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Enabling Artificial Intelligence
Studies in Off-Road Mobility
Through Physics-Based
Simulation of Multiagent
Scenarios
We describe a simulation environment that enables the design and testing of control poli-
cies for off-road mobility of autonomous agents. The environment is demonstrated in con-
junction with the training and assessment of a reinforcement learning policy that uses
sensor fusion and interagent communication to enable the movement of mixed convoys of
human-driven and autonomous vehicles. Policies learned on rigid terrain are shown to
transfer to hard (silt-like) and soft (snow-like) deformable terrains. The environment
described performs the following: multivehicle multibody dynamics cosimulation in a
time/space-coherent infrastructure that relies on the Message Passing Interface standard
for low-latency parallel computing; sensor simulation (e.g., camera, GPU, IMU);
simulation of a virtual world that can be altered by the agents present in the simulation;
training that uses reinforcement learning to “teach” the autonomous vehicles to drive in
an obstacle-riddled course. The software stack described is open source. Relevant mov-
ies: Project Chrono. Off-road AV simulations, 20202. [DOI: 10.1115/1.4053321]

1 Introduction

Computer simulation has been extensively used in the design
and analysis of various automation aspects tied to on-road mobil-
ity, see, for instance, Ref. [1]. A similar statement cannot be made
for off-road mobility owing to a smaller market and a set of stiff
challenges brought along by the unstructured nature of the task at
hand. However, a predictive simulation platform for off-road
mobility analysis of autonomous agents (AAs) is very desirable
since it can accelerate the engineering design cycle, reduce costs,
perform more thorough testing, and produce more performant and
safer designs. Simulation has its limitations, first of all related to
the issue of simulation-to-reality transfer [2], which pertains to the
failure of control policies derived in simulation to work well in
the real world. Furthermore, models are difficult to set up and cali-
brate, the validation process can be tedious and time consuming
[3]. Open source simulation tools that are both predictive and
expeditious are not readily available. This contribution addresses
this last point. It describes a simulation environment whose stated

purpose is to allow the practitioner to gain insights into the opera-
tion of AAs (robots and autonomous wheeled or tracked vehicles)
in off-road conditions with an eye toward: improving mechanical
designs of AAs; and, producing and testing control policies that
govern the operations of the AAs.

There are several ongoing efforts that seek to address the AA
simulation issue. In robotics, Gazebo [4,5] is a widely used 3D
multirobot simulator with dynamics. It is not a simulation engine
per se, but a platform that exposes several engines: ODE,3 Bullet
[6], DART [7], and Simbody [8]. Unlike Gazebo, which is open
source, CoppeliaSim (formerly V-REP) [9] is a commercial multi-
robot simulation solution that also exposes a set of simulation
engines: MuJoCo [10], Vortex Dynamics [11], Bullet, and New-
ton Dynamics [12]. ROAMS [13], and ANVEL [14] are two other
simulation engines for off-road AAs. The former is used for mis-
sion planning by NASA and draws on an in-house dynamic engine
[15]; the latter relies on the ODE simulation engine and has been
used in the past for off-road military applications [16] in combina-
tion with a sensor simulation package [17]. MAVS is an off-road
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AA simulation environment that is currently under active develop-
ment [18]. It provides an in-house developed, sophisticated sensor
simulation module [19,20], has a ROS [21] bridge, and uses
Chrono as its dynamic engine. Recently, CM-Labs has embedded
in its Vortex Studio commercial solution comprehensive support
for off-road autonomous mobility [11]. USARSim [22] is an AA
simulation platform, not under active development, that draws on
a game engine (Unreal Engine [23]), a choice with pluses (scal-
ability, ability to create complex worlds) and minuses (the simula-
tion engine is designed for plausibility rather than accuracy). For
autonomous vehicle (AV) simulation, Carla [1] and AirSim [24]
are two often used open-source simulators, the former designed
for on-road AV driving scenarios simulation, the latter originally
designed for drones but now also including support for on-road
traffic of AVs. Carla and AirSim rely on Unreal Engine but sev-
eral other engines are used for AA simulation, e.g., Unity [25] and
TORCS [26]. One platform using Unity is the LGSVL Simulation
platform [27], which is open-source and has similar goals to Car-
la’s. For a survey of other solutions for on-road mobility please
see Refs. [28,29].

The AA off-road mobility simulation platform discussed herein
is Chrono-centric [30,31]. In its purpose, it is similar to the
ANVEL-VANE environment as it seeks to simulate robots and
wheeled/tracked vehicles operating in off-road conditions. Com-
pared to the ANVEL-VANE solution, the Chrono environment is
different in several respects: it is open source and available for
unfettered use under a BSD3 license; it uses its own multibody
dynamics engine; it is scalable and deployable on supercomputers,
clusters, or multicore architectures owing to its reliance on the
Message Passing Interface (MPI) standard [32]; and is under
active development. Chrono is an ecosystem of modules and tool-
kits. It has support for rigid and flexible body dynamics (Chro-
no::Engine), fluid-solid interaction (Chrono::FSI), and granular
dynamics (Chrono::Multicore and Chrono::GPU) applications. It
has Python bindings, support for sensor simulation in Chrono::-
Sensor, an API for ROS bridging, as well as facilities for: rapid
vehicle modeling via parameterized templates with Chrono::Ve-
hicle [33]; control policy design with GymChrono; and scalable
control policy testing with SynChrono. Chrono relies on GPU
computing for fluid-solid interaction and certain granular dynam-
ics simulations, multicore for most of the other modules, and
MPI-enabled parallel computing for cosimulation when handling
large terramechanics applications or collections of AAs. Although
for vehicle-on-rigid-terrain simulation Chrono provides faster
than real-time performance, there are numerous applications that
lead to long run times, e.g., deformable terrain mobility, nonlinear
flexible body dynamics, fording scenarios, etc.

This contribution highlights the Chrono components that sup-
port the design and testing of control policies through simulation:
PyChrono, GymChrono, Chrono::Sensor, and SynChrono. To
show these components at work, a Reinforcement Learning (RL)
approach is used herein to produce a control policy. There is noth-
ing special about the RL approach; other techniques to design
control policies could be used equally well, a point touched upon
in more detail in Sec. 2. Section 3 describes the Chrono infrastruc-
ture that facilitates artificial intelligence studies in off-road, multi-
agent mobility scenarios. Section 4 covers simulation experiments
that highlight two aspects: the scalability of the SynChrono testing
environment, and the process of designing the RL control policy
along with an evaluation of the policy’s robustness. We close with
concluding remarks and directions of future work.

2 Deriving Control Policies Through Simulation

Derived using an accurate simulation framework, control algo-
rithms have been shown to bridge the sim-to-reality gap success-
fully [34,35]. The use of vehicles with Level 1 and Level 2
autonomy has grown considerably [36,37], and the automotive
industry is making big strides in the transition to Levels 3 and 4
autonomy [38,39]. The use of simulation for on-road AVs is an

area of intense research and development as this technology is
seen as an important catalyst of the aforementioned transition.

One active area of research is focused on sampling-based meth-
ods. These approaches generate many candidate trajectories a
vehicle can follow, selecting and executing the controls associated
with the best candidate [40,41]. Graph search methods are com-
monly associated with the selection of each trajectory. The
approach is real-time challenged, since achieving robust results
requires a high number of samples to be analyzed [42]. Algo-
rithms such as Dijkstra’s, A-Star (A*), or the Rapidly-exploring
Random Tree-Star (RRT*) sample the state space either determin-
istically or stochastically [41]. Depending on the complexity of
the traffic scenario, these algorithms can prove computationally
expensive and provide suboptimal results.

Model Predictive Control (MPC) is another common AV con-
trol approach [43]. Using a dynamic model of a vehicle, the MPC
algorithm computes trajectories over the state space and deter-
mines an optimal trajectory using gradient-descent optimization
techniques [42,44]. A limited time horizon is employed to reduce
unneeded computation for times too far out into the future. In
comparison to sampling algorithms, the MPC approaches display
improved performance owing to their use of gradient fields in the
underlying optimization problem [43].

The accuracy of the simulation platform plays a critical role
both for MPC as well as sampling-based controllers. To
adequately validate and subsequently verify a controller, the simu-
lation must be of high enough fidelity to carry over successfully to
reality [45]. For instance, when using traditional PID controller
solutions, for which gains must be carefully selected, an inaccu-
rate simulation platform could yield a poor design that leads to
undesired consequences when deployed on a real vehicle.

The design of a robust controller that performs adequately in
complex environments using the aforementioned strategies has
proven difficult when aiming for a generalized policy [46]. An
emerging approach that has gained momentum in recent years is
based on Machine Learning (ML) [47]. ML has shown promise in
producing efficient and robust models that generalize well in a
variety of situations. The three pillars of ML include supervised
learning, unsupervised learning, and reinforcement learning. In
the AA problem, deep reinforcement learning (DRL) has been
very successful, as it displays the ability to learn and respond in
complex scenarios without the need for preprocessed or labeled
data [35].

Since its introduction [48], DRL has proven successful in
robotics applications [49,50]. At its core, DRL is an iterative
learning process in which an agent interacts with an environment;
at each iteration the agent collects an observation (or state), then
performs an action based on the previous observation and gets a
reward which is tied to its performance. The goal of RL is to find
a policy that maximizes the sum of the collected reward.

RL allows for complex control policies viable in unstructured
and stochastic environments; is model-free in that it does not
require a model that predicts environment transients; and can
learn from scratch. RL’s major flaw is its need for a massive
amount of training data to infer a robust policy. The role of simu-
lation is to produce this collection of samples. Policy Gradient
Algorithms are a subset of RL algorithms whose goal is to
directly learn an optimal stochastic policy phðajsÞ, where s, a,
and h are the state, action, and a set of learnable parameters,
respectively. If p is a Neural Network (NN), the parameters are
the weights and biases of the NN, the state is the NN input, and
the action is its output. Proximal Policy Optimization (PPO) [51]
is one of the most widely used algorithms for continuous state
and action environments and is the algorithm of choice in this
contribution. PPO is a policy gradient algorithm whose goal is to
optimize a stochastic policy. It is also an actor-critic method
since another NN is trained and used to estimate the Value
Function [52] employed to estimate the Advantage Function
[53]. The Advantage Function is used to maximize the objective
function.
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3 Simulation Infrastructure

The purpose of the simulation environment described is two-
fold. First, it is used to produce the data needed to design a control
policy. Second, it is used for testing purposes. To this end, it
exposes the control policy produced in a model-based or model-
free approach to tests that gauge its correctness and robustness.
This section outlines the five components of this Chrono-centric
simulation environment that are leveraged in this research: Chro-
no::Vehicle, Chrono::Sensor, PyChrono, GymChrono and Syn-
Chrono. More established Chrono components or functionality
will be touched upon in passing; more details are provided in
Refs. [31,33,54].

Chrono. Under active development for over two decades,
Chrono [31] is a multibody dynamics simulation engine distrib-
uted as open-source under a permissive BSD license. Its core
module, Chrono::Engine, provides support for rigid multibody
dynamics, nonlinear finite element analysis, and frictional contact
dynamics. Chrono is modular, with optional modules providing
support for additional classes of physics simulation (e.g., fluid-
solid interaction or large-scale granular dynamics), for modeling
and simulation of specialized mechanical systems (e.g., ground
vehicles), for interfaces to external solvers (e.g., sparse direct lin-
ear solvers), or for dedicated parallel algorithms targeting differ-
ent computing architectures (multicore, distributed, and GPU) for
large-scale simulations.

Written almost entirely in Cþþ, Chrono is middleware in that
it is called from user code or a third-party software. Chrono is
portable and can be built on different platforms, under different
operating systems, and using various compilers. Chrono has a
continuous integration process, an active user forum, and is man-
aged through GitHub [55]. Its latest release is 6.0, available as of
March 2021. Chrono is used by academic, industrial, and govern-
ment research and development groups and projects, e.g., NASA,
U.S. Army, and European Space Agency.

Chrono::Vehicle. Chrono::Vehicle [33] is a specialized
Chrono module that exposes a collection of templates (fully para-
meterized models) for various topologies of both wheeled and
tracked vehicle subsystems. It provides facilities for modeling
rigid, deformable, and granular terrain; support for closed-loop
and interactive driver models; and run-time and off-line visualiza-
tion of simulation results. Chrono::Vehicle leverages and works in
tandem with other Chrono modules for run-time visualization or
finite element, granular dynamics, and parallel computing
support.

Chrono::Vehicle provides subsystem templates for tires, suspen-
sions, steering mechanisms, drivelines, sprockets, track shoes,
etc.; templates for external systems such as powertrains, drivers,
and terrain models; and additional utility classes and functions for
vehicle visualization, monitoring, and collection of simulation
results. As a middleware library, Chrono::Vehicle requires the
user to provide Cþþ classes for a concrete instantiation of a par-
ticular template. An optional Chrono library provides complete
sets of template instantiations for several concrete ground vehicles
(e.g., a Sedan, HMMWV, SUV), both wheeled and tracked, which
can serve as examples for developing more customized vehicle
models. An alternative mechanism for defining concrete instantia-
tion of vehicle system and subsystem templates is based on input
specification files in the JSON format [56]. For additional flexibil-
ity and to allow integration of third-party software, Chrono::Ve-
hicle is designed to permit either monolithic simulations or
cosimulation where the vehicle, powertrain, tires, driver, and ter-
rain/soil interaction can be simulated independently.

Chrono::Vehicle provides several classes of terrain and soil
models, of different fidelity and computational complexity, rang-
ing from rigid, to semi-empirical Bekker-Wong type models, to
complex physics-based models based on either a granular or
finite-element based soil representation. For simple

terramechanics simulations, Chrono::Vehicle implements a cus-
tomized Soil Contact Model (SCM), based on Bekker theory, that
is lightweight, scales well to arbitrary terrain size and incorporates
bulldozing effects [54]. Second, Chrono provides an FEA contin-
uum soil model based on multiplicative plasticity theory with
Drucker–Prager failure criterion and specialized brick elements.
Finally, leveraging Chrono support for large-scale granular
dynamics and for multicore, GPU, and distributed parallel com-
puting, off-road vehicle simulations can be conducted using fully-
resolved, granular dynamics-based complex terramechanics, using
a Discrete Element Method approach, see Fig. 1 [57,58].
Recently, a continuum methodology has also been implemented
for terramechanics, see Ref. [59].

Chrono::Sensor. Chrono::Sensor provides sensor simulation
support for software-in-the-loop testing. Cameras, lidars, radars,
GPS, IMUs (gyroscope, accelerometer, magnetometer) and tach-
ometers can be placed within a Chrono simulation to generate
synthetic data based on user-defined sensor parameters and attrib-
utes of the virtual world hosting the AA simulation experiment.
The goal of the module is to allow realistic data generation based
on sensor characteristics such as noise, distortion, and lag. Sensors
can be attached to objects within the simulation and configured to
match corresponding real sensors. For modeling convenience, sen-
sors can be defined through a JSON file [56]. Additionally, custom
sensors and postprocessing filtering can be implemented, leverag-
ing the existing rendering framework or physics interface. Where
possible, the sensors leverage physics-based models. Where
physics-based approaches are infeasible to model or simulate
(e.g., noise, or MEMS) data is augmented by in part by phenome-
nological models. More details on the framework and models can
be found in Ref. [60].

Sensors provided by Chrono::Sensor can be divided into intero-
ceptive (IMU, tachometer) and exteroceptive (GPS, camera, lidar,
radar). For interoceptive sensing, the module utilizes the internally
computed physical quantities from the Chrono system and can
augment this ground truth with drift, Gaussian noise, lag, and fil-
tering characteristics from finite collection time. For exteroceptive
sensors that provide information about scene characteristics,
Chrono::Sensor leverages hardware accelerated ray tracing
through the OptiX library [61] and implements physically based
rendering techniques. The ray tracing approach allows for the
physical reconstruction of the light-based data acquisition process
and thus controls the attributes of the synthetically generated sen-
sor data. For camera, lens models and postprocessing noise aug-
mentation are supported, with an interface to extend or implement
custom models. For lidar, the framework expands on work from
Ref. [19] to provide a beam divergence model that supports multi-
ple modes of lidar return and reduced intensity during partial
beam reflectance. The camera and lidar can also be parameterized
by update rate, time over which to collect data, and lag. All sen-
sors and capabilities are written in Cþþ, but can also be accessed
from Python through the PyChrono interface. The entire module
can be run headless without the requirement of a render context,
allowing for ease of deployment in machine learning applications
on remote servers or in the cloud [62].

PyChrono. While the main Chrono API is expressed in Cþþ,
we recently implemented Python wrappers for much of the
Chrono functionality. The purpose was twofold: provide a lower-
entry point to Chrono simulations for users less familiar with
Cþþ; and facilitate interfacing to various machine learning plat-
forms, e.g., TensorFlow [63], PyTorch [64], Theano [65], and
CAFFE [66]. The Python wrapping relies on using automated
technology provided by SWIG [67] to generate the interface
between Python user-code and the underlying Chrono Cþþ libra-
ries. Presently, a large set of Chrono functionality is exposed to
Python users, including the core multibody and FEA module, the
interface to CAD systems (like SolidWorks), run-time
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visualization with Irrlicht, etc. In particular, full support is avail-
able in Python for the Chrono::Vehicle-based modeling, simula-
tion, and visualization of wheeled and tracked ground vehicles, as
well as the use of sensor models provided by Chrono::Sensor.
PyChrono for Python 3 can be built from sources on Linux, Win-
dows, and MacOS. Alternatively, prebuilt conda PyChrono pack-
ages are available on the project’s Anaconda page [68] (note that
Chrono::Sensor is not available yet via the conda PyChrono
packages).

GymChrono. This is an extension of OpenAI Gym [69]. It
exposes a set of environments providing continuous control tasks
for physics and sensor simulation run by the Chrono backend.
These environments inherit from OpenAI Gym classes. As such,
they can be used out of the box with any algorithm or DRL frame-
work made for gym environments. They can also draw on gym’s
environment parallelization for learning acceleration.

SynChrono. SynChrono is a software component that uses
Chrono to implement a distributed-memory execution model
when simulating scenarios that include multiple AAs. By leverag-
ing the Message Passing Interface (MPI) standard [70], Syn-
Chrono can manage multiple instances of Chrono running
together in a single mobility analysis on a supercomputer, cluster,
or multicore setup thus supporting the scalable and distributed
simulation of multiple agents (robots, tracked vehicles, wheeled
vehicles, etc.) The paradigm embraced is that of running the
dynamics of one AA as one MPI rank, with the ranks/AAs com-
municating through MPI messages to maintain space and time
coherent state for all agents participating in the study. As an
example, if there are two agents, SynChrono makes it possible to
synchronously run the two agents on two different compute ranks
in a supercomputer. By the same token, if there are 50 agents and
50 compute ranks in a cluster, SynChrono provides the infrastruc-
ture to keep the 50 agents operating in a coherent (time-wise and
space-wise) virtual world. The time coherence aspect prevents
some agents from racing into the future while other agents lag
behind in the past. The global synchronization mechanism in Syn-
Chrono ensures that all agents march forward in simulation time
in a coherent fashion so that mutual interaction (a vehicle crossing
the ruts of a different one, a vehicle sensing another vehicle, etc.)
happens as it would in a monolithic simulation.

A schematic of the structure of SynChrono’s MPI framework is
shown in Fig. 2. SynChrono manages multiple AAs as multiple
processes via as many MPI ranks. Each AA runs in its own Syn-
Chrono process (an MPI rank) and interfaces with its dedicated
control stack for software-in-the-loop or human-in-the-loop con-
trol. The control stack is fed synthetic data generated by Chrono::-
Sensor and acts upon the environment through Chrono::Vehicle
control inputs (throttle, steering, braking). The control algorithm

for each agent is also configurable and can vary from complex
algorithms that fuse sensor feeds/data streams, to controls based
on empirical models, and on to inputs provided by a human-in-
the-loop in scenarios that are simple enough to allow real-time
simulation.

Each SynChrono process is responsible for the dynamics of a
single agent. At a slower frequency (relative to the simulation
time-step), all SynChrono processes communicate via the Syn-
Chrono daemon to exchange state information. State data is
intended to be minimal, sufficient to enable a SynChrono process
to reconstruct a “ghost” version of outside agents in its own world
for visualization and sensing purposes. In an example where each
agent is a vehicle, the state information consists of the vehicle
location and orientation along with pose information for each
wheel. This information is packaged for transmission using the
FlatBuffers serialization library.4

As a justification for choosing an MPI-based communication
mechanism, the reader is referred to Fig. 3. As reported in Ref.
[71], there is no other standard for communication that is better
than MPI in terms of latencies with the exception of the Data Dis-
tribution Service (DDS) solution, which comes on par with MPI.
Additionally, SynChrono supports the DDS standard [72] as well,
yet the simulations reported herein were all carried out using the
MPI standard.

One limitation of the implementation is that two agents running
as two SynChrono processes cannot participate in an operation
that couples their dynamics, e.g., jointly lifting a heavy object.
Such a scenario should be run in Chrono, since no force informa-
tion is synchronized in SynChrono. This will make the simulation
longer to run since more agents will have to be handled within
one Chrono process. However, if the agent coupling happens via
sensing or through the virtual world, e.g., one agent sensing
another one, or one vehicle crossing over and being jolted by the
ruts left by a different agent, then SynChrono can be relied on,
thus ensuring scalability.

Interface to an External Controller. For testing of control
algorithms that are intended to be easily transferred to real-life
vehicles or robots, the simulation platform provides an external
control interface that is exposed in SynChrono. An agent in Syn-
Chrono can send messages (i.e., sensor data packets) to the exter-
nal autonomous controls framework which can then send a
message back (i.e., control inputs). The control stack is independ-
ent of the SynChrono platform (e.g., a bridge has been developed
for ROS/ROS2), and can be tested with inputs replicating those
from reality, such as sensor and/or V2X communication data.

4 Technology Demonstration

All simulation scenarios considered in this section use a Chro-
no::Vehicle HMMWV model. Chrono::Vehicle was benchmarked

Fig. 1 Chrono::Vehicle HMMWV with flexible tires navigating
granular terrain demonstrating vehicle dynamics, flexible body
dynamics, and parallel computing support in Chrono [57]

Fig. 2 Schematic of the SynChrono framework. Dynamics sim-
ulations are done in separate Chrono systems and the outcome
of the dynamics simulation is synchronized between ranks
using MPI.

4https://google.github.io/flatbuffers/flatbuffers_white_paper.html
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as part of the Next Generation-NRMM (NG-NRMM) exercise
[73]; Chrono::Vehicle-specific benchmark findings are detailed in
Refs. [74] and [75]. All results reported herein were obtained
using a simulation time-step of Dt ¼ 2� 10�3 seconds, both for
rigid and deformable terrain. This time-step information is rele-
vant when discussing real-time performance and scalability
aspects.

4.1 Synchrono Scaling Analysis. SynChrono uses N proc-
esses executing on a supercomputer or workstation to simulate the
dynamics of N agents handled as N independent Chrono simula-
tions. The numerical experiments described here answer the fol-
lowing questions: (i) How does the time to complete a simulation
change as N increases? (ii) How fast is SynChrono in mobility
studies on rigid terrain? (iii) How fast is it on SCM deformable
terrain?

The handling of a virtual world that has SCM terrain is chal-
lenging since each of the N vehicles alters the terrain at the same
time and these changes must be space and time coherent. The key
component of the SCM terrain is the deformation of each vertex
in the underlying mesh. All other terrain properties can be com-
puted based on the height of each vertex alone. At each simulation
step, a SynChrono rank that is associated with an agent moving on
SCM terrain collects a list of the deformed vertices that the agent
produced during the course of that time-step. Mesh deformation
data may not be sent at every simulation time-step (as agents do
not synchronize every time-step, but only at a slower rate, suffi-
cient to provide smooth sensor data), so this collection of mesh
changes is, in general, persistent across simulation time steps.
Once an agent reaches a SynChrono synchronization point, the
cumulative mesh deformations produced by one agent are sent via
the MPI network to every other agent’s node. Each agent then
applies the deformations to their own copy of the SCM mesh and
resets their collection of mesh deformations. This means that two
agents should not come close enough to the point where they
deform the same vertices during the same synchronization period,
as there would be no “source of truth” for those deformations.
This is not a matter of much concern, as it is just as restrictive as
SynChrono’s assumption that any two agents will not interact by
crashing. Book-keeping for the SCM mesh uses an integer grid to
localize each vertex, and as noted earlier, since vertices are only
displaced vertically, the information needed to synchronize a sin-
gle vertex is two integers for the position and a double for the dis-
placement. While this is not much per vertex, of the order of
thousands of nodes can be impacted per synchronization step per
vehicle; this can affect overall performance.

The scenario discussed herein is that of many vehicles crossing
perpendicularly on a rectangular patch of SCM terrain, see Fig. 4
and online movies [76]. In this setup, one can easily scale up the
number of vehicles and verify that the SCM terrain deformation is
properly synchronized across multiple ranks. The scaling metric
used was the Real Time Factor (RTF), representing the amount of
wall-clock computation time divided by the amount of time

simulated. Running in real-time corresponds to a factor of 1.0,
while slower than real-time corresponds to factors larger than 1.0.
The tests were run on the Euler computing cluster at the Univer-
sity of Wisconsin-Madison. Each node has an Intel Xeon E5 2650

Fig. 3 The MPI standard was chosen owing to its low commu-
nication latency, see [71], thus positioning SynChrono for
human-in-the-loop and hardware-in-the-loop simulation

Fig. 4 Environment used for SynChrono scaling analysis for
agents operating on SCM terrain. Two lines of vehicles move
across a rectangular patch, crossing orthogonally and making
ruts in the SCM soil.

Fig. 5 SynChrono scaling analysis for SCM terrain, with a 5 cm
grid resolution. SynChrono simulations on nine cluster nodes,
using one, two, or three MPI ranks per node (corresponding to
simulations with 9, 18, and 27 vehicles, respectively) and three
threads per rank show the real-time capability of simulating
multiple vehicles on deformable terrain (RTF £ 1).

Fig. 6 The double S and C paths used during training. Each
one of these is randomly flipped and rotated, resulting in 16 dif-
ferent possible paths. The dashed lines represent the segment
of the path in which the simulation episode can start.
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v3, 2-socket 10-core processor; internode communication is facili-
tated via a Gigabit Ethernet interconnect.

The scaling analysis reported herein drew on nine nodes and up
to 27 SynChrono processes (each running a single vehicle),
assigning one, two, or three SynChrono vehicles per node. Simu-
lations conducted on rigid terrain show practically constant scal-
ing, with RTF values around 0.6 (i.e., faster than real-time). Using
three OpenMP threads per MPI rank (for parallel ray-casting in
the SCM calculations), the simulations on SCM deformable ter-
rain can also achieve real-time or better, as shown in Fig. 5. The
RTF value for SCM terrain is independent of the SCM soil param-
eters (i.e., soft versus hard), but is highly dependent on the

processor performance, MPI setup, number of OpenMP threads
assigned to each rank, compiler, and compilation optimization.
For example, simulations with too many ranks per node can
exhibit a slowdown due to cache contention. SynChrono has been
used to simulate even more vehicles (up to 128) on a different
cluster. The scaling analysis presented here was limited by the
number of identical nodes available on the Euler cluster.

4.2 Learning to Drive in a Convoy. Chrono helps with two
tasks: learning a control policy, and testing a policy, the latter
designed in Chrono or elsewhere. In this example, PyChrono and
GymChrono are used to design a policy and SynChrono is subse-
quently used to test it. The RL-based learning is done on rigid ter-
rain using a nondescript texture. The goal is to enable a vehicle to
move as part of a convoy. To test it, the policy is deployed on
vehicles that are part of a four-vehicle convoy driving on rigid or
SCM deformable terrain. Up to three of the convoy vehicles use
this policy while driving in a platoon. Thus, the possible scenarios

Fig. 8 Sensor Fusion NN architecture

Fig. 7 The maximal reward is given to the agent when it is in
the region shown, with the reward decreasing hyperbolically
the further the agent is from the desired area. Note that the fig-
ure is not to scale. More concretely, the reward is provided to
the agent when the angle between the heading of the leader
and the follower is in the range ½2 p

4 ;
p
4�, and this reward is maxi-

mal when the agent is an optimal distance from the lead
vehicle.

Fig. 9 Plot of the moving average of the sum of collected
rewards with respect to the policy updates (updated every 1500
interactions). The vertical dashed line represents the switch
from the reduced to the full HMMWV model. (a) Rigid terrain; (b)
SCM-Hard terrain;and (c) SCM-Soft terrain.
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are: three lead vehicles and one following vehicle (3 Lþ1F), two
lead and two followers (2 Lþ2F), and one lead and three followers
(1 Lþ3F). The lead vehicles are programed to follow a path
defined by way-points; for all purposes, these can be considered
human driven. A follower vehicle is autonomous and uses the
learned policy to follow the vehicle in front of it. In doing so, it
should (i) not crash into the vehicle ahead of it, and (ii) avoid hit-
ting obstacles in the vicinity of the path. To this end, it relies on a
camera sensor, location acquired through GPS sensing, and com-
pass heading. Note that communication allows a vehicle to find
out the GPS location and velocity of the vehicle in front. Given

that four vehicles are involved in this platooning experiment, Syn-
Chrono is subsequently used to test the policy to reduce simula-
tion times. Indeed, this validation could be run in Chrono::Engine,
but it would take more than four times as long to complete. The
salient points of this experiment are as follows: although vehicles
are run in different SynChrono processes, there is time and space
coherence between them to the point where the vehicles sense
each other; the learning occurs using rigid terrain with nondescript
texture, yet the policy is tested on deformable terrain that is white
(snow-like) or brown (silt-like); this is an end-to-end policy that
uses sensor data fusion to control both the steering and accelera-
tion/deceleration of the vehicle.

Designing a Policy. The policy was obtained through training
using a custom implementation of the Proximal Policy Optimiza-
tion (PPO) reinforcement learning algorithm leveraging PyTorch
[64] as the Deep Learning framework. The agent is a HMMWV
vehicle modeled in Chrono::Vehicle. The goal of the training pro-
cess is to develop a control policy that enables an agent (in this
case, the vehicle) to drive in a convoy. For training, to increase
the randomness of the path and thus the robustness of the control
policy, two different path types were used on a 90 m� 90 m area.
The first is S-shaped, starting from one corner and finishing in the
opposite corner; the second is C-shaped, starting and finishing on
the same side of the driving area. To further increase the random-
ness, these paths are mirrored along the east-west and north-south
axes to obtain 16 different possible paths. The starting point is
picked randomly within the first half of the path as shown in
Fig. 6. Eight obstacles placed near the path are randomly selected
from various rock, tree, and bush assets.

In order for the agent to accomplish its task, the vehicle must
be aware of its surroundings. To that end, the HMMWV used two
sensors simulated in Chrono::Sensor, a GPS sensor and an RGB
camera placed on the front bumper. The camera, which updates at
30 Hz, has a resolution of 80pixels� 45pixels; note that resolu-
tions as high as 3840pixels� 2160pixels can be simulated but for
the test considered herein resolutions this high would slow down
both the simulation and learning without any clear gain. This level
of resolution suffices, since the detailed features that could be
extracted from higher resolution images are likely not needed by
the control policy. Furthermore, given that the dataset contains
one image per interaction, images of too high resolution can
quickly deplete the available GPU memory due to the increased
memory footprint of the NN update process. As such, large
images that are contained in observations are typically avoided.

The target for the vehicle to earn its reward is illustrated sche-
matically in Fig. 7. As with any other RL environment, an obser-
vation and a reward are provided to the ML algorithm at each
time-step. Subsequently, the agent must perform an action pre-
scribed by the ML algorithm in order to maximize the reward col-
lected. The action is a two element array with the first a steering
value and the second element a combined throttling and braking
value. The choice of collapsing throttle and brake control into the
same action was taken to avoid simultaneous braking and throt-
tling as they both directly control the vehicle’s acceleration.

The learning draws on information from several sensors, whose
output is organized into two tuples. The first element is an 80�
45� 3 RGB image. The second is a vector of four values: the lati-
tude and longitude difference between the leader and the follower,
the heading according to the compass, and the speed at which the
follower is approaching the leader. This multisensor observation
required the NN architecture to incorporate an input composed of
a 3D and a 1D tensor. The image is processed in a convolutional
neural network as in Ref. [48]. Its output is then concatenated
with the output of the one Fully Connected (FC) hidden layer
deep neural network which takes the 1D tensor as input. Their
concatenated output is then processed by three FC hidden layers.
The architecture of the model is shown in Fig. 8.

RL-based training requires a very large number of iterations.
Three decisions helped speed up the training process: (i) the lead

Fig. 10 Still frames from attached third person camera. NOTE:
last vehicle shown without cabin to better see how steering
takes place in the movies associated with the simulation [76].
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vehicles were not simulated, but only rendered at the correct loca-
tion and orientation (as this has no bearing for sensing purposes);
(ii) a reduced-order model of the HMMWV vehicle was used in
the first stage of training, with the more computationally demand-
ing full vehicle model substituted during the training process (see
Fig. 9) to further refine the NN parameters; and (iii) the learning
process was accelerated using the OpenAI Baselines tool for envi-
ronment parallelization [69], thus allowing several simulations
running simultaneously to speed up the collection of the dataset
samples.5

Learned Policy Testing. The AA control policy derived in
PyChrono and GymChrono was tested in SynChrono for various
convoy setups while operating on three terrain types. The platoons
were 3 Lþ1F, 2 Lþ2F, and 1 Lþ3F. The terrains were rigid, SCM
hard (silt-like), and SCM soft (snow-like). This led to a set of nine
platooning scenarios. In the following discussion, the leader and
follower vehicles are numbered starting from the head of the con-
voy; for example, the order of the vehicles in a 1 Lþ3F configura-
tion is: Leader, Follower 1, Follower 2, Follower 3.

For each platooning scenario, data recorded from simulations
included position, velocity, and acceleration for each of the four
vehicles. In addition, a high definition camera sensor, from a
third-person perspective, was attached to the last vehicle in the
convoy in order to visualize the simulation. Full-length videos of

representative simulations are available online [77]. Different
ground textures and colors were used to further differentiate
between the three terrain types (rigid, SCM-Hard, and SCM-Soft)
and test robustness of the control policy (Fig. 10).

Table 1 shows top-down views of the convoy trajectories for
each platooning scenario, with solid and dashed lines representing
leader and follower trajectories, respectively. As these images
indicate, different simulation configurations lead to different reac-
tions of the follower vehicles. The training process described in
Sec. 4.2 rewards a follower vehicle for being within a certain
angle and distance of the leader; as a result, this allows for devia-
tions between the paths of follower and leader vehicles as well as
deviations in the speed at which leader and follower vehicles
negotiate a certain path segment.

In an effort to quantify the performance and robustness of the
derived platooning policy, we next present results from a statisti-
cal analysis using ensemble convoy simulations. This study
includes results from 128 independent simulations for each one of
the three terrain types mentioned above. In order to allow relative
comparisons among different terrain types as well as between fol-
lower positions in the convoy, all simulations used the 1 Lþ3F
convoy configuration and each one of the three sets of 128 simula-
tions used the same set of randomly generated trajectories. The
performance metrics used in this analysis measure the path and
speed deviation of a follower vehicle from that of the convoy’s
leader.

It is hoped that the control policy obtained is general and capa-
ble of handling some degree of randomness in its environment.
While in some machine-learning tasks the randomness in the

Table 1 2D Positions of each vehicle in each simulation configuration

5Training an end-to-end policy requires a large training dataset, and despite the
aforementioned strategies the two parts of the training took approximately 15 and 7
hours 15 hours, respectively.
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training environment may be sufficient to guarantee generality, in
our case the training environment was relatively crude since its
physics-based nature is relatively performance intensive. For this
reason we made many changes to the testing environment relative
to the training environment. First, the 128 distinct scenarios were
created on a 100m� 100m swath of flat terrain. A script gener-
ated 30 randomly placed circular obstacles with sizes uniformly
distributed between 5 and 7 m. The obstacle positions were drawn
from a uniform distribution with an additional restriction to allow
overlap of no more than half their radius [78]. To increase the
complexity of the resulting paths and reduce the likelihood of a
straight path, each configuration included four additional fixed
obstacles with radius of 8 m placed equidistantly along the diago-
nal from start to end (one sample obstacle placement can be seen
on the left of Fig. 11). Next, a Particle Swarm Optimization (PSO)
algorithm [79] was used to generate a shortest distance path con-
necting the start (southwest) and end (northeast) locations, as
shown in the middle image of Fig. 11. The path generation was
constrained to produce trajectories that remained in the domain
and did not intersect obstacles. To produce paths that are feasible
for simulated HMMWV vehicles, the generation of the corre-
sponding environment setup in SynChrono involved scaling obsta-
cle meshes (rocks, trees, bushes) such that their bounding sphere
allows 2 m (the width of the vehicles) of separation from the gen-
erated path centerline; in other words, in each of the 128 environ-
ments, the path prescribed for the leader vehicle ensures a

Fig. 11 Sample obstacle field, PSO-based path planning, and the corresponding SynChrono environment setup

Fig. 12 Ensemble of the 128 paths used in the statistical
analysis

Fig. 13 Deviation in path between Leader and Follower 3. The
lateral deviation metrics for this particular scenario (rigid
terrain) were mavg

p 5 0:473 m, mmax
p 5 2:484 m.

Fig. 14 Deviation in speed between Leader and Follower 3. The
vehicle speeds are evaluated at the same location along the
leader’s path. The speed deviation metrics for this particular
scenario (rigid terrain) where mavg

as 5 0:505 m/s, mmax
as 5 2:154 m/s

and mavg
rs 5 12:2%, mmax

rs 5 69:2%. (a) Average and (b) maximum.
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minimum width of 4 m. An overhead view of the resulting Syn-
Chrono simulation environment is shown on the right in Fig. 11.

Each of the 128 resulting paths shown in Fig. 12 were then used
as the prescribed trajectory for the path-follower PID-based lateral
controller implemented on the leader vehicle, in conjunction with
a PID-based longitudinal controller that prescribes a target speed
linearly increasing in time (corresponding to a constant accelera-
tion of 0.47 m/s2).

In order to perform a statistical analysis of the performance of
the platooning policy, we define a set of six performance metrics
that measure the deviations of a follower vehicle from that of the
convoy leader and encode both lateral path deviation and devia-
tions in the vehicle speed at a given location along the leader’s
path. These metrics are defined in such a way as to allow

Fig. 15 Statistics of average and maximum follower path deviations. (a) Average and (b) maximum.

Fig. 16 Statistics of average and maximum follower absolute
speed deviations. (a) Average and (b) maximum.

Fig. 17 Statistics of average and maximum follower relative
speed deviations. (a) Rigid terrain; (b) SCM-Hard terrain; and (c)
SCM-Soft terrain.
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comparisons between the performance of followers at different
positions in the convoy, as well as across our three different ter-
rain types.

To eliminate differences due to the fact that vehicles in a con-
voy are inherently staggered along the path, the evaluation of the
performance metrics is based on a common path segment. Fig-
ure 13 illustrates this process for the same trajectory used as an
example before. The sample results used in this description are
outcomes of a simulation on rigid terrain and focus on the last
vehicle in the convoy (Follower 3). The start clip point is defined
as the point on the follower path closest to the leader’s initial loca-
tion. Similarly, the end clip point is defined as the point on the
leader’s path closest to the follower’s final location. The resulting
segment on the leader’s path is then sampled at intervals of equal
arc-length and the closest point on the follower’s path to each
such sampled point is identified. The distance between corre-
sponding points on the leader and follower paths are then used to
define a follower path deviation as a function of distance traveled
along the leader’s path (see Fig. 13). This allows us to define the
first two performance metrics: mavg

p , the average follower path
deviation, and mmax

p , the maximum path deviation.
Next, we compare the vehicle speeds at corresponding points

on the follower and leader paths as shown in the left plot of
Fig. 14 from which we derive the absolute and relative speed

errors (the latter being the speed difference scaled by the leader’s
speed at that location). The underlying assumption in these defini-
tions is that a follower’s speed should match as closely as possible
the speed of the leader vehicle at the same location on the path
(rather than at the same point in time); this is also why, when cal-
culating the subsequent speed deviation metrics, we discard the
values corresponding to the first 10 m of travel (to allow the
vehicles to accelerate from rest to the desired convoy speed).
With these, we define two more pairs of performance metrics:
mavg

as ; mmax
as , for the average and maximum absolute speed devia-

tion between leader and follower, and mavg
rs ; mmax

rs , for the average
and maximum relative speed deviation of the follower.

Fig. 18 Paths of every vehicle on each terrain type. (a) Rigid
terrain; (b) SCM-Hard terrain; and (c) SCM-Soft terrain.

Fig. 19 Path deviation metrics calculation (rigid terrain, Fol-
lower 3). The segment of the leader path used in calculations
for this particular scenario (rigid terrain) was 158:2m.
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The six metrics defined above were evaluated for each of the
three follower vehicles in each scenario in the three sets of 128
environments on rigid, SCM-Hard, and SCM-Soft terrain, respec-
tively. The resulting statistics are presented as box-and-whisker
diagrams in Figs. 15, 16, and 17, providing measures of the vari-
ability in the three statistical populations without any assumption
on their underlying statistical distribution (which is unknown, due
to the manner in which the sample trajectories were constructed).
For each metric, on each terrain type and for each of the three fol-
lower vehicles in the 1 Lþ3F configuration, these standard box
plots provide information on their mean, second and third quar-
tiles, as well as minimum and maximum values.

We assume that a perfect control policy for a follower vehicle
would result in a convoy in which each follower vehicle runs
exactly in the tracks of the vehicle preceding it and achieves the
exact same speed at any given location. Given their definition,
this ideal case corresponds to zero values for each of the six per-
formance metrics.

The results of the statistical analysis presented herein confirm
the intuition that, in a 1 Lþ3F configuration, a less than perfect
control policy will lead to worse performance for the trailing fol-
lower vehicles and better performance on harder surfaces (espe-
cially taking into account that the training was performed
exclusively on rigid terrain). However, as the results for both path
and speed deviation show, this is not the case when comparing
performance on SCM-Hard and SCM-Soft terrains, with the latter
showing consistent lower metrics values (i.e., better performance
in terms of maintaining position in the convoy). The explanation
for this behavior is likely a combination of several factors. First,
even though the target speed profile for the leader vehicle was set
identically for all three terrain types, the increased terrain resist-
ance in the SCM-Hard and SCM-Soft cases resulted in the leader
vehicle being unable to continuously increase its speed to the
specified value; on both deformable terrain types, the vehicles
were unable to shift in the higher gears and their speed limited to
lower levels than on rigid terrain (an effect more pronounced on
SCM-Soft terrain than on SCM-Hard). The ensuing overall lower
convoy speed results in driving scenarios where the control policy
can adapt better. Second, as seen in Fig. 14 and typical of all sim-
ulations conducted as part of this analysis, current deficiencies in
the RL-based control policy result in relatively jerky motion of
the follower vehicles and noisy speed profiles. These spurious
accelerations and decelerations are less pronounced on the SCM-
Soft due to the increased motion resistance. Finally, the largest
deviations in a follower’s path (see Fig. 19) always occur at tight
turns where the leader vehicle must go around an obstacle. In
these situations, the tendency of the control policy is to “cut cor-
ners” and thus direct the vehicle to increase steering input. How-
ever, these control steering inputs are more difficult to follow in a
deformable terrain soft enough to result in deep ruts, thus resulting
in the follower vehicles more closely matching the leader’s vehi-
cle path around obstacles.

While the path planning procedure and the path-following PID-
based control policy implemented for the leader vehicles ensures
that a leader vehicle always avoids obstacles, this is not the case
for the RL-based control policy implemented for the follower
vehicles, which occasionally are unable to avoid an obstacle (in a
few situations, a follower vehicle, especially one in position 2 or
3, may end up going on the opposite side of an obstacle). This
behavior has multiple compounding causes, including the particu-
lar reward system used in the current training as well as configura-
tions where perception of the leader vehicle is obstructed by an
obstacle or the leader vehicle is out of the camera sensor’s field of
view while negotiating a tighter turn. The paths of all vehicles on
each terrain type are shown in Fig. 18. The path information
therein is used to gauge the robustness of the control policy in
terms of obstacle avoidance. Figure 20 provides the cumulative
statistics in terms of number of obstacles hit, over all ensemble
simulations, for all three terrain types and for each of the three fol-
lower vehicles. These results show the same relative performance
trends observed before, with the trailing follower on SCM-Hard
terrain exhibiting worst performance.

5 Conclusion and Future Work

This contribution discussed a simulation platform designed to
facilitate the design and testing of control policies for AAs operat-
ing in off-road conditions. The platform draws on a multibody
dynamics simulation engine; has templates for wheeled and
tracked vehicles; enforces space and time coherence; allows for
human-in-the-loop scenarios; provides sensor simulation capabil-
ities; has a bridge to ROS/ROS2; can simulate mobility on fully

Fig. 20 Number of obstacles hit by each vehicle on the three
terrain types
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resolved, continuum, or SCM representations of the terrain; is
open source; and is cluster-deployable to support multi-AA mobil-
ity studies. This software framework is used here to design an
end-to-end, RL-based control policy that allows AAs to follow in
a convoy formation. The learning took place on rigid terrain but
was demonstrated to work when deployed on AAs that operate on
deformable SCM soils. The virtual environments used in testing
differed in textures and colors from the ones used in the training,
thus demonstrating robustness of the inferred policy that relies on
inputs from an RGB camera sensor. Unsurprisingly, the fewer
AAs in the platoon, the tighter it managed to follow a prescribed
path. Looking ahead, we plan to augment the sensing simulation
support; improve scalability; and use this simulation infrastructure
to derive new control policies for off-road AA mobility.
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