SIAM J. OPTIM. © 2022 Society for Industrial and Applied Mathematics
Vol. 32, No. 2, pp. 545-572

A SUBSPACE ACCELERATION METHOD FOR MINIMIZATION
INVOLVING A GROUP SPARSITY-INDUCING REGULARIZER*

FRANK E. CURTISt, YUTONG DAIf, AND DANIEL P. ROBINSONT

Abstract. We consider the problem of minimizing an objective function that is the sum of a
convex function and a group sparsity-inducing regularizer. Problems that integrate such regularizers
arise in modern machine learning applications, often for the purpose of obtaining models that are
easier to interpret and that have higher predictive accuracy. We present a new method for solving
such problems that utilizes subspace acceleration, domain decomposition, and support identification.
Our analysis provides the global iteration complexity of obtaining an e-accurate solution and shows
that, under common assumptions, the iterates locally converge superlinearly. Numerical results on
regularized logistic and linear regression problems show that our approach is efficient and reliable and
outperforms state-of-the-art methods on interesting classes of problems, especially when the number
of data points is larger than the number of features. For solving problems when the number of data
points is smaller than the number of features, algorithms that focus on solving a dual problem may
be more efficient than our approach, which solves the primal problem.

Key words. nonlinear optimization, convex optimization, worst-case iteration complexity, reg-
ularization, group regularizer, sparsity, logistic regression, linear regression, subspace acceleration

AMS subject classifications. 49M37, 65K05, 65K10, 65Y20, 68Q25, 90C30, 90C60

DOI. 10.1137/21M1411111

1. Introduction. We consider the minimization of a function that may be writ-
ten as the sum of a convex function and a nonoverlapping group sparsity-inducing
regularizer. Specifically, given a convex and twice continuously differentiable function
f:R™ = R, a collection of ng > 0 nonoverlapping groups G := {G;}¢, that forms
a partition of {1,2,...,n} (ie.,, G;NG; =0 for all i # j and U9, G, = {1,2,...,n}),
and groupwise weighting parameters {)\;}.-¢; > 0, our algorithm solves the problem

ng
(1.1) min {f(z) +r(z)}, where r(z) := ; Ai ll[=lg: I
and [z]g, is the subvector of x corresponding to elements in G;. The regularizer r gen-
eralizes the ¢1-norm, which is recovered by choosing G; = {i} for all i € {1,2,...,n}.

Despite the successes of ¢1-norm regularization, its inadequacy in the context of
many modern machine learning applications has been noticed by researchers and is one
motivation for the use of group regularization. In some machine learning applications
the covariates come in groups (e.g., genes that regulate hormone levels in microarray
data [23]), in which case one may wish to select them jointly. Also, integrating
group information into the modeling process can improve both the interpretability
and accuracy [36] of the resulting model. Yuan and Lin [35] observed that in the
multifactor analysis-of-variance problem, where each factor is expressed through a set

*Received by the editors April 9, 2021; accepted for publication (in revised form) September 26,
2021; published electronically April 27, 2022.
https://doi.org/10.1137/21M1411111
Funding: This material is based upon work supported by the U.S. National Science Foundation
under the Division of Computing and Communication Foundations (award CCF-1740796) and the
Division of Mathematical Sciences (award DMS-2012243).
TDepartment of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015
USA (frank.e.curtis@gmail.com, yud319@lehigh.edu, daniel.p.robinson@gmail.com).

545

https://doi.org/10.1137/21M1411111
mailto:frank.e.curtis@gmail.com
mailto:yud319@lehigh.edu
mailto:daniel.p.robinson@gmail.com

546 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

of dummy variables, deleting an irrelevant factor is equivalent to deleting a group of
dummy variables; the ¢1-norm regularizer fails to achieve this goal.

1.1. State-of-the art methods. There is a long history of algorithms for solv-
ing regularized problems of the form (1.1) (see [1] and the references therein). Here,
we review some of the state-of-the-art approaches for solving sparsity-promoting prob-
lems that are most closely related to our proposed approach.

First-order methods. Proximal methods are designed to solve problems of the
form (1.1) and have received attention in the machine learning community [3, 8, 32].
A well-known example for ¢;-norm regularized problems is the iterative shrinkage-
thresholding algorithm (ISTA), which is obtained by applying a proximal gradient
(PQ) iteration to minimize a smooth function plus the ¢;-norm regularizer [11, 13].
Under certain assumptions, one can prove a worst-case complexity bound on the num-
ber of iterations required by the PG method before it correctly identifies the support
of the optimal solution [28]. Combined with the acceleration technique proposed
by Nesterov [26, 27], one obtains the algorithm FISTA [3]. One obtains a related
but distinct approach from ISTA by posing an equivalent smooth reformulation of
the problem—separating the positive and negative parts of the variables—and apply-
ing a gradient projection method to the resulting formulation [14, 15]. All of these
approaches have been shown to work well in practice, at least compared to other
first-order methods such as the subgradient algorithm. However, these algorithms
are often inferior in practice compared to alternative approaches that employ space
decomposition techniques and/or second-order derivatives [6, 7, 18].

As an alternative to PG and gradient projection techniques, researchers have con-
sidered (block) coordinate descent for solving ¢;-norm regularized problems. Such a
strategy is appealing, since when minimizing an ¢;-norm regularized objective along
coordinate directions, it is common that the objective is minimized with variables be-
ing zero. These approaches are also easy to implement to exploit parallel computing;
see, e.g., the accelerated randomized proximal coordinate gradient method in [20], the
parallel coordinate descent methods in [29], and the asynchronous coordinate descent
technique in [22]. A downside of these approaches is that the space decomposition is
performed in a prescribed manner, rather than in an adaptive way that can benefit
from information acquired during the solution process. Also, these approaches do not
effectively exploit second-order derivative information and require exact minimization
along coordinate directions. An exception to this latter criticism is the inexact coor-
dinate descent algorithm from [30], although this approach does not effectively exploit
second-order derivatives and uses a prescribed space decomposition strategy.

Various other approaches have been proposed for solving problems using specific
loss functions and/or regularizers. In [21], the authors discuss methods for sparse
learning that make use of projection techniques. A well-known package is GLMNET
[16], which is designed for solving problems with the elastic-net regularization. Finally,
let us mention the work in [33], which proposes and tests a groupwise-majorization-
descent algorithm (called gglasso) for solving problems involving the group ¢1-norm
regularizer. A potential downside of this approach is that it updates variables by
groups in a cycle, rather than by using an adaptive space decomposition technique.

Second-order methods. In [17], an accelerated regularized Newton scheme
is proposed. A similar proximal-Newton method is proposed in [19], which (under
assumptions) converges locally superlinearly. Although effective in practice, these
methods appear to lack good worst-case guarantees in terms of identification of the
optimal solution support. Other approaches, such as the orthant-based method in [18],

A SUBSPACE ACCELERATION METHOD 547

can predict the solution support but in practice are often outperformed by the related
method FaRSA [6, 7]. In [31], block-coordinate PG calculations are combined with
manifold identification and manifold accelerated calculations (i.e., solving reduced
Newton systems). The author analyzed a generic framework, then tested a particular
instantiation of the framework designed for /;-norm regularized problems. Recently,
a semismooth Newton method was considered in [37] based on a dual approach for
solving (1.1). The semismooth Newton method is used to solve a sequence of aug-
mented Lagrangian problems. Numerical results illustrate the method’s efficiency and
robustness, although the analysis and algorithm are tailored to the least-squares loss
function. As for publicly available solvers based on second-order methods, most have
been designed for specific loss functions and regularizers. For example, newGLMNET in
[34] is designed for ¢;-norm regularized logistic regression, and the method in [14] is
designed for regularized logistic regression and support vector machines.

Other papers consider stochastic functions and distributed settings, where the
evaluation of the (deterministic) gradient is costly or the data is too large to store on
a single machine. However, such methods are outside the focus of this paper.

1.2. Contributions. In this paper, we present a framework for solving prob-
lem (1.1) that utilizes domain decomposition, support identification, and subspace
acceleration. It extends the work in [6, 7], which consider only the traditional ¢;-norm
regularizer (i.e., not the group ¢1-norm case). Although our algorithmic framework
is similar to those in these prior papers, the framework proposed in this paper differs
in several crucial respects that we now enumerate. (i) Instead of decomposing the
domain based on zero and nonzero components of the current iterate as proposed
in [6, 7], we partition variables in a way that incorporates the support prediction
property of the PG method and tackles the challenge that the gradient of the func-
tion being optimized in the reduced space is not Lipschitz continuous. (This challenge
is absent in the ¢1-norm case). To achieve both goals, a new analysis is performed. (ii)
We design a specialized projection procedure for the group ¢;-norm regularizer that
allows us to prove convergence guarantees and obtain strong numerical performance.
This contribution is critical because naive adaptations of the orthant-like projections
considered in [6, 7, 18] to the group ¢;-norm case would cause the convergence analysis
to fail and would lead to abysmal numerical performance. The reason for these fail-
ings is that orthant-like projections focus on individual variables switching sign during
the line search along the Newton-like direction to indicate which variables should be
projected to zero. However, the concept of “switching signs” loses its meaning for the
group ¢1-norm case. (One might interpret “switching signs” to mean that a block of
variables switches from nonzero to zero during the line search along the Newton-like
direction, but this generally never happens in theory or in practice.) We address this
challenge by projecting to zero groups that are “close enough” to zero, where “close
enough” is carefully defined using a ball with radius related to a certain optimal-
ity measure that we employ. Moreover, our new projection procedure is designed in
a manner that accommodates the domain decomposition approach described above
without hindering the global convergence analysis and local superlinear convergence
rate. (iii) A worst-case iteration complexity bound is proved along with a simple but
principled way of adjusting the PG step size that allows for support identification in
finite iterations. Complexity results were not considered in [6, 7]. (iv) Numerical re-
sults on regularized logistic and linear regression problems show that our approach is
efficient and reliable and outperforms state-of-the-art methods on interesting classes
of problems, especially when the number of data points is larger than the number

548 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

of features. For solving problems when the number of data points is smaller than
the number of features, algorithms such as SSNAL [37] that focus on solving a dual
problem may be more efficient than our approach, which solves the primal problem.

1.3. Notation and assumptions. Let R denote the set of real numbers, R"
denote the set of n-dimensional real vectors, and R"*™ denote the set of m-by-n-
dimensional real matrices. The set of natural numbers is denoted as N := {0,1,2,...}.
For any set Z C {1,2,...,n}, we define the projection of x € R™ onto the subspace
spanned by the coordinate vectors indexed by the entries of Z as Pr(z), so that

x; ifiel,
Pr(z)|; =
Pr(@)] {0 if i ¢ T.
For a function h : R® — R, vector x € R", and direction d € R™, the directional
derivative of h at x in the direction d is denoted by Dy (x;d).
The following assumption is assumed to hold throughout the paper.

Assumption 1.1. The function f: R™ — R used in the definition of the objective
function of problem (1.1) is convex and continuously differentiable. Moreover, there
exists a positive real number Ly such that [|[Vf(z)|s < Ly for all z € £ = {z €
R™ : f(z) + r(z) < f(xo) + r(xo)}, where xq is a given initial estimate of a solution
to problem (1.1). The objective function f + r is bounded below, and the gradient
function V f is Lipschitz continuous on £ with Lipschitz constant L.

2. Preliminaries. In this section, we discuss preliminary material related to
the objective function f + r and its associated PG calculations. For any z € R™ and
a > 0, we define the PG update as

(2.1) T(®,a) := argmin {s=llz — (@ —aVvi@)|5+r)}

and the associated PG step as
(2.2) s(z,@) :=T(z,a) — T.
The PG update defined in (2.1) can be computed groupwise for each G; € G by

a\;

(2.3) [T(z,a))g, = max {1 - T Wg’if(x)nz,o} ([ﬂgi - dVgif(T)).

The next result shows that the directional derivative of f 4 r along the PG step is
negative with magnitude proportional to the squared norm of the PG direction.

LEMMA 2.1. For any T € R™ and &@ > 0, the PG step s(T,a@) in (2.2) satisfies
Dyir(T;8(Z,@)) < —1|s(z,@)||3. Moreover, if T is equal to the union of a subset of
{Gi}i2,, then Dy (75 Pr(s(z, @) < —2[|Pr(s(z,@))|3.

Proof. Let x4 = T(Z,@) denote the PG update in (2.1) so that 2, = T+ s(Z, @).
The optimality conditions for the problem in (2.1) give some g, € 9r(x) such that

(2.4) x4 —ZT+aVf(T)+agy =0.

Next, for an arbitrary gsi, € O(f + 7)(Z), it follows from Assumption 1.1 and [5,
Proposition 5.4.6] that there exits g, € 0r(Z) satisfying gs4» = Vf(Z) + g-. From the
definitions of g, and g, and convexity of 7, it follows that r(x,) > 7(Z) + gl (v —)
and r(T) > r(z4)+g%(T—=z4). Adding these equations yields (g, —g+)" (z4 —Z) <0,

A SUBSPACE ACCELERATION METHOD 549

which when combined with the definition of g;i, and (2.4) yields s(z,@) g/, =
(21 — DT (VF@) +9,) = Loy — D)@ — 24 — ags +ag,) = —Lljes — 7|3 +
(24 —2)" (g, — 94+) < —2%|s(z,@)||3. Since gji, € O(f + r)(Z) was arbitrary, [25,
Theorem 2.87] and the previous string of inequalities together yield Dy, (Z; s(Z, @)) =
SUDyea(f+m) () ST @) Tg < —L||s(z,@)[]3, as claimed. The final conclusion in the
lemma follows using the same argument, but restricting the quantities to Z.]

Next, we quantify the decrease in f 4 r obtained by taking a PG step s(Z, @), pro-
vided the PG parameter @ is sufficiently small. The proof for the case Z = {1,2,...,n}
is found in [2, Lemma 10.4], and the proof for the general case, i.e., when Z is equal
to the union of a subset of {G;}.¢,, follows using the same logic as in the proof of |2,
Lemma 10.4] but with straightforward modifications to handle the definition of Z.

LEMMA 2.2. IfT € R", @ € (0,2/L), and T is equal to the union of a subset of
{Gi}i,, then f(T+ Pr(T,5)) +r(T+ Pr(T,5)) < () +7(T) — (2 — 5Pz (s(z, @) 3.

The next result shows that, when restricted to certain groups, the size of the PG
step is bounded above by the gradient of the objective function.

LEMMA 2.3. If the pair (T,@) and group G; satisfy @ € (0,1], [Z]g, # 0, and [T +
s(Z,a)]g, # 0, where s(T, @) is defined in (2.2), then ||Vg,(f+7)(T)]2 > ||[s(Z, @)]g,

Proof. Denote g; := Vg, f(T), v; = [T]g,, and s; = [s(T,@)]g,. Since f + r is
differentiable with respect to variables in G; at T since [Z]g, # 0, we have |Vg,(f +

M@ = llgi + Xiwi/llzill2l13 = llgsll3 + 2
2 97 i
llgill3 +2A; Tl
a\; — — adi(zi—ag;
s = (1~ 2% (s — @gi) — @i = wi — Gg — TEE
T C— YO
so that ||s;[|3 = @ (||g:ll3 + 2)\1-% + A?). Thus, it is sufficient to prove that
T, T _&a:
llgill3 + 2X; Hg;fﬁz + A2 > a2 ([lg:ll3 + 2/\14% + A2). We consider two cases and
note that x; # 0 by assumption and that z; — @g; # 0 as a consequence of (2.3) and
the assumption that z; + s; # 0.

Case 1: @ = 1. In this case, the desired inequality simplifies to

2.

. giT%'
" lwill2

+ A2, so it is sufficient to prove that

+AZ > ||si]|3. Since z; + s; # 0 by assumption, s; (see (2.3)) satisfies

_ _= Ni(x:—agi)
—ai = —G(g+ 5

gisz' > ng(CUz _gi)

(2.5) > .
zillz = llzi — gill2

We now consider the following two subcases.
Case la: gl'z; > 0. The desired inequality clearly holds if g7 (x; — g;) < 0. Thus,

for the remainder of this subcase, we assume that g7 (z; — g;) > 0, which equivalently
means that gl x; > |g;||3, which implies that —2z7g; + ||g:||3 < 0. It follows from
this inequality and the fact that (g7z;)? < ||g:l|3]|=:]|3 (by Cauchy—Schwarz) that
(gi:)*(=227gi + llg:ll3) > (=2270: + |lgalDllgall3ll:ll3 = (llgill — 297 :ll: 1) ll: 13-
We can now add the term (g x;)?||x;||3 to both sides to obtain (g7 z;)%(||z:||3—221 g;+
l9:l13) = ((g7 %) + llgill3 — 298 @illg:l|3) || |3, which can be written equivalently as
(67221 — gil > (o7 i — i B 1wall3 = (o7 (s — 9:))? i3 After taking the
square root of both sides, we obtain (2.5).

Case 1b: gl'x; < 0. Using gl z; < 0 and (g72;)? < |lg:||3]|w:]|3 together implies
that (¢fw;)*(=22fg; + l|gil3) < (=227g; + gl D)llgill3lzill3 = (lg:ll2 — 297 willgil3)
l|lz:]|3. We can now add the term (g7 z;)?||x;||3 to both sides to obtain (g z;)?(||z;||3 —
227 gi + lgill3) < (9) + llgalls — 297 illgi|3) l|l2: 13, which can be written equiv-
alently as (] 2:)*|lzi — gill3 < (g 2 — g:l3)*llzill3 = (9f (2 — 9:))?|ail|3. After

taking the square root of both sides and rearranging, we obtain |gf z;|/||zi|l2 <

550 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

Algorithm 3.1. FaRSA-Group for solving problem (1.1).

1: Input: xg

2: Constants: {p,&,n,¢} C (0,1), {1, K2,p} C (0,00), 8 € (0,7/2), and ¢ € [1,2].
3: Choose any initial PG parameter ag € (0, 1].

4: for k=0,1,2,... do

5: Compute the step s from (3.1) and the set Z}* from (3.2).

6: Compute Z}* and Z;® and their optimality measures xJ* and x;® from (3.4).
7 if xP% < x}* then
8: Choose any Z;, € Z;* such that
sklz. |2 > @H[Sk]zzp l2 = ¢xi' and Z, is the union of some {G;}.
9: Set gr < Vz,,(f +7)(zx) and pick a positive-definite H}, € RIZeIx Tkl
10: Call Algorithm 3.2 to obtain dj <+ m_direction(gi, Hy).
11: Set [dk’]Ik <+ dj and [dk]l',s +— 0.
12: Call Algorithm 3.3 to obtain (zy4+1,flag)’) < m_update(xy, di, Zx).
13: Set a1 ¢ ag.
14: else
15: Choose any Z;, C Z.*® such that
sklzill2 > @ll[sk]zrell2 = X1 and Ty, is the union of some {G;}.
16: Call Algorithm 3.4 to obtain (zj41, lagh®) < pg_update(zy, sk, ok, Zi)-
17: if flagh® = decrease_a then a1 < (ay else a1 + .

|9F (z; — gi)|/||i — gi]|]2- Combining this result with 0 > g7'z; > g7 (z; — g;) gives (2.5),
as claimed.

Case 2: @ € (0,1). The proof of follows from Case 1 and [2, Theorem 10.9], which
in our notation from (2.2) proves that ||s(Z,@)|l2 < ||s(Z, 1)||2 when @ € (0,1). O

3. Proposed algorithm framework. We propose Algorithm 3.1, which we
call FaRSA-Group (Fast Reduced-Space Algorithm for Group sparsity-inducing regular-
ization), for solving problem (1.1) that uses ideas related to domain decomposition,
subspace acceleration, and support identification. An overview of the algorithm is
given in section 3.1. During each iteration of our method, at least one of three sub-
routines is called. The three subroutines are described in sections 3.2-3.4.

3.1. Main algorithm (Algorithm 3.1). Our main algorithm is formally stated
as Algorithm 3.1. At the beginning of the kth iteration, z; and aj > 0 denote the
current solution estimate for problem (1.1) and the PG parameter, respectively. We
then compute s in line 5 as the PG step associated with problem (1.1), namely,

(3.1) sp = s(xg, o) with s(zg, o) defined in (2.2).

Although the repeated computation of PG steps is the basis for a first-order method,
here we primarily use it to predict the zero/nonzero structure of a solution and to
formulate optimality measures. Specifically, in line 5 we compute the index set

(32) I :={j € Gi : [mi]g, #0, [zk + sklg, #0, [[zrlg, |2 > k1l Vg, (f +7)(zk)ll2}

for some k1 € (0,00). The groups of variables that compose Z* are candidates for
use in a Newton-type calculation aimed to accelerate convergence. Before using them,

A SUBSPACE ACCELERATION METHOD 551

however, we first check to see if each candidate block is sufficiently far from zero, and
those that are not are removed. Specifically, we first define

(3-3) L= {j € Gi: G C Iy and [[[zrg,ll2 < mal| Vi (f + 1) (i) I3}

for some {k2,p} C (0,00), then define in line 6 the sets and optimality measures

Inl = jm Isman m = S m
(3.4 { =TT } . {X:g lfselz }

7% = {1,2,...,n} \ I}! Xio = |[sk]zeell2

where by convention ||[- Jg||]2 = 0. (See Lemma 4.1 for a justification that these sets
together represent a measure of optimality.) This construction of sets also ensures
that the subvector of x), that corresponds to G; for each G; C Z;" is at least a distance

(3.5) pr.i +=max{k1[|Vg, (f + r)(@x)ll2, 52l Vp (f +) (@) [}

away from zero (see Lemma 4.5(i)), which is crucial in our analysis.
Armed with x%® and x}*, Algorithm 3.1 seeks decrease in the objective function
in a subspace that is likely to allow for significant progress. We consider two cases.

Case 1: the condition x}* < x}* checked in line 7 holds. In this case, the
inequality x7® < x* indicates that significant reduction in the objective function can
be achieved by focusing on variables in the set Z;*. Therefore, in line 8 we choose any
index set Zj, that is (i) a subset of Z}, (ii) equal to the union of some subset of groups
from G, and (iii) the size of the PG step restricted to the index set Zj, is at least a
fraction of the size of the PG step when restricted to the index set Z;'. The easiest
choice that satisfies these conditions is Z;, = Z}", but for large-scale problems it may
be beneficial to restrict |Zx|. The opposite extreme choice is selecting Zj, as the group
G; contained in Z;' with largest associated PG step, in which case one would choose
¢ = 1//ng for the user-defined parameter in line 8. Once Z; has been selected, a
reduced-space gradient g and reduced-space positive-definite matrix Hy are defined
in line 9, where the derivatives are taken with respect to variables in 7. (In practice,
Hy, could be selected based on V3 7 (f + r)(xx) to promote a fast local convergence
rate.) Note that gj exists since by construction Z, C Z* C 7*, and from (3.2) the
objective function f + r is differentiable with respect to groups of variables in Z}.
Next, g and Hj, are used to compute a direction dj, of sufficient descent for f + = by
calling the subroutine m_direction (see section 3.2). Once a full-space vector dy, is
obtained by padding dj, with zeros in line 11, a projected line search is performed by
calling subroutine m_update in line 12 (see section 3.3).

Case 2: the condition x}* < x}* checked in line 7 does not hold. In this
case, the inequality x%® > xI* indicates that significant reduction in the objective
function can be achieved by focusing on variables in the set Z;®. Therefore, in line 15,
we choose any index set Zj, that is (i) a subset of Z}®, (ii) equal to the union of some
subset of groups from G, and (iii) the size of the PG step restricted to the index set
Ty, is at least a fraction of the size of the PG step restricted to the index set Z}®. The
easiest choice that satisfies these conditions is Zj, = Z.%. Once Zj, has been chosen, the
next iterate is obtained by performing a line search along the PG direction in line 16
by calling the subroutine pg_update (for details, see section 3.4). If the subroutine
returns flagh® = decrease_a, the PG parameter is decreased for the next iteration.

3.2. Computing the m-direction (Algorithm 3.2). This subroutine returns
a reduced-space direction dj that satisfies the conditions in line 22. We call it

552 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

a reduced-space vector because the inputs g; and Hj are elements in RIZ+l and
RIZxI¥IZkl - respectively, where Zj, is computed in line 8 of Algorithm 3.1. The first
condition in line 22 ensures that dj, is a descent direction for the objective function as
a consequence of how the reference direction d,’f is computed in line 21. The second
condition in line 22 ensures that dj reduces the model my, at least as much as a zero
step. Finally, the third condition in line 22 promotes fast local convergence of the
iterate sequence {xy} (see section 4.2), but its enforcement (or lack of enforcement)
is irrelevant with respect to the complexity result that we prove in section 4.1. In our
numerical implementation we apply the linear CG algorithm to the system Hid = —gx
associated with the model my, in line 20, although other options include a blockwise
coordinate descent method applied to the model my. In particular, the direction as-
sociated with every iteration of the CG algorithm satisfies the first two conditions
in line 22, and the third condition in line 22 is satisfied by all sufficiently large CG
iterations. (The fact that the first condition in line 22 holds for every iteration within
CG is not a commonly mentioned result, but it follows from the updates that define
CG.) Thus, the requirements of this subroutine can always be met.

Algorithm 3.2. Computing d, in line 10 of Algorithm 3.1.

18: procedure d; = m_direction(gy, Hy)

19: Constant: ¢ is provided by Algorithm 3.1.

20: Define the model my,(d) := gf'd + 1d” Hyd.

21: Compute the reference direction (an approximate minimizer of my) as

A < —Brgr, where By, < |lgrll3/ (i Hgx)-

22: Choose py, € (0,1] and then compute any dj, a~ argmin my(d) that satisfies
d

gide < gidit, mu(di) <mp(0), and |Hydk + grll2 < pnllgell3-

23: return ak

3.3. Reduced-space search using an m-direction (Algorithm 3.3). This
subroutine searches along the direction dj returned by the subroutine m_direction
in line 10 of Algorithm 3.1. For an illustration of this search, which incorporates
projections, see Figure 3.1. The approach uses the direction dy, without modification,
for each block of variables G; such that the ray {[zy + 7dk]g, : 7 > 0} does not
intersect the ball centered at zero of radius pi; = min{py ;,sin(0)||[zx]g, |2}, where
Pk.i is defined in (3.5) and 0 € (0,7/2) is a user-defined parameter. When they do
intersect, we first compute 73 ; as the smallest step along dj (restricted to block G;)
that intersects the ball. Then, during the search that follows, any time the trial step
size &7 is larger than 7, the trial step for block G; is set to zero; otherwise, dj, is
used so that the trial step (with respect to block G;) is [zx + &7dk]g, (see line 37).
If termination occurs in line 38, a new block of variables will become zero, in which
case we require the objective function not to increase (see line 39). On the other
hand, if termination occurs in line 44, it indicates that the objective function has
been sufficiently reduced (see line 43) and no new groups of zeros have been formed.

3.4. Reduced-space line search along a PG direction (Algorithm 3.4).
This subroutine performs a line search along the PG direction Pz(sy). The search
ensures that the step yields decrease in the objective of at least (n€7/ax)|| Pz, (sx)||3

A SUBSPACE ACCELERATION METHOD 553

Algorithm 3.3. Computing z4+1 in line 12 of Algorithm 3.1.

24: procedure (x4, flagy') = m_update(xy, dy, Zx)
25: Constants: 7, &, and 6 provided by Algorithm 3.1.
26: for each 7 such that G; C Z;, do

27: Compute py ; as defined in (3.5).
28: Set pg,i < min{pg s, sin(0)||[zk]g; 2}
29: if {[xx +7di]g, : 7> 0} N {x € RI%!: ||2||2 < pr:i} = 0 then
30: Set Ty,; < o0.
31: else
32: Set 73, as the smallest positive root of ||[xr + Tdk]g;|l2 = Pk.i-
33: Set j + 0 and 7 := min;{7x; : G; C Iy}
34: while fj > 1, do
35: Set [yj]Il(é < [J?k}zlg
36: for each 7 such that G; C Z;, do
) Idylg, if € <135,
.. Set [y]a, [zk]g, + & [di]g, : & <m,
0 if & > 73 5.
38: if f(y;) +7(y;) < f(zx) +r(zx) then
39: return x4 < y; and flagy’ < new_zero
40: Set j 7+ 1.
41: loop
42: Set y; «— zx + &dy,.
43: if f(y;) +r(y;) < flaw) +r(ex) + 08V, (f +) (k)" [di]z, then
44: return 41 < y; and flagy’ < suff_descent
45: Set j <7+ 1.
[xi]g,

Fic. 3.1. The reduced-space projected search based on the m-direction dj described in sec-
tion 3.3. In the figure on the left, the direction dy does not intersect the ball of radius py, ;. In this
case, standard backtracking is used, as indicated by the solid green dots. In the figure on the right,
the direction dj, does intersect the ball of radius py ;. In this case, all points after the first point of
intersection (indicated by hollow green circles) are projected to zero. Once the backtracking points
leave the ball of radius py,; (indicated as solid green dots), standard backtracking is resumed.

for some positive integer j computed within the while loop in line 49. Once the
while loop terminates, the update flagh® < same_a is made if j = 0 and set as
flagh® < decrease_a otherwise. The motivation for this update is Lemma 2.2, which
shows that the while loop in line 49 will terminate with j7 = 0 if the PG parameter

554 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

ay, is sufficiently small. Therefore, any time j > 0, Algorithm 3.4 returns flagh® «
decrease_« to Algorithm 3.1 in line 16 so that the PG parameter value for the next
iteration is reduced by a factor of £ € (0, 1) in line 17.

Algorithm 3.4. Computing z1 in line 16 of Algorithm 3.1.

46: procedure (1, flagh®) = pg_update(zy, sk, ok, Zi)

47: Constants: 7 and & provided by Algorithm 3.1.

48: Set j < 0 and yo < z + Pz, (sk)-

19: while f(y;) +r(y;) > f(ax) +7(zx) — 08 3-|| P, (si)|3 do

50: Set j « j + 1 and then y; < @), + & P, (sg).
51: if j =0 then

52: return zj4q < y; and flagh® <+ same_a

53: else

54: return x4 < y; and flagh® < decrease_«

4. Analysis. Our analysis considers worst-case complexity (section 4.1) and lo-
cal convergence (section 4.2) properties of Algorithm 3.1. To identify an approximate
solution to problem (1.1), we use the measure max{x}*, X'}, as we now justify.

LEMMA 4.1. Let K C N be such that limgex xx = . and limgex ap = ay > 0.
Then, x. is a solution to problem (1.1) if and only if limyex max{x} %, x7'} = 0.

Proof. First, we may apply [9, Theorem 3.2.8], with the choice y = (Z, &) and
the set map C(y) = R™, to the objective function appearing in (2.1) to conclude that
T(Z,@) is continuous on R™ x (0,00). Combining this property with the definition
of T in (2.1) and the assumption that limgex(2g, ar) = (24, i) with a, > 0 shows
that limgexc sp = limgex (T(mk, ag) — ack) = T (24, ax) — Tx. It follows from this limit
and the fact that Assumption 1.1 and [2, Theorem 10.7] together show that z, is a
solution to problem (1.1) if and only if T'(xy, au) = .. d

Suppose that max{x}*, x;*} = 0 for some k € N. By defining the sequences {x;}
and {o;} such that z; = z and o = ay, for all j > 1, we may apply Lemma 4.1
(with k replaced by j) to conclude that zj is a solution to problem (1.1). Hence, for
the remainder of this section, we make the following assumption.

Assumption 4.1. For all iterations k € N, it holds that max{x}*, x2¥} > 0.

Since our analysis considers the properties of the sequence of iterates, it is con-
venient to define the following partition of iterations performed by Algorithm 3.1:

K™ :={k € N : line 12 is reached during the kth iteration},
K§' = {k € K™ : subroutine m_update returns flag;’ = new_zero in line 12},
™ :={k € K™ : subroutine m_update returns flag)’ =suff_descent in line 12},
KP8 := {k € N : line 16 is reached during the kth iteration},
KCP8 := {k € KP® : subroutine pg_update returns flagh® = same_« in line 16}, and

leg := {k € KP® : subroutine pg_update returns flagh® = decrease_« in line 16},

so that K™ = g UK, KP® = kP8 UKP®, and N = K™ U P,
Finally, we assume that the symmetric and positive-definite matrices required in
line 9 are chosen to be bounded and uniformly positive definite.

A SUBSPACE ACCELERATION METHOD 555

Assumption 4.2. The matrix sequence { Hy }rexem chosen in line 9 is bounded and
uniformly positive definite. That is, there exist constants 0 < pmin < fmax < 00 such
that pmin|[v]|3 < 07 Hpv < fimax||v]|3 for all k € K™ and v € RIZxl,

4.1. Complexity result. We first focus our attention on iterations in KP8. The
next result shows that Algorithm 3.4 is well posed and that the new iterate that it
produces satisfies a decrease property that will be useful for our complexity analysis.

LEMMA 4.2. For each k € KP8, Algorithm 3.4 is called in line 16 and successfully
returns xy11 and flagi®. Moreover, the value of flagp® indicates whether k € KP® or
k € KP&, and for these respective cases the following properties hold:

(i) Ifk € KP8, then ag11 = ag and f(Tg1)+7(pe1) < f(xk)—l—r(xk)—%(xgg)Q.
(ii) If k € K®, then g1 = Eay and f(zpi1) +7(wr41) < fan) +r(2r).

Proof. Since k € P2, we know that the condition tested in line 7 of Algorithm 3.1
must not hold, meaning that x}* > x{*. Combining this observation with line 15 of
Algorithm 3.1 shows that the set Zj defined in line 15 satisfies

(4.1) 1Pz, (si)ll2 = |I[sklz, [l2 > wxi® > 0.

Combining this result with Lemma 2.1 (using Z = Zy, T = xy, and & = «ay) yields
(4.2) Dyir(r; Pr (s1)) < — a1 Pr(si)]13 < 0.

It is possible that Algorithm 3.4 terminates in line 52 because the inequality in
line 49 does not hold for j = 0. In this case, Algorithm 3.4 successfully returns
Tkt1 = Yo = @k + Pr, (sx) and flagh® = same_q, also indicating that k € KP8. Since
the while loop in line 49 terminates with j = 0, we can conclude that

(4.3) F@rea) +r(zrea) = fyo) +r(yo) < flaw) +rzn) — L Pr(si)lI3.

Combining this bound with (4.1) yields Lemma 4.2(i). Finally, since flagh® = same_q,
it follows from line 17 that a1 = oy, completing the proof in this case.

It remains to consider the case when Algorithm 3.4 is unable to terminate in
line 52 because the inequality in line 49 holds for j = 0. In this case, it follows
from (4.2) and standard results for a backtracking Armijo line search that, for all
sufficiently large j, the vector y; < xy + &’ Pr, (si) defined in line 50 of Algorithm 3.4
satisfies f(y;) + r(y;) < f(@k) + r(zx) + n& Dyqr(ai; Pr, (sk)) < f(or) + r(we) —
Ufjo%k”PIk(sk)H%- This inequality shows that the while loop starting in line 49 of
Algorithm 3.4 will terminate finitely, and thus Algorithm 3.4 successfully returns
Thyt = Y; = T + &I Pr, (sy,) for some j > 0 and flagh® = decrease_q, also indicating
that k € ICfg. Moreover, that inequality may be combined with y; = 11, and
(4.2) proves that f(axgy1) + r(zk+1) < f(xx) + r(zk), as claimed. Finally, since
flagh® = decrease_a, we see in line 17 that a1 = a. O

Next, we prove that the PG parameter remains bounded away from zero.

LEMMA 4.3. The PG parameter sequence generated by Algorithm 3.1 satisfies 1 >
Qp 2> Qpin = min {a07 W} > 0 for all k € N. Moreover, a bound on the number
of times the PG parameter is decreased is given by

(4.4) K78 < cff == max {07 {log (Q(%fn))/log({_l)—‘ } .

556 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

Proof. Since ap € (0,1] in line 3 and agpy1 < i for all £ € N, we need only
prove the lower bound on ay. With that goal in mind, for the purpose of obtaining a
contradiction, suppose that there exists an iteration k satisfying oy < 2(1 —n)/L <
2/L, with the latter inequality holding since n € (0, 1).

First suppose that k € KP8. With yo = x4+ Pz, (sx) as in line 48 of Algorithm 3.4,
it follows from Lemma 2.2 with T = zy, @ = ag, and s(T, @) = s, that f(yo) +7(y0) <
Flaw) +r(en) = (G = Pr(sw)I3 < Flaw) +rlaw) = (G — 22 IPz(se)ll3 =
flag) +r(zk) — aikHPI(sk)H% This inequality implies that the condition checked in
line 49 for j = 0 will not hold, meaning that ;7 = 0 when line 51 is reached so that
flagh® < same_a in line 52. Thus, when line 17 in Algorithm 3.1 is reached, the update
apy1 < oy will take place. Second, if k € K™, then Algorithm 3.1 sets a1 < . To
summarize, any time ay < 2(1 —n)/L, the update ay41 < oy, takes place; combining
this with the fact that when the PG parameter is decreased the update a1 < oy
is used (see line 17 in Algorithm 3.1) gives the lower bound on «y.

We now prove (4.4). Let us observe from the first paragraph in this proof that if
ap < 2(1 —n)/L, then [K®*| = 0, which verifies that (4.4) holds. Therefore, for the
remainder of the proof, suppose that ag > 2(1—n)/L. Combining this bound with the
fact that when the PG parameter is decreased the update ay41 < £ay, is used, we see
that an upper bound on |1Cfg| is the smallest integer ¢ such that ap&? < 2(1 —1n)/L.
Solving this inequality for ¢ shows that the result in (4.4) holds. d

We now switch our attention to iterations in K™. The next result establishes that
Algorithm 3.2 is well posed and that the direction dj that results from it when called
by Algorithm 3.1 satisfies a certain descent property.

LEMMA 4.4. For each k € K™, Algorithm 3.2 is well posed. Moreover, the result-
ing direction dj, which is used to compute dy in line 11, guarantees that dy, satisfies
(i) Vz,(f +r)(@r) " [dilz, < == V2 (f +7)(2n)[3 < 0 and

(i) lldrllz < 2/ pmin) [V, (f +) (22) |2,
where Ly, C I is the set in line 8 used as an input to Algorithm 3.2 in line 12.

Proof. Since k € K™, Algorithm 3.2 is called in line 10 with input Z;, defined in
line 8. We first prove that g, = Vz, (f +r)(zx), as defined in line 9, is nonzero. For a
proof by contradiction, suppose that gr = 0 so that Vg, (f +r)(zx) = 0 for all ¢ such
that G; C Zj. Consider arbitrary such i. Note that [z;]g, # 0 and [z + sg]g, # 0
since G; C Zj, C Z* (see line 8) and by how Z;” is defined. This allows us to conclude
from Lemma 2.3 that [sg]g, = 0, i.e., that [sg]z, = O since ¢ with G, C I was
arbitrary. This fact and line 8 yield xj' = 0, but since the inequality in line 7 must
hold, we also have x}® = 0. This contradicts Assumption 4.1, thus establishing that
g # 0. Now, it follows from lines 9, 11, 22, and 21, g5 # 0, and Assumption 4.2
that Vz, (f +7)(@p)" [dilz, = gfdr < gl dif = —Brllorll3 = ~llgrll3/ (i Hgr) <
*ﬁ lgx||3- The result in (i) follows from this inequality and gy = Vz, (f+7)(xx) # 0.

Part (ii) is precisely [6, Lemma 3.8] under our Assumption 4.2 since our conditions
placed upon the step dj, are exactly the same as those used in [6]. O

The next lemma shows that, for £ € ™, a local Lipschitz property holds along a
certain portion of the search path defined by the reduced-space m-direction.

LEMMA 4.5. Let k € K™ so that Iy is computed in line 8. The following hold:

(i) The constant 8 € (0,7/2) and index set Iy, passed into Algorithm 3.3 satisfy,
for each i such that G; C Ij, with py; computed in (3.5) and pr; computed in
line 28, the following conditions:

A SUBSPACE ACCELERATION METHOD 557

(a) [[[zx + sklg;ll2 # 0,
(b) lllzrlg:ll2 = pri = pri = sin(0)pr,i > 0, and
(©) lzklg.ll2 = pri = r2(1 = sin(@) IV, (f +) () I3
(ii) For all step sizes B € [0,7y) with 7, computed in line 33, it holds, with

(45) Amax ‘= max{)\l,)\27 ey)\ng} and Pk,min ‘= miin{[)lc,i : gz c Ik:}7

that |V z, (f +7)(zx) = Vz, (f + 1)@k + Bdi) |2 < B(Lg + 522 |l[dk]z, ||2-

Proof. We first prove part (i). Consider arbitrary ¢ with G; C Zj,, where Z;, C I
is passed into Algorithm 3.3 and constructed to satisfy the condition in line 8. Part
(a) follows from T C Zi™ and the definition of ZI* in (3.2). The first inequality in
part (b) follows from Z* C 7" and how Z:*, ;™2 and T are defined. The second
inequality in (b) follows from how py; is defined in line 28. The third inequality
in (b) follows from line 28 and the first inequality in (b). To complete part (b),
we prove pr; > 0. For a proof by contradiction, assume py,; = 0, which by (3.5)
means that [|[Vzm (f 4+ 7)(z)||2 = 0. This fact means that each i with G; C 7, C Z}*
satisfies ||Vg, (f + 7)(zk)|l2 = 0, which with Lemma 2.3 (using = =y, & = ay, and
s(Z,@) = sy) and the definition of Z;* implies that ||[si]g, |2 = O for each G; C T, i.e.,
that ||[sk]z,||2 = 0. It now follows from line 8 that xJ* = 0, which with line 7 yields x}*
= 0. We have reached a contradiction to Assumption 4.1, and conclude that pj ; > 0,
as claimed. Finally, we prove part (c). It follows from line 28, 6 € (0,7/2), part (b),
(3.5), and the fact that T, € Z;" that [[[zx]g, |2 — pr.i = ll[zklg,|l2 — sin(0)l|[zklg,[l2 =
(1 — sin(0) | [zxla, 12 > (1 — sin(0))pxs > ra(1 — sin(0)) [V (f +) (an)[E > (1 —
sin(0))||Vz, (f + 7)(zx)||5, which completes the proof of part (c).

To prove part (ii), let 8 € [0,7%). It follows from part (i) and the definition of
7k in line 33 that every point on the segment that connects [zx]g, to [z + Bdk]g, is
outside of the ball in R!9! centered at zero of radius Pk,i > 0. This means that both
zklg: || > Pk, and ||[zk + Bdk]g; || > pk,i- It now follows that

Vg, r(zx) — Vg, r(wx + Bdy)|2

oy =kl lme+Bdilg, || i || Pralekle pralze + Bdilg,
(4.6) Nlzelallz N + Bdila 21l e lzklallz [z + Bdilg ll2 ||,
< —|llzklg, — [zx + Bdilg, ll2 = ——ll[dk]g; 2,
Pk,i Pk,i

where the (only) inequality follows from the nonexpansive property of the projection
(of [xzk]g, and [zx + Bdk]g,) onto the ball of radius g ;. From (4.6) we have

IVz, () = Vz,r(aw + B)3

A7
= Y IVar(z) = Vor(z,+Bde)l3 < 8 > S-lldele |13
:G; CT :G; CTy, "k
62)\121111)(/82)\?1’13.)(
(4.7) <= > ka3 = =[]z, 13-
pk,min i:G; CTh k,min

It follows from Assumption 1.1, [di]ze = 0, the triangle inequality, and (4.7) that

V2, (f + r)@w) — Vo (f + r) (e + B2 < [Vr flan) — Vo fan + Bdi) +
V2, (zk) — Vz,r(ze + Bdy) |2 < B(Lg + 222 ||[dk]z, [|2, as claimed. 0

Pk,min
We now show that Algorithm 3.3 is well posed and that the new iterate it produces
satisfies a decrease property that will be used in the final complexity result.

558 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

LEMMA 4.6. For each k € K™, Algorithm 3.3 is called in line 12 and successfully
returns xp4+1 and flagy'. Moreover, the value of flag)’ indicates whether k € K or
k € K%, and for these respective cases the following properties hold:

(i) If k € K, then f(xpt1) + r(xp1) < f(zk) + r(xg), and zr41 has at least

one additional block of zeros compared to xy.

(i) If k € K, then
(4.8) f(zrg1) +r(zesr) < flze) +r(ow) — min{cl(X?)HpvC2(X?)2+p}a

NEpminna (1—sin(6)) '+ 24

2pmax

o En(l—m)¢
203 ax (Lgﬁ2(Lf+Amax¢@)P+Amax) ’
Proof. Throughout, we use F := f +r. It is possible that Algorithm 3.3 success-
fully terminates in line 39, in which case it follows from line 39 and line 38 that the
returned xp,1 and flag)' satisfy F(xgy1) < F(zy) and flag]' = new_zero, indicating
that k € KI*. Moreover, upon termination, the value j satisfies &/ > 75, (see line 34),
which combined with line 37 shows that at least one additional group of variables has
become zero at x41. This proves that part (i) holds.
Next, suppose that Algorithm 3.3 does not terminate in line 39. Observe from
the definition of 75 in line 33 that 7, > 0 (this follows from Lemma 4.5(i) and the
definition of py ;). Therefore, it follows that the while loop starting in line 34 will

and co :=

where ¢1 1=

terminate with the smallest nonnegative integer j such that 55 < Tk, and the loop in
line 41 will begin with 57 = 5. We now claim that the condition in line 43 used to
determine termination of the loop is satisfied for all j > j such that

2(77 - 1)VIkF($k)T[dk]Ik
(Lg + Amax/ﬂk,min)” [dk]Ik ||g

To see that this claim holds, we can use the integral form of Taylor’s theorem and
Lemma 4.5(ii) (using the fact that v£7 € [0,7%) for all v € [0,1]) to obtain

(4.9) ¢ e {0,] C [0, 7).

|F(xy, 4+ &dy) — F(xy) — &V, F(x)" [dilz, |

1
<| [€, (v o+ oea) —vsz<xk))dv]
0

1
<¢ / ldk)z 121V, F (2 + € dh) = VP () 2y

1
< £2J (Lg +)‘maX/Pk,min)”[dk}Ik H% /0 ydy = %52] (Lg +)‘maX/Pk,min)”[dk]Ik ”%

Combining this inequality with (4.9) yields
F(ay +&dy) < F(ax) + Vg, F(x) [dilz, + 567 (Lg + Amax/prmin) | [di]z, |13
= F(xy) + &V, Fa)" [dilz, + & (n — 1)V, F ()" [di]z,
= F(xk) + ngijkF(xk)T[dk]Im
which establishes our claim that the inequality in line 43 holds for all j > j such

that ¢/ satisfies (4.9). This shows that the loop will successfully terminate with
flag)’ = suff_descent (thus indicating that k € K) and x4+ satisfying

(4.10) F(zp41) < Flax) +n€ Vi, Flay) [dilz,

A SUBSPACE ACCELERATION METHOD 559

for some j satisfying

3 . 7 25(77 - 1)VIkF(xk)T[dk}Ik }
¢ me{g’@g+xmdmmmnwan@
. 26(” - 1)kaF<xk)T[dk}Ik }
(4-11) me{&“u@+xmdmmmnahk%’

where the second inequality follows from the fact that j is the smallest nonnegative
integer such that & < 7. We now consider two cases.

Case 1. The minimum in (4.11) is £7y, from which we may conclude that 7, < .
Using (4.10) and Lemma 4.4(i) we have that

(4.12) F(xpi1) < Flor) + 08V, Flan) i)z, < Flar) — 2|V, Fan) 3

We now seek a lower bound on 7. Consider 4 such that 74, ; < co when computed in
Algorithm 3.3. The triangle inequality gives pi; = ||[zk + Tkidk]g: |2 > [l[zklg: |2 —
Tki|l[dk)g, |2, which together with Lemma 4.5(i)(c) and Lemma 4.4(ii) shows that

zklg, l2—pPk,i Bminkz (1=sin(0)) IV, F@u)ll5 _ pmin ; -1
Thi Z e e 2 vz Faols = b r2(L=sin(@)IVE F)l

From this, it follows that 7, > 3juminka(1 — sin(0))||Vz, F(zg)|[5~". Using this in-
equality with (4.12), Lemma 2.3, and the set Z; from line 8 shows that F(zp+1) <

F(ay) — 2etmingz0ostn®) g p(a) |77 < F(ay) — Dkming20msin@) g, 1, 13+7 <

L3 1
F(xzy) — NE thanin k2 (1—sin(0)) ' 7 (x@)'*P, thus completing the proof for this case.

2ftmax
s . o 26(=1)Vz, F(wx)” [di]z, i -
Case 2. The minimum in (4.11) is T o)]z, T Combining this fact

with (4.10), (4.11), Lemma 4.4(i), and Lemma 4.4(ii) shows that

F(xpi1) < F(ag) + 08V, F(x) " [di]z,
26n(1 =)|V, F(xy)]l3
M?nax(Lg + Amax/ Pk,min) ||[dk]z, ”%
(4.13) < Play) — — 2Hminn(L =)|V F ()l
S 42 Ty + e/ Prin) V2, F (@) 13
i€ (1=)|V, F ()3
2“12nax(Lg + /\max/pk:,min) .

< F(xg) —

= F(xk)

It follows from (4.5), (3.5), and Z, C Z;* that pk min > k2||Vz, F(xk)||5. Combining
this bound with (4.13) shows that

 phaén(L =)|V F ()3
2”1%1:1)(([’9 + /\max/pk,min)
_ [ninén (1 = DIV, F ()13
22,0 (Lg + Amax/ (2] VZ, F (1) [15))
kg2 (1=)|V, F (i) 377
QM%aX(LQIiQ“VIkF(xk)HIZJ + Amax)

(4.14) < F(zy)

= F(x)

560 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON
Next, we know from Lemma 4.2, Lemma 4.6(i), (4.12), and (4.14) that F(xy) <

F(xzp) for all k € N, i.e., z € L for all k € N. Combining this fact with the triangle
inequality, Assumption 1.1, the definition of r, and (4.5) gives

/
Vo F @)l < V5 f@olle + [Vzr(@) s = 1920 @ols + (3 1Ver(@)l3)

4:G; CTy,
/ /
< (Y oMl) =24 (X X))
:G; CIy, 4:Gi CLy,
gLf+(3 Afnax)l/Q < Ly + Amax /TG

1:G; CZLy

We can now combine this inequality with (4.14) to obtain the bound F(zp4+1) <

1211in 1- 24 . .
F(zp)— (2Nﬁ,ax(Lg”2?5f+§rz(iix\/%)p+>\max)) IVz, F(x)|3", which with Lemma 2.3 and
. . 2. En(l— 2+
line 8 gives F(wx1) < Flan)~ (gt ey) lselz3 < Faw)-
2 1— 24p .
(max(L'Zii?iﬁ'imf)ﬁ—@pHW))(x}?)”p , thus completing the proof. O

The result in (4.8) motivates us to define the following subsets of K3:
(4.15) ;ﬂd,big ={ke Ky X3 > c1/c2} and Icgcli,small =K\ IC:[cli,big'

This distinction plays a role in our complexity result. First, we require a lemma.

LEMMA 4.7. The objective function f + r is monotonically decreasing over the
sequence of iterates {xy} and limy_, oo (f(xk) + r(xk)) =: Fin > —00.

Proof. 1t follows from Lemma 4.2 and Lemma 4.6 that the objective function is
monotonically decreasing over the iterate sequence. The remaining conclusion of the
lemma follows from the monotonicity property and Assumption 1.1.]

The main theorem can now be stated. It gives an upper bound on the number of
iterations performed by Algorithm 3.1 before an approximate solution is obtained.

THEOREM 4.8. Let ¢1 and cy be the constants in Lemma (4.6)(ii), and let us
define c3 == np?/ag > 0. For any € > 0, define K := {k € N : max{x}", x}5} > €}.
Then,

IKPE N K| < cpge 2 + 1,

4.16
(4.16) K big VK| < cbige™ P+ 1, and KD gnan N Kel < Comane™ *7) +1,

where cpy = (f(x0) + 7(20) — Fuin)/c3, cbig = (f(@0) + 7(x0) — Fuin)/c1, and

Csmall == (f(0) + r(20) — Fiin)/c2. Therefore, if € > c1/ca, then

(4.17) Kel < (€ + cpge ™2 + cpige” 1P +2) (1 + ng) + ng,

where ¢t is defined in (4.4); otherwise, i.e., if € < c1/ca, then

(4.18) el < (¢ + cpge ™2 + eige” M) + cmane™ @) + 3) (1 + ng) + ng.
Proof. Note that the definitions of K™ and KCP® together with line 7 show that

(4.19) Xi > x5E for ke K™ and xP® > x}' for k € P8,

A SUBSPACE ACCELERATION METHOD 561

Define Ay, := f(zx) + r(zk) — (f(@rp41) + 7(e11)) and xp = max{x}*, x}*}. Using
Lemma 4.2(i), Lemma 4.3, Lemma 4.6(ii), the definitions of c3 and K¢ in the statement
of the theorem, and (4.19) shows for arbitrary k& € N that

f(l“o) + T(xO) - (f(xk.;.l) +r xk.;.l Z Ay

0<k<k
> g A+ E Ay + g Ay
EeKEENK. keKy bigNKe keEKZY smanNKe
0<k<k 0<k<k 0<k<k
pg\2 m\1+p m)2+p
> E cs(xg)” + E ala) "+ Z ca(Xi')
keKPENK, kEKL bigNKe kEKLY smanKe
0<k<k 0<k<k 0<k<k
> g c3€? + g crett? 4 g coeltP,
keKPENK. keKLg bigNKe kK smanNKe
0<k<k 0<k<k 0<k<k

From this inequality and Lemma 4.7, one finds that (4.16) follows.

Next, suppose that € > ¢;/co. It follows from (4.15) and (4.19) that x}* =
max{xp®, Xj'} > € > c1/cy for all k € K™, which implies that K ..y N Ke = 0. The
result in (4.17) follows from this observatlon7 (4.16), (4.4), and since (by Lemma 4.6(i))
at most ng iterations in §' can occur before the first, after the last, or between any
two iterations in K® U KR8 U K.

The final result (4.18) follows using the same argument as in the previous para-
graph, except now K;“dﬁman N K. is no longer necessarily empty. 0

We see from (4.18) that, for all sufficiently small €, the worst-case complexity
result for Algorithm 3.1 is nge~ ?*?) which is worse than the e~2 result that holds for
the PG method. However, as is typical with well-designed second-derivative methods,
although the complexity bound is worse, it typically performs better (see section 5).
Also, the PG method would not converge locally superlinearly, whereas our method
can exhibit this behavior, as we show in the next section.

4.2. Local convergence. We now consider the local convergence rate of the
iterates generated by Algorithm 3.1. Our analysis is performed under the following
additional assumption that will be assumed to hold throughout this section.

Assumption 4.3. The following conditions related to problem (1.1) hold:
(i) The function f is twice continuously differentiable, (1.1) has a unique solution
2, and V2f : R” — R™" is Lipschitz continuous in a neighborhood of z.,.
(i) With S, := {i : [2.]g, # 0} and X, := {z € R" : [z]sc = [z.]sc = 0},
where S¢ is the complement of S, there exists a scalar o, € (0,00) such that
pI V2 f(z.)p > o.|pl|3 for all p € X..
(iii) f is nondegenerate at ., i.e., ||[Vf(z)]g,

o < A; for all i ¢ S..

Assumption 4.3(ii) is a relaxation of the requirement that f is strongly convex.
As for Assumption 4.3(iii), it is a more strict version of the optimality condition for
problem (1.1), namely, that ||[Vf(z.)]g,ll2 < A; for all i ¢ S,.

Assumption 4.4. The following algorithmic choices are made in Algorithm 3.1:
(i) The backtracking parameter is chosen to satisfy n € (0,1/2).

562 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON
(ii) For all sufficiently large k € N, 7, in line 8/15 is

n if ke K™,
R P
;5 if ke KPre.

(iii) For all sufficiently large k € K™, Hy, = V7, 7 (f 4+ r)(xx) is chosen in line 9.
Finally, we make the following assumption about the iterate sequence generated.
Assumption 4.5. The iterate sequence {zj} has a limit point.

This assumption is not too restrictive. It holds, for example, when the level set £
is bounded due to the fact that {f(xzx)+r(z)} is monotonically decreasing. The level
set L is guaranteed to be bounded in various situations, such as when f+r is coercive,
which occurs, for instance, when f is nonnegative-valued (since r is coercive).

The first result of this section shows that the iterate sequence converges to x.,.

THEOREM 4.9. The iterate sequence {x} generated by Algorithm 3.1 satisfies
limp 00 2 = 4 and limg_, o max{x} %, x7'} = 0.

Proof. Theorem 4.8 gives limy_, o, max{x%®, x*} = 0. Since Assumption 4.5 en-
sures that {z;} has a limit point, say &, there exists an infinite X C N such that
limgek k—oo £x = €. Then, Lemma 4.1 and Lemma 4.3 imply that £ is a solution
o (1.1), but then Assumption 4.3 shows that & = z., so limgex k—oo Tk = . The
fact that the entire sequence {x} converges to x, follows from limyei p—oo Tk = T,
the uniqueness of z, in Assumption 4.3(i), and monotonicity of {f(xg) +r(zx)}. 0O

We now show for groups whose variables are all equal to zero at the solution x,
that the PG step will eventually predict them to be zero.

LEMMA 4.10. For alli ¢ S, and sufficiently large k, it holds that [xy + sk]g, = 0.

Proof. First note that Lemma 4.3 and the update strategy for {az} in Algo-
rithm 3.1 ensure that there exists ki such that ap = o, > 0 for all & > ky. Let

i ¢ Sy so that [z,]g, = 0. Tt follows from Assumption 4.3 that |Hm*7mo‘v*?(im*)]gi”2 =

> 1. Combining this with Theorem 4.9, oy = a, > 0 for all k£ > k1, and

Ag
V£ (@l 2
Assumption 1.1 gives some ky > k; such that 1 — ax;/||[zx — axV f(z)]g, |l2 < 0 for
all k > ko. Using this fact with (2.2) and (2.3) yields [z + sk]g, = 0 for all k > ko.
We are done since i ¢ S, was arbitrary and ng is finite. |

We now show that, eventually, the set S, determines the sets Zp® and Z}".

LEMMA 4.11. For all sufficiently large k, it holds that T* = {j € G; : i ¢
S.} and I ={j € G; : i € 8.}, where the sets I,* and I} are defined in (3.4).

Proof. Let k; be large enough so that the conclusion of Lemma 4.10 holds, i.e.,
if k > k; and i ¢ S, then [z + sglg, = 0. Together with (3.2), this shows that
G;NI™ = for all k > ky and i ¢ S, and thus G; C I2® (see (3.4)) for all k > k;
and i ¢ S,. In other words, it holds that {j € G; : i ¢ S,} C I® for all k > k;.

Next, we prove that there exists ko such that Z}® C {j € G; : i ¢ S.} for all
k > ko. For a proof by contradiction, suppose that there exist an infinite subsequence
K C N and group index 7 such that G; C Z7}® and i € S, for all k € K. Since G; C 7}®
for all k € K, it follows from (3.2), (3.3), and (3.4) that at least one of

(4.20) [zklg. =0, [zk +sklg. =0, |[[zrlg:ll2 < m1l|Vg.(f +7)(zk)]]2, or
(4.21) I[zklg;ll2 < w2l Vzm (f +) (zn) [l

A SUBSPACE ACCELERATION METHOD 563

holds for all k € K. However, since i € S,, it follows from Theorem 4.9 that the first
condition in (4.20) does not hold for all sufficiently large k € K. Also, it follows from
Theorem 4.9, the facts that x}° = ||[sk]zrz |2 and X} = ||[sk]zp [|2, and the fact that
I UIZY® = {1,...,n} that limy_,« ||sk]|2 = 0, which combined with ¢ € S, proves
that [z + sg]g. # 0 for all sufficiently large k. Hence, the second condition in (4.20)
does not hold for all sufficiently large k € K. Next, from the optimality conditions
for problem (1.1), the fact that ¢ € S, Theorem 4.9, Assumption 1.1, and the fact
that f +r is differentiable over the variables in G; for sufficiently large £ that we have
limy, o0 (| Vg, (f + 7)(z)l[2 = 0. This limit, [z.]g. # 0, and Theorem 4.9 show that
Ilzklg.ll2 > K1l|Vg, (f 4+ 7)(2k)|2 for all sufficiently large %, meaning that the third
condition in (4.20) does not hold for all sufficiently large k € K. Therefore, we must
conclude that the inequality in (4.21) holds for all sufficiently large k € K. Combining
this with ¢ € S, shows that there exists € > 0 such that

(4.22) [Vzm (f +7)(@k)|l2 = € > 0 for all sufficiently large k € K,

which in particular shows that I # () for all sufficiently large k € K. Since the
optimality conditions for problem (1.1) together with Theorem 4.9, Assumption 1.1,
and the fact that f 4 r is differentiable over the variables in G; for sufficiently large &
imply that limy oo || Vg, (f+7)(zk)||2 = 0 for all ¢ € S,, we must conclude from (4.22)
that, for all sufficiently large k € K, there exists an i ¢ S, such that G;, C fg‘.
However, Lemma 4.10 yields [zy + s]g, = 0 for all sufficiently large k € K, which
together with (3.2) shows that G;, ¢ I/, which is a contradiction. Therefore, there
exists ko such that Z}® C {j € G; : i ¢ S.} for all k > ks.

The conclusions of the two previous paragraphs yield Z* = {j € G; : i ¢ Si}
for all sufficiently large k. The final assertion, namely, that Z;* = {j € G; : i € 8.},
follows from the fact that Z;® and Z;* partition {1,2,...,n} for every iteration k. 0O

For k sufficiently large, the support of z; agrees with the support of the solution.

LEMMA 4.12. For all sufficiently large k, it holds that [xg]g, # 0 for alli € S,
and [zx)g, =0 for all i ¢ S,.

Proof. Theorem 4.9 shows that [x1]g, # 0 for all sufficiently large k and all i € S,,
which is the first desired result. Hence, let us proceed by considering arbitrary i ¢ S..
Assumption 4.4(ii), Lemma 4.10, Lemma 4.11, and Lemma 4.3 ensure the existence
of an iteration k such that, for all k¥ > k, the following hold:

(4.23) Gi CI}®, [k + sklg, =0, and oy = oy

We claim that the second desired result follows from (4.23) if there exists some suffi-
ciently large k > k such that k € K% and (241 = [z}, + s3lg, = 0. Indeed, since i
is an arbitrary element from {1,...,ng} \ S, ng is finite, and the second condition
in (4.23) shows that values of the variables in G; can only be modified if k € P8, the
existence of such k along with (4.23) shows that iteration k € KP& sets [T41]g: to
zero, and these variables will remain zero for all future iterations.

Let us now show the existence of such k > k. We claim that there exists k > k
such that [zg]g, = 0. For a proof by contradiction, suppose that [zg]g, # 0 for all
k > k. Combining this with Theorem 4.9, i ¢ S, and the fact that the variables
in G; can have their values changed only if & € KCP® implies that there exists k>k
such that k € KPe. Now, since k € KP& and oy = ap for all k > k, it follows from
Algorithm 3.1 that ﬂagzg = same_« is returned in line 16. Using this fact, the update
used in line 52, and (4.23) shows that [z;_,]g, = [z} + s;]g, = 0. d

564 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

We require one more lemma that shows that eventually all iterations are in Zj.
LEMMA 4.13. For all k sufficiently large, it holds that k € KZ.

Proof. We first show that all sufficiently large k£ are in K™. It follows from
Lemma 4.11 that Z;®* = {j € G; : i ¢ S.} for all sufficiently large k. Combining this
with Lemma 4.12 and Lemma 4.10 shows that there exists an iteration k£ such that
[wk]zre = 0 and [k + sp]zpe = 0 for all k > k, which means that x}® = [[sk]zpell2 =0
for all k > k. It follows from this fact, line 7, and Assumption 4.1 that k € K™ for all
k> k. Now, notice that at most ng —1 iterations from k onward can be in K8 because
of Lemma 4.6(i). (Every iteration k € K fixes at least one new group of variables to
zero, and if they ever all become zero so that Z;* = (), then the contradiction k € KP®
is reached.) Therefore, it follows that all sufficiently large k£ must be in K. O

We can now state our main local convergence result.

THEOREM 4.14. If in Algorithm 3.2 we choose either ¢ € (1,2], or ¢ = 1 and
{ur} — 0, then {zr} — =, at a superlinear rate. In particular, if we choose ¢ = 2,
then the rate of convergence is quadratic.

Proof. Tt follows from Lemma 4.11, Lemma 4.12, and Lemma 4.13 that, for all
sufficiently large k, the iterates generated by Algorithm 3.1 satisfy the recurrence
Tpy1 = Tp + E9%dy,, where jj is the result of the backtracking Armijo line search in
line 43, [|[zk]zrsl2 = ||[dk]zrll2 = 0, and [di]zp = dj, with dj, computed by Algo-
rithm 3.2 to satisfy the third condition in line 22. In other words, for all sufficiently
large k, we have [vx|zpe = [2.]zpe = 0, and the variables in Zj" = {j € G; : i € S.}
are updated exactly as those of an inexact Newton method for computing a root of
Vzm(f +7)). Since, by Theorem 4.9, we have limy . 2, = 2., the desired conclu-
sions follow under the stated conditions from [12, Theorem 3.3] (also recall the local
strong convexity restricted to the support of x, in Assumption 4.3(ii)) and noting the
well-known result that the unit step size £/ = 1 is accepted (asymptotically) by a
backtracking Armijo line search when 1 € (0,1/2) (see Assumption 4.4(i)). 0

5. Numerical results. In this section, we present the results of numerical ex-
periments with an implementation of FaRSA-Group (Algorithm 3.1) applied to solve
two classes of regularized regression problems. The first class is the regularized logistic
regression problem of the form mingepn + Zfil log(1 + e*y””Tdi) + 3709 N l2g: 1o
where d; € R™ is the ith data point, N is the number of data points, y; € {—1,1}
is the class label for the ith data point, and A; is the weight for the ith group. The
second problem is the regularized linear regression problem mingegn +||Az — b][3 +
> N @l ||y, where A € RV*" b€ RN, and); is the weight for the ith group.

We first describe details of our implementation of FaRSA-Group, then describe the
data sets considered in our experiments, and finally present our experimental results.

5.1. Implementation details. We have developed a Python implementation
of FaRSA-Group that is available upon request. The values of the input parameters
for Algorithm 3.1 and Algorithm 3.2 that we used are given as follows (with some
caveats that are mentioned in the following paragraph): ¢ = 1, k1 = 0.1, £ = 0.5,
ko =102, =103, 0=7/4,(=08,¢=15p=2, and yp = 1.

We initialized zg as the zero vector and ag as an estimate of the inverse of the
Lipschitz constant of f at xg. To be precise, our software randomly generated yo €
R™ such that |lzg — yoll2 = 107® and then set ag = min{1, ||zo — yoll2/||V.f(x0) —
Vf(yo)ll2}- Since ¢ = 1, it follows from Algorithm 3.1 that Assumption 4.4(ii) holds
for all k£ € N. (For data sets with N < n, we initially chose ¢ = 0.8 and switched

A SUBSPACE ACCELERATION METHOD 565

to ¢ = 1 when an iteration in K™ satisfied f(xy) — f(zr+1) < 1073, When N < n,
the matrix V2 f(zy) is singular, which often led to large CG directions and multiple
backtracks in the line search. These ill effects were partly remedied by this scheme
for updating ¢.) When defining the set Z;™2!! in (3.3), we used &2, = k2|G;| /|7 in
place of ko for all ¢ such that G; C f}cn to account for the fact that the two different
norms in (3.3) are associated with vectors of different dimension. Note that since
(1/n)ka < Ra,; < nka, this choice is easily incorporated into the analysis in section 4.

Instead of fixing x1 and ko, they are adaptively adjusted by the following rules to
improve FaRSA-Group’s performance. (i) If the kth iteration finishes at line 44 with
j > 5, then increase k1 and ko: k1 + min{10°, 10k, } and k2 < min{10°, 102 }. (i) If
for k > 0 we see that k+i € KP2 for all ¢ € {0,1,2,...,5}, then at the end of iteration
k + 5 decrease k1 and k2: k1 < max{107° k1/10} and Ky + max{107° ky/10}.

The first rule aims to keep more groups that are potentially zero at the solution
out of the set Z}", ;. In particular, it is driven by our empirical observation that when
significant backtracking along the m-direction is performed in the reduced space, it is
likely that groups of variables that are zero at the solution and nearly zero at xj, are
(wrongly) included in Z}. As for the second rule, the idea is to increase the chance
that Algorithm 3.2 is used during the next iteration, with the hope that it accelerates
convergence. This rule is also guided by our numerical experience.

The choice of Hy in line 9 was a regularization of the exact second-derivatives of
f. For the logistic regression problem, for any scalar § > 0, %Dng(l‘)D ~ V2f(x),
where DT := [d;, dy, . ..,dx] and $5() is the diagonal matrix with ith diagonal entry
[S5(x)]si = max{o;(z)(1 — 04(z)), 6} with o;(x) := exp(y,d] x)/(1 + exp(y;d} z)) for
all i € {1,2,...,N}. Notice that if § = 0, then (1/N)DT%y(z)D = V2f(z). To use
a small amount of regularization in our tests, we chose § = 10~8. With this choice
of &, our choice of Hy, in line 9 can now be written as Hy, < [+ D7 Ss(2x) D]z, 7, +
V7, 1,7(xr), where we remind the reader that VZ 7 r(xy) is well defined because
I C I}* ensures that [zx]g, # 0 for all G; C 7. For the linear regression problem,
we set Hy, < [AT Az, 1, + V7, 7, 7(x) + 61, where I is the identity matrix.

In Algorithm 3.2, we applied the CG method to the system Hpd = —gi to ap-
proximately solve the optimization problem defined in line 22. As pointed out in
section 3.2, the direction associated with every iteration of the CG algorithm satisfies
the first two conditions in line 22, which were required to establish the complexity re-
sult in Theorem 4.8. To reduce the cost of the CG computation and limit the number
of backtracking steps required by Algorithm 3.3, we terminated Algorithm 3.2 when at
least one of three conditions was satisfied. To describe these conditions checked dur-
ing the kth iteration, let d; ; denote the jth CG iterate, and let ¢; 5 := || Hyxd; k + g ll2
denote the jth CG residual. The three conditions are given as follows: (i) t;5 <
max{min {0.1¢o x, t:3 }, 1071}, (ii) ||d; [l > 10° min{1, ||V, (f +7)(xr) |2}, and (iii)
Jj = |Zk|]- Outcome (i) is the ideal termination condition since it indicates that the
residual of the linear system has been sufficiently reduced. Outcome (ii) serves as
a trust-region constraint on the norm of the trial step dj; in particular, when this
inequality holds, the size of the CG iterate d; is relatively large, indicating that z,
is not close to an optimal solution. Therefore, we restrict its size with the intent of
needing fewer backtracking steps during the subsequent line search. Outcome (iii)
caps the number of CG iterations to |Zj| (the size of the reduced space) since, in
exact arithmetic, CG converges to an exact solution in at most |Zj| iterations.

Algorithm 3.1 decreases the value of the PG parameter (see line 17) for the next
iteration using a simple multiplicative factor when flagh® = decrease_a. However,
in practice, we found an adaptation of the approach in [10] to be more efficient. To

566 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

describe this approach, let dj and &* be the search direction and step size used to
obtain zpi1 = zp + &*dg. It is well known [2, Lemma 5.7] that if o € (0,1/L¢],
then f(zpi1) < flan) + &6V f(@p)Tdr + 5 || dg||3. Setting this inequality to be
€7 dic |13

ST @) Fan) -V ()T dr)
which can be viewed as a local Lipschitz constant estimate for f at xx. In our
tests, we updated the PG parameter at the end of each iteration of Algorithm 3.1 as
41 min{l, & /2}. Although this PG parameter update strategy worked better
than the basic strategy in Algorithm 3.1 (see line 17 and line 17), it is not covered
by our analysis in section 4. However, a simple modification of our analysis would
be to allow this update to increase the PG parameter at most a finite number of
times, say 100 times, at which point the update a1 < min {ay, dx/2} < ap would
be used. This strategy is covered by our earlier analysis (with a larger constant
in the complexity result). The algorithm is terminated when at least one of the
following conditions holds: (i) max{x®, xt8} < 107 S max{x", xt%,1}. (ii) k € £
and |Vz, (f+7)(xk) T [di]z, |/ (1+ f (k) +Ar(zr)) < 10716, (iii) The maximum allowed
time limit is reached. (iv) The maximum allowed number of iterations is reached.
Condition (i) implies the the algorithm terminates with the desired accuracy, while
condition (ii) indicates that (numerically) no significant progress can be made.

an equality and then solving for «, one obtains &y, :=

5.2. Data sets. Data sets for the logistic regression problems were obtained from
the LIBSVM repository.? We excluded all multiclass (greater than two) classification
instances and all data sets that were too large (> 8GB) to be loaded in memory.
Finally, for the adult data (ala—a9a) and webpage data (wla—w8a), we used only the
largest instances, namely, a9a and w8a. This left us with our final subset of 30 data
sets that can be found in the top part of Table 5.1. For linear regression problems,
we tested FaRSA-Group using all regression data sets from the LIBSVM repository
and all regression data sets with more than 10000 samples from the University of
California Irvine (UCI) Machine Learning Repository.?

Scaling of the data sets can be important. If the source of the data indicated that
a data set was already scaled, then we used the data without modification. However,
when the website did not indicate that scaling for a data set was used, we scaled each
column of the feature data (i.e., featurewise scaling) into the range [—1, 1] by dividing
each of its entries by the largest entry in absolute value. Labels for some data sets
(e.g., breast-cancer, covtype, liver-disorders, mushrooms, phishing, skin-nonskin and
svimguidel) do not take values in {—1, 1} but rather in {0, 1} or {1,2}. For these data
sets, we mapped the smaller label to —1 and the larger label to 1.

5.3. Experimental setup and test results. For both problem classes, we con-
sidered four group structures and two different solution sparsity levels. Specifically,
we considered the four different numbers of groups in {|0.25n], |0.50n], |0.75n], n},
where n is the problem dimension; notice that the last setting recovers ¢1-norm reg-
ularization. Then, for a given number of groups, the variables were sequentially dis-
tributed (as evenly as possible) to the groups; e.g., 10 variables among 3 groups would
have been distributed as G; = {1,2,3}, G = {4,5,6}, and G3 = {7,8,9,10}. For the
two different solution sparsity levels, we considered groups weights \; = O.lAmin\/@
and A\; = 0.01 A\ pin \/@ , where Ay is the minimum positive A such that the solution
to the logistic problem with \; = A\\/|G;] is 2 = 0 (see [33, equation (23)]).

Thttps://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.
2https://archive.ics.uci.edu/ml/index.php.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://archive.ics.uci.edu/ml/index.php

A SUBSPACE ACCELERATION METHOD 567

TABLE 5.1
The first column (Data set) gives the name of the data set. The second column (N) and third
column (n) indicate the number of data points and problem dimension, respectively. The fourth
column (Scale) provides the featurewise scaling used: each feature is either scaled into the given
interval or scaled to have mean zero (i = 0) and variance one (o2 = 1). The fifth column (Who)
indicates whether the data set came prescaled from the LIBSVM website (website), or it did not
come prescaled and we scaled it (us) as described in section 5.2.

Data set [N n [Scale Who
Data sets for the logistic regression problems
ada 32561 123 [0,1] website
australian 690 140 [-1,1] website
breast-cancer 683 10 [-1,1] website
cod-rna 59535 8 [-1,1] us
colon-cancer 62 2000 (u,0%) = (0,1) website
covtype.binary 581012 54 [0,1] website
diabetes 768 8 [-1,1] website
duke breast-cancer 44 7192 (u,0%) = (0,1) website
fourclass 862 2 [-1,1] website
german-numer 1000 24 [-1,1] website
gisette 6000 5000 [-1,1] website
heart 270 13 [-1,1] website
HIGGS 11000000 28 [-1,1] us
ijennl 49990 22 [-1.5, 1.5] website
ionosphere 351 34 [-1,1] website
leukemia 38 7129 (u,0%) = (0,1) website
liver-disorders 145 5 [-1,1] website
madelon 2000 500 [-1,1] us
mushrooms 8124 112 [0,1] website
news20.binary 19996 1355191 [0,1] website
phishing 11055 68 [0,1] website
rcvl.binary 20242 47236 [0,1] website
real-sim 72309 20958 [0,1] website
skin-nonskin 245057 3 [-1,1] us
splice 1000 60 [-1,1] website
sonar 208 60 [-1,1] website
svmguidel 3089 4 [-1,1] us
svmguide3 1243 21 [-1,1] website
SUSY 5000000 18 [-1,1] us
w8a 49749 300 [0,1] website
Data sets for the linear regression problems

abalone 4177 8 [-1,1] website
blogData 60021 281 [1,1] us
bodyfat 252 14 [-1,1] website
cadata 20640 8 [-1,1] us
cpusmall 8192 12 [-1,1] website
driftData 13910 128 [1,1] us
eunite2001 336 31 [-1,1] us
E2006.tfdf 16087 150360 [-1,1] website
housing 506 13 [-1,1] website
mg 1385 6 [-1,1] website
mpg 393 7 [-1,1] website
pyrim 74 27 [-1,1] website
space_ga 3107 6 [-1,1] website
triazines 186 60 [-1,1] website
UJIIndoorLoc 19937 520 [-1,1] us
VirusShare 107888 482 [-1,1] us
YearPredictionMSD 463715 90 [-1,1] website

568 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

The experiments were conducted on the Computational Optimization Research
Laboratory (COR@L) cluster at Lehigh University with an AMD Opteron Processor
6128 2.0 GHz CPU. In the following, we compared performance of different algorithms
with respect to CPU time (seconds), final objective value, and solution sparsity.

5.3.1. Logistic regression. In this section, we compare the performance of
FaRSA-Group to APG ([3] adjusted to the group ¢;-norm), gglasso [33], and PNOPT [19]
for solving logistic regression problems using the data sets in the upper part of Ta-
ble 5.1; a total of 240 problem instances are tested as described above.®> APG is an
established accelerated PG method, and our Python implementation is based on that
of Templates for First-Order Conic Solvers (TFOCS) [4]. gglasso is a state-of-the-art
groupwise majorization descent method for which an R implementation is available
with the most computationally expensive steps performed in Fortran.* PNOPT is a
(quasi) proximal-Newton method that has a freely available MATLAB implementa-
tion that allows users to use either the exact Hessian matrix or (limited-memory)
BFGS approximations; we test both options and refer to them as PNOPT-Newton and
PNOPT-LBFGS, respectively.” Default parameters for APG, gglasso, and PNOPT are
used, and zq is chosen as the zero vector for all algorithms and problem instances.
APG and PNOPT use the same termination conditions as used in FaRSA-Group, but for
gglasso we use its default termination rules since we have no control over its termi-
nation criteria through the application programming interface (API) that it provides.

In terms of running time, for each problem instance we allow a maximum of
3600 seconds. If the CPU time surpasses this limit on a problem, we terminate the
run and consider the algorithm to have failed. Out of the 240 problem instances
(200 for gglasso), FaRSA-Group successfully solved all instances while APG, gglasso,
PNOPT-Newton, PNOPT-LBFGS failed to solve 16, 4, 13, and 26 instances, respectively.
Figure 5.1 illustrates performance profiles based on [24] for comparing the computing
times on problem instances that FaRSA-Group and/or a competing algorithm took at
least 1 second to terminate. Each bar in the plot corresponds to a problem instance,
with the height of the bar given by

(5.1) — log, (

time required by FaRSA-Group
time required by a competing algorithm / -

Therefore, an upward pointing bar indicates that FaRSA-Group took less time to find
the optimal solution for that problem instance, and a downward pointing bar means
that the competing algorithm took less time, and in either case the size of the bar
indicates the magnitude of the outperformance factor. A bar that reaches the y-axis
limit is used when indicating that an algorithm was successful when solving a problem
instance while the competing algorithm was unsuccessful.

For final objective function values, let Frarsa-group a0d Feompeting denote (for a
given problem instance) the final objective values returned by FaRSA-Group and the
competing algorithm, respectively. If Frarsa-croup — Feompeting < —107%, then we con-
sider FaRSA-Group to have obtained a lower objective function value; if Frapsa-group —
Feompeting > 1079, then we consider the competing algorithm to have obtained a lower
objective function value; and if \FFaRsA_Group — Competing| < 1079, then we consider
them to have performed equally. For solution sparsity, we consider FaRSA-Group to

30nly 200 problem instances are tested for gglasso since it does not support sparse data matrix
inputs. In particular, data sets HIGGS, news20.binary, rcvl.binary, real-sim, and SUSY are excluded.

4https://cran.r-project.org/web/packages/gglasso/gglasso.pdf.

Shttps://web.stanford.edu/group/SOL/software/pnopt /.

https://cran.r-project.org/web/packages/gglasso/gglasso.pdf
https://web.stanford.edu/group/SOL/software/pnopt/

A SUBSPACE ACCELERATION METHOD 569

Metric: computational time Metric: computational time

_5| EEE FaRSA-Group 7] mEE FaRSA-Group
N APG EEl gglasso
—10
0 25 50 75 100 125 0 20 40 60 80 100

Metric: computational time Metric: computational time

) <
=] =]
e e
& =
oD o0
o o
=571 FaRSA-Group 5 FaRSA-Group
HEl PNOPT-Newton I PNOPT-LBFGS
—10+ T T u —10 -+ T T u
0 50 100 150 0 50 100 150

Fic. 5.1. Performance profile for CPU time (seconds). FaRSA-Group outperforms APG, gglasso,
PNOPT-Newton, and PNOPT-LBFGS on 135 of the 147 problem instances, 101 out of the 107 problem
instances, 161 out 166 problem instances, and 163 out of the 189 problem instances, respectively.
For each problem instance, the height of the bar is given by (5.1).

TABLE 5.2
Solution qualities in terms of the final objective function value and the solution sparsity. The
numbers under the columns labeled worse, same, and better are the number of problems for which
FaRSA-Group performs worse/same/better compared to the competing algorithm listed to the left.
For example, comparing FaRSA-Group with gglasso, we see that out of the 107 test instances,
FaRSA-Group performs worse, the same, and better on 0, 40, and 67 instances, respectively.

Total FaRSA-Group obj. FaRSA-Group sparsity
Competing algorithm # probs Worse Same Better Worse Same Better
APG 147 2 136 9 4 133 10
gglasso 107 0 40 67 5 74 28
PNOPT-Newton 166 3 154 9 6 145 15
PNOPT-LBFGS 189 3 171 15 6 161 22

have outperformed a competing algorithm if the following two conditions hold: All
zero groups in the solution returned by the competing algorithm solution are also zero
groups in the FaRSA-Group solution, and the solution returned by FaRSA-Group has
at least one zero group that is not a zero group in the competing algorithm’s solution;
a similar criteria is used to define when a competing algorithm is considered to have
outperformed FaRSA-Group. The results are summarized in Table 5.2.

5.3.2. Linear regression. In this section we report the results of our tests on
the linear regression problems. In addition to APG, gglasso, and PNOPT, we also
compare FaRSA-Group to SSNAL [37], which is a state-of-the-art semismooth Newton
method designed to solve group-sparse lasso problems. For these tests, we use the data
sets in the bottom part of Table 5.1, from which we obtain a total of 136 test instances

570 F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

Metric: computational time Metric: computational time

ol

o °
B B
= ~ 09
N N
a0 =1
225 <

B FaRSA-Group 51 FaRSA-Group

N APG EEl gglasso

—10
0 20 40 60 0 10 20 30 40
0 Metric: computational time 6 Metric: computational time

Il FaRSA-Group 4] HEEl FaRSA-Group
I PNOPT-LBFGS EE SSNAL
~10+ ‘ ~ ‘ ‘ —64 ‘ ‘ ‘ . ‘
25 50 75 100 0 10 20 30 40 50

Fic. 5.2. Performance profile for CPU time (seconds). FaRSA-Group outperforms APG, gglasso,
PNOPT-LBFGS, and SSNAL on 63 out of the 64, 31 out of the 40, 115 out of the 120, and 41 out of the
50 test instances, respectively. For each problem instance, the height of the bar is given by (5.1).
Results for PNOPT-Newton are not shown because it performs worse than PNOPT-LBFGS.

as described in the beginning of section 5.3.% Default parameters for SSNAL are used,
and the initial estimate x(is chosen to be the zero vector for both FaRSA-Group and
SSNAL. We note that SSNAL is a dual method that terminates when the primal-dual
gap is smaller than the default tolerance of 1076, which is different than the stopping
condition implemented in FaRSA-Group. Of the 136 test instances, FaRSA-Group
terminated 10 times because termination condition (ii) was triggered, meaning that
no additional sufficient progress could be achieved.

We measure algorithm performance using the same criteria as for the tests in
section 5.3.1. All methods successfully solve all instances, and Figure 5.2 illustrates
performance profiles for the computational times for problem instances for which
FaRSA-Group and/or the competing algorithm takes at least 1 second to terminate.
The final objective values and solution sparsities are summarized in Table 5.3.

We remark that since SSNAL is a dual method, it tends to be more efficient than
FaRSA-Group when the data matrix A € RV*" satisfies n > N. For example, SSNAL
often outperforms FaRSA-Group on the problem instances considered in [37].

6. Conclusion. We presented a new framework for solving optimization prob-
lems that incorporate group sparsity-inducing regularization by using subspace ac-
celeration, domain decomposition, and support identification. In terms of theory,
we proved a complexity result on the maximum number of iterations before an e-
approximate solution is computed (Theorem 4.8), and a local superlinear convergence
rate (Theorem 4.14). The strong convergence theory was supported by experimental

SFor gglasso, since its software does not support sparse matrix inputs, only 128 problem instances
are tested. Specifically, all instances of data set E2006.tfidf are excluded.

A SUBSPACE ACCELERATION METHOD 571

TABLE 5.3
The meaning of this table is the same as Table 5.2 but for the linear regression problems.

Total FaRSA-Group obj. FaRSA-Group sparsity
Competing algorithm # probs Worse Same Better Worse Same Better
APG 64 0 26 38 0 64 0
gglasso 40 0 27 13 0 40 0
PNOPT-Newton 98 0 72 26 0 98 0
PNOPT-LBFGS 119 1 93 25 0 119 0
SSNAL 50 0 45 5 0 50 0

results for minimizing a group sparsity-regularized logistic function for the task of
classification and a group sparsity-regularized least-squares function for the task of
regression. In terms of robustness, computational time, final objective value obtained,
and solution sparsity, the numerical results showed that our proposed FaRSA-Group
framework outperforms state-of-the-art methods, especially when the data set is larger
than the number of features in the model. When the number of features that define
the model is larger than the size of the data set, then FaRSA-Group still works well,
but methods based on a dual approach may be preferable.

REFERENCES

[1] F. BacH, R. JENATTON, J. MAIRAL, AND G. OBOZINSKI, Optimization with sparsity-inducing
penalties, Found. Trends Mach. Learn., 4 (2012), pp. 1-106.
[2] A. BECK, First-Order Methods in Optimization, STAM, Philadelphia, 2017.
A. BECK AND M. TEBOULLE, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM J. Imaging Sci., 2 (2009), pp. 183-202.
. R. BECKER, E. J. CANDES, AND M. C. GRANT, Templates for convexr cone problems with
applications to sparse signal recovery, Math. Program. Comput., 3 (2011), p. 165.

=
9]

[5] D. P. BERTSEKAS, Convezr Optimization Theory, Athena Scientific, Belmont, MA, 2009.

[6] T. CHEN, F. E. Curtis, AND D. P. ROBINSON, A reduced-space algorithm for minimizing £1-
regularized convex functions, SIAM J. Optim., 27 (2017), pp. 1583-1610.

[7] T. CHEN, F. E. CURTIS, AND D. P. ROBINSON, FaRSA for {1-regularized conver optimization:

Local convergence and numerical experience, Optim. Methods Softw., 33 (2018), pp. 396—
415.

[8] P. COMBETTES AND J.-C. PESQUET, Prozimal splitting methods in signal processing, in Fixed-
Point Algorithms for Inverse Problems in Science and Engineering, Springer, Cham, 2011,
pp. 185-212.

[9] A. R. ConN, N. I. M. GouLD, AND PH. L. TOINT, Trust-Region Methods, STAM, Philadelphia,
2000.

(10] F. E. Curtis AND D. P. ROBINSON, Ezploiting negative curvature in deterministic and sto-
chastic optimization, Math. Program., 176 (2019), pp. 69-94.

[11] I. DAUBECHIES, M. DEFRISE, AND C. MOL, An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint, Comm. Pure Appl. Math., 58 (2004), pp. 1413-1457.

[12] R. S. DEMBO, S. C. EISENSTAT, AND T. STEIHAUG, Inezact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400-408.

[13] D. DONOHO, Denoising by soft-thresholding, IEEE Trans. Inform. Theory, 41 (1995), pp. 613—
627.

[14] R.-E. FaN, K.-W. CHANG, C.-J. HsieH, X.-R. WANG, AND C.-J. LIN, LIBLINEAR: A library
for large linear classification, J. Mach. Learn. Res., 9 (2008), pp. 1871-1874.

[15] M. A. T. FIGUEIREDO, R. D. NowaK, AND S. J. WRIGHT, Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse problems, IEEE J.
Sel. Top. Signal Process., 1 (2007), pp. 586-597.

[16] J. FRIEDMAN, T. HASTIE, AND R. TIBSHIRANI, Regularization paths for generalized linear models
via coordinate descent, J. Statist. Softw., 33 (2010), p. 1.

[17] G. N. GRAPIGLIA AND Y. NESTEROV, Accelerated regularized Newton methods for minimizing
composite convex functions, SIAM J. Optim., 29 (2019), pp. 77-99.

F. E. CURTIS, Y. DAI, AND D. P. ROBINSON

N. KESKAR, J. NOCEDAL, F. OZTOPRAK, AND A. WACHTER, A second-order method for convex
£1-regularized optimization with active-set prediction, Optim. Methods Softw., 31 (2016),
pp. 605-621.

J. D. LEE, Y. SUN, AND M. A. SAUNDERS, Prozimal Newton-type methods for minimizing
composite functions, STAM J. Optim., 24 (2014), pp. 1420-1443.

Q. LiN, Z. Lu, AND L. X1A0, An accelerated randomized proximal coordinate gradient method
and its application to reqularized empirical risk minimization, SIAM J. Optim., 25 (2015),
pp. 2244-2273.

J. Liu, S. Ji, AND J. YE, SLEP: Sparse Learning with Efficient Projections, Arizona State
University, 2009, http://yelabs.net/software/SLEP/.

J. Liu AND S. J. WRIGHT, Asynchronous stochastic coordinate descent: Parallelism and con-
vergence properties, STAM J. Optim., 25 (2015), pp. 351-376.

S. Ma, X. SONG, AND J. HUANG, Supervised group lasso with applications to microarray data
analysis, BMC Bioinform., 8 (2007), p. 60.

J. L. MORALES, A numerical study of limited memory BFGS methods, Appl. Math. Lett., 15
(2002), pp. 481-487.

B. S. MORDUKHOVICH AND N. M. NaAM, An FEasy Path to Convex Analysis and Applications,
Morgan & Claypool Publishers, Williston, VT, 2013.

Y. NESTEROV, A method of solving a convex programming problem with convergence rate
O(1/k?), Soviet Math. Dokl., 27 (1983), pp. 372-376.

Y. NESTEROV, Gradient methods for minimizing composite functions, Math. Program., 140
(2013), pp. 125-161.

J. NuTiNI, M. SCHMIDT, AND W. HARE, Active-set complexity of prozimal gradient: How long
does it take to find the sparsity pattern?, Optim. Lett., 13 (2019), pp. 645-655.

P. RICHTARIK AND M. TAKAC, Parallel coordinate descent methods for big data optimization,
Math. Program., 156 (2016), pp. 433-484.

R. TAPPENDEN, P. RICHTARIK, AND J. GONDZIO, Inexact coordinate descent: Complezity and
preconditioning, J. Optim. Theory Appl., 170 (2016), pp. 144-176.

S. J. WRIGHT, Accelerated block-coordinate relazation for regularized optimization, STAM J.
Optim., 22 (2012), pp. 159-186.

S. J. WricHT, R. D. Nowak, AND M. A. FIGUEIREDO, Sparse reconstruction by separable
approzimation, IEEE Trans. Signal Process., 57 (2009), pp. 2479-2493.

Y. YANG AND H. Zou, A fast unified algorithm for solving group-lasso penalize learning prob-
lems, Stat. Comput., 25 (2015), pp. 1129-1141.

G.-X. Yuan, C.-H. Ho, anDp C.-J. LIN, An improved GLMNET for £i-regularized logistic
regression, J. Mach. Learn. Res., 13 (2012), pp. 1999-2030.

M. YUAN AND Y. LIN, Model selection and estimation in regression with grouped variables, J.
R. Stat. Soc. Ser. B Stat. Methodol., 68 (2006), pp. 49-67.

Y. ZENG AND P. BREHENY, Owerlapping group logistic regression with applications to genetic
pathway selection, Cancer Inform., 15 (2016), pp. CIN-S40043.

Y. ZHANG, N. ZHANG, D. Sun, AND K.-C. ToH, An efficient Hessian based algorithm for
solving large-scale sparse group lasso problems, Math. Program., 179 (2020), pp. 223-263.

http://yelabs.net/software/SLEP/

	Introduction
	State-of-the art methods
	Contributions
	Notation and assumptions

	Preliminaries
	Proposed algorithm framework
	Main algorithm (Algorithm 3.1)
	Computing the m-direction (Algorithm 3.2)
	Reduced-space search using an m-direction (Algorithm 3.3)
	Reduced-space line search along a PG direction (Algorithm 3.4)

	Analysis
	Complexity result
	Local convergence

	Numerical results
	Implementation details
	Data sets
	Experimental setup and test results
	Logistic regression
	Linear regression

	Conclusion
	References

