
SIAM J. OPTIM. © 2022 Society for Industrial and Applied Mathematics
Vol. 32, No. 2, pp. 545--572

A SUBSPACE ACCELERATION METHOD FOR MINIMIZATION
INVOLVING A GROUP SPARSITY-INDUCING REGULARIZER\ast

FRANK E. CURTIS\dagger , YUTONG DAI\dagger , AND DANIEL P. ROBINSON\dagger

Abstract. We consider the problem of minimizing an objective function that is the sum of a
convex function and a group sparsity-inducing regularizer. Problems that integrate such regularizers
arise in modern machine learning applications, often for the purpose of obtaining models that are
easier to interpret and that have higher predictive accuracy. We present a new method for solving
such problems that utilizes subspace acceleration, domain decomposition, and support identification.
Our analysis provides the global iteration complexity of obtaining an \epsilon -accurate solution and shows
that, under common assumptions, the iterates locally converge superlinearly. Numerical results on
regularized logistic and linear regression problems show that our approach is efficient and reliable and
outperforms state-of-the-art methods on interesting classes of problems, especially when the number
of data points is larger than the number of features. For solving problems when the number of data
points is smaller than the number of features, algorithms that focus on solving a dual problem may
be more efficient than our approach, which solves the primal problem.

Key words. nonlinear optimization, convex optimization, worst-case iteration complexity, reg-
ularization, group regularizer, sparsity, logistic regression, linear regression, subspace acceleration

AMS subject classifications. 49M37, 65K05, 65K10, 65Y20, 68Q25, 90C30, 90C60

DOI. 10.1137/21M1411111

1. Introduction. We consider the minimization of a function that may be writ-
ten as the sum of a convex function and a nonoverlapping group sparsity-inducing
regularizer. Specifically, given a convex and twice continuously differentiable function
f : \BbbR n \rightarrow \BbbR , a collection of n\scrG > 0 nonoverlapping groups \scrG := \{ \scrG i\} n\scrG

i=1 that forms
a partition of \{ 1, 2, . . . , n\} (i.e., \scrG i \cap \scrG j = \emptyset for all i \not = j and \cup n\scrG

i=1\scrG i = \{ 1, 2, . . . , n\}),
and groupwise weighting parameters \{ \lambda i\} n\scrG

i=1 > 0, our algorithm solves the problem

(1.1) min
x\in \BbbR n
\{ f(x) + r(x)\} , where r(x) :=

n\scrG \sum
i=1

\lambda i \| [x]\scrG i\| 2

and [x]\scrG i
is the subvector of x corresponding to elements in \scrG i. The regularizer r gen-

eralizes the \ell 1-norm, which is recovered by choosing \scrG i = \{ i\} for all i \in \{ 1, 2, . . . , n\} .
Despite the successes of \ell 1-norm regularization, its inadequacy in the context of

many modern machine learning applications has been noticed by researchers and is one
motivation for the use of group regularization. In some machine learning applications
the covariates come in groups (e.g., genes that regulate hormone levels in microarray
data [23]), in which case one may wish to select them jointly. Also, integrating
group information into the modeling process can improve both the interpretability
and accuracy [36] of the resulting model. Yuan and Lin [35] observed that in the
multifactor analysis-of-variance problem, where each factor is expressed through a set

\ast Received by the editors April 9, 2021; accepted for publication (in revised form) September 26,
2021; published electronically April 27, 2022.

https://doi.org/10.1137/21M1411111
Funding: This material is based upon work supported by the U.S. National Science Foundation

under the Division of Computing and Communication Foundations (award CCF-1740796) and the
Division of Mathematical Sciences (award DMS-2012243).

\dagger Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015
USA (frank.e.curtis@gmail.com, yud319@lehigh.edu, daniel.p.robinson@gmail.com).

545

https://doi.org/10.1137/21M1411111
mailto:frank.e.curtis@gmail.com
mailto:yud319@lehigh.edu
mailto:daniel.p.robinson@gmail.com

546 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

of dummy variables, deleting an irrelevant factor is equivalent to deleting a group of
dummy variables; the \ell 1-norm regularizer fails to achieve this goal.

1.1. State-of-the art methods. There is a long history of algorithms for solv-
ing regularized problems of the form (1.1) (see [1] and the references therein). Here,
we review some of the state-of-the-art approaches for solving sparsity-promoting prob-
lems that are most closely related to our proposed approach.

First-order methods. Proximal methods are designed to solve problems of the
form (1.1) and have received attention in the machine learning community [3, 8, 32].
A well-known example for \ell 1-norm regularized problems is the iterative shrinkage-
thresholding algorithm (ISTA), which is obtained by applying a proximal gradient
(PG) iteration to minimize a smooth function plus the \ell 1-norm regularizer [11, 13].
Under certain assumptions, one can prove a worst-case complexity bound on the num-
ber of iterations required by the PG method before it correctly identifies the support
of the optimal solution [28]. Combined with the acceleration technique proposed
by Nesterov [26, 27], one obtains the algorithm FISTA [3]. One obtains a related
but distinct approach from ISTA by posing an equivalent smooth reformulation of
the problem---separating the positive and negative parts of the variables---and apply-
ing a gradient projection method to the resulting formulation [14, 15]. All of these
approaches have been shown to work well in practice, at least compared to other
first-order methods such as the subgradient algorithm. However, these algorithms
are often inferior in practice compared to alternative approaches that employ space
decomposition techniques and/or second-order derivatives [6, 7, 18].

As an alternative to PG and gradient projection techniques, researchers have con-
sidered (block) coordinate descent for solving \ell 1-norm regularized problems. Such a
strategy is appealing, since when minimizing an \ell 1-norm regularized objective along
coordinate directions, it is common that the objective is minimized with variables be-
ing zero. These approaches are also easy to implement to exploit parallel computing;
see, e.g., the accelerated randomized proximal coordinate gradient method in [20], the
parallel coordinate descent methods in [29], and the asynchronous coordinate descent
technique in [22]. A downside of these approaches is that the space decomposition is
performed in a prescribed manner, rather than in an adaptive way that can benefit
from information acquired during the solution process. Also, these approaches do not
effectively exploit second-order derivative information and require exact minimization
along coordinate directions. An exception to this latter criticism is the inexact coor-
dinate descent algorithm from [30], although this approach does not effectively exploit
second-order derivatives and uses a prescribed space decomposition strategy.

Various other approaches have been proposed for solving problems using specific
loss functions and/or regularizers. In [21], the authors discuss methods for sparse
learning that make use of projection techniques. A well-known package is GLMNET

[16], which is designed for solving problems with the elastic-net regularization. Finally,
let us mention the work in [33], which proposes and tests a groupwise-majorization-
descent algorithm (called gglasso) for solving problems involving the group \ell 1-norm
regularizer. A potential downside of this approach is that it updates variables by
groups in a cycle, rather than by using an adaptive space decomposition technique.

Second-order methods. In [17], an accelerated regularized Newton scheme
is proposed. A similar proximal-Newton method is proposed in [19], which (under
assumptions) converges locally superlinearly. Although effective in practice, these
methods appear to lack good worst-case guarantees in terms of identification of the
optimal solution support. Other approaches, such as the orthant-based method in [18],

A SUBSPACE ACCELERATION METHOD 547

can predict the solution support but in practice are often outperformed by the related
method FaRSA [6, 7]. In [31], block-coordinate PG calculations are combined with
manifold identification and manifold accelerated calculations (i.e., solving reduced
Newton systems). The author analyzed a generic framework, then tested a particular
instantiation of the framework designed for \ell 1-norm regularized problems. Recently,
a semismooth Newton method was considered in [37] based on a dual approach for
solving (1.1). The semismooth Newton method is used to solve a sequence of aug-
mented Lagrangian problems. Numerical results illustrate the method's efficiency and
robustness, although the analysis and algorithm are tailored to the least-squares loss
function. As for publicly available solvers based on second-order methods, most have
been designed for specific loss functions and regularizers. For example, newGLMNET in
[34] is designed for \ell 1-norm regularized logistic regression, and the method in [14] is
designed for regularized logistic regression and support vector machines.

Other papers consider stochastic functions and distributed settings, where the
evaluation of the (deterministic) gradient is costly or the data is too large to store on
a single machine. However, such methods are outside the focus of this paper.

1.2. Contributions. In this paper, we present a framework for solving prob-
lem (1.1) that utilizes domain decomposition, support identification, and subspace
acceleration. It extends the work in [6, 7], which consider only the traditional \ell 1-norm
regularizer (i.e., not the group \ell 1-norm case). Although our algorithmic framework
is similar to those in these prior papers, the framework proposed in this paper differs
in several crucial respects that we now enumerate. (i) Instead of decomposing the
domain based on zero and nonzero components of the current iterate as proposed
in [6, 7], we partition variables in a way that incorporates the support prediction
property of the PG method and tackles the challenge that the gradient of the func-
tion being optimized in the reduced space is not Lipschitz continuous. (This challenge
is absent in the \ell 1-norm case). To achieve both goals, a new analysis is performed. (ii)
We design a specialized projection procedure for the group \ell 1-norm regularizer that
allows us to prove convergence guarantees and obtain strong numerical performance.
This contribution is critical because naive adaptations of the orthant-like projections
considered in [6, 7, 18] to the group \ell 1-norm case would cause the convergence analysis
to fail and would lead to abysmal numerical performance. The reason for these fail-
ings is that orthant-like projections focus on individual variables switching sign during
the line search along the Newton-like direction to indicate which variables should be
projected to zero. However, the concept of ``switching signs"" loses its meaning for the
group \ell 1-norm case. (One might interpret ``switching signs"" to mean that a block of
variables switches from nonzero to zero during the line search along the Newton-like
direction, but this generally never happens in theory or in practice.) We address this
challenge by projecting to zero groups that are ``close enough"" to zero, where ``close
enough"" is carefully defined using a ball with radius related to a certain optimal-
ity measure that we employ. Moreover, our new projection procedure is designed in
a manner that accommodates the domain decomposition approach described above
without hindering the global convergence analysis and local superlinear convergence
rate. (iii) A worst-case iteration complexity bound is proved along with a simple but
principled way of adjusting the PG step size that allows for support identification in
finite iterations. Complexity results were not considered in [6, 7]. (iv) Numerical re-
sults on regularized logistic and linear regression problems show that our approach is
efficient and reliable and outperforms state-of-the-art methods on interesting classes
of problems, especially when the number of data points is larger than the number

548 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

of features. For solving problems when the number of data points is smaller than
the number of features, algorithms such as SSNAL [37] that focus on solving a dual
problem may be more efficient than our approach, which solves the primal problem.

1.3. Notation and assumptions. Let \BbbR denote the set of real numbers, \BbbR n

denote the set of n-dimensional real vectors, and \BbbR m\times n denote the set of m-by-n-
dimensional real matrices. The set of natural numbers is denoted as \BbbN := \{ 0, 1, 2, . . . \} .
For any set \scrI \subseteq \{ 1, 2, . . . , n\} , we define the projection of x \in \BbbR n onto the subspace
spanned by the coordinate vectors indexed by the entries of \scrI as P\scrI (x), so that

[P\scrI (x)]i :=

\Biggl\{
xi if i \in \scrI ,
0 if i /\in \scrI .

For a function h : \BbbR n \rightarrow \BbbR , vector x \in \BbbR n, and direction d \in \BbbR n, the directional
derivative of h at x in the direction d is denoted by Dh(x; d).

The following assumption is assumed to hold throughout the paper.

Assumption 1.1. The function f : \BbbR n \rightarrow \BbbR used in the definition of the objective
function of problem (1.1) is convex and continuously differentiable. Moreover, there
exists a positive real number Lf such that \| \nabla f(x)\| 2 \leq Lf for all x \in \scrL := \{ x \in
\BbbR n : f(x) + r(x) \leq f(x0) + r(x0)\} , where x0 is a given initial estimate of a solution
to problem (1.1). The objective function f + r is bounded below, and the gradient
function \nabla f is Lipschitz continuous on \scrL with Lipschitz constant Lg.

2. Preliminaries. In this section, we discuss preliminary material related to
the objective function f + r and its associated PG calculations. For any x \in \BbbR n and
\alpha > 0, we define the PG update as

(2.1) T (x, \alpha) := argmin
x\in \BbbR n

\bigl\{
1
2\alpha \| x -

\bigl(
x - \alpha \nabla f(x)

\bigr)
\| 22 + r(x)

\bigr\}
and the associated PG step as

(2.2) s(x, \alpha) := T (x, \alpha) - x.

The PG update defined in (2.1) can be computed groupwise for each \scrG i \in \scrG by

(2.3) [T (x, \alpha)]\scrG i = max

\biggl\{
1 - \alpha \lambda i

\| [x]\scrG i - \alpha \nabla \scrG if(x)\| 2
, 0

\biggr\} \Bigl(
[x]\scrG i - \alpha \nabla \scrG if(x)

\Bigr)
.

The next result shows that the directional derivative of f + r along the PG step is
negative with magnitude proportional to the squared norm of the PG direction.

Lemma 2.1. For any x \in \BbbR n and \alpha > 0, the PG step s(x, \alpha) in (2.2) satisfies
Df+r(x; s(x, \alpha)) \leq - 1

\alpha \| s(x, \alpha)\| 22. Moreover, if \scrI is equal to the union of a subset of
\{ \scrG i\} n\scrG

i=1, then Df+r

\bigl(
x;P\scrI (s(x, \alpha))

\bigr)
\leq - 1

\alpha \| P\scrI (s(x, \alpha))\| 22.
Proof. Let x+ = T (x, \alpha) denote the PG update in (2.1) so that x+ = x+ s(x, \alpha).

The optimality conditions for the problem in (2.1) give some g+ \in \partial r(x+) such that

x+ - x+ \alpha \nabla f(x) + \alpha g+ = 0.(2.4)

Next, for an arbitrary gf+r \in \partial (f + r)(x), it follows from Assumption 1.1 and [5,
Proposition 5.4.6] that there exits gr \in \partial r(x) satisfying gf+r = \nabla f(x)+ gr. From the
definitions of gr and g+ and convexity of r, it follows that r(x+) \geq r(x)+ gTr (x+ - x)
and r(x) \geq r(x+)+gT+(x - x+). Adding these equations yields (gr - g+)T (x+ - x) \leq 0,

A SUBSPACE ACCELERATION METHOD 549

which when combined with the definition of gf+r and (2.4) yields s(x, \alpha)T gf+r =
(x+ - x)T (\nabla f(x) + gr) = 1

\alpha (x+ - x)T (x - x+ - \alpha g+ + \alpha gr) = - 1
\alpha \| x+ - x\| 22 +

(x+ - x)T (gr - g+) \leq - 1
\alpha \| s(x, \alpha)\| 22. Since gf+r \in \partial (f + r)(x) was arbitrary, [25,

Theorem 2.87] and the previous string of inequalities together yieldDf+r(x; s(x, \alpha)) =
supg\in \partial (f+r)(x) s(x, \alpha)

T g \leq - 1
\alpha \| s(x, \alpha)\| 22, as claimed. The final conclusion in the

lemma follows using the same argument, but restricting the quantities to \scrI .
Next, we quantify the decrease in f+r obtained by taking a PG step s(x, \alpha), pro-

vided the PG parameter \alpha is sufficiently small. The proof for the case \scrI = \{ 1, 2, . . . , n\}
is found in [2, Lemma 10.4], and the proof for the general case, i.e., when \scrI is equal
to the union of a subset of \{ \scrG i\} n\scrG

i=1, follows using the same logic as in the proof of [2,
Lemma 10.4] but with straightforward modifications to handle the definition of \scrI .

Lemma 2.2. If x \in \BbbR n, \alpha \in (0, 2/L), and \scrI is equal to the union of a subset of
\{ \scrG i\} n\scrG

i=1, then f(x+P\scrI (x, s))+r(x+P\scrI (x, s)) \leq f(x)+r(x) - (1
\alpha - L

2)\| P\scrI
\bigl(
s(x, \alpha)

\bigr)
\| 22.

The next result shows that, when restricted to certain groups, the size of the PG
step is bounded above by the gradient of the objective function.

Lemma 2.3. If the pair (x, \alpha) and group \scrG i satisfy \alpha \in (0, 1], [x]\scrG i
\not = 0, and [x+

s(x, \alpha)]\scrG i
\not = 0, where s(x, \alpha) is defined in (2.2), then \| \nabla \scrG i

(f+r)(x)\| 2 \geq \| [s(x, \alpha)]\scrG i
\| 2.

Proof. Denote gi := \nabla \scrG i
f(x), xi = [x]\scrG i

, and si = [s(x, \alpha)]\scrG i
. Since f + r is

differentiable with respect to variables in \scrG i at x since [x]\scrG i
\not = 0, we have \| \nabla \scrG i

(f +

r)(x)\| 22 = \| gi + \lambda ixi/\| xi\| 2\| 22 = \| gi\| 22 + 2\lambda i
gT
i xi

\| xi\| 2
+ \lambda 2

i , so it is sufficient to prove that

\| gi\| 22 +2\lambda i
gT
i xi

\| xi\| 2
+ \lambda 2

i \geq \| si\| 22. Since xi + si \not = 0 by assumption, si (see (2.3)) satisfies

si =
\bigl(
1 - \alpha \lambda i

\| xi - \alpha gi\| 2

\bigr)
(xi - \alpha gi) - xi = xi - \alpha gi - \alpha \lambda i(xi - \alpha gi)

\| xi - \alpha gi\| 2
 - xi = - \alpha

\bigl(
gi+

\lambda i(xi - \alpha gi)
\| xi - \alpha gi\| 2

\bigr)
so that \| si\| 22 = \alpha 2

\bigl(
\| gi\| 22 + 2\lambda i

gT
i (xi - \alpha gi)
\| xi - \alpha gi\| 2

+ \lambda 2
i

\bigr)
. Thus, it is sufficient to prove that

\| gi\| 22 + 2\lambda i
gT
i xi

\| xi\| 2
+ \lambda 2

i \geq \alpha 2
\bigl(
\| gi\| 22 + 2\lambda i

gT
i (xi - \alpha gi)
\| xi - \alpha gi\| 2

+ \lambda 2
i

\bigr)
. We consider two cases and

note that xi \not = 0 by assumption and that xi - \alpha gi \not = 0 as a consequence of (2.3) and
the assumption that xi + si \not = 0.

Case 1: \alpha = 1. In this case, the desired inequality simplifies to

(2.5)
gTi xi

\| xi\| 2
\geq gTi (xi - gi)

\| xi - gi\| 2
.

We now consider the following two subcases.

Case 1a: gTi xi \geq 0. The desired inequality clearly holds if gTi (xi - gi) \leq 0. Thus,
for the remainder of this subcase, we assume that gTi (xi - gi) > 0, which equivalently
means that gTi xi > \| gi\| 22, which implies that - 2xT

i gi + \| gi\| 22 < 0. It follows from
this inequality and the fact that (gTi xi)

2 \leq \| gi\| 22\| xi\| 22 (by Cauchy--Schwarz) that
(gTi xi)

2(- 2xT
i gi + \| gi\| 22) \geq (- 2xT

i gi + \| gi\| 22)\| gi\| 22\| xi\| 22 =
\bigl(
\| gi\| 42 - 2gTi xi\| gi\| 22

\bigr)
\| xi\| 22.

We can now add the term (gTi xi)
2\| xi\| 22 to both sides to obtain (gTi xi)

2(\| xi\| 22 - 2xT
i gi+

\| gi\| 22) \geq
\bigl(
(gTi xi)

2 + \| gi\| 42 - 2gTi xi\| gi\| 22
\bigr)
\| xi\| 22, which can be written equivalently as

(gTi xi)
2\| xi - gi\| 22 \geq (gTi xi - \| gi\| 22)2\| xi\| 22 = (gTi (xi - gi))

2\| xi\| 22. After taking the
square root of both sides, we obtain (2.5).

Case 1b: gTi xi < 0. Using gTi xi < 0 and (gTi xi)
2 \leq \| gi\| 22\| xi\| 22 together implies

that (gTi xi)
2(- 2xT

i gi + \| gi\| 22) \leq (- 2xT
i gi + \| gi\| 22)\| gi\| 22\| xi\| 22 =

\bigl(
\| gi\| 42 - 2gTi xi\| gi\| 22

\bigr)
\| xi\| 22. We can now add the term (gTi xi)

2\| xi\| 22 to both sides to obtain (gTi xi)
2(\| xi\| 22 -

2xT
i gi + \| gi\| 22) \leq

\bigl(
(gTi xi)

2 + \| gi\| 42 - 2gTi xi\| gi\| 22
\bigr)
\| xi\| 22, which can be written equiv-

alently as (gTi xi)
2\| xi - gi\| 22 \leq (gTi xi - \| gi\| 22)2\| xi\| 22 = (gTi (xi - gi))

2\| xi\| 22. After
taking the square root of both sides and rearranging, we obtain | gTi xi| /\| xi\| 2 \leq

550 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

Algorithm 3.1. FaRSA-Group for solving problem (1.1).

1: Input: x0

2: Constants: \{ \varphi , \xi , \eta , \zeta \} \subset (0, 1), \{ \kappa 1, \kappa 2, p\} \subset (0,\infty), \theta \in (0, \pi /2), and q \in [1, 2].
3: Choose any initial PG parameter \alpha 0 \in (0, 1].
4: for k = 0, 1, 2, . . . do
5: Compute the step sk from (3.1) and the set \=\scrI mk from (3.2).
6: Compute \scrI mk and \scrI pgk and their optimality measures \chi m

k and \chi pg
k from (3.4).

7: if \chi pg
k \leq \chi m

k then
8: Choose any \scrI k \subseteq \scrI mk such that

\| [sk]\scrI k
\| 2 \geq \varphi \| [sk]\scrI m

k
\| 2 \equiv \varphi \chi m

k and \scrI k is the union of some \{ \scrG j\} .

9: Set gk \leftarrow \nabla \scrI k
(f + r)(xk) and pick a positive-definite Hk \in \BbbR | \scrI k| \times | \scrI k| .

10: Call Algorithm 3.2 to obtain dk \leftarrow m direction(gk, Hk).
11: Set [dk]\scrI k

\leftarrow dk and [dk]\scrI c
k
\leftarrow 0.

12: Call Algorithm 3.3 to obtain (xk+1,flag
m
k)\leftarrow m update(xk, dk, \scrI k).

13: Set \alpha k+1 \leftarrow \alpha k.
14: else
15: Choose any \scrI k \subseteq \scrI pgk such that

\| [sk]\scrI k
\| 2 \geq \varphi \| [sk]\scrI pg

k
\| 2 \equiv \varphi \chi pg

k and \scrI k is the union of some \{ \scrG j\} .

16: Call Algorithm 3.4 to obtain (xk+1,flag
pg
k)\leftarrow pg update(xk, sk, \alpha k, \scrI k).

17: if flagpgk = decrease \alpha then \alpha k+1 \leftarrow \zeta \alpha k else \alpha k+1 \leftarrow \alpha k.

| gTi (xi - gi)| /\| xi - gi\| 2. Combining this result with 0 > gTi xi \geq gTi (xi - gi) gives (2.5),
as claimed.

Case 2: \alpha \in (0, 1). The proof of follows from Case 1 and [2, Theorem 10.9], which
in our notation from (2.2) proves that \| s(x, \alpha)\| 2 \leq \| s(x, 1)\| 2 when \alpha \in (0, 1).

3. Proposed algorithm framework. We propose Algorithm 3.1, which we
call FaRSA-Group (Fast Reduced-Space Algorithm for Group sparsity-inducing regular-
ization), for solving problem (1.1) that uses ideas related to domain decomposition,
subspace acceleration, and support identification. An overview of the algorithm is
given in section 3.1. During each iteration of our method, at least one of three sub-
routines is called. The three subroutines are described in sections 3.2--3.4.

3.1. Main algorithm (Algorithm 3.1). Our main algorithm is formally stated
as Algorithm 3.1. At the beginning of the kth iteration, xk and \alpha k > 0 denote the
current solution estimate for problem (1.1) and the PG parameter, respectively. We
then compute sk in line 5 as the PG step associated with problem (1.1), namely,

(3.1) sk := s(xk, \alpha k) with s(xk, \alpha k) defined in (2.2).

Although the repeated computation of PG steps is the basis for a first-order method,
here we primarily use it to predict the zero/nonzero structure of a solution and to
formulate optimality measures. Specifically, in line 5 we compute the index set

(3.2) \=\scrI mk := \{ j \in \scrG i : [xk]\scrG i
\not = 0, [xk + sk]\scrG i

\not = 0, \| [xk]\scrG i
\| 2 \geq \kappa 1\| \nabla \scrG i

(f + r)(xk)\| 2\}
for some \kappa 1 \in (0,\infty). The groups of variables that compose \=\scrI mk are candidates for
use in a Newton-type calculation aimed to accelerate convergence. Before using them,

A SUBSPACE ACCELERATION METHOD 551

however, we first check to see if each candidate block is sufficiently far from zero, and
those that are not are removed. Specifically, we first define

(3.3) \scrI small
k := \{ j \in \scrG i : \scrG i \subseteq \=\scrI mk and \| [xk]\scrG i

\| 2 < \kappa 2\| \nabla \=\scrI m
k
(f + r)(xk)\| p2\}

for some \{ \kappa 2, p\} \subset (0,\infty), then define in line 6 the sets and optimality measures

(3.4)

\Biggl\{
\scrI mk := \=\scrI mk \setminus \scrI small

k

\scrI pgk := \{ 1, 2, . . . , n\} \setminus \scrI mk

\Biggr\}
and

\Biggl\{
\chi m
k := \| [sk]\scrI m

k
\| 2

\chi pg
k := \| [sk]\scrI pg

k
\| 2

\Biggr\}
,

where by convention \| [\cdot]\emptyset \| 2 = 0. (See Lemma 4.1 for a justification that these sets
together represent a measure of optimality.) This construction of sets also ensures
that the subvector of xk that corresponds to \scrG i for each \scrG i \subseteq \scrI mk is at least a distance

(3.5) \rho k,i := max\{ \kappa 1\| \nabla \scrG i
(f + r)(xk)\| 2, \kappa 2\| \nabla \scrI m

k
(f + r)(xk)\| p2\}

away from zero (see Lemma 4.5(i)), which is crucial in our analysis.
Armed with \chi pg

k and \chi m
k , Algorithm 3.1 seeks decrease in the objective function

in a subspace that is likely to allow for significant progress. We consider two cases.

Case 1: the condition \chi pg
k \leq \chi m

k checked in line 7 holds. In this case, the
inequality \chi pg

k \leq \chi m
k indicates that significant reduction in the objective function can

be achieved by focusing on variables in the set \scrI mk . Therefore, in line 8 we choose any
index set \scrI k that is (i) a subset of \scrI mk , (ii) equal to the union of some subset of groups
from \scrG , and (iii) the size of the PG step restricted to the index set \scrI k is at least a
fraction of the size of the PG step when restricted to the index set \scrI mk . The easiest
choice that satisfies these conditions is \scrI k \equiv \scrI mk , but for large-scale problems it may
be beneficial to restrict | \scrI k| . The opposite extreme choice is selecting \scrI k as the group
\scrG i contained in \scrI mk with largest associated PG step, in which case one would choose
\varphi = 1/

\surd
n\scrG for the user-defined parameter in line 8. Once \scrI k has been selected, a

reduced-space gradient gk and reduced-space positive-definite matrix Hk are defined
in line 9, where the derivatives are taken with respect to variables in \scrI k. (In practice,
Hk could be selected based on \nabla 2

\scrI k\scrI k
(f + r)(xk) to promote a fast local convergence

rate.) Note that gk exists since by construction \scrI k \subseteq \scrI mk \subseteq \=\scrI mk , and from (3.2) the
objective function f + r is differentiable with respect to groups of variables in \=\scrI mk .
Next, gk and Hk are used to compute a direction dk of sufficient descent for f + r by
calling the subroutine m direction (see section 3.2). Once a full-space vector dk is
obtained by padding dk with zeros in line 11, a projected line search is performed by
calling subroutine m update in line 12 (see section 3.3).

Case 2: the condition \chi pg
k \leq \chi m

k checked in line 7 does not hold. In this
case, the inequality \chi pg

k > \chi m
k indicates that significant reduction in the objective

function can be achieved by focusing on variables in the set \scrI pgk . Therefore, in line 15,
we choose any index set \scrI k that is (i) a subset of \scrI pgk , (ii) equal to the union of some
subset of groups from \scrG , and (iii) the size of the PG step restricted to the index set
\scrI k is at least a fraction of the size of the PG step restricted to the index set \scrI pgk . The
easiest choice that satisfies these conditions is \scrI k \equiv \scrI pgk . Once \scrI k has been chosen, the
next iterate is obtained by performing a line search along the PG direction in line 16
by calling the subroutine pg update (for details, see section 3.4). If the subroutine
returns flagpgk = decrease \alpha , the PG parameter is decreased for the next iteration.

3.2. Computing the m-direction (Algorithm 3.2). This subroutine returns
a reduced-space direction dk that satisfies the conditions in line 22. We call it

552 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

a reduced-space vector because the inputs gk and Hk are elements in \BbbR | \scrI k| and
\BbbR | \scrI k| \times | \scrI k| , respectively, where \scrI k is computed in line 8 of Algorithm 3.1. The first
condition in line 22 ensures that dk is a descent direction for the objective function as
a consequence of how the reference direction dRk is computed in line 21. The second
condition in line 22 ensures that dk reduces the model mk at least as much as a zero
step. Finally, the third condition in line 22 promotes fast local convergence of the
iterate sequence \{ xk\} (see section 4.2), but its enforcement (or lack of enforcement)
is irrelevant with respect to the complexity result that we prove in section 4.1. In our
numerical implementation we apply the linear CG algorithm to the systemHkd = - gk
associated with the model mk in line 20, although other options include a blockwise
coordinate descent method applied to the model mk. In particular, the direction as-
sociated with every iteration of the CG algorithm satisfies the first two conditions
in line 22, and the third condition in line 22 is satisfied by all sufficiently large CG
iterations. (The fact that the first condition in line 22 holds for every iteration within
CG is not a commonly mentioned result, but it follows from the updates that define
CG.) Thus, the requirements of this subroutine can always be met.

Algorithm 3.2. Computing dk in line 10 of Algorithm 3.1.

18: procedure dk = m direction(gk, Hk)
19: Constant: q is provided by Algorithm 3.1.
20: Define the model mk(d) := gTk d+

1
2d

THkd.
21: Compute the reference direction (an approximate minimizer of mk) as

dRk \leftarrow - \beta kgk, where \beta k \leftarrow \| gk\| 22/(gTk Hkgk).

22: Choose \mu k \in (0, 1] and then compute any dk \approx argmin
d

mk(d) that satisfies

gTk dk \leq gTk d
R
k , mk(dk) \leq mk(0), and \| Hkdk + gk\| 2 \leq \mu k\| gk\| q2.

23: return dk

3.3. Reduced-space search using an m-direction (Algorithm 3.3). This
subroutine searches along the direction dk returned by the subroutine m direction

in line 10 of Algorithm 3.1. For an illustration of this search, which incorporates
projections, see Figure 3.1. The approach uses the direction dk, without modification,
for each block of variables \scrG i such that the ray \{ [xk + \tau dk]\scrG i

: \tau \geq 0\} does not
intersect the ball centered at zero of radius \=\rho k,i = min\{ \rho k,i, sin(\theta)\| [xk]\scrG i\| 2\} , where
\rho k,i is defined in (3.5) and \theta \in (0, \pi /2) is a user-defined parameter. When they do
intersect, we first compute \tau k,i as the smallest step along dk (restricted to block \scrG i)
that intersects the ball. Then, during the search that follows, any time the trial step
size \xi j is larger than \tau k,i, the trial step for block \scrG i is set to zero; otherwise, dk is
used so that the trial step (with respect to block \scrG i) is [xk + \xi jdk]\scrG i

(see line 37).
If termination occurs in line 38, a new block of variables will become zero, in which
case we require the objective function not to increase (see line 39). On the other
hand, if termination occurs in line 44, it indicates that the objective function has
been sufficiently reduced (see line 43) and no new groups of zeros have been formed.

3.4. Reduced-space line search along a PG direction (Algorithm 3.4).
This subroutine performs a line search along the PG direction P\scrI (sk). The search
ensures that the step yields decrease in the objective of at least (\eta \xi j/\alpha k)\| P\scrI k

(sk)\| 22

A SUBSPACE ACCELERATION METHOD 553

Algorithm 3.3. Computing xk+1 in line 12 of Algorithm 3.1.

24: procedure (xk+1,flag
m
k) = m update(xk, dk, \scrI k)

25: Constants: \eta , \xi , and \theta provided by Algorithm 3.1.
26: for each i such that \scrG i \subseteq \scrI k do
27: Compute \rho k,i as defined in (3.5).
28: Set \=\rho k,i \leftarrow min\{ \rho k,i, sin(\theta)\| [xk]\scrG i

\| 2\} .
29: if \{ [xk + \tau dk]\scrG i : \tau \geq 0\} \cap \{ x \in \BbbR | \scrG i| : \| x\| 2 \leq \=\rho k,i\} = \emptyset then
30: Set \tau k,i \leftarrow \infty .
31: else
32: Set \tau k,i as the smallest positive root of \| [xk + \tau dk]\scrG i

\| 2 = \=\rho k,i.

33: Set j \leftarrow 0 and \tau k := mini\{ \tau k,i : \scrG i \subseteq \scrI k\} .
34: while \xi j \geq \tau k do
35: Set [yj]\scrI c

k
\leftarrow [xk]\scrI c

k
.

36: for each i such that \scrG i \subseteq \scrI k do

37: Set [yj]\scrG i \leftarrow
\Biggl\{
[xk]\scrG i

+ \xi j [dk]\scrG i
if \xi j < \tau k,i,

0 if \xi j \geq \tau k,i.

38: if f(yj) + r(yj) \leq f(xk) + r(xk) then
39: return xk+1 \leftarrow yj and flagmk \leftarrow new zero

40: Set j \leftarrow j + 1.

41: loop
42: Set yj \leftarrow xk + \xi jdk.
43: if f(yj) + r(yj) \leq f(xk) + r(xk) + \eta \xi j\nabla \scrI k

(f + r)(xk)
T [dk]\scrI k

then
44: return xk+1 \leftarrow yj and flagmk \leftarrow suff descent

45: Set j \leftarrow j + 1.

[xk]Gi

ρk,i
ρ̄k,i

0

[dk]Gi

[xk]Gi

ρk,i

ρ̄k,i

0

[dk]Gi

Fig. 3.1. The reduced-space projected search based on the m-direction dk described in sec-
tion 3.3. In the figure on the left, the direction dk does not intersect the ball of radius \=\rho k,i. In this
case, standard backtracking is used, as indicated by the solid green dots. In the figure on the right,
the direction dk does intersect the ball of radius \=\rho k,i. In this case, all points after the first point of
intersection (indicated by hollow green circles) are projected to zero. Once the backtracking points
leave the ball of radius \=\rho k,i (indicated as solid green dots), standard backtracking is resumed.

for some positive integer j computed within the while loop in line 49. Once the
while loop terminates, the update flagpgk \leftarrow same \alpha is made if j = 0 and set as
flagpgk \leftarrow decrease \alpha otherwise. The motivation for this update is Lemma 2.2, which
shows that the while loop in line 49 will terminate with j = 0 if the PG parameter

554 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

\alpha k is sufficiently small. Therefore, any time j > 0, Algorithm 3.4 returns flagpgk \leftarrow
decrease \alpha to Algorithm 3.1 in line 16 so that the PG parameter value for the next
iteration is reduced by a factor of \xi \in (0, 1) in line 17.

Algorithm 3.4. Computing xk+1 in line 16 of Algorithm 3.1.

46: procedure (xk+1,flag
pg
k) = pg update(xk, sk, \alpha k, \scrI k)

47: Constants: \eta and \xi provided by Algorithm 3.1.
48: Set j \leftarrow 0 and y0 \leftarrow xk + P\scrI k

(sk).
49: while f(yj) + r(yj) > f(xk) + r(xk) - \eta \xi j 1

\alpha k
\| P\scrI k

(sk)\| 22 do

50: Set j \leftarrow j + 1 and then yj \leftarrow xk + \xi jP\scrI k
(sk).

51: if j = 0 then
52: return xk+1 \leftarrow yj and flagpgk \leftarrow same \alpha
53: else
54: return xk+1 \leftarrow yj and flagpgk \leftarrow decrease \alpha

4. Analysis. Our analysis considers worst-case complexity (section 4.1) and lo-
cal convergence (section 4.2) properties of Algorithm 3.1. To identify an approximate
solution to problem (1.1), we use the measure max\{ \chi pg

k , \chi m
k \} , as we now justify.

Lemma 4.1. Let \scrK \subseteq \BbbN be such that limk\in \scrK xk = x\ast and limk\in \scrK \alpha k = \alpha \ast > 0.
Then, x\ast is a solution to problem (1.1) if and only if limk\in \scrK max\{ \chi pg

k , \chi m
k \} = 0.

Proof. First, we may apply [9, Theorem 3.2.8], with the choice y = (x, \alpha) and
the set map \scrC (y) = \BbbR n, to the objective function appearing in (2.1) to conclude that
T (x, \alpha) is continuous on \BbbR n \times (0,\infty). Combining this property with the definition
of T in (2.1) and the assumption that limk\in \scrK (xk, \alpha k) = (x\ast , \alpha \ast) with \alpha \ast > 0 shows
that limk\in \scrK sk = limk\in \scrK

\bigl(
T (xk, \alpha k) - xk

\bigr)
= T (x\ast , \alpha \ast) - x\ast . It follows from this limit

and the fact that Assumption 1.1 and [2, Theorem 10.7] together show that x\ast is a
solution to problem (1.1) if and only if T (x\ast , \alpha \ast) = x\ast .

Suppose that max\{ \chi m
k , \chi

pg
k \} = 0 for some k \in \BbbN . By defining the sequences \{ xj\}

and \{ \alpha j\} such that xj = xk and \alpha j = \alpha k for all j \geq 1, we may apply Lemma 4.1
(with k replaced by j) to conclude that xk is a solution to problem (1.1). Hence, for
the remainder of this section, we make the following assumption.

Assumption 4.1. For all iterations k \in \BbbN , it holds that max\{ \chi m
k , \chi

pg
k \} > 0.

Since our analysis considers the properties of the sequence of iterates, it is con-
venient to define the following partition of iterations performed by Algorithm 3.1:

\scrK m := \{ k \in \BbbN : line 12 is reached during the kth iteration\} ,
\scrK m

0 := \{ k \in \scrK m : subroutine m update returns flagmk = new zero in line 12\} ,
\scrK m

sd := \{ k \in \scrK m : subroutine m update returns flagmk =suff descent in line 12\} ,
\scrK pg := \{ k \in \BbbN : line 16 is reached during the kth iteration\} ,
\scrK pg
\rightarrow := \{ k \in \scrK pg : subroutine pg update returns flagpgk = same \alpha in line 16\} , and

\scrK pg
\downarrow := \{ k \in \scrK pg : subroutine pg update returns flagpgk = decrease \alpha in line 16\} ,

so that \scrK m = \scrK m
0 \cup \scrK m

sd, \scrK pg = \scrK pg
\rightarrow \cup \scrK pg

\downarrow , and \BbbN = \scrK m \cup \scrK pg.
Finally, we assume that the symmetric and positive-definite matrices required in

line 9 are chosen to be bounded and uniformly positive definite.

A SUBSPACE ACCELERATION METHOD 555

Assumption 4.2. The matrix sequence \{ Hk\} k\in \scrK m chosen in line 9 is bounded and
uniformly positive definite. That is, there exist constants 0 < \mu min \leq \mu max <\infty such
that \mu min\| v\| 22 \leq vTHkv \leq \mu max\| v\| 22 for all k \in \scrK m and v \in \BbbR | \scrI k| .

4.1. Complexity result. We first focus our attention on iterations in \scrK pg. The
next result shows that Algorithm 3.4 is well posed and that the new iterate that it
produces satisfies a decrease property that will be useful for our complexity analysis.

Lemma 4.2. For each k \in \scrK pg, Algorithm 3.4 is called in line 16 and successfully
returns xk+1 and flagpgk . Moreover, the value of flagpgk indicates whether k \in \scrK pg

\downarrow or
k \in \scrK pg

\rightarrow , and for these respective cases the following properties hold:

(i) If k \in \scrK pg
\rightarrow , then \alpha k+1 = \alpha k and f(xk+1)+r(xk+1) \leq f(xk)+r(xk) - \eta \varphi 2

\alpha k
(\chi pg

k)2.

(ii) If k \in \scrK pg
\downarrow , then \alpha k+1 = \xi \alpha k and f(xk+1) + r(xk+1) < f(xk) + r(xk).

Proof. Since k \in \scrK pg, we know that the condition tested in line 7 of Algorithm 3.1
must not hold, meaning that \chi pg

k > \chi m
k . Combining this observation with line 15 of

Algorithm 3.1 shows that the set \scrI k defined in line 15 satisfies

(4.1) \| P\scrI k
(sk)\| 2 = \| [sk]\scrI k

\| 2 \geq \varphi \chi pg
k > 0.

Combining this result with Lemma 2.1 (using \scrI = \scrI k, x = xk, and \alpha = \alpha k) yields

(4.2) Df+r(xk;P\scrI k
(sk)) \leq - 1

\alpha k
\| P\scrI k

(sk)\| 22 < 0.

It is possible that Algorithm 3.4 terminates in line 52 because the inequality in
line 49 does not hold for j = 0. In this case, Algorithm 3.4 successfully returns
xk+1 = y0 = xk + P\scrI k

(sk) and flagpgk = same \alpha , also indicating that k \in \scrK pg
\rightarrow . Since

the while loop in line 49 terminates with j = 0, we can conclude that

(4.3) f(xk+1) + r(xk+1) \equiv f(y0) + r(y0) \leq f(xk) + r(xk) - \eta
\alpha k
\| P\scrI k

(sk)\| 22.

Combining this bound with (4.1) yields Lemma 4.2(i). Finally, since flagpgk = same \alpha ,
it follows from line 17 that \alpha k+1 = \alpha k, completing the proof in this case.

It remains to consider the case when Algorithm 3.4 is unable to terminate in
line 52 because the inequality in line 49 holds for j = 0. In this case, it follows
from (4.2) and standard results for a backtracking Armijo line search that, for all
sufficiently large j, the vector yj \leftarrow xk + \xi jP\scrI k

(sk) defined in line 50 of Algorithm 3.4
satisfies f(yj) + r(yj) \leq f(xk) + r(xk) + \eta \xi jDf+r(xk;P\scrI k

(sk)) \leq f(xk) + r(xk) -
\eta \xi j 1

\alpha k
\| P\scrI k

(sk)\| 22. This inequality shows that the while loop starting in line 49 of
Algorithm 3.4 will terminate finitely, and thus Algorithm 3.4 successfully returns
xk+1 = yj = xk + \xi jP\scrI k

(sk) for some j > 0 and flagpgk = decrease \alpha , also indicating
that k \in \scrK pg

\downarrow . Moreover, that inequality may be combined with yj = xk+1, and
(4.2) proves that f(xk+1) + r(xk+1) < f(xk) + r(xk), as claimed. Finally, since
flagpgk = decrease \alpha , we see in line 17 that \alpha k+1 = \xi \alpha k.

Next, we prove that the PG parameter remains bounded away from zero.

Lemma 4.3. The PG parameter sequence generated by Algorithm 3.1 satisfies 1 \geq
\alpha k \geq \alpha min := min

\bigl\{
\alpha 0,

2\xi (1 - \eta)
L

\bigr\}
> 0 for all k \in \BbbN . Moreover, a bound on the number

of times the PG parameter is decreased is given by

(4.4) | \scrK pg
\downarrow | \leq c\alpha \downarrow := max

\Bigl\{
0,
\Bigl\lceil
log

\Bigl(
\alpha 0L

2(1 - \eta)

\Bigr)
/ log(\xi - 1)

\Bigr\rceil \Bigr\}
.

556 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

Proof. Since \alpha 0 \in (0, 1] in line 3 and \alpha k+1 \leq \alpha k for all k \in \BbbN , we need only
prove the lower bound on \alpha k. With that goal in mind, for the purpose of obtaining a
contradiction, suppose that there exists an iteration k satisfying \alpha k \leq 2(1 - \eta)/L <
2/L, with the latter inequality holding since \eta \in (0, 1).

First suppose that k \in \scrK pg. With y0 = xk+P\scrI k
(sk) as in line 48 of Algorithm 3.4,

it follows from Lemma 2.2 with x = xk, \alpha = \alpha k, and s(x, \alpha) = sk that f(y0)+r(y0) \leq
f(xk) + r(xk) - (1

\alpha k
 - L

2)\| P\scrI (sk)\| 22 \leq f(xk) + r(xk) -
\bigl(

1
\alpha k
 - 2(1 - \eta)

2\alpha k

\bigr)
\| P\scrI (sk)\| 22 =

f(xk) + r(xk) - \eta
\alpha k
\| P\scrI (sk)\| 22. This inequality implies that the condition checked in

line 49 for j = 0 will not hold, meaning that j = 0 when line 51 is reached so that
flagpgk \leftarrow same \alpha in line 52. Thus, when line 17 in Algorithm 3.1 is reached, the update
\alpha k+1 \leftarrow \alpha k will take place. Second, if k \in \scrK m, then Algorithm 3.1 sets \alpha k+1 \leftarrow \alpha k. To
summarize, any time \alpha k \leq 2(1 - \eta)/L, the update \alpha k+1 \leftarrow \alpha k takes place; combining
this with the fact that when the PG parameter is decreased the update \alpha k+1 \leftarrow \xi \alpha k

is used (see line 17 in Algorithm 3.1) gives the lower bound on \alpha k.
We now prove (4.4). Let us observe from the first paragraph in this proof that if

\alpha 0 \leq 2(1 - \eta)/L, then | \scrK pg
\downarrow | = 0, which verifies that (4.4) holds. Therefore, for the

remainder of the proof, suppose that \alpha 0 > 2(1 - \eta)/L. Combining this bound with the
fact that when the PG parameter is decreased the update \alpha k+1 \leftarrow \xi \alpha k is used, we see
that an upper bound on | \scrK pg

\downarrow | is the smallest integer \ell such that \alpha 0\xi
\ell \leq 2(1 - \eta)/L.

Solving this inequality for \ell shows that the result in (4.4) holds.

We now switch our attention to iterations in \scrK m. The next result establishes that
Algorithm 3.2 is well posed and that the direction dk that results from it when called
by Algorithm 3.1 satisfies a certain descent property.

Lemma 4.4. For each k \in \scrK m, Algorithm 3.2 is well posed. Moreover, the result-
ing direction dk, which is used to compute dk in line 11, guarantees that dk satisfies

(i) \nabla \scrI k
(f + r)(xk)

T [dk]\scrI k
\leq - 1

\mu max
\| \nabla \scrI k

(f + r)(xk)\| 22 < 0 and

(ii) \| dk\| 2 \leq (2/\mu min)\| \nabla \scrI k
(f + r)(xk)\| 2,

where \scrI k \subseteq \scrI mk is the set in line 8 used as an input to Algorithm 3.2 in line 12.

Proof. Since k \in \scrK m, Algorithm 3.2 is called in line 10 with input \scrI k defined in
line 8. We first prove that gk = \nabla \scrI k

(f + r)(xk), as defined in line 9, is nonzero. For a
proof by contradiction, suppose that gk = 0 so that \nabla \scrG i

(f + r)(xk) = 0 for all i such
that \scrG i \subseteq \scrI k. Consider arbitrary such i. Note that [xk]\scrG i

\not = 0 and [xk + sk]\scrG i
\not = 0

since \scrG i \subseteq \scrI k \subseteq \scrI mk (see line 8) and by how \scrI mk is defined. This allows us to conclude
from Lemma 2.3 that [sk]\scrG i = 0, i.e., that [sk]\scrI k

= 0 since i with \scrG i \subseteq \scrI k was
arbitrary. This fact and line 8 yield \chi m

k = 0, but since the inequality in line 7 must
hold, we also have \chi pg

k = 0. This contradicts Assumption 4.1, thus establishing that
gk \not = 0. Now, it follows from lines 9, 11, 22, and 21, gk \not = 0, and Assumption 4.2
that \nabla \scrI k

(f + r)(xk)
T [dk]\scrI k

\equiv gTk dk \leq gTk d
R
k = - \beta k\| gk\| 22 = - \| gk\| 42/(gTk Hkgk) \leq

 - 1
\mu max
\| gk\| 22. The result in (i) follows from this inequality and gk = \nabla \scrI k

(f+r)(xk) \not = 0.

Part (ii) is precisely [6, Lemma 3.8] under our Assumption 4.2 since our conditions
placed upon the step dk are exactly the same as those used in [6].

The next lemma shows that, for k \in \scrK m, a local Lipschitz property holds along a
certain portion of the search path defined by the reduced-space m-direction.

Lemma 4.5. Let k \in \scrK m so that \scrI k is computed in line 8. The following hold:
(i) The constant \theta \in (0, \pi /2) and index set \scrI k passed into Algorithm 3.3 satisfy,

for each i such that \scrG i \subseteq \scrI k with \rho k,i computed in (3.5) and \=\rho k,i computed in
line 28, the following conditions:

A SUBSPACE ACCELERATION METHOD 557

(a) \| [xk + sk]\scrG i
\| 2 \not = 0,

(b) \| [xk]\scrG i
\| 2 \geq \rho k,i \geq \=\rho k,i \geq sin(\theta)\rho k,i > 0, and

(c) \| [xk]\scrG i
\| 2 - \=\rho k,i \geq \kappa 2(1 - sin(\theta))\| \nabla \scrI k

(f + r)(xk)\| p2.
(ii) For all step sizes \beta \in [0, \tau k) with \tau k computed in line 33, it holds, with

(4.5) \lambda max := max\{ \lambda 1, \lambda 2, . . . , \lambda n\scrG \} and \rho k,min := min
i
\{ \rho k,i : \scrG i \subseteq \scrI k\} ,

that \| \nabla \scrI k
(f + r)(xk) - \nabla \scrI k

(f + r)(xk + \beta dk)\| 2 \leq \beta
\bigl(
Lg +

\lambda max

\rho k,min

\bigr)
\| [dk]\scrI k

\| 2.
Proof. We first prove part (i). Consider arbitrary i with \scrG i \subseteq \scrI k, where \scrI k \subseteq \scrI mk

is passed into Algorithm 3.3 and constructed to satisfy the condition in line 8. Part
(a) follows from \scrI mk \subseteq \=\scrI mk and the definition of \=\scrI mk in (3.2). The first inequality in
part (b) follows from \scrI mk \subseteq \=\scrI mk and how \scrI mk , \scrI small

k , and \=\scrI mk are defined. The second
inequality in (b) follows from how \=\rho k,i is defined in line 28. The third inequality
in (b) follows from line 28 and the first inequality in (b). To complete part (b),
we prove \rho k,i > 0. For a proof by contradiction, assume \rho k,i = 0, which by (3.5)
means that \| \nabla \scrI m

k
(f + r)(xk)\| 2 = 0. This fact means that each i with \scrG i \subseteq \scrI k \subseteq \scrI mk

satisfies \| \nabla \scrG i
(f + r)(xk)\| 2 = 0, which with Lemma 2.3 (using x = xk, \alpha = \alpha k, and

s(x, \alpha) = sk) and the definition of \scrI mk implies that \| [sk]\scrG i
\| 2 = 0 for each \scrG i \subseteq \scrI k, i.e.,

that \| [sk]\scrI k
\| 2 = 0. It now follows from line 8 that \chi m

k = 0, which with line 7 yields \chi pg
k

= 0. We have reached a contradiction to Assumption 4.1, and conclude that \rho k,i > 0,
as claimed. Finally, we prove part (c). It follows from line 28, \theta \in (0, \pi /2), part (b),
(3.5), and the fact that \scrI k \subseteq \scrI mk that \| [xk]\scrG i\| 2 - \=\rho k,i \geq \| [xk]\scrG i\| 2 - sin(\theta)\| [xk]\scrG i\| 2 =
(1 - sin(\theta))\| [xk]\scrG i

\| 2 \geq (1 - sin(\theta))\rho k,i \geq \kappa 2(1 - sin(\theta))\| \nabla \scrI m
k
(f + r)(xk)\| p2 \geq \kappa 2(1 -

sin(\theta))\| \nabla \scrI k
(f + r)(xk)\| p2, which completes the proof of part (c).

To prove part (ii), let \beta \in [0, \tau k). It follows from part (i) and the definition of
\tau k in line 33 that every point on the segment that connects [xk]\scrG i

to [xk + \beta dk]\scrG i
is

outside of the ball in \BbbR | \scrG i| centered at zero of radius \=\rho k,i > 0. This means that both
\| [xk]\scrG i\| \geq \=\rho k,i and \| [xk + \beta dk]\scrG i\| \geq \=\rho k,i. It now follows that

(4.6)

\| \nabla \scrG i
r(xk) - \nabla \scrG i

r(xk + \beta dk)\| 2

= \lambda i

\bigm\| \bigm\| \bigm\| \bigm\| [xk]\scrG i

\| [xk]\scrG i\| 2
 - [xk + \beta dk]\scrG i

\| [xk + \beta dk]\scrG i\| 2

\bigm\| \bigm\| \bigm\| \bigm\|
2

=
\lambda i

\=\rho k,i

\bigm\| \bigm\| \bigm\| \bigm\| \=\rho k,i[xk]\scrG i

\| [xk]\scrG i\| 2
 - \=\rho k,i[xk + \beta dk]\scrG i

\| [xk + \beta dk]\scrG i\| 2

\bigm\| \bigm\| \bigm\| \bigm\|
2

\leq \lambda i

\=\rho k,i
\| [xk]\scrG i

 - [xk + \beta dk]\scrG i
\| 2 =

\lambda i\beta

\=\rho k,i
\| [dk]\scrG i

\| 2,

where the (only) inequality follows from the nonexpansive property of the projection
(of [xk]\scrG i

and [xk + \beta dk]\scrG i
) onto the ball of radius \=\rho k,i. From (4.6) we have

\| \nabla \scrI k
r(xk) - \nabla \scrI k

r(xk + \beta dk)\| 22

=
\sum

i:\scrG i\subseteq \scrI k

\| \nabla \scrG ir(xk) - \nabla \scrG ir(xk + \beta dk)\| 22 \leq \beta 2
\sum

i:\scrG i\subseteq \scrI k

\lambda 2
i

\=\rho 2k,i
\| [dk]\scrG i

\| 22

\leq \beta 2\lambda 2
max

\rho 2k,min

\sum
i:\scrG i\subseteq \scrI k

\| [dk]\scrG i\| 22 =
\beta 2\lambda 2

max

\rho 2k,min

\| [dk]\scrI k
\| 22.(4.7)

It follows from Assumption 1.1, [dk]\scrI c
k
= 0, the triangle inequality, and (4.7) that

\| \nabla \scrI k
(f + r)(xk) - \nabla \scrI k

(f + r)(xk + \beta dk)\| 2 \leq \| \nabla \scrI k
f(xk) - \nabla \scrI k

f(xk + \beta dk)\| 2 +
\| \nabla \scrI k

r(xk) - \nabla \scrI k
r(xk + \beta dk)\| 2 \leq \beta

\bigl(
Lg +

\lambda max

\rho k,min

\bigr)
\| [dk]\scrI k

\| 2, as claimed.

We now show that Algorithm 3.3 is well posed and that the new iterate it produces
satisfies a decrease property that will be used in the final complexity result.

558 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

Lemma 4.6. For each k \in \scrK m, Algorithm 3.3 is called in line 12 and successfully
returns xk+1 and flagmk . Moreover, the value of flagmk indicates whether k \in \scrK m

0 or
k \in \scrK m

sd, and for these respective cases the following properties hold:
(i) If k \in \scrK m

0 , then f(xk+1) + r(xk+1) \leq f(xk) + r(xk), and xk+1 has at least
one additional block of zeros compared to xk.

(ii) If k \in \scrK m
sd, then

(4.8) f(xk+1) + r(xk+1) \leq f(xk) + r(xk) - min\{ c1(\chi m
k)

1+p, c2(\chi
m
k)

2+p\} ,

where c1 :=
\eta \xi \mu min\kappa 2

\bigl(
1 - sin(\theta)

\bigr)
\varphi 1+p

2\mu max
and c2 :=

\kappa 2\mu
2
min\xi \eta (1 - \eta)\varphi 2+p

2\mu 2
max

\bigl(
Lg\kappa 2(Lf+\lambda max

\surd
n\scrG)p+\lambda max

\bigr) .
Proof. Throughout, we use F := f + r. It is possible that Algorithm 3.3 success-

fully terminates in line 39, in which case it follows from line 39 and line 38 that the
returned xk+1 and flagmk satisfy F (xk+1) \leq F (xk) and flagmk = new zero, indicating
that k \in \scrK m

0 . Moreover, upon termination, the value j satisfies \xi j \geq \tau k (see line 34),
which combined with line 37 shows that at least one additional group of variables has
become zero at xk+1. This proves that part (i) holds.

Next, suppose that Algorithm 3.3 does not terminate in line 39. Observe from
the definition of \tau k in line 33 that \tau k > 0 (this follows from Lemma 4.5(i) and the
definition of \=\rho k,i). Therefore, it follows that the while loop starting in line 34 will

terminate with the smallest nonnegative integer j such that \xi j < \tau k, and the loop in
line 41 will begin with j = j. We now claim that the condition in line 43 used to
determine termination of the loop is satisfied for all j \geq j such that

(4.9) \xi j \in
\biggl[
0,

2(\eta - 1)\nabla \scrI k
F (xk)

T [dk]\scrI k

(Lg + \lambda max/\rho k,min)\| [dk]\scrI k
\| 22

\biggr]
\subset [0, \tau k).

To see that this claim holds, we can use the integral form of Taylor's theorem and
Lemma 4.5(ii) (using the fact that \gamma \xi j \in [0, \tau k) for all \gamma \in [0, 1]) to obtain

| F (xk + \xi jdk) - F (xk) - \xi j\nabla \scrI k
F (xk)

T [dk]\scrI k
|

\leq
\bigm| \bigm| \bigm| \bigm| \int 1

0

\xi j [dk]
T
\scrI k

\bigl(
\nabla \scrI k

F (xk + \gamma \xi jdk) - \nabla \scrI k
F (xk)

\bigr)
d\gamma

\bigm| \bigm| \bigm| \bigm|
\leq \xi j

\int 1

0

\| [dk]\scrI k
\| 2\| \nabla \scrI k

F (xk + \gamma \xi jdk) - \nabla \scrI k
F (xk)

\bigr)
\| 2d\gamma

\leq \xi 2j(Lg + \lambda max/\rho k,min)\| [dk]\scrI k
\| 22

\int 1

0

\gamma d\gamma = 1
2\xi

2j(Lg + \lambda max/\rho k,min)\| [dk]\scrI k
\| 22.

Combining this inequality with (4.9) yields

F (xk + \xi jdk) \leq F (xk) + \xi j\nabla \scrI k
F (xk)

T [dk]\scrI k
+ 1

2\xi
2j(Lg + \lambda max/\rho k,min)\| [dk]\scrI k

\| 22
= F (xk) + \xi j\nabla \scrI k

F (xk)
T [dk]\scrI k

+ \xi j(\eta - 1)\nabla \scrI k
F (xk)

T [dk]\scrI k

= F (xk) + \eta \xi j\nabla \scrI k
F (xk)

T [dk]\scrI k
,

which establishes our claim that the inequality in line 43 holds for all j \geq j such
that \xi j satisfies (4.9). This shows that the loop will successfully terminate with
flagmk = suff descent (thus indicating that k \in \scrK m

sd) and xk+1 satisfying

(4.10) F (xk+1) \leq F (xk) + \eta \xi
\^j\nabla \scrI k

F (xk)
T [dk]\scrI k

A SUBSPACE ACCELERATION METHOD 559

for some \^j satisfying

\xi
\^j \geq min

\biggl\{
\xi j ,

2\xi (\eta - 1)\nabla \scrI k
F (xk)

T [dk]\scrI k

(Lg + \lambda max/\rho k,min)\| [dk]\scrI k
\| 22

\biggr\}
\geq min

\biggl\{
\xi \tau k,

2\xi (\eta - 1)\nabla \scrI k
F (xk)

T [dk]\scrI k

(Lg + \lambda max/\rho k,min)\| [dk]\scrI k
\| 22

\biggr\}
,(4.11)

where the second inequality follows from the fact that j is the smallest nonnegative
integer such that \xi j < \tau k. We now consider two cases.

Case 1. The minimum in (4.11) is \xi \tau k, from which we may conclude that \tau k <\infty .
Using (4.10) and Lemma 4.4(i) we have that

(4.12) F (xk+1) \leq F (xk) + \eta \xi
\^j\nabla \scrI k

F (xk)
T [dk]\scrI k

\leq F (xk) - \eta \xi
\mu max

\tau k\| \nabla \scrI k
F (xk)\| 22.

We now seek a lower bound on \tau k. Consider i such that \tau k,i <\infty when computed in
Algorithm 3.3. The triangle inequality gives \=\rho k,i = \| [xk + \tau k,idk]\scrG i

\| 2 \geq \| [xk]\scrG i
\| 2 -

\tau k,i\| [dk]\scrG i
\| 2, which together with Lemma 4.5(i)(c) and Lemma 4.4(ii) shows that

\tau k,i \geq \| [xk]\scrG i
\| 2 - \=\rho k,i

\| [dk]\scrG i
\| 2

\geq \mu min\kappa 2(1 - sin(\theta))\| \nabla \scrI k
F (xk)\| p

2

2\| \nabla \scrI k
F (xk)\| 2

= \mu min

2 \kappa 2(1 - sin(\theta))\| \nabla \scrI k
F (xk)\| p - 1

2 .

From this, it follows that \tau k \geq 1
2\mu min\kappa 2(1 - sin(\theta))\| \nabla \scrI k

F (xk)\| p - 1
2 . Using this in-

equality with (4.12), Lemma 2.3, and the set \scrI k from line 8 shows that F (xk+1) \leq
F (xk) - \eta \xi \mu min\kappa 2(1 - sin(\theta))

2\mu max
\| \nabla \scrI k

F (xk)\| 1+p
2 \leq F (xk) - \eta \xi \mu min\kappa 2(1 - sin(\theta))

2\mu max
\| [sk]\scrI k

\| 1+p
2 \leq

F (xk) - \eta \xi \mu min\kappa 2(1 - sin(\theta))\varphi 1+p

2\mu max
(\chi m

k)
1+p, thus completing the proof for this case.

Case 2. The minimum in (4.11) is
2\xi (\eta - 1)\nabla \scrI k

F (xk)
T [dk]\scrI k

(L+\lambda max/\rho k,min)\| [dk]\scrI k
\| 2
2
. Combining this fact

with (4.10), (4.11), Lemma 4.4(i), and Lemma 4.4(ii) shows that

(4.13)

F (xk+1) \leq F (xk) + \eta \xi
\^j\nabla \scrI k

F (xk)
T [dk]\scrI k

\leq F (xk) -
2\xi \eta (1 - \eta)\| \nabla \scrI k

F (xk)\| 42
\mu 2
max(Lg + \lambda max/\rho k,min)\| [dk]\scrI k

\| 22
\leq F (xk) -

2\mu 2
min\xi \eta (1 - \eta)\| \nabla \scrI k

F (xk)\| 42
4\mu 2

max(Lg + \lambda max/\rho k,min)\| \nabla \scrI k
F (xk)\| 22

= F (xk) -
\mu 2
min\xi \eta (1 - \eta)\| \nabla \scrI k

F (xk)\| 22
2\mu 2

max(Lg + \lambda max/\rho k,min)
.

It follows from (4.5), (3.5), and \scrI k \subseteq \scrI mk that \rho k,min \geq \kappa 2\| \nabla \scrI k
F (xk)\| p2. Combining

this bound with (4.13) shows that

(4.14)

F (xk+1) \leq F (xk) -
\mu 2
min\xi \eta (1 - \eta)\| \nabla \scrI k

F (xk)\| 22
2\mu 2

max(Lg + \lambda max/\rho k,min)

\leq F (xk) -
\mu 2
min\xi \eta (1 - \eta)\| \nabla \scrI k

F (xk)\| 22
2\mu 2

max

\bigl(
Lg + \lambda max/(\kappa 2\| \nabla \scrI k

F (xk)\| p2)
\bigr)

= F (xk) -
\kappa 2\mu

2
min\xi \eta (1 - \eta)\| \nabla \scrI k

F (xk)\| 2+p
2

2\mu 2
max(Lg\kappa 2\| \nabla \scrI k

F (xk)\| p2 + \lambda max)
.

560 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

Next, we know from Lemma 4.2, Lemma 4.6(i), (4.12), and (4.14) that F (xk) \leq
F (x0) for all k \in \BbbN , i.e., xk \in \scrL for all k \in \BbbN . Combining this fact with the triangle
inequality, Assumption 1.1, the definition of r, and (4.5) gives

\| \nabla \scrI k
F (xk)\| 2 \leq \| \nabla \scrI k

f(xk)\| 2 + \| \nabla \scrI k
r(xk)\| 2 = \| \nabla \scrI k

f(xk)\| 2 +
\Bigl(\sum
i:\scrG i\subseteq \scrI k

\| \nabla \scrG i
r(xk)\| 22

\Bigr) 1/2

\leq Lf +
\Bigl(\sum

i:\scrG i\subseteq \scrI k

\| \lambda i[xk]\scrG i
/\| [xk]\scrG i

\| 2\| 22
\Bigr) 1/2

= Lf +
\Bigl(\sum

i:\scrG i\subseteq \scrI k

\lambda 2
i

\Bigr) 1/2

\leq Lf +
\Bigl(\sum

i:\scrG i\subseteq \scrI k

\lambda 2
max

\Bigr) 1/2

\leq Lf + \lambda max
\surd
n\scrG .

We can now combine this inequality with (4.14) to obtain the bound F (xk+1) \leq
F (xk) -

\Bigl(
\kappa 2\mu

2
min\xi \eta (1 - \eta)

2\mu 2
max(Lg\kappa 2(Lf+\lambda max

\surd
n\scrG)p+\lambda max)

\Bigr)
\| \nabla \scrI k

F (xk)\| 2+p
2 , which with Lemma 2.3 and

line 8 gives F (xk+1) \leq F (xk) -
\Bigl(

\kappa 2\mu
2
min\xi \eta (1 - \eta)

2\mu 2
max(Lg\kappa 2(Lf+\lambda max

\surd
n\scrG)p+\lambda max)

\Bigr)
\| [sk]\scrI k

\| 2+p
2 \leq F (xk) - \Bigl(

\kappa 2\mu
2
min\xi \eta (1 - \eta)\varphi 2+p

2\mu 2
max(Lg\kappa 2(Lf+\lambda max

\surd
n\scrG)p+\lambda max)

\Bigr)
(\chi m

k)
2+p, thus completing the proof.

The result in (4.8) motivates us to define the following subsets of \scrK m
sd:

(4.15) \scrK m
sd,big := \{ k \in \scrK m

sd : \chi m
k \geq c1/c2\} and \scrK m

sd,small := \scrK m
sd \setminus \scrK m

sd,big.

This distinction plays a role in our complexity result. First, we require a lemma.

Lemma 4.7. The objective function f + r is monotonically decreasing over the
sequence of iterates \{ xk\} and limk\rightarrow \infty

\bigl(
f(xk) + r(xk)

\bigr)
=: Fmin > - \infty .

Proof. It follows from Lemma 4.2 and Lemma 4.6 that the objective function is
monotonically decreasing over the iterate sequence. The remaining conclusion of the
lemma follows from the monotonicity property and Assumption 1.1.

The main theorem can now be stated. It gives an upper bound on the number of
iterations performed by Algorithm 3.1 before an approximate solution is obtained.

Theorem 4.8. Let c1 and c2 be the constants in Lemma (4.6)(ii), and let us
define c3 := \eta \varphi 2/\alpha 0 > 0. For any \epsilon > 0, define \scrK \epsilon := \{ k \in \BbbN : max\{ \chi m

k , \chi
pg
k \} > \epsilon \} .

Then,

(4.16)
| \scrK pg

\rightarrow \cap \scrK \epsilon | \leq cpg\epsilon
 - 2 + 1,

| \scrK m
sd,big \cap \scrK \epsilon | \leq cbig\epsilon

 - (1+p) + 1, and | \scrK m
sd,small \cap \scrK \epsilon | \leq csmall\epsilon

 - (2+p) + 1,

where cpg :=
\bigl(
f(x0) + r(x0) - Fmin

\bigr)
/c3, cbig :=

\bigl(
f(x0) + r(x0) - Fmin

\bigr)
/c1, and

csmall :=
\bigl(
f(x0) + r(x0) - Fmin

\bigr)
/c2. Therefore, if \epsilon \geq c1/c2, then

(4.17) | \scrK \epsilon | \leq
\bigl(
c\alpha \downarrow + cpg\epsilon

 - 2 + cbig\epsilon
 - (1+p) + 2

\bigr)
(1 + n\scrG) + n\scrG ,

where c\alpha \downarrow is defined in (4.4); otherwise, i.e., if \epsilon < c1/c2, then

(4.18) | \scrK \epsilon | \leq
\bigl(
c\alpha \downarrow + cpg\epsilon

 - 2 + cbig\epsilon
 - (1+p) + csmall\epsilon

 - (2+p) + 3
\bigr)
(1 + n\scrG) + n\scrG .

Proof. Note that the definitions of \scrK m and \scrK pg together with line 7 show that

(4.19) \chi m
k \geq \chi pg

k for k \in \scrK m and \chi pg
k > \chi m

k for k \in \scrK pg.

A SUBSPACE ACCELERATION METHOD 561

Define \Delta k := f(xk) + r(xk) -
\bigl(
f(xk+1) + r(xk+1)

\bigr)
and \chi k := max\{ \chi pg

k , \chi m
k \} . Using

Lemma 4.2(i), Lemma 4.3, Lemma 4.6(ii), the definitions of c3 and \scrK \epsilon in the statement
of the theorem, and (4.19) shows for arbitrary k \in \BbbN that

f(x0) + r(x0) -
\bigl(
f(xk+1) + r(xk+1)

\bigr)
=

\sum
0\leq k\leq k

\Delta k

\geq
\sum

k\in \scrK pg
\rightarrow \cap \scrK \epsilon

0\leq k\leq k

\Delta k +
\sum

k\in \scrK m
sd,big\cap \scrK \epsilon

0\leq k\leq k

\Delta k +
\sum

k\in \scrK m
sd,small\cap \scrK \epsilon

0\leq k\leq k

\Delta k

\geq
\sum

k\in \scrK pg
\rightarrow \cap \scrK \epsilon

0\leq k\leq k

c3(\chi
pg
k)2 +

\sum
k\in \scrK m

sd,big\cap \scrK \epsilon

0\leq k\leq k

c1(\chi
m
k)

1+p +
\sum

k\in \scrK m
sd,small\cap \scrK \epsilon

0\leq k\leq k

c2(\chi
m
k)

2+p

\geq
\sum

k\in \scrK pg
\rightarrow \cap \scrK \epsilon

0\leq k\leq k

c3\epsilon
2 +

\sum
k\in \scrK m

sd,big\cap \scrK \epsilon

0\leq k\leq k

c1\epsilon
1+p +

\sum
k\in \scrK m

sd,small\cap \scrK \epsilon

0\leq k\leq k

c2\epsilon
2+p.

From this inequality and Lemma 4.7, one finds that (4.16) follows.
Next, suppose that \epsilon \geq c1/c2. It follows from (4.15) and (4.19) that \chi m

k =
max\{ \chi pg

k , \chi m
k \} > \epsilon \geq c1/c2 for all k \in \scrK m, which implies that \scrK m

sd,small \cap \scrK \epsilon = \emptyset . The
result in (4.17) follows from this observation, (4.16), (4.4), and since (by Lemma 4.6(i))
at most n\scrG iterations in \scrK m

0 can occur before the first, after the last, or between any
two iterations in \scrK pg

\downarrow \cup \scrK pg
\rightarrow \cup \scrK m

sd.
The final result (4.18) follows using the same argument as in the previous para-

graph, except now \scrK m
sd,small \cap \scrK \epsilon is no longer necessarily empty.

We see from (4.18) that, for all sufficiently small \epsilon , the worst-case complexity
result for Algorithm 3.1 is n\scrG \epsilon

 - (2+p), which is worse than the \epsilon - 2 result that holds for
the PG method. However, as is typical with well-designed second-derivative methods,
although the complexity bound is worse, it typically performs better (see section 5).
Also, the PG method would not converge locally superlinearly, whereas our method
can exhibit this behavior, as we show in the next section.

4.2. Local convergence. We now consider the local convergence rate of the
iterates generated by Algorithm 3.1. Our analysis is performed under the following
additional assumption that will be assumed to hold throughout this section.

Assumption 4.3. The following conditions related to problem (1.1) hold:
(i) The function f is twice continuously differentiable, (1.1) has a unique solution

x\ast , and \nabla 2f : \BbbR n \rightarrow \BbbR n\times n is Lipschitz continuous in a neighborhood of x\ast .
(ii) With \scrS \ast := \{ i : [x\ast]\scrG i

\not = 0\} and \scrX \ast := \{ x \in \BbbR n : [x]\scrS c
\ast
= [x\ast]\scrS c

\ast
= 0\} ,

where \scrS c\ast is the complement of \scrS \ast , there exists a scalar \sigma \ast \in (0,\infty) such that
pT\nabla 2f(x\ast)p \geq \sigma \ast \| p\| 22 for all p \in \scrX \ast .

(iii) f is nondegenerate at x\ast , i.e., \| [\nabla f(x\ast)]\scrG i\| 2 < \lambda i for all i /\in \scrS \ast .
Assumption 4.3(ii) is a relaxation of the requirement that f is strongly convex.

As for Assumption 4.3(iii), it is a more strict version of the optimality condition for
problem (1.1), namely, that \| [\nabla f(x\ast)]\scrG i\| 2 \leq \lambda i for all i /\in \scrS \ast .

Assumption 4.4. The following algorithmic choices are made in Algorithm 3.1:
(i) The backtracking parameter is chosen to satisfy \eta \in (0, 1/2).

562 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

(ii) For all sufficiently large k \in \BbbN , \scrI k in line 8/15 is

\scrI k =

\Biggl\{
\scrI mk if k \in \scrK m,

\scrI pgk if k \in \scrK pg.

(iii) For all sufficiently large k \in \scrK m, Hk = \nabla 2
\scrI k\scrI k

(f + r)(xk) is chosen in line 9.

Finally, we make the following assumption about the iterate sequence generated.

Assumption 4.5. The iterate sequence \{ xk\} has a limit point.

This assumption is not too restrictive. It holds, for example, when the level set \scrL
is bounded due to the fact that \{ f(xk)+r(xk)\} is monotonically decreasing. The level
set \scrL is guaranteed to be bounded in various situations, such as when f+r is coercive,
which occurs, for instance, when f is nonnegative-valued (since r is coercive).

The first result of this section shows that the iterate sequence converges to x\ast .

Theorem 4.9. The iterate sequence \{ xk\} generated by Algorithm 3.1 satisfies
limk\rightarrow \infty xk = x\ast and limk\rightarrow \infty max\{ \chi pg

k , \chi m
k \} = 0.

Proof. Theorem 4.8 gives limk\rightarrow \infty max\{ \chi pg
k , \chi m

k \} = 0. Since Assumption 4.5 en-
sures that \{ xk\} has a limit point, say \^x, there exists an infinite \scrK \subseteq \BbbN such that
limk\in \scrK ,k\rightarrow \infty xk = \^x. Then, Lemma 4.1 and Lemma 4.3 imply that \^x is a solution
to (1.1), but then Assumption 4.3 shows that \^x = x\ast , so limk\in \scrK ,k\rightarrow \infty xk = x\ast . The
fact that the entire sequence \{ xk\} converges to x\ast follows from limk\in \scrK ,k\rightarrow \infty xk = x\ast ,
the uniqueness of x\ast in Assumption 4.3(i), and monotonicity of \{ f(xk) + r(xk)\} .

We now show for groups whose variables are all equal to zero at the solution x\ast
that the PG step will eventually predict them to be zero.

Lemma 4.10. For all i /\in \scrS \ast and sufficiently large k, it holds that [xk + sk]\scrG i = 0.

Proof. First note that Lemma 4.3 and the update strategy for \{ \alpha k\} in Algo-
rithm 3.1 ensure that there exists k1 such that \alpha k = \alpha \ast > 0 for all k \geq k1. Let
i /\in \scrS \ast so that [x\ast]\scrG i = 0. It follows from Assumption 4.3 that \alpha \ast \lambda i

\| [x\ast - \alpha \ast \nabla f(x\ast)]\scrG i
\| 2

=
\lambda i

\| [\nabla f(x\ast)]\scrG i
\| 2

> 1. Combining this with Theorem 4.9, \alpha k = \alpha \ast > 0 for all k \geq k1, and

Assumption 1.1 gives some k2 \geq k1 such that 1 - \alpha k\lambda i/\| [xk - \alpha k\nabla f(xk)]\scrG i\| 2 < 0 for
all k \geq k2. Using this fact with (2.2) and (2.3) yields [xk + sk]\scrG i = 0 for all k \geq k2.
We are done since i /\in \scrS \ast was arbitrary and n\scrG is finite.

We now show that, eventually, the set \scrS \ast determines the sets \scrI pgk and \scrI mk .

Lemma 4.11. For all sufficiently large k, it holds that \scrI pgk \equiv \{ j \in \scrG i : i /\in
\scrS \ast \} and \scrI mk \equiv \{ j \in \scrG i : i \in \scrS \ast \} , where the sets \scrI pgk and \scrI mk are defined in (3.4).

Proof. Let k1 be large enough so that the conclusion of Lemma 4.10 holds, i.e.,
if k \geq k1 and i /\in \scrS \ast , then [xk + sk]\scrG i = 0. Together with (3.2), this shows that
\scrG i \cap \=\scrI mk = \emptyset for all k \geq k1 and i /\in \scrS \ast , and thus \scrG i \subseteq \scrI pgk (see (3.4)) for all k \geq k1
and i /\in \scrS \ast . In other words, it holds that \{ j \in \scrG i : i /\in \scrS \ast \} \subseteq \scrI pgk for all k \geq k1.

Next, we prove that there exists k2 such that \scrI pgk \subseteq \{ j \in \scrG i : i /\in \scrS \ast \} for all
k \geq k2. For a proof by contradiction, suppose that there exist an infinite subsequence
\scrK \subseteq \BbbN and group index i such that \scrG i \subseteq \scrI pgk and i \in \scrS \ast for all k \in \scrK . Since \scrG i \subseteq \scrI pgk
for all k \in \scrK , it follows from (3.2), (3.3), and (3.4) that at least one of

[xk]\scrG i
= 0, [xk + sk]\scrG i

= 0, \| [xk]\scrG i
\| 2 < \kappa 1\| \nabla \scrG i

(f + r)(xk)\| 2, or(4.20)

\| [xk]\scrG i
\| 2 < \kappa 2\| \nabla \=\scrI m

k
(f + r)(xk)\| p2(4.21)

A SUBSPACE ACCELERATION METHOD 563

holds for all k \in \scrK . However, since i \in \scrS \ast , it follows from Theorem 4.9 that the first
condition in (4.20) does not hold for all sufficiently large k \in \scrK . Also, it follows from
Theorem 4.9, the facts that \chi pg

k \equiv \| [sk]\scrI pg
k
\| 2 and \chi m

k \equiv \| [sk]\scrI m
k
\| 2, and the fact that

\scrI mk \cup \scrI pgk = \{ 1, . . . , n\} that limk\rightarrow \infty \| sk\| 2 = 0, which combined with i \in \scrS \ast proves
that [xk + sk]\scrG i

\not = 0 for all sufficiently large k. Hence, the second condition in (4.20)
does not hold for all sufficiently large k \in \scrK . Next, from the optimality conditions
for problem (1.1), the fact that i \in \scrS \ast , Theorem 4.9, Assumption 1.1, and the fact
that f + r is differentiable over the variables in \scrG i for sufficiently large k that we have
limk\rightarrow \infty \| \nabla \scrG i

(f + r)(xk)\| 2 = 0. This limit, [x\ast]\scrG i
\not = 0, and Theorem 4.9 show that

\| [xk]\scrG i
\| 2 \geq \kappa 1\| \nabla \scrG i

(f + r)(xk)\| 2 for all sufficiently large k, meaning that the third
condition in (4.20) does not hold for all sufficiently large k \in \scrK . Therefore, we must
conclude that the inequality in (4.21) holds for all sufficiently large k \in \scrK . Combining
this with i \in \scrS \ast shows that there exists \epsilon > 0 such that

(4.22) \| \nabla \=\scrI m
k
(f + r)(xk)\| 2 \geq \epsilon > 0 for all sufficiently large k \in \scrK ,

which in particular shows that \=\scrI mk \not = \emptyset for all sufficiently large k \in \scrK . Since the
optimality conditions for problem (1.1) together with Theorem 4.9, Assumption 1.1,
and the fact that f + r is differentiable over the variables in \scrG i for sufficiently large k
imply that limk\rightarrow \infty \| \nabla \scrG i(f+r)(xk)\| 2 = 0 for all i \in \scrS \ast , we must conclude from (4.22)
that, for all sufficiently large k \in \scrK , there exists an ik /\in \scrS \ast such that \scrG ik \subseteq \=\scrI mk .
However, Lemma 4.10 yields [xk + sk]\scrG ik

= 0 for all sufficiently large k \in \scrK , which
together with (3.2) shows that \scrG ik \nsubseteq \=\scrI mk , which is a contradiction. Therefore, there
exists k2 such that \scrI pgk \subseteq \{ j \in \scrG i : i /\in \scrS \ast \} for all k \geq k2.

The conclusions of the two previous paragraphs yield \scrI pgk \equiv \{ j \in \scrG i : i /\in \scrS \ast \}
for all sufficiently large k. The final assertion, namely, that \scrI mk \equiv \{ j \in \scrG i : i \in \scrS \ast \} ,
follows from the fact that \scrI pgk and \scrI mk partition \{ 1, 2, . . . , n\} for every iteration k.

For k sufficiently large, the support of xk agrees with the support of the solution.

Lemma 4.12. For all sufficiently large k, it holds that [xk]\scrG i
\not = 0 for all i \in \scrS \ast

and [xk]\scrG i
= 0 for all i /\in \scrS \ast .

Proof. Theorem 4.9 shows that [xk]\scrG i
\not = 0 for all sufficiently large k and all i \in \scrS \ast ,

which is the first desired result. Hence, let us proceed by considering arbitrary i /\in \scrS \ast .
Assumption 4.4(ii), Lemma 4.10, Lemma 4.11, and Lemma 4.3 ensure the existence
of an iteration k such that, for all k \geq k, the following hold:

(4.23) \scrG i \subseteq \scrI pgk , [xk + sk]\scrG i
= 0, and \alpha k = \alpha k.

We claim that the second desired result follows from (4.23) if there exists some suffi-

ciently large \^k \geq k such that \^k \in \scrK pg and [x\^k+1]\scrG i
= [x\^k + s\^k]\scrG i

= 0. Indeed, since i
is an arbitrary element from \{ 1, . . . , n\scrG \} \setminus \scrS \ast , n\scrG is finite, and the second condition
in (4.23) shows that values of the variables in \scrG i can only be modified if k \in \scrK pg, the

existence of such \^k along with (4.23) shows that iteration \^k \in \scrK pg sets [x\^k+1]\scrG i
to

zero, and these variables will remain zero for all future iterations.
Let us now show the existence of such \^k \geq k. We claim that there exists k \geq k

such that [xk]\scrG i = 0. For a proof by contradiction, suppose that [xk]\scrG i \not = 0 for all
k \geq k. Combining this with Theorem 4.9, i /\in \scrS \ast , and the fact that the variables
in \scrG i can have their values changed only if k \in \scrK pg implies that there exists \^k \geq k
such that \^k \in \scrK pg. Now, since \^k \in \scrK pg and \alpha k = \alpha k for all k \geq k, it follows from
Algorithm 3.1 that flagpg\^k = same \alpha is returned in line 16. Using this fact, the update

used in line 52, and (4.23) shows that [x\^k+1]\scrG i
= [x\^k + s\^k]\scrG i

= 0.

564 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

We require one more lemma that shows that eventually all iterations are in \scrK m
sd.

Lemma 4.13. For all k sufficiently large, it holds that k \in \scrK m
sd.

Proof. We first show that all sufficiently large k are in \scrK m. It follows from
Lemma 4.11 that \scrI pgk \equiv \{ j \in \scrG i : i /\in \scrS \ast \} for all sufficiently large k. Combining this
with Lemma 4.12 and Lemma 4.10 shows that there exists an iteration k such that
[xk]\scrI pg

k
= 0 and [xk + sk]\scrI pg

k
= 0 for all k \geq k, which means that \chi pg

k = \| [sk]\scrI pg
k
\| 2 = 0

for all k \geq k. It follows from this fact, line 7, and Assumption 4.1 that k \in \scrK m for all
k \geq k. Now, notice that at most n\scrG - 1 iterations from k onward can be in \scrK m

0 because
of Lemma 4.6(i). (Every iteration k \in \scrK m

0 fixes at least one new group of variables to
zero, and if they ever all become zero so that \scrI mk = \emptyset , then the contradiction k \in \scrK pg

is reached.) Therefore, it follows that all sufficiently large k must be in \scrK m
sd.

We can now state our main local convergence result.

Theorem 4.14. If in Algorithm 3.2 we choose either q \in (1, 2], or q = 1 and
\{ \mu k\} \rightarrow 0, then \{ xk\} \rightarrow x\ast at a superlinear rate. In particular, if we choose q = 2,
then the rate of convergence is quadratic.

Proof. It follows from Lemma 4.11, Lemma 4.12, and Lemma 4.13 that, for all
sufficiently large k, the iterates generated by Algorithm 3.1 satisfy the recurrence
xk+1 = xk + \xi jkdk, where jk is the result of the backtracking Armijo line search in
line 43, \| [xk]\scrI pg

k
\| 2 = \| [dk]\scrI pg

k
\| 2 = 0, and [dk]\scrI m

k
= dk with dk computed by Algo-

rithm 3.2 to satisfy the third condition in line 22. In other words, for all sufficiently
large k, we have [xk]\scrI pg

k
= [x\ast]\scrI pg

k
= 0, and the variables in \scrI mk \equiv \{ j \in \scrG i : i \in \scrS \ast \}

are updated exactly as those of an inexact Newton method for computing a root of
\nabla \scrI m

k
(f + r)). Since, by Theorem 4.9, we have limk\rightarrow \infty xk = x\ast , the desired conclu-

sions follow under the stated conditions from [12, Theorem 3.3] (also recall the local
strong convexity restricted to the support of x\ast in Assumption 4.3(ii)) and noting the
well-known result that the unit step size \xi jk = 1 is accepted (asymptotically) by a
backtracking Armijo line search when \eta \in (0, 1/2) (see Assumption 4.4(i)).

5. Numerical results. In this section, we present the results of numerical ex-
periments with an implementation of FaRSA-Group (Algorithm 3.1) applied to solve
two classes of regularized regression problems. The first class is the regularized logistic

regression problem of the form minx\in \BbbR n
1
N

\sum N
i=1 log(1 + e - yix

T di) +
\sum n\scrG

i=1 \lambda i \| [x]\scrG i\| 2,
where di \in \BbbR n is the ith data point, N is the number of data points, yi \in \{ - 1, 1\}
is the class label for the ith data point, and \lambda i is the weight for the ith group. The
second problem is the regularized linear regression problem minx\in \BbbR n

1
N | | Ax - b| | 22 +\sum n\scrG

i=1 \lambda i \| [x]\scrG i
\| 2, where A \in \BbbR N\times n, b \in \BbbR N , and \lambda i is the weight for the ith group.

We first describe details of our implementation of FaRSA-Group, then describe the
data sets considered in our experiments, and finally present our experimental results.

5.1. Implementation details. We have developed a Python implementation
of FaRSA-Group that is available upon request. The values of the input parameters
for Algorithm 3.1 and Algorithm 3.2 that we used are given as follows (with some
caveats that are mentioned in the following paragraph): \varphi = 1, \kappa 1 = 0.1, \xi = 0.5,
\kappa 2 = 10 - 2, \eta = 10 - 3, \theta = \pi /4, \zeta = 0.8, q = 1.5, p = 2, and \mu k = 1.

We initialized x0 as the zero vector and \alpha 0 as an estimate of the inverse of the
Lipschitz constant of f at x0. To be precise, our software randomly generated y0 \in
\BbbR n such that \| x0 - y0\| 2 = 10 - 8 and then set \alpha 0 = min\{ 1, \| x0 - y0\| 2/\| \nabla f(x0) -
\nabla f(y0)\| 2\} . Since \varphi = 1, it follows from Algorithm 3.1 that Assumption 4.4(ii) holds
for all k \in \BbbN . (For data sets with N < n, we initially chose \varphi = 0.8 and switched

A SUBSPACE ACCELERATION METHOD 565

to \varphi = 1 when an iteration in \scrK m satisfied f(xk) - f(xk+1) \leq 10 - 3. When N < n,
the matrix \nabla 2f(xk) is singular, which often led to large CG directions and multiple
backtracks in the line search. These ill effects were partly remedied by this scheme
for updating \varphi .) When defining the set \scrI small

k in (3.3), we used \~\kappa 2,i = \kappa 2| \scrG i| /\| \=\scrI mk \| in
place of \kappa 2 for all i such that \scrG i \subseteq \=\scrI mk to account for the fact that the two different
norms in (3.3) are associated with vectors of different dimension. Note that since
(1/n)\kappa 2 \leq \~\kappa 2,i \leq n\kappa 2, this choice is easily incorporated into the analysis in section 4.

Instead of fixing \kappa 1 and \kappa 2, they are adaptively adjusted by the following rules to
improve FaRSA-Group's performance. (i) If the kth iteration finishes at line 44 with
j > 5, then increase \kappa 1 and \kappa 2: \kappa 1 \leftarrow min\{ 106, 10\kappa 1\} and \kappa 2 \leftarrow min\{ 105, 10\kappa 2\} . (ii) If
for k > 0 we see that k+ i \in \scrK pg for all i \in \{ 0, 1, 2, . . . , 5\} , then at the end of iteration
k + 5 decrease \kappa 1 and \kappa 2: \kappa 1 \leftarrow max\{ 10 - 5, \kappa 1/10\} and \kappa 2 \leftarrow max\{ 10 - 6, \kappa 2/10\} .

The first rule aims to keep more groups that are potentially zero at the solution
out of the set \scrI mk+1. In particular, it is driven by our empirical observation that when
significant backtracking along the m-direction is performed in the reduced space, it is
likely that groups of variables that are zero at the solution and nearly zero at xk are
(wrongly) included in \scrI mk . As for the second rule, the idea is to increase the chance
that Algorithm 3.2 is used during the next iteration, with the hope that it accelerates
convergence. This rule is also guided by our numerical experience.

The choice of Hk in line 9 was a regularization of the exact second-derivatives of
f . For the logistic regression problem, for any scalar \delta \geq 0, 1

NDT\Sigma \delta (x)D \approx \nabla 2f(x),
where DT := [d1, d2, . . . , dN] and \Sigma \delta (x) is the diagonal matrix with ith diagonal entry
[\Sigma \delta (x)]ii := max\{ \sigma i(x)(1 - \sigma i(x)), \delta \} with \sigma i(x) := exp(yid

T
i x)/

\bigl(
1 + exp(yid

T
i x)

\bigr)
for

all i \in \{ 1, 2, . . . , N\} . Notice that if \delta = 0, then (1/N)DT\Sigma 0(x)D \equiv \nabla 2f(x). To use
a small amount of regularization in our tests, we chose \delta = 10 - 8. With this choice
of \delta , our choice of Hk in line 9 can now be written as Hk \leftarrow [1NDT\Sigma \delta (xk)D]\scrI k\scrI k

+
\nabla 2

\scrI k\scrI k
r(xk), where we remind the reader that \nabla 2

\scrI k\scrI k
r(xk) is well defined because

\scrI k \subseteq \scrI mk ensures that [xk]\scrG i \not = 0 for all \scrG i \subseteq \scrI k. For the linear regression problem,
we set Hk \leftarrow [ATA]\scrI k\scrI k

+\nabla 2
\scrI k\scrI k

r(xk) + \delta I, where I is the identity matrix.
In Algorithm 3.2, we applied the CG method to the system Hkd = - gk to ap-

proximately solve the optimization problem defined in line 22. As pointed out in
section 3.2, the direction associated with every iteration of the CG algorithm satisfies
the first two conditions in line 22, which were required to establish the complexity re-
sult in Theorem 4.8. To reduce the cost of the CG computation and limit the number
of backtracking steps required by Algorithm 3.3, we terminated Algorithm 3.2 when at
least one of three conditions was satisfied. To describe these conditions checked dur-
ing the kth iteration, let dj,k denote the jth CG iterate, and let tj,k := \| Hkdj,k+gk\| 2
denote the jth CG residual. The three conditions are given as follows: (i) tj,k \leq
max\{ min

\bigl\{
0.1t0,k, t

1.5
0,k

\bigr\}
, 10 - 10\} , (ii) \| dj,k\| \geq 103 min\{ 1, \| \nabla \scrI k

(f + r)(xk)\| 2\} , and (iii)
j = | \scrI k| . Outcome (i) is the ideal termination condition since it indicates that the
residual of the linear system has been sufficiently reduced. Outcome (ii) serves as
a trust-region constraint on the norm of the trial step dk; in particular, when this
inequality holds, the size of the CG iterate dj,k is relatively large, indicating that xk

is not close to an optimal solution. Therefore, we restrict its size with the intent of
needing fewer backtracking steps during the subsequent line search. Outcome (iii)
caps the number of CG iterations to | \scrI k| (the size of the reduced space) since, in
exact arithmetic, CG converges to an exact solution in at most | \scrI k| iterations.

Algorithm 3.1 decreases the value of the PG parameter (see line 17) for the next
iteration using a simple multiplicative factor when flagpgk = decrease \alpha . However,
in practice, we found an adaptation of the approach in [10] to be more efficient. To

566 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

describe this approach, let dk and \xi jk be the search direction and step size used to
obtain xk+1 = xk + \xi jkdk. It is well known [2, Lemma 5.7] that if \alpha \in (0, 1/Lf],
then f(xk+1) \leq f(xk) + \xi jk\nabla f(xk)

T dk + 1
2\alpha \| \xi jkdk\| 22. Setting this inequality to be

an equality and then solving for \alpha , one obtains \^\alpha k :=
\| \xi jkdk\| 2

2

2(f(xk+1) - f(xk) - \xi jk\nabla f(xk)T dk)
,

which can be viewed as a local Lipschitz constant estimate for f at xk. In our
tests, we updated the PG parameter at the end of each iteration of Algorithm 3.1 as
\alpha k+1 \leftarrow min \{ 1, \^\alpha k/2\} . Although this PG parameter update strategy worked better
than the basic strategy in Algorithm 3.1 (see line 17 and line 17), it is not covered
by our analysis in section 4. However, a simple modification of our analysis would
be to allow this update to increase the PG parameter at most a finite number of
times, say 100 times, at which point the update \alpha k+1 \leftarrow min \{ \alpha k, \^\alpha k/2\} \leq \alpha k would
be used. This strategy is covered by our earlier analysis (with a larger constant
in the complexity result). The algorithm is terminated when at least one of the
following conditions holds: (i) max\{ \chi m

k , \chi
pg
k \} \leq 10 - 6 max\{ \chi m

0 , \chi
pg
0 , 1\} . (ii) k \in \scrK m

sd

and | \nabla \scrI k
(f+r)(xk)

T [dk]\scrI k
| /(1+f(xk)+\lambda r(xk)) < 10 - 16. (iii) The maximum allowed

time limit is reached. (iv) The maximum allowed number of iterations is reached.
Condition (i) implies the the algorithm terminates with the desired accuracy, while
condition (ii) indicates that (numerically) no significant progress can be made.

5.2. Data sets. Data sets for the logistic regression problems were obtained from
the LIBSVM repository.1 We excluded all multiclass (greater than two) classification
instances and all data sets that were too large (\geq 8GB) to be loaded in memory.
Finally, for the adult data (a1a--a9a) and webpage data (w1a--w8a), we used only the
largest instances, namely, a9a and w8a. This left us with our final subset of 30 data
sets that can be found in the top part of Table 5.1. For linear regression problems,
we tested FaRSA-Group using all regression data sets from the LIBSVM repository
and all regression data sets with more than 10000 samples from the University of
California Irvine (UCI) Machine Learning Repository.2

Scaling of the data sets can be important. If the source of the data indicated that
a data set was already scaled, then we used the data without modification. However,
when the website did not indicate that scaling for a data set was used, we scaled each
column of the feature data (i.e., featurewise scaling) into the range [- 1, 1] by dividing
each of its entries by the largest entry in absolute value. Labels for some data sets
(e.g., breast-cancer, covtype, liver-disorders, mushrooms, phishing, skin-nonskin and
svmguide1) do not take values in \{ - 1, 1\} but rather in \{ 0, 1\} or \{ 1, 2\} . For these data
sets, we mapped the smaller label to - 1 and the larger label to 1.

5.3. Experimental setup and test results. For both problem classes, we con-
sidered four group structures and two different solution sparsity levels. Specifically,
we considered the four different numbers of groups in \{ \lfloor 0.25n\rfloor , \lfloor 0.50n\rfloor , \lfloor 0.75n\rfloor , n\} ,
where n is the problem dimension; notice that the last setting recovers \ell 1-norm reg-
ularization. Then, for a given number of groups, the variables were sequentially dis-
tributed (as evenly as possible) to the groups; e.g., 10 variables among 3 groups would
have been distributed as \scrG 1 = \{ 1, 2, 3\} , \scrG 2 = \{ 4, 5, 6\} , and \scrG 3 = \{ 7, 8, 9, 10\} . For the
two different solution sparsity levels, we considered groups weights \lambda i = 0.1\lambda min

\sqrt{}
| \scrG i|

and \lambda i = 0.01\lambda min

\sqrt{}
| \scrG i| , where \lambda min is the minimum positive \lambda such that the solution

to the logistic problem with \lambda i = \lambda
\sqrt{}
| \scrG i| is x = 0 (see [33, equation (23)]).

1https://www.csie.ntu.edu.tw/\sim cjlin/libsvmtools/datasets.
2https://archive.ics.uci.edu/ml/index.php.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://archive.ics.uci.edu/ml/index.php

A SUBSPACE ACCELERATION METHOD 567

Table 5.1
The first column (Data set) gives the name of the data set. The second column (N) and third

column (n) indicate the number of data points and problem dimension, respectively. The fourth
column (Scale) provides the featurewise scaling used: each feature is either scaled into the given
interval or scaled to have mean zero (\mu = 0) and variance one (\sigma 2 = 1). The fifth column (Who)
indicates whether the data set came prescaled from the LIBSVM website (website), or it did not
come prescaled and we scaled it (us) as described in section 5.2.

Data set N n Scale Who
Data sets for the logistic regression problems

a9a 32561 123 [0,1] website
australian 690 140 [-1,1] website
breast-cancer 683 10 [-1,1] website
cod-rna 59535 8 [-1,1] us
colon-cancer 62 2000 (\mu , \sigma 2) = (0, 1) website
covtype.binary 581012 54 [0,1] website
diabetes 768 8 [-1,1] website
duke breast-cancer 44 7192 (\mu , \sigma 2) = (0, 1) website
fourclass 862 2 [-1,1] website
german-numer 1000 24 [-1,1] website
gisette 6000 5000 [-1,1] website
heart 270 13 [-1,1] website
HIGGS 11000000 28 [-1,1] us
ijcnn1 49990 22 [-1.5, 1.5] website
ionosphere 351 34 [-1,1] website
leukemia 38 7129 (\mu , \sigma 2) = (0, 1) website
liver-disorders 145 5 [-1,1] website
madelon 2000 500 [-1,1] us
mushrooms 8124 112 [0,1] website
news20.binary 19996 1355191 [0,1] website
phishing 11055 68 [0,1] website
rcv1.binary 20242 47236 [0,1] website
real-sim 72309 20958 [0,1] website
skin-nonskin 245057 3 [-1,1] us
splice 1000 60 [-1,1] website
sonar 208 60 [-1,1] website
svmguide1 3089 4 [-1,1] us
svmguide3 1243 21 [-1,1] website
SUSY 5000000 18 [-1,1] us
w8a 49749 300 [0,1] website

Data sets for the linear regression problems
abalone 4177 8 [-1,1] website
blogData 60021 281 [-1,1] us
bodyfat 252 14 [-1,1] website
cadata 20640 8 [-1,1] us
cpusmall 8192 12 [-1,1] website
driftData 13910 128 [-1,1] us
eunite2001 336 31 [-1,1] us
E2006.tfidf 16087 150360 [-1,1] website
housing 506 13 [-1,1] website
mg 1385 6 [-1,1] website
mpg 393 7 [-1,1] website
pyrim 74 27 [-1,1] website
space ga 3107 6 [-1,1] website
triazines 186 60 [-1,1] website
UJIIndoorLoc 19937 520 [-1,1] us
VirusShare 107888 482 [-1,1] us
YearPredictionMSD 463715 90 [-1,1] website

568 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

The experiments were conducted on the Computational Optimization Research
Laboratory (COR@L) cluster at Lehigh University with an AMD Opteron Processor
6128 2.0 GHz CPU. In the following, we compared performance of different algorithms
with respect to CPU time (seconds), final objective value, and solution sparsity.

5.3.1. Logistic regression. In this section, we compare the performance of
FaRSA-Group to APG ([3] adjusted to the group \ell 1-norm), gglasso [33], and PNOPT [19]
for solving logistic regression problems using the data sets in the upper part of Ta-
ble 5.1; a total of 240 problem instances are tested as described above.3 APG is an
established accelerated PG method, and our Python implementation is based on that
of Templates for First-Order Conic Solvers (TFOCS) [4]. gglasso is a state-of-the-art
groupwise majorization descent method for which an R implementation is available
with the most computationally expensive steps performed in Fortran.4 PNOPT is a
(quasi) proximal-Newton method that has a freely available MATLAB implementa-
tion that allows users to use either the exact Hessian matrix or (limited-memory)
BFGS approximations; we test both options and refer to them as PNOPT-Newton and
PNOPT-LBFGS, respectively.5 Default parameters for APG, gglasso, and PNOPT are
used, and x0 is chosen as the zero vector for all algorithms and problem instances.
APG and PNOPT use the same termination conditions as used in FaRSA-Group, but for
gglasso we use its default termination rules since we have no control over its termi-
nation criteria through the application programming interface (API) that it provides.

In terms of running time, for each problem instance we allow a maximum of
3600 seconds. If the CPU time surpasses this limit on a problem, we terminate the
run and consider the algorithm to have failed. Out of the 240 problem instances
(200 for gglasso), FaRSA-Group successfully solved all instances while APG, gglasso,
PNOPT-Newton, PNOPT-LBFGS failed to solve 16, 4, 13, and 26 instances, respectively.
Figure 5.1 illustrates performance profiles based on [24] for comparing the computing
times on problem instances that FaRSA-Group and/or a competing algorithm took at
least 1 second to terminate. Each bar in the plot corresponds to a problem instance,
with the height of the bar given by

(5.1) - log2

\biggl(
time required by FaRSA-Group

time required by a competing algorithm

\biggr)
.

Therefore, an upward pointing bar indicates that FaRSA-Group took less time to find
the optimal solution for that problem instance, and a downward pointing bar means
that the competing algorithm took less time, and in either case the size of the bar
indicates the magnitude of the outperformance factor. A bar that reaches the y-axis
limit is used when indicating that an algorithm was successful when solving a problem
instance while the competing algorithm was unsuccessful.

For final objective function values, let F\ttF \tta \ttR \ttS \ttA -\ttG \ttr \tto \ttu \ttp and Fcompeting denote (for a
given problem instance) the final objective values returned by FaRSA-Group and the
competing algorithm, respectively. If F\ttF \tta \ttR \ttS \ttA -\ttG \ttr \tto \ttu \ttp - Fcompeting < - 10 - 6, then we con-
sider FaRSA-Group to have obtained a lower objective function value; if F\ttF \tta \ttR \ttS \ttA -\ttG \ttr \tto \ttu \ttp -
Fcompeting > 10 - 6, then we consider the competing algorithm to have obtained a lower
objective function value; and if | F\ttF \tta \ttR \ttS \ttA -\ttG \ttr \tto \ttu \ttp - Fcompeting| \leq 10 - 6, then we consider
them to have performed equally. For solution sparsity, we consider FaRSA-Group to

3Only 200 problem instances are tested for \ttg \ttg \ttl \tta \tts \tts \tto since it does not support sparse data matrix
inputs. In particular, data sets HIGGS, news20.binary, rcv1.binary, real-sim, and SUSY are excluded.

4https://cran.r-project.org/web/packages/gglasso/gglasso.pdf.
5https://web.stanford.edu/group/SOL/software/pnopt/.

https://cran.r-project.org/web/packages/gglasso/gglasso.pdf
https://web.stanford.edu/group/SOL/software/pnopt/

A SUBSPACE ACCELERATION METHOD 569

0 25 50 75 100 125

−5

0

5

-l
og
2(
ra
ti
o)

Metric: computational time

FaRSA-Group

APG

0 20 40 60 80 100
−10

−5

0

5

10

-l
og
2(
ra
ti
o)

Metric: computational time

FaRSA-Group

gglasso

0 50 100 150
−10

−5

0

5

10

-l
og
2(
ra
ti
o)

Metric: computational time

FaRSA-Group

PNOPT-Newton

0 50 100 150
−10

−5

0

5

10

-l
og
2(
ra
ti
o)

Metric: computational time

FaRSA-Group

PNOPT-LBFGS

Fig. 5.1. Performance profile for CPU time (seconds). \ttF \tta \ttR \ttS \ttA -\ttG \ttr \tto \ttu \ttp outperforms \ttA \ttP \ttG , \ttg \ttg \ttl \tta \tts \tts \tto ,
\ttP \ttN \ttO \ttP \ttT -\ttN \tte \ttw \ttt \tto \ttn , and \ttP \ttN \ttO \ttP \ttT -\ttL \ttB \ttF \ttG \ttS on 135 of the 147 problem instances, 101 out of the 107 problem
instances, 161 out 166 problem instances, and 163 out of the 189 problem instances, respectively.
For each problem instance, the height of the bar is given by (5.1).

Table 5.2
Solution qualities in terms of the final objective function value and the solution sparsity. The

numbers under the columns labeled worse, same, and better are the number of problems for which
\ttF \tta \ttR \ttS \ttA -\ttG \ttr \tto \ttu \ttp performs worse/same/better compared to the competing algorithm listed to the left.
For example, comparing \ttF \tta \ttR \ttS \ttA -\ttG \ttr \tto \ttu \ttp with \ttg \ttg \ttl \tta \tts \tts \tto , we see that out of the 107 test instances,
\ttF \tta \ttR \ttS \ttA -\ttG \ttr \tto \ttu \ttp performs worse, the same, and better on 0, 40, and 67 instances, respectively.

Total \ttF \tta \ttR \ttS \ttA -\ttG \ttr \tto \ttu \ttp obj. \ttF \tta \ttR \ttS \ttA -\ttG \ttr \tto \ttu \ttp sparsity
Competing algorithm \# probs Worse Same Better Worse Same Better
\ttA \ttP \ttG 147 2 136 9 4 133 10
\ttg \ttg \ttl \tta \tts \tts \tto 107 0 40 67 5 74 28
\ttP \ttN \ttO \ttP \ttT -\ttN \tte \ttw \ttt \tto \ttn 166 3 154 9 6 145 15
\ttP \ttN \ttO \ttP \ttT -\ttL \ttB \ttF \ttG \ttS 189 3 171 15 6 161 22

have outperformed a competing algorithm if the following two conditions hold: All
zero groups in the solution returned by the competing algorithm solution are also zero
groups in the FaRSA-Group solution, and the solution returned by FaRSA-Group has
at least one zero group that is not a zero group in the competing algorithm's solution;
a similar criteria is used to define when a competing algorithm is considered to have
outperformed FaRSA-Group. The results are summarized in Table 5.2.

5.3.2. Linear regression. In this section we report the results of our tests on
the linear regression problems. In addition to APG, gglasso, and PNOPT, we also
compare FaRSA-Group to SSNAL [37], which is a state-of-the-art semismooth Newton
method designed to solve group-sparse lasso problems. For these tests, we use the data
sets in the bottom part of Table 5.1, from which we obtain a total of 136 test instances

570 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

0 20 40 60

−5.0

−2.5

0.0

2.5

5.0

-l
og
2(
ra
ti
o)

Metric: computational time

FaRSA-Group

APG

0 10 20 30 40
−10

−5

0

5

10

-l
og
2(
ra
ti
o)

Metric: computational time

FaRSA-Group

gglasso

0 25 50 75 100
−10

−5

0

5

10

-l
og
2(
ra
ti
o)

Metric: computational time

FaRSA-Group

PNOPT-LBFGS

0 10 20 30 40 50
−6

−4

−2

0

2

4

6

-l
og
2(
ra
ti
o)

Metric: computational time

FaRSA-Group

SSNAL

Fig. 5.2. Performance profile for CPU time (seconds). \ttF \tta \ttR \ttS \ttA -\ttG \ttr \tto \ttu \ttp outperforms \ttA \ttP \ttG , \ttg \ttg \ttl \tta \tts \tts \tto ,
\ttP \ttN \ttO \ttP \ttT -\ttL \ttB \ttF \ttG \ttS , and \ttS \ttS \ttN \ttA \ttL on 63 out of the 64, 31 out of the 40, 115 out of the 120, and 41 out of the
50 test instances, respectively. For each problem instance, the height of the bar is given by (5.1).
Results for \ttP \ttN \ttO \ttP \ttT -\ttN \tte \ttw \ttt \tto \ttn are not shown because it performs worse than \ttP \ttN \ttO \ttP \ttT -\ttL \ttB \ttF \ttG \ttS .

as described in the beginning of section 5.3.6 Default parameters for SSNAL are used,
and the initial estimate x0 is chosen to be the zero vector for both FaRSA-Group and
SSNAL. We note that SSNAL is a dual method that terminates when the primal-dual
gap is smaller than the default tolerance of 10 - 6, which is different than the stopping
condition implemented in FaRSA-Group. Of the 136 test instances, FaRSA-Group

terminated 10 times because termination condition (ii) was triggered, meaning that
no additional sufficient progress could be achieved.

We measure algorithm performance using the same criteria as for the tests in
section 5.3.1. All methods successfully solve all instances, and Figure 5.2 illustrates
performance profiles for the computational times for problem instances for which
FaRSA-Group and/or the competing algorithm takes at least 1 second to terminate.
The final objective values and solution sparsities are summarized in Table 5.3.

We remark that since SSNAL is a dual method, it tends to be more efficient than
FaRSA-Group when the data matrix A \in \BbbR N\times n satisfies n > N . For example, SSNAL
often outperforms FaRSA-Group on the problem instances considered in [37].

6. Conclusion. We presented a new framework for solving optimization prob-
lems that incorporate group sparsity-inducing regularization by using subspace ac-
celeration, domain decomposition, and support identification. In terms of theory,
we proved a complexity result on the maximum number of iterations before an \epsilon -
approximate solution is computed (Theorem 4.8), and a local superlinear convergence
rate (Theorem 4.14). The strong convergence theory was supported by experimental

6For \ttg \ttg \ttl \tta \tts \tts \tto , since its software does not support sparse matrix inputs, only 128 problem instances
are tested. Specifically, all instances of data set E2006.tfidf are excluded.

A SUBSPACE ACCELERATION METHOD 571

Table 5.3
The meaning of this table is the same as Table 5.2 but for the linear regression problems.

Total \ttF \tta \ttR \ttS \ttA -\ttG \ttr \tto \ttu \ttp obj. \ttF \tta \ttR \ttS \ttA -\ttG \ttr \tto \ttu \ttp sparsity
Competing algorithm \# probs Worse Same Better Worse Same Better
\ttA \ttP \ttG 64 0 26 38 0 64 0
\ttg \ttg \ttl \tta \tts \tts \tto 40 0 27 13 0 40 0
\ttP \ttN \ttO \ttP \ttT -\ttN \tte \ttw \ttt \tto \ttn 98 0 72 26 0 98 0
\ttP \ttN \ttO \ttP \ttT -\ttL \ttB \ttF \ttG \ttS 119 1 93 25 0 119 0
\ttS \ttS \ttN \ttA \ttL 50 0 45 5 0 50 0

results for minimizing a group sparsity-regularized logistic function for the task of
classification and a group sparsity-regularized least-squares function for the task of
regression. In terms of robustness, computational time, final objective value obtained,
and solution sparsity, the numerical results showed that our proposed FaRSA-Group

framework outperforms state-of-the-art methods, especially when the data set is larger
than the number of features in the model. When the number of features that define
the model is larger than the size of the data set, then FaRSA-Group still works well,
but methods based on a dual approach may be preferable.

REFERENCES

[1] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Optimization with sparsity-inducing
penalties, Found. Trends Mach. Learn., 4 (2012), pp. 1--106.

[2] A. Beck, First-Order Methods in Optimization, SIAM, Philadelphia, 2017.
[3] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse

problems, SIAM J. Imaging Sci., 2 (2009), pp. 183--202.
[4] S. R. Becker, E. J. Cand\`es, and M. C. Grant, Templates for convex cone problems with

applications to sparse signal recovery, Math. Program. Comput., 3 (2011), p. 165.
[5] D. P. Bertsekas, Convex Optimization Theory, Athena Scientific, Belmont, MA, 2009.
[6] T. Chen, F. E. Curtis, and D. P. Robinson, A reduced-space algorithm for minimizing \ell 1-

regularized convex functions, SIAM J. Optim., 27 (2017), pp. 1583--1610.
[7] T. Chen, F. E. Curtis, and D. P. Robinson, FaRSA for \ell 1-regularized convex optimization:

Local convergence and numerical experience, Optim. Methods Softw., 33 (2018), pp. 396--
415.

[8] P. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, in Fixed-
Point Algorithms for Inverse Problems in Science and Engineering, Springer, Cham, 2011,
pp. 185--212.

[9] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region Methods, SIAM, Philadelphia,
2000.

[10] F. E. Curtis and D. P. Robinson, Exploiting negative curvature in deterministic and sto-
chastic optimization, Math. Program., 176 (2019), pp. 69--94.

[11] I. Daubechies, M. Defrise, and C. Mol, An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint, Comm. Pure Appl. Math., 58 (2004), pp. 1413--1457.

[12] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400--408.

[13] D. Donoho, Denoising by soft-thresholding, IEEE Trans. Inform. Theory, 41 (1995), pp. 613--
627.

[14] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, LIBLINEAR: A library
for large linear classification, J. Mach. Learn. Res., 9 (2008), pp. 1871--1874.

[15] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse problems, IEEE J.
Sel. Top. Signal Process., 1 (2007), pp. 586--597.

[16] J. Friedman, T. Hastie, and R. Tibshirani, Regularization paths for generalized linear models
via coordinate descent, J. Statist. Softw., 33 (2010), p. 1.

[17] G. N. Grapiglia and Y. Nesterov, Accelerated regularized Newton methods for minimizing
composite convex functions, SIAM J. Optim., 29 (2019), pp. 77--99.

572 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

[18] N. Keskar, J. Nocedal, F. Oztoprak, and A. W\"achter, A second-order method for convex
\ell 1-regularized optimization with active-set prediction, Optim. Methods Softw., 31 (2016),
pp. 605--621.

[19] J. D. Lee, Y. Sun, and M. A. Saunders, Proximal Newton-type methods for minimizing
composite functions, SIAM J. Optim., 24 (2014), pp. 1420--1443.

[20] Q. Lin, Z. Lu, and L. Xiao, An accelerated randomized proximal coordinate gradient method
and its application to regularized empirical risk minimization, SIAM J. Optim., 25 (2015),
pp. 2244--2273.

[21] J. Liu, S. Ji, and J. Ye, SLEP: Sparse Learning with Efficient Projections, Arizona State
University, 2009, http://yelabs.net/software/SLEP/.

[22] J. Liu and S. J. Wright, Asynchronous stochastic coordinate descent: Parallelism and con-
vergence properties, SIAM J. Optim., 25 (2015), pp. 351--376.

[23] S. Ma, X. Song, and J. Huang, Supervised group lasso with applications to microarray data
analysis, BMC Bioinform., 8 (2007), p. 60.

[24] J. L. Morales, A numerical study of limited memory BFGS methods, Appl. Math. Lett., 15
(2002), pp. 481--487.

[25] B. S. Mordukhovich and N. M. Nam, An Easy Path to Convex Analysis and Applications,
Morgan \& Claypool Publishers, Williston, VT, 2013.

[26] Y. Nesterov, A method of solving a convex programming problem with convergence rate
\scrO (1/k2), Soviet Math. Dokl., 27 (1983), pp. 372--376.

[27] Y. Nesterov, Gradient methods for minimizing composite functions, Math. Program., 140
(2013), pp. 125--161.

[28] J. Nutini, M. Schmidt, and W. Hare, Active-set complexity of proximal gradient: How long
does it take to find the sparsity pattern?, Optim. Lett., 13 (2019), pp. 645--655.

[29] P. Richt\'arik and M. Tak\'a\v c, Parallel coordinate descent methods for big data optimization,
Math. Program., 156 (2016), pp. 433--484.

[30] R. Tappenden, P. Richt\'arik, and J. Gondzio, Inexact coordinate descent: Complexity and
preconditioning, J. Optim. Theory Appl., 170 (2016), pp. 144--176.

[31] S. J. Wright, Accelerated block-coordinate relaxation for regularized optimization, SIAM J.
Optim., 22 (2012), pp. 159--186.

[32] S. J. Wright, R. D. Nowak, and M. A. Figueiredo, Sparse reconstruction by separable
approximation, IEEE Trans. Signal Process., 57 (2009), pp. 2479--2493.

[33] Y. Yang and H. Zou, A fast unified algorithm for solving group-lasso penalize learning prob-
lems, Stat. Comput., 25 (2015), pp. 1129--1141.

[34] G.-X. Yuan, C.-H. Ho, and C.-J. Lin, An improved GLMNET for \ell 1-regularized logistic
regression, J. Mach. Learn. Res., 13 (2012), pp. 1999--2030.

[35] M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, J.
R. Stat. Soc. Ser. B Stat. Methodol., 68 (2006), pp. 49--67.

[36] Y. Zeng and P. Breheny, Overlapping group logistic regression with applications to genetic
pathway selection, Cancer Inform., 15 (2016), pp. CIN--S40043.

[37] Y. Zhang, N. Zhang, D. Sun, and K.-C. Toh, An efficient Hessian based algorithm for
solving large-scale sparse group lasso problems, Math. Program., 179 (2020), pp. 223--263.

http://yelabs.net/software/SLEP/

	Introduction
	State-of-the art methods
	Contributions
	Notation and assumptions

	Preliminaries
	Proposed algorithm framework
	Main algorithm (Algorithm 3.1)
	Computing the m-direction (Algorithm 3.2)
	Reduced-space search using an m-direction (Algorithm 3.3)
	Reduced-space line search along a PG direction (Algorithm 3.4)

	Analysis
	Complexity result
	Local convergence

	Numerical results
	Implementation details
	Data sets
	Experimental setup and test results
	Logistic regression
	Linear regression

	Conclusion
	References

