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ABSTRACT

Objective: In response to COVID-19, the informatics community united to aggregate as much clinical data as

possible to characterize this new disease and reduce its impact through collaborative analytics. The National

COVID Cohort Collaborative (N3C) is now the largest publicly available HIPAA limited dataset in US history with

over 6.4 million patients and is a testament to a partnership of over 100 organizations.

Materials and Methods: We developed a pipeline for ingesting, harmonizing, and centralizing data from 56 con-

tributing data partners using 4 federated Common Data Models. N3C data quality (DQ) review involves both au-

tomated and manual procedures. In the process, several DQ heuristics were discovered in our centralized con-

text, both within the pipeline and during downstream project-based analysis. Feedback to the sites led to many

local and centralized DQ improvements.

Results: Beyond well-recognized DQ findings, we discovered 15 heuristics relating to source Common Data

Model conformance, demographics, COVID tests, conditions, encounters, measurements, observations, coding

completeness, and fitness for use. Of 56 sites, 37 sites (66%) demonstrated issues through these heuristics.

These 37 sites demonstrated improvement after receiving feedback.

Discussion:We encountered site-to-site differences in DQ which would have been challenging to discover using
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federated checks alone. We have demonstrated that centralized DQ benchmarking reveals unique opportunities

for DQ improvement that will support improved research analytics locally and in aggregate.

Conclusion: By combining rapid, continual assessment of DQ with a large volume of multisite data, it is possible

to support more nuanced scientific questions with the scale and rigor that they require.

Key words: electronic health records, data accuracy, COVID-19

INTRODUCTION

COVID-19 has precipitated a worldwide public health emergency

requiring responsive action from all branches of medical science, in-

cluding informatics. The National COVID Cohort Collaborative

(N3C), sponsored by the NIH National Center for Advancing

Translational Sciences (NCATS), is a data-driven response to this

challenge. Through leading-edge technology, N3C uses harmonized

electronic health record (EHR) data to support pioneering collabo-

rative research that spans the full COVID disease cycle—from risk

factors, to disease progression, to treatment decisions. The result of

this collaboration is a research environment that addresses technical,

legal, and policy barriers to rapid discovery and dissemination of ac-

tionable clinical findings to optimize the acute and long-term health

outcomes of diverse populations nationwide.

At the heart of the N3C collaborative is a centralized enclave of

EHR data assembled from Clinical and Translational Sciences

Award (CTSA) hubs, Institutional Development Award (IDeA) Net-

works for Clinical and Translational Research (IDeA-CTR) hubs,

and the OCHIN network.1,2 As of this writing, it is the largest ever

assembly of harmonized EHR data for research in the United States,

comprising 6.4 million patients from 56 sites including 7.2 billion

rows of data.3 N3C ingests and harmonizes patient-level EHR data

from participating sites for patients with positive COVID-19 tests or

whose symptoms are consistent with COVID-19. Additional records

collected include persons who have tested negative for COVID-19

(and have never tested positive) to support comparative studies.4

Data harmonization is made possible through the efforts of the Na-

tional Center for Data to Health (CD2H) and subject matter experts

from Observational Health Data Sciences and Informatics (OHDSI),

the Patient-Centered Clinical Research Network (PCORnet), the Ac-

crual to Clinical Trials (ACT) network, and TriNetX.

Precursors to N3C: federated data networks
Clinical data repositories from EHR sources have evolved over the

decades. Ad hoc database designs from the early period of EHR

adoption had limited generalization across sites. The earliest feder-

ated models5 in the 1990s ultimately gave rise to Sentinel6 and to

Common Data Models (CDMs) such as PCORnet,7 the ACT net-

work,8 TriNetX,9–11 and Observational Medical Outcomes Partner-

ship (OMOP), which later became OHDSI.12–14 In a federated data

network, each participating site’s data stay behind its institutional

firewall, but are structured according to a CDM. This enables

queries and results to be shared across sites rather than raw data.

The CDMs have been key to using EHR data for research; how-

ever, secondary analytic uses—particularly involving multiple con-

tributing sites—require resource-intensive quality control to achieve

the required uniformity and specificity to support open-ended re-

search.15–18 Despite their importance, data quality (DQ) checks are

inconsistently applied and implementation methodologies are

largely not evaluated.17,19 Further, evaluations of DQ often fail to

accurately determine the data’s “fitness for use,” which evaluates

both its intrinsic and intentional aspects.20–22 DQ evaluations

must take into account the initial purpose of the data in their

source systems, as well as the intended use of these data once

harmonization processes have transformed them for use in second-

ary research.19,23,24

Each of the aforementioned federated networks has methods to

promote local DQ and adherence to data model conventions; these

methods vary in maturity. As examples, OHDSI offers its DQ Dash-

board25 tool for sites to run against their local CDM in order to

evaluate adherence to OMOP CDM convention and diagnose com-

mon issues; PCORnet requires a quarterly data “curation” and qual-

ity check that uses prepackaged SAS scripts26; ACT has a “smoke

test” to ensure federated network query response and has a DQ

Dashboard of its own under development; and TriNetX employs a

growing library of DQ metrics and visualizations with site bench-

marking as the basis for evaluating the results. Because the data are

federated, DQ evaluation and remediation are performed locally at

the site-by-site personnel. These local checks ensure that data con-

form to the specifications of the chosen CDM, and may also check

for data anomalies such as statistical outliers, invalid dates, biologi-

cal implausibility, abundant missing data, and other common clini-

cal data issues. Such approaches support the alignment of data;

however, with the data remaining behind the institutional firewalls,

it can be difficult to assess conformance or determine overall vari-

ability across sites, especially if the CDM does not have the capabil-

ity of executing ad hoc DQ-related queries across the data network.

N3C’s centralized approach
In contrast to the federated approach, N3C pools data from each

partner site in accordance with its signed Data Transfer Agreement4

and harmonizes all submitted data to the OMOP CDM. By the

time, data are submitted to N3C, sites have already applied a layer

of local DQ checks, and are submitting data that are “clean” by the

local definition. Once data are merged across sites, additional op-

portunities for improvement may become apparent due to the ability

to efficiently compare and benchmark among similar sites.27 N3C

centralized DQ methods complement and augment the foundation

accomplished by sites in the context of the federated networks.

Data quality
DQ emerged in the 2010s as an explicit subject of attention and re-

search in informatics.22,28,29 Notably, the Patient-Centered Out-

comes Research Institute (PCORI) funded an effort to define DQ,

resulting in the “Harmonization” framework of Kahn and col-

leagues.20 The dimensions of DQ defined there (internal verification,

external validation, conformance, completeness, and plausibility)

are the basis of the PCORnet26 and OHDSI30 conception and frame-

work for DQ checking. N3C continued to build on this foundation

for our centralized DQ approach.
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OBJECTIVE

To describe N3C’s approach to DQ curation and explore the value

that a centralized data architecture and approach to DQ adds to

what sites can accomplish locally, either alone or in the context of a

federated data research network.

MATERIALS AND METHODS

N3C’s data harmonization pipeline
N3C has engaged in a precedent-setting endeavor to centrally har-

monize the 4 major CDMs (OMOP, PCORnet, ACT, and TriNetX)

into OMOP (Figure 1). This enables N3C’s EHR dataset to span 56

institutions at the time of this writing while putting minimal burden

on sites themselves. The EHR data spans multiple data domains, in-

cluding patient demographics, encounter details, diagnoses, proce-

dures, medications, lab tests, and clinical observations; a detailed

list of supported fields can be found in the OMOP 5.3.1 common

data model specification.28 The pipeline evolved over 3 implementa-

tion environments and is presently running in Palantir Foundry.

Centralized DQ assessment
After transformation to OMOP, each site’s inaugural N3C submis-

sion is loaded into the N3C Data Quality Portal (DQP), which per-

forms a series of automated DQ checks prior to manual evaluation

by the Data Ingestion & Harmonization (DI&H) team (see

“Acknowledgments” for members). The DQP is built on queries

similar to OHDSI’s DQ Dashboard and provides a series of targeted

visualizations that allow the team to assess each site’s DQ in areas

of importance for COVID research (see Table 1). The DQP supports

site data review both in the context of the site’s source CDM and in

comparison to the other 3 CDMs.

N3C purposely uses a light touch during these DQ checks, plac-

ing a high value on including as much submitted data as possible,

with the understanding that each site’s data likely contains local idi-

osyncrasies and inconsistencies that are acceptable so long as they

are known. Such issues (eg, a site is able to provide only outpatient

data, only supports a subset of vital signs, or is frequently missing

units of measure) can be reported in N3C’s release notes, but would

not prevent a site from “passing” on to inclusion in that week’s re-

lease. Issues that can prevent sites from passing (“Must Pass”), and

thus make up our minimum data standards, are detailed in Table 1.

Issues that do not prevent passage but are still of concern are labeled

“Heads Up.”

Providing feedback to sites
As previously described,1 N3C’s signature “white glove,” or one-on-

one DQ support, provides feedback and individualized source

model-specific help to sites. Members of N3C’s Phenotype and Data

Acquisition (P&DA) team (see “Acknowledgments” for members)

serve as liaisons between sites and the DI&H team. The P&DA

team is composed of subject matter experts in each of N3C’s 4 sup-

ported data models. Each site is assigned an expert in their source

model as their P&DA point of contact. After a site’s initial payload

is evaluated using the DQP, the site’s P&DA contact compiles a list

of data issues in the “must pass” and “heads up” categories and

emails that list to the site. Corrections are generally iterative in na-

ture, and correction cycles will continue until the site passes all

“must pass” checks. Some corrections are simple, while others re-

quire individual troubleshooting meetings with the P&DA team, at-

tendance at P&DA office hours, or sharing code snippets.

More recently, we have started an initiative to provide some of

the benchmarking data generated by the DQP directly to sites, in vi-

sual format. Our centralized architecture gives us the unique ability

to provide this type of benchmarking data and may reveal opportu-

nities for DQ improvement of which sites were previously unaware.

One of the visualizations we sent, a heatmap illustrating “coverage”

of different vital signs for COVID inpatients across a variety of (ano-

nymized) sites, is shown in Figure 2. These visualizations allow sites

to compare their DQ to that of other sites that are using the same

CDM. Hierarchical clustering was used to bring together sites with

similar profiles of vital reporting.

Assessing N3C’s DQ impact
To assess the impact of N3C DQ feedback on sites’ local DQ, we

reviewed all submitted DQ issues filed on site data in the N3C Data

Enclave and performed a qualitative analysis to extract DQ heuris-

tics, as well as the number of sites to which each heuristic applied.

Only “released” sites (ie, sites whose data are available for research

in the Enclave) were included in the analysis; a denominator of 56

sites. Issue instances were counted if they were in the “Must Pass”

category. Sites that are still working through data issues (and are thus

not yet released) are not included in the denominator, and “Heads

Up”-type issues or simple formatting errors (eg, incorrect delimiters,

missing headers, etc.) were not included in the count of issues.

RESULTS

Table 2 provides an accounting of the DQ issues found and

improvements made by N3C-participating sites based on our feed-

Figure 1. The N3C data ingestion and harmonization pipeline. Participating sites regularly submit data in their native CDM format to an ingest server. A parsing

step validates whether the data are formatted properly and check the contents of the payload against its package description, or “manifest.” The pipeline then

transforms the submitted data to the OMOP model; data provenance is automatically maintained such that transformed data can be traced back to source at any

time. The transformed data are then reviewed for DQ by a team of subject matter experts using a suite of data characterization and visualization tools. Every

week, the latest data from all sites passing DQ checks are published as a versioned “release” for use by investigators. DQ: data quality; N3C: National COVID

Cohort Collaborative; OMOP: Observational Medical Outcomes Partnership.
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back. These improvements map to the checks we perform against

each site’s first payload, detailed earlier in Table 1.

These heuristics revealed DQ issues in 37 (66%) of the 56 sites,

all of which demonstrated improvement after receiving feedback

from N3C. Selected examples are detailed here.

Example of heuristic #1: not using (or improperly using)

source CDM’s controlled vocabulary in one or more

fields
There are numerous examples of fields that require controlled vo-

cabularies among the 4 source CDMs. Nearly a quarter of all N3C

sites have violated the use of these vocabularies on one or more

occasions within their source CDM. Examples of this issue include

nonuse or improper use of the ACT race and ethnicity vocabulary

(eg, using local codes rather than the controlled vocabulary’s value

sets), incorrect DX and DX_TYPE agreement (eg, labeling an ICD-

10-CM diagnosis code as type “Other”) in PCORnet, or using stan-

dard concepts in an inappropriate domain (eg, filing conditions

wrongly in the OBSERVATION table) in OMOP. These types of

errors often create the illusion of missing data. Having centralized

access to sites’ source data gives the N3C team the ability to diag-

nose the issue in detail and offer sites ways to remedy the problem.

Example of heuristic #2: COVID test result values not

standardized or null
Eleven sites submitted nonstandard, null, or otherwise unusable

COVID test result values in their initial submissions. Quality issues

included:

• Nonharmonizable COVID test results (eg, submitting a free-text re-

sult rather than the source CDM’s controlled vocabulary equivalent).
• Null COVID test results in excess of a reasonable number of

pending results.
• COVID test results that used the source CDM’s controlled vo-

cabulary, but mapped to an unusual concept (eg, one site

mapped results to OMOP concept ID 45877980, “Not,” pre-

sumably for a negative test).

Even where it is not a source CDM requirement to map every

qualitative test result to the CDM’s controlled vocabulary, for

N3C’s use case, harmonized COVID tests are essential. We worked

with sites to prioritize these mappings, even as new COVID test

codes continued to emerge over the course of the pandemic. Figure 3

shows the improvements made by these 11 sites over time.

Example of heuristic #4: implausible distribution of visit

types
Each source CDM has its version of an encounter or visit table, as

well as a controlled vocabulary to assign a “type” to visits, such as

inpatient, outpatient, or emergency. Different models’ vocabularies

have different levels of specificity for visit types; the N3C DQ pro-

cess accounts for this by aggregating multiple valid visit type codes

to a higher-level category (eg, “Inpatient Hospital” and “Inpatient

Visit” in the OMOP vocabulary can roll up to an overall category of

Inpatient for the purposes of quality analysis). Even when these roll-

ups are taken into account, however, 7 N3C sites had implausible

Table 1. Data quality issue types

Check type Data checks

Source CDM conformance Must Pass: All tables required by the native CDM specs are present, with all CDM-required fields populated;

fields that use a controlled value set (eg, “M” for male, “F” for female, etc.) are populated with valid values

Demographics Must Pass: Count of patients qualifying for COVID phenotype is reasonable when compared with sites of sim-

ilar size; sex, race, and ethnicity distributions reasonable for the site’s population; month of birth evenly dis-

tributed throughout the calendar year

Heads Up: >20% of race or ethnicity is missing or “No Matching Concept”

COVID tests Must Pass: All COVID tests must be coded with an OMOP standard concept (or, for non-OMOP source data,

the LOINC equivalent); all COVID test results must be coded with an OMOP standard concept (or, for non-

OMOP source data, the equivalent controlled vocabulary term); numbers of negative and positive COVID

tests are reasonable when compared with sites of similar size

Heads Up: High numbers of COVID tests with null results

Conditions Must Pass: Clinical encounters are present that are coded with U07.1 (ICD-10 code for COVID), and those

encounters are distributed across various visit types (eg, outpatient, inpatient, emergency)

Encounters Must Pass: Clinical encounters are distributed across a variety of standard visit types (eg, outpatient, inpatient,

emergency); the distribution of visit types is reasonable when compared with similar sites; the majority of in-

patient visits have valid end dates; the mean duration of visits of various types is reasonable for that type of

visit; the vast majority of visit end dates are later than or equal to the visit start date

Measurements/observations Heads Up: The site supports only a small number (eg, 5–10) of unique measurement or observation types

Coding completeness Must Pass: No more than 20% of records in any domain are coded with nonstandard OMOP concept IDs

without further explanation (OMOP sites only); no more than 20% of records in any domain are coded

with “0—No Matching Concept” without further explanation (affects OMOP sites only); the PERSON_ID

attached to all records in domain tables must exist in the PERSON table; primary keys are valid (ie, no du-

plicate rows in any table); if applied by the site, date shifting is consistent within each patient across all

domains

Fitness for use Use of the data by researchers often reveals additional DQ issues for one or more sites (eg, sparsely populated

body mass index data, in the context of a study of obesity and COVID). In these cases, we report the find-

ings to sites so that they can take action in their local data if they wish to have their site’s data included in

the study

“Must Pass” and “Heads Up” data check for release into the N3C Data Enclave.

DQ: data quality; N3C: National COVID Cohort Collaborative; OMOP: Observational Medical Outcomes Partnership.
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distributions of visit types, where implausibility was defined by the

overall distribution across sites. Such implausibility is illustrated here

for 5 of the 7 sites that specifically had an implausible proportion of in-

patient visits. One of the 5 sites started with inpatient visits significantly

above the mean (Figure 4A), while the other 4 had significantly fewer

(Figure 4B). As shown in Figure 4, after feedback from N3C, all 5 sites

improved the quality of their visit type mappings to bring their inpa-

tient visit proportion closer to the mean. Of note, the proportions at

times worsened with subsequent payloads, pointing out the need for re-

curring vigilance: Fixing a problem once does not mean it stays fixed.

Example of heuristic #15: data utility challenges
A number of N3C DQ findings have come from analysts using the

data, spotting inconsistencies, and submitting issue tickets. One

such example involves data on mortality, the most commonly inves-

tigated endpoint in N3C. Generally, sites document patient deaths

in their source CDM with pairs of patient IDs and death dates.

However, because not all CDMs require a death date to be present

to note a patient as deceased, numerous sites provide patients IDs,

but no dates. In one instance, a site’s Death data table included all

of their patient IDs (for both living and deceased patients); in their

definition, a null date denoted a living patient, and a populated date

denoted a death. Taken individually, each of these structures makes

sense. However, aggregate analyses that either ignore missing dates

or require dates to be present would come to drastically different

conclusions, either over- or underestimating mortality. In these

cases, we worked individually with sites to standardize where possi-

ble, and in other cases, provided user education and analytical work-

arounds. Other researcher-identified site-level issues include those

tied to a particular type of measurement, such as a misrepresented

unit of measure for a specific type of value (discovered when com-

paring height/weight calculated body mass index [BMI] to reported

BMI) or mismapped measurements (discovered when reviewing

mean SpO2 by site). In each case, the DQ concern was referred for

further “upstream” remediation in the pipeline beyond the project

that discovered it and the site was informed.

Figure 2. Vital sign coverage visualization, N3C OMOP sites. This heatmap is

representative of those that we sent to sites to provide them with bench-

marked lab and vital coverage information. The rows represent concept sets

for vital signs and the columns are individual sites. The cell colors reflect the

z-score of the percentage of COVID inpatients at each site that have at least 1

lab or vital of that type recorded during their hospitalization. The bluer the

color, the higher the percentage of COVID inpatients that have that vital sign

at that site—redder shades mean a lower percentage of patients with that vi-

tal. Rows and columns are hierarchically clustered, bringing similar sites

closer together, and similar vitals closer together. This visualization enables

sites to compare their data coverage with other sites using the same data

model. (Site numbers are anonymized and have been changed from the site

numbers used inside the N3C Enclave.) N3C: National COVID Cohort Collabo-

rative; OMOP: Observational Medical Outcomes Partnership.

Table 2. Data quality heuristics

No. Heuristic Type No. of sites sites (%)a

1 Not using (or improperly using) source CDM’s controlled vocabulary

in one or more fields

Source CDM conformance 13 23.2

2 COVID test result values not standardized or null COVID tests 11 19.6

3 Lacking/incorrectly populating field(s) required by source CDM Source CDM conformance 9 16.1

4 Implausible distribution of visit types (eg, 75% inpatient) Encounters 7 12.5

5 Large number of “No Matching Concept” records (OMOP source only) Coding completeness 6 10.7

6 Lacking table(s) required by source CDM Source CDM conformance 5 9.0

7 Many or all inpatient visits lacking valid end dates Encounters 5 9.0

8 Few or no clinical encounters coded with U07.1 Conditions 5 9.0

9 Implausible count of patients qualifying for phenotype Demographics 3 5.4

10 Small number of unique measurement/observation types Measurement/observation 2 3.6

11 PERSON_IDs in fact tables that are not in the PERSON table Coding completeness 2 3.6

12 Primary keys are not unique Coding completeness 2 3.6

13 Inconsistent local date shifting causing implausible timelines Coding completeness 2 3.6

14 Implausible demographics (eg, 100% male patients) Demographics 2 3.6

15 Data utility challenges (eg, missing mortality data) Fitness for use N/A N/A

Items compiled here are from a qualitative analysis of the “Must Pass” data issues filed on any one of the 56 currently released N3C sites that resulted in a fix

by the site. Fitness for Use is an additional heuristic that applies to all sites and is thus also included here. Simple formatting errors (eg, incorrect delimiters) and

noncritical “Heads Up” issues are excluded from this analysis.
aDenominator: 56 sites; 37 unique sites are represented across these categories.

N3C: National COVID Cohort Collaborative; OMOP: Observational Medical Outcomes Partnership.
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DISCUSSION

We have demonstrated that centralized DQ assessment reveals unique

opportunities for iterative quality improvement for submitting sites.

N3C’s DQ checks take into account various dimensions introduced in

prior DQ work, such as conformance to source data models, density

and completeness (eg, of COVID test results), and plausibility (eg, of

percentage of inpatient visits).20,29 By participating in a consortium

like N3C, sites receive routine feedback on their overall quality with

tactical information on ways to address local issues. Moreover,

N3C’s dedicated team of analysts with protected time to concentrate

on DQ, deep subject matter expertise, and access to powerful visuali-

zation tools enable efficient support for participating sites in making

rapid improvements in high-priority areas. This process can be trans-

formative; by combining efficient, continual assessment of DQ with a

large volume of multisite data, it is possible to support more nuanced

scientific questions with the scale and rigor that they require.

Centralized data enable site-to-site comparisons
When examining data across N3C partner sites, the centralized ap-

proach revealed significant site-to-site DQ differences that would have

been challenging to discover in isolation. Many of these “data issues”

are indeed errors, but others arise from differences in interpretation or

adoption of CDM components. Sites’ use of the encounter data domain

is an example, where the definition of “one visit” can vary widely

depending on the site’s EHR, organizational structure, or billing practi-

ces (see Figure 5). The site’s definitions of various visit types are gener-

ally not erroneous and likely comply with the rules of their source

CDM. Problems surface, however, when data are combined across sites

for multisite projects, leading to a need for data users to (1) understand

that the issue exists and (2) develop consistent analytic workarounds

and harmonization strategies. Benchmarking, or the ability to compare

sites with their peers, is an efficient way to catch such issues.

Assessing the quantity and variety of data available per patient is

another use case for benchmarking. Because instantiation and main-

tenance of CDMs are resource-intensive, it is common for sites to

take a minimalistic approach to CDM data curation, particularly in the

early days of implementing a new CDM. This may entail purposely

Figure 3. Improved percentages of valid COVID-19 test results across 11 N3C

sites. The 11 sites shown here each had initial N3C submissions with high

numbers of invalid (null, nonstandard) COVID test results. As time moves for-

ward (left to right on the x-axis), drastic improvements are made following

feedback from N3C. The blue line and shaded area represent the mean and

standard deviation across all sites. N3C: National COVID Cohort Collabora-

tive.

A B

Figure 4. In A, one site’s initial N3C submission had a proportion of visits of type inpatient far above that of similar sites; in B, 4 sites’ initial submissions had no

(or nearly no) inpatient visits. Our feedback encouraged the sites to re-examine and remap their source-to-CDM visit type mappings. In these cases, proportions

improved. The shaded area reflects the mean and standard deviation of all sites. N3C: National COVID Cohort Collaborative.
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choosing to support only a small number of lab tests, vitals, or other

observations (eg, the top 50 most common labs; only blood pressure,

weight, and height out of all possible vital measurements, etc.). How-

ever, this sparsity can have a big impact on what research questions are

possible to answer using the data. Because N3C aims to be a multipur-

pose resource for COVID research, we use benchmarking to spot sites

supporting fewer facts per patient (or a limited variety of clinical con-

cepts) and encourage them to gradually add on as they can.

Benchmarking data can also serve as a clear and persuasive DQ

communication tool. As shown in Figure 2, our ability to compare

sites’ coverage of lab and vital concepts across sites gives sites a

“report card” to see which concepts have more or less coverage at

their peer sites. This information can help sites prioritize bringing in

new types of data, or may spur an investigation of a data issue of

which the site was unaware. It should be noted that federated net-

works (particularly PCORnet and TriNetX) are also capable of site-

to-site benchmarking, but at an aggregated rather than detailed

level. To use Figure 5 as an example, aggregate checks could pro-

duce the inpatient visit counts reported on the left side, but would

not enable the row-level deep dive shown on the right. Though row-

level checks enable more detailed benchmarking, both aggregate and

row-level comparisons are highly valuable.

Centralized data enable crowd sourced DQ evaluation
The N3C repository not only pools data but also brings together

multidisciplinary teams of clinicians, researchers, and statisticians

from across the network of organizations with N3C Data Use

Agreements. N3C Enclave researchers are invited to join any of

more than 25 Clinical Domain Teams, where they can share

domain-specific knowledge with a diverse set of peers. Researchers

who join a Domain Team have access to a shared workspace where

they can create sets of derived variables specific to their research

question and conduct-related analyses. As detailed dataset reviews

are an essential step in this process, these teams may reveal resolv-

able data issues such as hard-to-harmonize variations among con-

tributing CDMs or incorrect mappings at the individual record

level. Sometimes these quality errors, inconsistencies, or omissions

are remedied within the Enclave by N3C, such as unit of measure

harmonization, whereas for other issues these discoveries are re-

ferred back to the contributing site for remediation.

The ability for research teams to review row-level data in the

N3C Enclave also helps end-users write more accurate analytic code by

avoiding blind assumptions related to how representation of clinical

facts varies by site or CDM. For example,30 when creating a flag to indi-

cate the co-occurrence of a positive COVID test and a diagnosis code

representing a comorbidity, date logic is applied in the code. Review of

row-level data, which can be filtered to one or more sites whose variable

distribution does not match other sites, may reveal that some measure-

ment dates are representative of test result date instead of test order

date–either of which may be acceptable in the source CDM. Though

the data are not “wrong” in this case and do not need to be corrected

by the contributing site, this ambiguity is a DQ issue nonetheless and

requires resolution by data users during analysis. In general, identifica-

tion of DQ issues that are highly dependent on the context of use31,32 is,

by design, left for analysts pursuing specific questions to discover. In

such cases, our centralized DQ team serves as a liaison to the sites and

passes feedback from analysts to sites for local discussion and remedia-

tion, if deemed necessary and high value by the site. Issues of this type

are extremely challenging or impractical to identify without access to

the row-level data, in addition to the ability to compare across sites.

Centralization increases DQ efficiency
While centralization alone is not a recipe for improved DQ, it does

present opportunities to implement generalized solutions at scale.

N3C adopted 2 postprocessing DQ processes that illustrate this:

(1) interrogating information “loss” in standardized terminology

mappings and (2) performing post hoc evaluation of harmonized clin-

ical information to ensure analytical utility. These solutions are more

practical to achieve in a centralized environment where economy of

scale provides the ability to easily see strings or terms that could be

supported in value sets, or logic that could be modified to bring clini-

cal information to the right analytical domain. Moreover, a central-

ized data ingestion pipeline allows for bidirectional improvement as

the target model (OMOP, in this case) can evolve to include conven-

tions that capture the heterogeneity of source system data.

Finally, centralized review simply puts additional trained eyes on

a site’s data. The advantages to this are demonstrated by the fact

Figure 5. Comparing sites within centralized data. One of the most stark differences we have observed among different sites is the different ways that a “visit” (or

encounter) can be defined. Indeed, inpatient visits at several N3C sites are made up of a number (at times hundreds) of “microvisits”—consults with different spe-

cialists, imaging, infusions, et cetera. Because sites define inpatient visits so differently, they are difficult to harmonize. Centralized data make it easier to compare

how sites define visits and develop derivative variables to enable harmonization. N3C: National COVID Cohort Collaborative.
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that N3C’s centralized review process found errors and room for im-

provement even in data that had passed either local review or one of

the federated networks’ required checks. Indeed, this combination

of local checks, by personnel who intimately understand their site’s

data, and centralized checking, which can take advantage of econo-

mies of scale, may represent an ideal model for DQ assessment.

Limitations
N3C is devoted to a single disease, so some of our particular DQ

checks derive from that focus. Though many of the issues identified

here (eg, encounter definitions, unit harmonization, plausibility) are

not limited to COVID-related data, the emphasis of our suite of DQ

checks is on variables required for COVID research. As an example,

we ensure careful harmonization of qualitative COVID lab test

results, but do not perform checks at the same level of detail on non-

COVID labs. Still, many of our checks listed in Table 1 can apply to

clinical data more generically.

Centralization does mean that data are further from the EHR

source, and we rely on local staff to be final arbiters of their own

DQ. In addition, as sites may have already executed one of the feder-

ated networks’ DQ checking protocols prior to submitting to N3C,

the data that N3C receive may have already undergone a prior

round DQ improvements. Yet, based on our results, we feel that the

insights that sites receive from the composite experience of the entire

Enclave add value even to previously improved data.

Despite the efficiency that N3C’s centralized Enclave enables for

the assessment of DQ issues, much of the heavy lift of definitive DQ re-

mediation lies with the submitting sites. We acknowledge that consor-

tial data resources such as N3C are only possible because of the efforts

of local teams and believe that centralized DQ supports collaboration

and knowledge exchange that also helps improve local DQ. In infor-

matics research, there is generally limited funding available to specifi-

cally support local DQ, which makes N3C sites’ engagement with our

DQ process all the more impressive. This may be an indicator of de-

mand for more centralized DQ in the future, given ongoing funding to

do so. The ability to take some of the DQ workload off of local sites

may incentivize site participation in future centralized repositories.

CONCLUSION

Federated data repositories, where the data remain at the generating

site, offer the advantages of local curation by personnel deeply famil-

iar with the data. Central repositories enable efficient DQ bench-

marking at scale, and the generation of derivative, harmonized

variables and units of measure for comparable and consistent analyt-

ics. Together, these advantages can synergize to a best of both worlds

approach for DQ improvement and enhancement in clinical data re-

positories. Cooperation and communication between these comple-

mentary environments, as illustrated by the common data model

communities and N3C, promise mutual advantage and maximal DQ.
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