular terrain) [33].

Setting up vehicle models quickly is facilitated via Chrono::Vehicle, which provides
vehicle subsystem templates such as tyres, suspensions, steering mechanisms, drivelines,
sprockets, track shoes and powertrains. For instance, there are 15 types of suspensions sup-
ported, e.g. double wishbone, multi-link, MacPherson strut, leaf spring, etc. There are sev-
eral tire models available, e.g. Pacejka, Fiala, TMeasy. Chrono::Vehicle works in conjunc-
tion with a variety of terrain models ranging from rigid to semi-empirical Bekker-Wong type
models to complex physics-based solutions that draw on either a granular or a continuum
representation of the soil.

Sensing support in Chrono is provided as an additional module that builds on top of
Chrono::Engine to provide measurement data from the simulation and virtual environment.
Currently, there is support for RGB cameras, lidar, GPS and IMU [34]. The purpose of
the Chrono::Sensor module is to provide realistic data for training and testing autonomous
controls. For GPS and IMU, ground truth data queried from Chrono::Engine is augmented
to introduce noise commonly found in accelerometers and gyroscopes [14], as well as GPS
receivers. For camera and lidar, the visual environment is ray-traced using custom GPU
kernels that model the acquisition process of the specific sensor. The ray-traced data is then
augmented to introduce noise and distortion to model the true sensor output. All sensors are
parameterized by their update frequencies, noise characteristics and lag.

The Chrono lidar model augments ground-truth data with noise (based on the measure-
ments of range, intensity and angular precision) to produce the final point cloud. The lidar
leverages ray-tracing to create a point cloud based on the visual scene. This, in combination
with supersampling for beam divergence, allows Chrono::Sensor to generate high-fidelity
point clouds of complex environments. The beam discretization model extends that pro-
posed in [35] to allow a user-defined number of rays per lidar beam. By incorporating beam
divergence, we can model multiple return modes and encountered objects. In addition to
beam divergence, the ray-tracing method allows the temporal sampling of a scanning li-
dar to be based on modern motion blurring techniques, resulting in realistic and continuous
distortions that are not possible with large time steps in video gaming collision detection
systems employed by other learning environments, e.g. [13, 14].

The implemented camera simulator introduces lens and image sensor models to improve
the realism of the data. The camera is parameterized based on frequency, resolution, field of

End-to-end learning for off-road terrain navigation using the Chrono. . . 403

view, exposure time and lag. Based on exposure time, motion blur that accounts for object
and camera movement is introduced. The camera lens model draws on the work from [36] to
allow for wide-angle lenses. The noise model is based on a modified version of the EMVA
standard [37], which introduces intensity-dependent noise based on the image sensor charac-
teristics. Additional components of the image signal processor (ISP) are under development
since the ISP introduces additional sensing artifacts such as compression, demosaicking and
color correction.

The Python API of Chrono, known as PyChrono, provides access to the vast majority
of Chrono API from Python, including Chrono::Vehicle and Chrono::Sensor. This allows a
simulation to be directly interfaced to the Python API of popular ML frameworks. By using
the SWIG wrapper [38] to directly interface with the C++ binaries, minimal overhead is
introduced when running a simulation from Python. As an example, large data from sensor
simulations (such as RGB images or lidar) are cast to NumPy arrays without instantiating
new memory by means of SWIG typemaps.

4 End-to-end learning approach

The control policy employed in this work is end-to-end: the NN takes as inputs raw sensor
data and directly outputs the control values for steering and throttle. The policy is trained
from scratch. The objective for the navigation algorithm is to control a John Deere Gator
to reach a target destination given by GPS coordinates. The algorithm uses a GPS and IMU
that provide the NN with the current vehicle location and orientation. The vehicle is also
equipped with a down-sampled RGB camera, which the network leverages in order to avoid
obstacles, i.e. rocks of various shapes, sizes and textures. Since the impact of the sensor
models is outside the scope of this paper, all sensor data are idealized and without noise.

For the training, the environment consists of a 120×120 m patch of terrain on which
obstacles are randomly placed. The vehicle’s initial position is picked randomly in a 80 m
diameter circle while the goal is placed on the opposite side of the same circle. In polar
coordinates, given α the angle of the vehicle initial position, the angle of the goal will be
α + β with β randomly picked in [π

2 , 3π
2]. The vehicle must navigate to within 10 m of

the destination and the reward is proportional to the vehicle’s approach speed. The episode
is terminated with a reward penalty if the vehicle hits an obstacle, goes outside the terrain
boundary or the timeout is reached, while it is terminated with a reward bonus if it reaches
the goal.

The observation consists of a two-element tuple: an 80×45 pixel RGB image and a five-
element array containing the components (x, y) of the distance from the goal (in the vehicle
frame, based on GPS measurements), the vehicle orientation (compass angle), the heading
with respect to the goal, and the vehicle speed. Based on these inputs, the policy controls
the steering (−1 to 1) and the throttle/brake value (−1 to 1, where a negative value implies
braking).

To train the NN, we adopted the constrained version of the Proximal Policy Optimization
(PPO) algorithm [39], using two separated NN for the actor and the critic. PPO is known
as one of the best performing DRL algorithms for continuous control [6]. The NN model
inputs come from the GPS, IMU and RGB camera. Through PyTorch [40], the NN model
was implemented as follows. A five-element array was fed to a fully connected layer into 10
neurons, while the RGB image was processed by a CNN as in [20] through 3 Convolutional
Layers of kernel size of 8×8, 4×4 and 3×3 and a stride of 4, 2 and 1, respectively (no
padding), then flattened into 768 features which were processed by a fully-connected layer

404 S. Benatti et al.

Fig. 1 Actor neural network architecture

Fig. 2 On flat terrain without
obstacles, the algorithm
converges immediately when
feeding the position of the goal
rotated in the vehicle reference
frame. When the position is given
in the global frame, training does
not converge

into 10 neurons. The output of the CNN and the single fully-connected hidden layer were
concatenated and then processed through three fully-connected hidden layers, as shown in
Fig. 1. All layers used the rectified linear unit (ReLU) activation function.

Given the GPS coordinates of the vehicle and the goal, along with the orientation of the
vehicle from the IMU, it is straightforward to evaluate the distance between the vehicle and
the objective. This being said, there are several ways to pass this information to the NN as
input: directly feeding the GPS coordinates of the vehicle and the objective, the coordinate
difference, the relative distance in a frame oriented along the cardinal points, or the distance
in the local frame of the vehicle. The last has proven to be the most effective, even though
in principle the ML algorithm should be able to infer the correlation. The direct global
coordinate input approach proved to be inefficient, as shown in Fig. 2. It can be seen that, in
terms of convergence, simply rotating the position of the goal with respect to the vehicle in
the vehicle reference frame (called local) dramatically improved the policies performance.

We adopted a curriculum learning approach [41], progressively increasing the complexity
of the task as shown in Fig. 3. The first part of the training was performed on flat terrain
with a random number of obstacles (from 0 to 30). Once convergence was reached after
approximately 200 policy updates, the obstacle number was fixed at 30. After a visible drop
off, convergence was reached again quickly. Then, after 376 policy updates, the flat terrain
was replaced by a hilly terrain (while keeping the same number of obstacles). The agent

End-to-end learning for off-road terrain navigation using the Chrono. . . 405

Fig. 3 Reward progression.
Vertical lines represent the
changes introduced to make the
environment more challenging.
In order of occurrence, the dotted
lines mark: fix obstacle count at
30; change from flat to hilly
terrain; and increase of obstacle
count to 50

initially struggled and many updates were necessary in order to converge again. In the third
and last stage of training, the obstacle count was increased to 50 and the terrain texture
was randomized. Curriculum learning was deemed necessary since convergence could not
be directly reached from scratch on hilly terrain. Investigating multiple training approaches,
we found that: (i) Irregularities in terrain height caused policies trained exclusively on flat
terrain to perform poorly; (ii) This problem can be solved by undergoing further training on
hilly terrain; and, (iii) The curriculum learning approach (see Fig. 3) was instrumental in
eventually handling the complex tasks, namely hills with many random obstacles.

Training relied on the Adam algorithm [42] with a learning rate of 10−4. The training
set at each update included 6000 tuples (timesteps), fed by 1000 element mini-batches to
the optimizer, which performed eight epochs per update. Since Chrono is compatible with
OpenAI gym [43] environments, the dataset was collected by running six parallel episodes
leveraging OpenAI baselines [44] multiprocessing tools.

To complete the first phase, pertaining to navigation on a flat terrain with sparse obstacles,
the algorithm took 200 policy updates, each of which required 6000 steps for collecting
samples over 6 parallel simulation environments. Considering that the frame rate was 10
fps (even though the physics was carried out at 500 Hz), it comes out that it would take
more than 33 real world hours for the policy to converge (considering the use of 6 parallel
environments, 200 updates, 1000 steps per update, and a 0.1 s time step). Given the massive
amount of samples needed, the computational overhead introduced by simulating the terrain
deformation strongly increases the training time. In addition, preliminary experiments did
not always show consistent improvement when adding terrain deformation during training:
other factors, such as terrain texture randomization, play a much more important role. The
feedback nature of the policy can correct for deviation in response due to a different terrain,
and the agent has no means (in terms of perception) to fully estimate the trafficability of
the path ahead. This being said, thanks to recent improvements in our deformable terrain
simulation performance, we plan to investigate this further in the future, possibly combined
with additional sensing information (e.g. wheel slip).

5 Simulation experiments

To demonstrate and analyze the capabilities of the control policy, we used a model of the
John Deere Gator utility vehicle driving on an 80×80 m patch of terrain. The reduced scale

406 S. Benatti et al.

of the test environment allowed for rapid evaluation and inclusion of tests using deformable
terrain based on the Soil Contact Model (SCM) [31].

The Gator vehicle model is constructed by instantiating and combining the appropriate
subsystem templates from the Chrono::Vehicle library. In particular, it uses a single wish-
bone suspension at the front connected to a rack-and-pinion steering mechanism, and a rigid
rear suspension, connected to the rear-wheel driveline consisting of a conical gear and a
differential. Power is provided by an electrical motor (modeled with a simple linear torque-
speed curve). The Gator driveline contains no torque converter nor transmission box and
provides fixed gear rations for forward and reverse operation. The resulting Chrono model
consists of 10 bodies, 11 kinematic joints, 2 translational spring-damper force elements (for
the front suspension), and 4 1D shaft elements (used in modeling the driveline) and has
14 degrees of freedom. The total vehicle mass is 906.2 kg (note that this is a model of a
Gator vehicle instrumented for autonomous driving and as such includes the mass of an
instrumentation tower rigidly attached to the chassis).

Multibody systems in Chrono are modeled using a body-coordinate formulation based on
Newton-Euler equations, with orientation parameterized using unit quaternions. For more
details, as well as additional information on the solver options available in Chrono, see [29,
45].

The deformable terrain model used in this study is SCM, which relies on the semi-
empirical Bekker [46, 47] and Janosi-Hanamoto formulae [48]. The two sets of deformable
soil parameters used in this study are provided below (see [31] for the SCM formulation and
model parameters used herein).

SCM hard SCM soft

Kφ [N/mn+2] 5.3 · 103 2.0 · 105

Kc [N/mn+1] 1.0 · 103 0

n 0.793 1.1

c [Pa] 1.3 · 103 0

ψ [deg] 31 30

K [m] 0.012 0.010

ke [Pa/m] 4.0 · 108 4.0 · 107

r [Pa/m s] 3.0 · 104 3.0 · 104

For all tests, the vehicle is placed at world location (−35,35); to be deemed successful,
it must navigate safely to within a 10 m radius of world location (35,−35). This setup was a
matter of convenience and is not a limitation of the policy. Since training used a larger patch
of 120×120 m, it is important to note that parameters such as the number of obstacles and
the height of the terrain cannot be compared directly with testing; this was done on purpose.
For the terrain patch, an equivalent number of obstacles to the 50 used in the training is
approximately 22. Additionally, the maximum height difference of 10 m in the training
is equivalent1 to a height of approximately 7.25 m on the testing terrain. Furthermore, in
testing, to prevent the vehicle from successfully navigating purely along the diagonal straight

1By “equivalent” we mean that the number-of-obstacles/surface ratio is the same; for terrain height difference,
“equivalent” means that the maximum slope is the same.

End-to-end learning for off-road terrain navigation using the Chrono. . . 407

Fig. 4 Snapshot of a scenario used for testing. Left: third-person perspective of the vehicle; center: image
from the camera’s view at the resolution used in the training 80×45 pixels; right: the current progress of the
vehicle amount the hills and obstacles corresponding to the images on the left

Fig. 5 Example test scenarios: (a) 20 obstacles, (b) 50 obstacles, (c) failure with 50 obstacles, (d) hilly terrain
with 50 obstacles

toward the destination, five obstacles were placed randomly near the diagonal to force non-
trivial trajectories. Overall, the tests were conducted with a higher-complexity environment
than that used in training. They were designed to probe the robustness of the algorithm and
understand to what extent the policy could be used on never-before-seen terrain. We looked
at (i) increased levels of hilliness; (ii) increased number of obstacles; and (iii) alterations of
the soil including non-deformable, hard deformable (silt-like) and soft deformable (snow-
like).

Figure 4 shows a snapshot of one scenario: the soft, deformable terrain used for testing
robustness; a capture of the image from the camera sensor used by the NN; and the position
of the vehicle along its current trajectory with the obstacles and height map overlaid for
context (in the height map, black indicates valleys and white peaks).

Figure 5 shows an example set of paths navigated by the Gator in the test environment.
In Fig. 5a, the vehicle avoids a sparse environment, limited to 20 obstacles. By increasing
the obstacles to 50, as shown in Fig. 5b, the complexity of the test environment forced
the policy into a correspondingly complex path. An example of a failure is illustrated in
Fig. 5c where the vehicle did not reach the destination owing to a collision. Any scenario
where the vehicle collides with an obstacle was deemed a failure, regardless of how directly
the vehicle collided with the obstacle. The last example, shown in Fig. 5d, demonstrates
the vehicle navigating a hilly terrain based on a programmatically-generated random height
map.

In an attempt to assess the practicality of the vehicle’s chosen path, a Particle Swarm
Optimization (PSO) algorithm [49] with global knowledge of the environment was used to
generate reference trajectories in the environment; these were used in post-processing only,
for comparison purposes. Figure 6a shows a comparison between the trained vehicle’s path

408 S. Benatti et al.

Fig. 6 Example paths showing
comparison with global path
planner and two levels of
collision directness

and a trajectory generated using the PSO path planner. In this example, 40 obstacles were
present on a rigid, flat terrain.

To quantify the end-to-end learned navigation, the primary metric is success rate. This
is simply a measure of the vehicle’s ability to reach the destination without colliding with

End-to-end learning for off-road terrain navigation using the Chrono. . . 409

Fig. 7 Success rate as function of
hilliness and obstacle density on
rigid terrain

any obstacles. For this metric, any collision, regardless of the directness of the collision, is
considered a failure and the simulation is terminated. In addition to the primary metric, the
length of the path is analyzed relative to the PSO path. Since the PSO path would generally
be able to find a shorter path than the trained algorithm, which only has local information,
the comparison is used to show that the path taken by the trained algorithm is reasonable
and not simply a path that avoids obstacles yet produces bizarre trajectories.

When testing the effect of hilliness on navigation, the maximum height difference of the
random height map was increased from 0 m (flat) to 12 m in increments of 2 m. At each
level, 200 simulations on random height maps generated using simple noise were performed
to gauge the success rate of the algorithm. In all experiments, the terrain used one of the
textures used in training. The results are shown in Fig. 7. As expected, the trained network’s
ability to safely navigate the environment decreases with increased hilliness. Additionally,
as the number of obstacles is increased, the task becomes more difficult; we note that tests
conducted with 20 obstacles were most similar to the training environment.

To investigate the policy robustness and assess the relative importance of including dif-
ferent mechanisms of terrain variability in the training set, we estimated next the success
rate for different terrain topographies and soil properties, with varying numbers of obsta-
cles, and using both terrain textures that were included in the training test as well as entirely
new textures. The results of Fig. 8a correspond to tests in which different textures were used
for each soil type; however, the texture used for the ‘Rigid’ terrain was one of those included
in the training set, while those used for the two SCM deformable cases were not. In contrast,
the results in Fig. 8b were generated using a single texture (from the set of textures included
in the training) across all terrain and soil types.

For a proper evaluation of these results, we note that (i) the deformable ‘SCM Hard’
soil properties model a relatively rigid terrain (that is, close in behavior to the ‘Rigid’ type)
and (ii) the terrain textures for ‘Rigid’ terrain in Figs. 8a and 8b are different, although both
coming from the set of textures used in training. The trends shown here confirm the expected
outcomes:

• First, they confirm the strong influence of terrain texture (for autonomous navigation rely-
ing on camera sensors) and the fact that terrain texture is much more important on uneven
terrain where it represents a larger portion of the background for each obstacle. This is
best illustrated by the differences in success rates for the ‘SCM Hard Hilly’ case in the

410 S. Benatti et al.

Fig. 8 Success rate as measure of policy robustness

two sets of experiments. This is not observed for the ‘Rigid Hilly’ terrain since both sets
of experiments used textures included in the training process.

• As before, increased obstacle density results in lower success rate.
• On very soft soils and uneven terrain, the ensuing effects on vehicle mobility (side slip

while steering, increased longitudinal slip on sloped terrain, etc.) end up being the main
performance limitation. This indicates that the current policy, derived through training on
rigid soil only, is not suitable for this type of scenario. The goal of the current study was
to assess the extent to which such a policy is applicable and identify this limit.

The second metric, which compares the length of the chosen path to the length of a path
generated by the PSO, is discussed for a single environment setup. This is shown in Fig. 9a
for a flat, rigid terrain with 50 obstacles, which is more than twice the obstacle density used
in the training. The length difference is computed as length(PSO path) − length(NN path).
These results show that the mode of the distribution is around −5 m, meaning the NN path is
most often 5 m longer than the PSO path. While a direct comparison is not feasible since the
PSO takes into account global knowledge and does not make any claims about optimality,
the path taken by the NN appears to be moderately close in length to a global planner. This
means that the policy is appropriately weighting the directness of the path as expected. Only
successful paths were included in the calculation of this metric.

To further understand and analyze the success rate of the algorithm, the full set of col-
lisions were evaluated based on the directness of the collision. The directness of collision
was computed by measuring the overlap of the projection of the vehicle and obstacle onto
a plane perpendicular to the vehicle heading. This metric quantifies scraping collisions near
0% and direct collisions near 100%. This percentage can be interpreted as the percent of the
frontal area of the vehicle that collided with the obstacle. While this cannot directly assign
severity to the collision, it can hint at the type of collisions experienced by the policy. The
distribution of results in Fig. 9b show that while the mode is near 100%, there is also a
significant portion of the collisions that have a low directness.

End-to-end learning for off-road terrain navigation using the Chrono. . . 411

Fig. 9 Additional metrics analyzing path length and collision directness

6 Conclusion and future work

In this paper, we briefly describe the Chrono infrastructure, including support for vehicle
dynamics, sensor simulation, and terramechanics, to allow comprehensive off-road AV mo-
bility studies and focus the study on end-to-end learning as enabled by the Chrono environ-
ment, which anchors both the learning and testing phases. The end-to-end policy is used in
flat and hilly landscapes, with deformable terrain that can be hard (silt-like) or soft (snow-
like). We noted the following: policies learned on flat terrain are insufficient for navigating
hilly scenarios; policies learned on rigid terrain transfer quite well to deformable terrain
when the terrain is flat; the hillier the landscape, the harder it is to navigate it (Fig. 8); the
more obstacles are randomly placed on the course, the less likely it is for the policy to see
the vehicle through; the control policy led to trip trajectories that came rather close to those
generated with PSO, a third-party trajectory planning tool (Fig. 9a); there are a sizable num-
ber of head-on collisions that point to room for improvement in the derived policy (Fig. 9b).
Note that the testing conditions, in terms of the average number of obstacles per unit area,
were more harsh than the learning conditions.

Looking ahead, we plan to pursue several research thrusts and simulation platform de-
velopment avenues. One direction is to investigate more complex control stacks that would
combine end-to-end with more traditional strategies such as model predictive control. The
current work should be expanded to understand how tracked vehicles perform under sim-
ilar conditions given that their traction and turning radius differ significantly from their
wheel counterparts. A recent reformulation of our SCM deformable soil algorithm resulted
in speedups of more than 50×, opening the door to real-time simulation on deformable soil.
This will allow for training on deformable soil which we expect to result in more robust
autonomous navigation. Not analyzed in this contribution is the steering control input to
the vehicle, which can often be noisy based on the output of the NN. Finally, we plan to
investigate approaches that enhance the chance of simulation-derived policies transferring
effectively to the real world.

412 S. Benatti et al.

References

1. UW-Madison Simulation Based Engineering Laboratory: Supporting models, scripts, data. https://go.
wisc.edu/arflqq (2021)

2. UW-Madison Simulation Based Engineering Laboratory: Supporting simulations. https://go.wisc.edu/
256xb9 (2021)

3. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary
robotics. In: European Conference on Artificial Life, pp. 704–720. Springer, Berlin (1995)

4. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transfer-
ring deep neural networks from simulation to the real world. In: 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 23–30. IEEE, Piscataway, NJ (2017)

5. Chebotar, Y., Handa, A., Makoviychuk, V., Macklin, M., Issac, J., Ratliff, N., Fox, D.: Closing the sim-
to-real loop: adapting simulation randomization with real world experience. In: 2019 International Con-
ference on Robotics and Automation (ICRA), pp. 8973–8979. IEEE, Piscataway, NJ (2019)

6. Andrychowicz, M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B., Pachocki, J., Petron, A., Plap-
pert, M., Powell, G., Ray, A., Schneider, J., Sidor, S., Tobin, J., Welinder, P., Weng, L., Zaremb, W.:
Learning dexterous in-hand manipulation. Int. J. Robot. Res. 39(1), 3–20 (2020). https://doi.org/10.1177/
0278364919887447

7. Negrut, D., Serban, R., Elmquist, A., Taves, J., Young, A., Tasora, A., Benatti, S.: Enabling Artificial
Intelligence studies in off-road mobility through physics-based simulation of multi-agent scenarios. In:
NDIA Ground Vehicle Systems Engineering and Technology Symposium (2020)

8. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M.,
Muller, U., Zhang, J., et al.: End to end learning for self-driving cars (2016). arXiv:1604.07316

9. Amini, A., Rosman, G., Karaman, S., Rus, D.: Variational End-to-End Navigation and Localization
(2018). http://arxiv.org/abs/1811.1011

10. Koenig, N.P., Howard, A.: Design and use paradigms for Gazebo, an open-source multi-robot simu-
lator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 4,
pp. 2149–2154. IEEE, Design and use paradigms for Gazebo, an open-source multi-robot simulator
(2004)

11. Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based control. In: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 5026–5033. IEEE, Piscataway, NJ
(2012)

12. Matas, J., James, S., Davison, A.J.: Sim-to-Real Reinforcement Learning for Deformable Object Manip-
ulation (2018). https://arxiv.org/abs/1806.07851

13. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator.
In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017)

14. Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim: high-fidelity visual and physical simulation for au-
tonomous vehicles. In: Field and Service Robotics, pp. 621–635. Springer, Berlin (2018)

15. Rong, G., Shin, B.H., Tabatabaee, H., Lu, Q., Lemke, S., Možeiko, M., Boise, E., Uhm, G., Gerow, M.,
Mehta, S., Agafonov, E., Kim, T.H., Sterner, E., Ushiroda, K., Reyes, M., Zelenkovsky, D., Kim, S.:
LGSVL simulator: a high fidelity simulator for autonomous driving. In: 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC), pp. 1–6. IEEE, Piscataway, NJ (2020)

16. Espié, E., Guionneau, C., Wymann, B., Dimitrakakis, C.: TORCS – the Open Racing Car Simulator
(2020). https://sourceforge.net/projects/torcs/

17. Epic Games: Unreal engine. https://www.unrealengine.com (2020). Accessed: 2021-11-23
18. Unity3D: Main website. https://unity3d.com/ (2016). Accessed: 2021-11-23
19. NVIDIA: PhysX simulation engine (2019). Available online at http://developer.nvidia.com/object/physx.

html
20. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.A.: Play-

ing atari with deep reinforcement learning (2013). CoRR, arXiv:1312.5602
21. Zhu, Y., Wang, Z., Merel, J., Rusu, A., Erez, T., Cabi, S., Tunyasuvunakool, S., Kramár, J., Hadsell,

R., de Freitas, N., Heess, N.: Reinforcement and imitation learning for diverse visuomotor skills. In:
Robotics: Science and Systems (2018)

22. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor policies (2015).
CoRR, arXiv:1504.00702

23. You, Y., Pan, X., Wang, Z., Lu, C.: Virtual to real reinforcement learning for autonomous driving (2017).
CoRR, arXiv:1704.03952

24. Amini, A., Gilitschenski, I., Phillips, J., Moseyko, J., Banerjee, R., Karaman, S., Rus, D.: Learning robust
control policies for end-to-end autonomous driving from data-driven simulation. IEEE Robot. Autom.
Lett. 5(2), 1143–1150 (2020)

https://go.wisc.edu/arflqq
https://go.wisc.edu/arflqq
https://go.wisc.edu/256xb9
https://go.wisc.edu/256xb9
https://doi.org/10.1177/0278364919887447
https://doi.org/10.1177/0278364919887447
http://arxiv.org/abs/arXiv:1604.07316
http://arxiv.org/abs/1811.1011
https://arxiv.org/abs/1806.07851
https://sourceforge.net/projects/torcs/
https://www.unrealengine.com
https://unity3d.com/
http://developer.nvidia.com/object/physx.html
http://developer.nvidia.com/object/physx.html
http://arxiv.org/abs/arXiv:1312.5602
http://arxiv.org/abs/arXiv:1504.00702
http://arxiv.org/abs/arXiv:1704.03952

End-to-end learning for off-road terrain navigation using the Chrono. . . 413

25. Bohez, S., Verbelen, T., Coninck, E.D., Vankeirsbilck, B., Simoens, P., Dhoedt, B.: Sensor Fusion for
Robot Control Through Deep Reinforcement Learning (2017). http://arxiv.org/abs/1703.04550

26. Patel, N., Choromańska, A., Krishnamurthy, P., Khorrami, F.: Sensor modality fusion with CNNs for
UGV autonomous driving in indoor environments. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1531–1536 (2017)

27. Pan, Y., Cheng, C., Saigol, K., Lee, K., Yan, X., Theodorou, E.A., Boots, B.: Agile Autonomous Driving
Using End-to-End Deep Imitation Learning (2017). http://arxiv.org/abs/1709.07174

28. Project Chrono Development Team: Chrono: an open source framework for the physics-based simulation
of dynamic systems. https://github.com/projectchrono/chrono. Accessed: 2022-01-10

29. Tasora, A., Serban, R., Mazhar, H., Pazouki, A., Melanz, D., Fleischmann, J., Taylor, M., Sugiyama,
H., Negrut, D.: Chrono: an open source multi-physics dynamics engine. In: Kozubek, T. (ed.) High
Performance Computing in Science and Engineering. Lecture Notes in Computer Science, pp. 19–49.
Springer, Cham (2016)

30. Serban, R., Taylor, M., Negrut, D., Tasora, A.: Chrono::Vehicle template-based ground vehicle modeling
and simulation. Int. J. Veh. Perform. 5(1), 18–39 (2019)

31. Tasora, A., Mangoni, D., Negrut, D., Serban, R., Jayakumar, P.: Deformable soil with adaptive level of
detail for tracked and wheeled vehicles. Int. J. Veh. Perform. 5(1), 60–76 (2019)

32. Hu, W., Rakhsha, M., Yang, L., Kamrin, K., Negrut, D.: Modeling granular material dynamics and its
two-way coupling with moving solid bodies using a continuum representation and the SPH method.
Comput. Methods Appl. Mech. Eng. 385, 114022 (2021). https://doi.org/10.1016/j.cma.2021.114022

33. Kelly, C., Olsen, N., Negrut, D.: Billion degree of freedom granular dynamics simulation on commodity
hardware via heterogeneous data-type representation. Multibody Syst. Dyn. 50, 355–379 (2020)

34. Elmquist, A., Serban, R., Negrut, D.: A sensor simulation framework for training and testing robots and
autonomous vehicles. ASME J. Auton. Veh. Syst. 1(2), 021001 (2021)

35. Goodin, C., Doude, M., Hudson, C., Carruth, D.: Enabling off-road autonomous navigation-simulation
of lidar in dense vegetation. Electronics 7(9), 154 (2018)

36. Tang, Z., von Gioi, R.G., Monasse, P., Morel, J-M.: A precision analysis of camera distortion models.
IEEE Trans. Image Process. 26(6), 2694–2704 (2017)

37. Working group, EMVA 1288: Standard for characterization of image sensors and cameras. Release 3.0.
Issued by European Machine Vision Association (November 2010)

38. Beazley, D.M.: SWIG: an easy to use tool for integrating scripting languages with C and C++. In: Proc.
4th Conf. on USENIX Tcl/Tk Workshop, USA, vol. 4, p. 15 (1996)

39. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms
(2017). CoRR, arXiv:1707.06347

40. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L.,
Lerer, A.: Automatic differentiation in PyTorch. In: NIPS 2017 Workshop Autodiff (2017)

41. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th An-
nual International Conference on Machine Learning, ICML ’09, pp. 41–48. Association for Computing
Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1553374.1553380.

42. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017). CoRR, arXiv:1412.6980
[cs.LG]

43. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: OpenAI
Gym (2016). CoRR, arXiv:1606.01540

44. Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S., Wu,
Y., Zhokhov, P.: OpenAI baselines. https://github.com/openai/baselines

45. Project Chrono: Chrono documentation and API reference. http://api.projectchrono.org/. Accessed:
2021-11-24

46. Bekker, M.G.: Introduction to Terrain-Vehicle Systems. University of Michigan Press, Ann Arbor (1969)
47. Wong, J.Y.: Theory of Ground Vehicles, 4th edn. Wiley, New York (2008)
48. Janosi, Z., Hanamoto, B.: The analytical determination of drawbar pull as a function of slip for tracked

vehicles in deformable soils. In: Proc of the 1st Int Conf Mech Soil–Vehicle Systems, Turin, Italy (1961)
49. Yarpiz: Path planning using PSO in MATLAB. https://www.mathworks.com/matlabcentral/fileexchange/

53146-path-planning-using-pso-in-matlab. Accessed: 2020-06-17

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1703.04550
http://arxiv.org/abs/1709.07174
https://github.com/projectchrono/chrono
https://doi.org/10.1016/j.cma.2021.114022
http://arxiv.org/abs/arXiv:1707.06347
https://doi.org/10.1145/1553374.1553380
http://arxiv.org/abs/arXiv:1412.6980
http://arxiv.org/abs/arXiv:1606.01540
https://github.com/openai/baselines
http://api.projectchrono.org/
https://www.mathworks.com/matlabcentral/fileexchange/53146-path-planning-using-pso-in-matlab
https://www.mathworks.com/matlabcentral/fileexchange/53146-path-planning-using-pso-in-matlab

414 S. Benatti et al.

Authors and Affiliations

Simone Benatti1 · Aaron Young1 · Asher Elmquist1 · Jay Taves1 · Alessandro Tasora2 ·
Radu Serban1 · Dan Negrut1

� R. Serban
serban@wisc.edu

S. Benatti
benatti@wisc.edu

A. Young
aryoung5@wisc.edu

A. Elmquist
amelmquist@wisc.edu

J. Taves
jtaves@wisc.edu

A. Tasora
alessandro.tasora@unipr.it

D. Negrut
negrut@wisc.edu

1 Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, 53706 WI,
USA

2 Dipartimento di Ingegneria ed Architettura, Università di Parma, Parma, I-43100, Italy

http://orcid.org/0000-0002-4219-905X
mailto:serban@wisc.edu
mailto:benatti@wisc.edu
mailto:aryoung5@wisc.edu
mailto:amelmquist@wisc.edu
mailto:jtaves@wisc.edu
mailto:alessandro.tasora@unipr.it
mailto:negrut@wisc.edu

	End-to-end learning for off-road terrain navigation using the Chrono open-source simulation platform
	Abstract
	Introduction
	Related work
	Simulation environments for reinforcement learning
	Learning techniques

	Chrono simulation environment
	End-to-end learning approach
	Simulation experiments
	Conclusion and future work
	References
	Authors and Affiliations

