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Abstract

We study monomial ideals with linear presentation or partially linear resolution. We give
combinatorial characterizations of linear presentation for square-free ideals of degree 3,
and for primary ideals whose resolutions are linear except for the last step (the “almost
linear” case). We also give sharp bounds on Castelnuovo–Mumford regularity and
numbers of generators in some cases. It is a basic observation that linearity properties
are inherited by the restriction of an ideal to a subset of variables, and we study when
the converse holds. We construct fractal examples of almost linear primary ideals with
relatively few generators related to the Sierpiński triangle. Our results also lead to
classes of highly connected simplicial complexes � that cannot be extended to the
complete dim�-skeleton of the simplex on the same variables by shelling.
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Introduction
Fix an ambient dimension n and a degree d. Let S = k[x1, . . . , xn] be a polynomial ring
over a field k , and set m = (x1, . . . , xn). For any finitely generated graded S-moduleM we
write

ts(M) := max{e | TorSs (M, k)e �= 0}.
We will use these definitions throughout the paper.
We say that a homogeneous ideal I ⊂ S satisfies the condition Nd,p if ts(I) = d + s

for all s ≤ p − 1. Thus Nd,1 is the condition that I is generated in degree d, Nd,2 adds
the condition that I is linearly presented, and more generally Nd,p is the condition that
I has a linear resolution for p − 1 steps. Green’s condition Np is, in this notation, N2,p.
We describe an ideal I satisfying Nd,q as having linear resolution, here q is the projective
dimension of S/I , and that an ideal satisfying Nd,q−1 as having almost linear resolution.
Studying ideals satisfyingNd,p is the same as studying the successive maxima of ts(I) for

arbitrary ideals I :

Proposition 0.1 (Truncation principle, [12, Proposition 1.7]) Let I be a homogeneous
ideal of S as above. For any integer s ≥ 0, the ideal J = I ∩ mts(I)−s has linear resolution
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for s steps, while for r ≥ s we have tr(J ) = tr(I); thus I ∩md satisfies Nd,p for p = max{a |
ta(I) ≤ d + a} + 1.

In this paper we focus on monomial ideals. The square-free monomial ideals satisfying
N2,n were classified in a famous paper of Fröberg [15], and the result was extended to a
description ofmonomial ideals satisfying anyN2,p in [11,Theorem2.1].However, concrete
characterizations of monomial ideals satisfying Nd,p for d ≥ 3 are unknown in general,
and many basic questions about them have not been thoroughly investigated. Can we
characterize them combinatorially? What is the computational cost of checking whether
an ideal is Nd,p? Are there sharp bounds on Betti numbers of these ideals, in particular,
their number of generators and regularity? What about those that achieve such bounds?
See Sect. 6 for a more detailed discussion of these questions together with brief reviews of
the relevant literature.
Work of Boocher [2] and Peeva–Velasco [19] establishes a locality principle: The con-

dition Nd,p is inherited by the ideals generated by various subsets of generators. The
consequences of this, worked out in Sect. 1, are used throughout this paper. Conversely,
if the restriction of a monomial ideal to sufficiently large subsets of the variables satisfies
Nd,p, then the same is true of the whole ideal. For example, linear presentation can be
checked by restricting to 2d variables, but for cubic ideals, 4 variables (plus an auxiliary
condition) is enough, as we establish in 2. It would be interesting to know the optimal
results of this type more generally.
Our best results concern primary monomial ideals. We give sharp regularity bounds for

such ideals that satisfy Nd,p in 3. It is well known thatmd is the onlym-primary ideal with
linear resolution.We give a constructive characterization ofm-primary ideals with almost
linear resolution—that is, satisfyingNd,n−1. We also show that a primary cubic monomial
ideal with linear presentation must contain the degree 3 part of the ideal generated by
the squares of variables, and given that condition, linear presentation can be tested by
restricting to monomials in just 4 of the variables at a time. A fractal construction in 5,
related to the Sierpinński triangle, yields such ideals whose number of generators is an
arbitrarily small fraction of the number of generators of md .
An old question (both for square-free and other ideals) asks, given a monomial ideal

satisfying some Nd,p, when can one adjoin one more monomial, keeping the linearity?
Using our structure theory for almost linear primary ideals, we givemany examples where
this is not possible. For instance, if a primary monomial ideal satisfying Nd,n−1 has regu-
larity at least d + 2, then adding a monomial can never both preserve linear presentation
and also change the regularity—thus, for example, it is never possible to reach md , an
ideal of regularity d, by adding one monomial at a time while preserving linear presenta-
tion. Polarizing such examples, we obtain square-free examples as well. These square-free
monomial ideals correspond to examples of highly connected simplicial complexes (i.e.,
satisfying Serre’s condition (Sl)) that cannot be extended to the full skeleton of the simplex
on all variables using shelling moves.
We collect and discuss some of our favorite open questions in Sect. 6.

1 Locality
Let I ⊂ S be a homogeneous ideal. If I is a monomial ideal, andm is a monomial, let I≤m
denote the ideal generated by monomial generators of I that divide m. If K is a subset of
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{x1, . . . , xn} we write IK for the ideal obtained from I by restricting to the variables in K
(i.e., setting all the variables not in K to zero). We begin by applying a result of Peeva and
Velasco [19] that extend work of Boocher [2] to describe the minimal free resolution of
I≤m as a subcomplex of the minimal free resolution of I :

Theorem 1.1 [19, Proposition 3.10] If F is the multi-graded minimal free resolution of a
monomial ideal I ⊂ S, and m ∈ S is a monomial, then the minimal free resolution of I≤m
is the subcomplex of F formed from all summands of terms in F whose degree divides m.

A first consequence is that we can make many ideals satisfying Nd,p from one of them:

Corollary 1.2 If I is a monomial Nd,p ideal, then so is I≤m for any monomial m. In
particular,

(a) The square-free part of I (the ideal generated by square-free monomial generators of
I) is also Nd,p.

(b) The restriction of I to any r ≤ n variables is also Nd,p.

Proof The first assertion is immediate from 1.1. For a), take m to be the product of all
variables. For b), harmlessly supposing that the variables are x1, . . . , xr , we take m =
xd1 . . . xdr . �	
Theorem 1.1 yields a locality principle: The condition Nd,p is determined by relatively

small subsets of the generators of the ideal andby the restrictions to relatively fewvariables.
In the (generally nonminimal) Taylor resolution G of a monomial ideal I , the degrees of
the generators of Gs are the least common multiples of s + 1 minimal generators of I ,
and thus these are the only degrees that can occur among generators of the sth module in
a minimal free resolution. Combining this Theorem 1.1 with the behavior of the Taylor
resolution we deduce:

Corollary 1.3 (Locality principle) Let I ⊂ S be a monomial ideal. If F is the multi-graded
minimal free resolution of I , then the degrees of the homogeneous generators of Fs also
appear in the minimal free resolution of an ideal I≤m for some monomial m that is the
least common multiple of s + 1 minimal generators of I .
Thus the following are equivalent:

(1) I satisfies Nd,p
(2) I≤m satisfies Nd,p for all least common multiplesm of p of the monomial generators

of I .
(3) The restriction of I to any r = dp variables satisfies Nd,p.

Proof (2) follows from (3) since the lcm of p generators involves at most dp variables. �	
This result implies thatm-primary ideals satisfyingNd,p cannot be too small. Writem[t]

for the ideal (xt1, . . . , xtn).

Theorem 1.4 Let I be a m-primary monomial ideal satisfying Nd,p. The following hold:

(1) I contains
∑

{i1 ,...,ip}⊂[n](xi1 , . . . , xip )d.
(2) If p ≥ min{n, d}, then I = md.
(3) If d ≥ p then I contains m[d−p+1]mp−1.
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Proof (1) By the locality principle, it suffices to prove that if the number of variables n is
equal to p, then I = md , and this is well known: In this case I has linear resolution, so S/I
has regularity d − 1. Since I is m-primary monomial ideal, this implies that S/I is zero in
degrees ≥ d—that is, md ⊂ I .
(2) The case p ≥ n follows from (1). On the other hand, a monomial of degree d can

contain at most d variables, so if p ≥ d, then (1) shows that I contains every monomial of
degree d.
(3) We have to show that every degree d monomial of the form m = xd−p+1

i m′ is in I .
Since m′ has degree p − 1, it can be divisible by at most p − 1 variables, so m is divisible
by at most p variables. By (1) we havem ∈ I . �	

2 Linearly presentedmonomial ideals
Definition 2.1 Let I be a monomial ideal. We define the dual graph of I , G(I) as follows:
the vertices ofG(I) are theminimalmonomial generators of I , and there is an edge between
f, g if and only if | gcd(f, g)| = |f |−1 = |g |−1 (equivalently |lcm(f, g)| = |f |+1 = |g |+1).

The following is well known to experts (see for instance [1, Proposition 2.1, Corollary
2.2]), we include it here with a short proof for the convenience of the readers.

Proposition 2.2 Amonomial ideal I is linearly presented (i.e., is Nd,2) if and only if G(I≤m)
is connected for m = lcm(f, g) where f, g are any two minimal monomial generators of I .
More concretely, the condition Nd,2 of I is equivalent to the following: given any monomial
generators f, g of I , there is a path connecting f, g whose vertices are generators dividing
lcm(f, g).

Proof ByCorollary 1.3, I is linearly presented if and only if any I≤m is linearly presented for
such m. By the formula computing Betti numbers for monomial ideals using lcm lattices
( [10, Theorem 2.1]), this is equivalent to the open interval below m being connected for
anym of size at least d + 2, which is equivalent to G(I≤m) being connected for allm. �	

The usual characterization of quadratic square-free ideals I satisfyingN2,2 is that the 1-
skeleton of the Stanley–Reisner simplicial complex associated to I should have no induced
cycle of length 4 without a chord, and this comes down to saying that the restriction of I
to 4 variables cannot be x1x2, x3x4. By Corollary 1.3 (3), the conditionN3,2 can be decided
by the restrictions of I to subsets of 6 variables. We have the following characterization:

Theorem 2.3 A square-free monomial ideal I generated in degree 3 is linearly presented
if and only if the restriction of I to at most 6 variables is not, up to relabeling of variables,
a disconnected (in the sense of the dual graph described in 2.1 and 2.2) subset of either

(1) x1x2x3, x4x5x6; or
(2) x1x2x3, x1x2x4 , x1x2x5, x3x4x5.

A similar result is announced in [14, Theorem 2.2].

Proof If the restriction is disconnected then, by Proposition 2.2, I is not linearly presented.
Conversely, if I is not linearly presented then there is a pair of generators f, g ∈ I such

that there is no path from f to g within the monomials supported in the support of fg . If
the support of fg were just 4 variables this would be impossible. If the support of fg is 5
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variables, then we must show we are in case (2). (writing numbers in place of variables for
clarity) we can assume that f, g are 123 and 345. If there were another generator of I with
support in 12345 it cannot contain 3, since then it would form a path from f to g . Thus we
may assume that it is 124. Now the only additional monomials that could be in I without
forming a path would be those in (2).
Finally, if f, g involve 6 variables we may assume that they are 123 and 456. If there is no

other generator then we are in case (1). Otherwise, there is another generator with those
variables, and we may suppose that it is 345, which is directly connected to 456. Thus the
restriction to 12345 must be disconnected, and we are in case (2). �	
In the case of a primary ideal generated by cubics, we can do with restrictions to fewer

than 6 variables:

Theorem 2.4 Let I be a m-primary monomial ideal generated in degree 3. Then I is
linearly presented if and only if the following hold:

(1) I contains m[2]m (in other words I contains all non-square-free cubics).
(2) The restriction of I to any four distinct variables contains at least two square-free

cubics or none.

Consequently, a primary ideal generated by cubic monomials is linearly presented if and
only if its restriction to any four variables is linearly presented.

Proof The necessity of (1) follows from Theorem 1.4. If I is linearly presented, then so is
I restricted to four variables, say J := I{a,b,c,d}. If J contains only one square-free cubic, say
abc, then there is no path between abc and ad2, so J is not linearly presented. This shows
the necessity of (2).
Conversely, suppose that I satisfies (1) and (2). To prove that I is N3,2, it is enough

to check the connectivity condition of Proposition 2.2. Let I ′ = m[2]m. Let f, g ∈ I be
generators. If they are both in I ′, then since I ′ is linearly presented (use 0.1), we know that
there is a path between them in G(I ′), and hence also in G(I). So we can assume one of
them is square-free, say f = abc. There are now several cases up to permutations. If the
degree of the lcm of f, g is 4, they are directly connected, so wemay assume that the degree
� of the lcm is 5 or 6. Up to permutation of variables we may assume that:

• If � = 5, then g is one of

c3, c2d, cd2, cde,

• If � = 6, then g is one of

d3, d2e, def,

and in each case we must construct a sequence of monomials in I starting with f and
ending with g such that consecutive pairs have lcm of degree 4 and all the elements divide
lcm(f, g). We give a suitable path for each case:
g = c3: abc, bc2, c3 satisfies the hypothesis because b2c ∈ I by condition (1).
g = c2d: abc, bc2, c2d.
g = cd2: By condition (2) there must be another square-free monomial in I that divides
abcd, and it must be divisible by d; up to permutation it is say abd or acd. In the first case
we have the path abc, abd, ad2, cd2, while in the second we have abc, acd, cd2.
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g = cde: Again either abd or acd is in I . Restricting to (a, b, c, d), (2) tells us there is a
square-free cubic other than abc. If that cubic is directly connected to cde we are done; in
the contrary case it must be abd. Similarly starting from cde we may assume, acd ∈ I , so
we can take the path abc, abd, acd, cde.
g = d3: By (2) we may assume that abd ∈ I , so we have the path abc, abd, ad2, d3.
g = d2e: Starting as for d3 we get the path abc, abd, ad2, d2e.
g = def : Any of the possible paths from abc to cde considered in the case g = cde
extends to def .
The last assertion follows because (1) and (2) can be checked by restricting to at most

four variables. �	
Example 2.5 The size (4) of subset of variables needed to test linear presentation in 2.4
is optimal. Consider the ideal I = (a2, b2, c2, d2)(a, b, c, d) + (abc). I is primary, and its
restriction to any three variables is linearly presented, but I itself is not.

3 Regularity bounds for Nd,p ideals
If M is a finitely generated graded S-module the (Castelnuovo–Mumford) regularity of
M is defined to be regM := maxs{ts(M) − s}. There has been considerable interest in
bounding the regularity under various assumptions onM. It turns out that the bound for
m-primary monomial ideals is much smaller than that for non-monomial ideals, which
was given in [17].

Theorem 3.1 Suppose that I ⊂ S is an m-primary ideal satisfying Nd,p with p ≥ 1.

(1) If p = n − 1 then reg I ≤ 2d − 1, and this bound is sharp for all n, d.
(2) If I is generated by monomials and p ≤ n then

reg(I) ≤ d + (n − p)�d − 1
p

� .

This bound is sharp for all n, d, p with p ≤ min{n, d}. In particular, if p = n− 1 then
reg I ≤ d + �d−1

n−1 � .
Note that if I is a monomial ideal satisfying Nd,p with p ≥ min{n, d} then I = md by

Theorem 1.4(2), so reg I = d.

Proof of Theorem 3.1 The inequality in item (1) follows from formula (1) in Section 11 of
[12].
For the inequality in item (2), letm1, . . . , mk be minimal monomial generators of I : m.

The regularity of I is one more than the maximum of the degrees of the mi, and I is
generated by the monomials of degree d that do not divide any of themi.
By Theorem 1.4, I contains every monomial of degree d that involves only p variables,

so no mi is divisible by a monomial of degree d in just p variables; that is, the sum of the
largest p exponents of mi is at most d − 1. If we order the variables so that the exponent
of xj in mi is a non-increasing function of j, then the maximum possible degree of mi is
achieved if the sum of the first p exponents is d−1, and the rest of the exponents are equal
to the pth exponent. The largest value that the pth exponent could have is �(d − 1)/p�.
Thus

1 + degmi ≤ d + (n − p)
⌊
d − 1
p

⌋
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proving the inequality.
To complete the proof, we give examples of ideals that achieve the bounds. �	

Example 3.2 (1) To see that the bound in (1) is sharp, suppose that the field k has char-
acteristic 0, and set A = S/(xd1 , . . . , xdn ), so that the socle of A is generated by

∏n
i=1 x

d−1
i ,

which has degree n(d − 1). The element σ = ∑
i xi is a strong Lefschetz element for A

(see, for instance, [17, Theorem 1.1]); that is, multiplication by a power of σ induces an
isomorphism Ae → An(d−1)−e for every e. Set

I = (xd1 , . . . , x
d
n ) : σ (n−2)(d−1)

SinceA is Gorenstein, so is S/I , and the socle of S/I is in degree n(d−1)− (n−2)(d−1) =
2d − 2, so reg I = 2d − 2. Since multiplication by σ (n−2)(d−1) induces an isomorphism
from Ad−1 to A(n−1)(d−1), we see that I ⊂ md . Let F be the minimal S-free resolution of I .
It follows that the jth term Fj of F is generated in degrees≥ d + j− 1, and since the S-free
resolution of S/I is symmetric this must be an equality for j < n. Thus I satisfies Nd,n−1.
(2) To see that the bound in (2) is sharp, let q = �(d−1)/p� andwrite d−1 = qp+r, with

r < p. Setm = (x1 · · · xn)qu, where u is anymonomial of degree r, so that degm = qn+ r.
Let ai be the exponent of xi inm. Reorder the variables if necessary so that a1 ≥ · · · ≥ an;
note that ap = · · · = an since r < p.
Set J = (xa1+1

1 , . . . , xan+1
n ) and note that J : m = J + (m). Finally, let I = md ∩ J . Since

ai ≤ d for all i, the ideal I is generated by the monomials of degree d not dividingm, and
I : m = I + (m).
By Proposition 0.1 the ideal I satisfies Nd,p. We have

reg I = 1 + degm

= 1 + a1 + · · · + an

= 1 + a1 + · · · + ap + (n − p)q = d − 1 + (n − p)�d − 1
p

� ,

as required.

4 Almost linear resolutions: the condition Nd,n−1

In this section we give a characterization—in some sense a parametrization—of primary
monomial ideals satisfying Nd,n−1, that is, with almost linear resolution. We will state the
condition in terms of three definitions:

Definition 4.1 We define the s-shadow of a set of monomialsm1, . . . , mu to be the set of
all monomials of degree s that divide somemi.
We say that monomials m,m′ are s-separated if deg gcd(m,m′) < s, or equivalently if

their s-shadows do not intersect.
We say that a monomialm is s-saturated if m is divisible by every monomial of degree

≤ degm − s, or equivalently, if the exponent of each variable inm is at least degm − s.

Theorem 4.2 Suppose that I ⊂ k[x1, . . . , xn] is an m-primary monomial ideal generated
in degree d, and let N be the set of monomials of degree d that are not in I .
The ideal I satisfies Nd,n−1 if and only if N is the shadow of a set {m1, . . . , mu} of (d − 1)-

saturated monomials that are pairwise (d − 1)-separated. In this case m1, . . . , mu are
generators of the socle of S/I , and thus reg I = 1 + maxi degmi.
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Example 4.3 When n = 3 the condition Nd,n−1 = Nd,2 is the condition that the ideal I is
linearly presented. The set of monomials of a given degree naturally forms a triangle with
the pure powers at the vertices, and the conditions of theTheoremare easy to visualize. For
example, taking d = 7, the red sets N in the following pictures all satisfy the conditions,
so the monomials of degree 7 corresponding to the black dots generate ideals with linear
presentation:

In terms of such pictures, the fact that N is a shadow, plus the saturation condition,
means that N is the union of solid upside-down triangles of size 1 or more that do not
touch the boundary, while the separation conditionmeans that the upside-down triangles
do not touch one another.

Proof of Theorem 4.2 Set S = k[x1, . . . , xn], and m = (x1, . . . , xn) ⊂ S. Given an m-
primary ideal I generated by monomials of degree d, we consider the kernel Y of
the surjection S/I → S/md . Set ω = ExtnS(S/md, S(−n)) = Homk (S/md, k) and
ωI = ExtnS(S/I, S(−n)) = Homk (S/I, k). Dual to

0 −→ Y −→ S/I −→ S/md −→ 0

there is a short exact sequence

0 −→ ω −→ ωI −→ X −→ 0

with X = ExtnS(Y, S(−n)) = Homk (Y, k). We may thus form a (non-minimal) free res-
olution H of ωI by the “horse-shoe” construction: letting F and G be the minimal free
resolutions of X and ω, respectively, the resolution H has the form

F0 ⊕ G0 ←−

⎛

⎝
dF 0
φ1 dG

⎞

⎠

F1 ⊕ G1 ←− · · · ←− Fi−1 ⊕ Gi−1 ←−

⎛

⎝
dF 0
φi dG

⎞

⎠

Fi ⊕ Gi ←− · · ·

where dF and dG are the differentials of F and G, and φi is a map defined inductively:
Because F0 is free there is a map ε : F0 → ωI lifting the augmentation map F0 → X along
the surjection ωI → X ; we take φ1 to be a map lifting ε along the composite

G0 → ω → ωI .

For i > 1we letφi be themap lifting the compositeφi−1dF,i alongdG,i−1. This construction
is summed up in the commutativity of the diagram:
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ω

ωI

X

G0 G1 G2

F0 F1 F2

(∗)

· · ·

· · ·

· · ·

dG,1 dG,2

dF,1 dF,2

ε

φ1 φ2

Lemma 4.4 With notation as above, I satisfies Nd,p if and only if φn−p+1 is a split
monomorphism, in which case φq is a split monomorphism for all q ≥ n − p + 1.

Proof of Lemma 4.4 Because md satisfies Nd,n, ω is generated in degree −d + 1 and the
resolution of ω is linear except for the last step. ThusGi is generated in degree −d + 1+ i
for i = 0 . . . , n − 1.
On the other hand, since Y = md/I is generated in degree d, the socle of X is generated

in degree−d, and thus Fn = S(d−n)|N |, where |N | is the number of monomials of degree
d that are not in I . Since the regularity of X is −d, the generators of Fi have degrees
≤ −d + i; that is, Fi has the form

Fi =
⊕

j
S(d − i + ei,j)

with ei,j ≥ 0.
Because F is minimal and the dual of F is also acyclic, each ei,j must be less than or equal

to some ei+1,j . Thus if, for a given i0, all the ei0 ,j are 0, then ei,j = 0 for all i ≥ i0 and all j.
Now suppose that φi0 is a split monomorphism so that, in particular, ei,j = 0 for i ≥ i0.

Themapφi0 takes ker dF,i0 monomorphically into im dG,i0 . SinceF is aminimal resolution,
so φi0+1 must be amonomorphism. Because all the ei0+1,j are zero, the freemodule Fi0+1 is
generated in the same degree as Gi, so φi0+1 is also a split monomorphism, and repeating
the argument we see that φi is a split monomorphism for all i ≥ i0. Thus the condition
that φn−p0+1 is a split monomorphism is equivalent to the condition that φn−p+1 is a split
monomorphism for all p ≤ p0.
The minimal free resolution of S/I is obtained from HomS(H, S(n)) by minimizing.

Since Hi = Gi ⊕ Fi and the generators of Fi have degree strictly greater than those of Gi,
we see that I satisfiesNd,p for some p < n if and only if ei,j = 0 for all i ≥ n− p+ 1 and φi
is a split monomorphism for all i ≥ n − p + 1 so that each summand Fi in the resolution
H cancels with a direct summand of Gi−1 for i ≥ n − p + 1. By the argument above, this
is equivalent to the condition that φn−p+1 is itself a split monomorphism.
To complete the proof of the theorem we must show that φ1 is a split monomorphism

if and only if N is the d-shadow of a set of monomials whose elements are (d − 1)-
saturated and pairwise (d − 1)-separated. First, suppose that I ⊂ md satisfies Nd,n−1 and
let m1, . . . , mu be a minimal set of monomials generating the socle of S/I , so that X is
generated by the dual monomials m̂1, . . . , m̂k .
The socle of S/md is generated by one monomial of each multi-degree with total degree

d − 1. Thus ω is generated by one dual monomial of each possible nonnegative multi-
degree having total degree −d + 1. It follows that for φ1 to be a split monomorphism, it
is necessary that the relations of X contain at most generator of each multi-degree with
total degree−d+1. But every monomial of n of degree degmi −d+1 annihilates m̂i ∈ X ,
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so X has relations of multi-degree degmi − deg n, and this must be nonnegative; that is,
nmust dividemi. Thusmi is (d − 1)-saturated.
Similarly, if mi and mj were not (d − 1)-separated, then a multiple of each would be

equal to the same monomial of degree d − 1, and this would give two relations on X with
the samemulti-degree. This proves thatm1, . . . , mk satisfy the conditions of the theorem,
and we must show that N is their shadow.
From the separation condition it follows that themoduleX is the direct sumof the cyclic

submodules Xi = Sm̂i generated by the m̂i. By Lemma 4.4, the module Fi is generated in
degree −d + i for all i ≥ 1, so each Xi has linear resolution from the first step. It follows
thatXi ∼= S/mdegmi−d+1(degmi), and the socle ofXi consists of the duals of all monomials
of degree d that dividemi; thus N , which is the union of the duals of the socles of the Xi,
is the d-shadow.
Conversely, suppose thatN is the d-shadowof a (d−1)-separated set of (d−1) saturated

monomials m1, . . . , mu. It follows that mi /∈ I but—since mi is (d − 1)-saturated, any
variable times mi has a divisor of degree d in I , so the mi generate the part of the socle
of S/I of total degree ≥ d, and the m̂i generate X . Because the mi are (d − 1)-separated,
the submodules Xi ⊂ X intersect in 0, so X = ⊕1≤i≤uXi, and the socle of Xi is the dual of
the d-shadow ofmi. IfMi is the generator of Fi corresponding tomi, then the first syzygy
of Xi is generated by elements nMi where n ranges over all monomial of total degree
degmi − d + 1. Becausemi is (d − 1) saturated,mi is divisible by n, and we claim that φ1
may be taken to send nMi to the generatorNi ofG0 that maps to m̂i/n ∈ ω. SinceMi ∈ G0
maps to m̂i ∈ X , the map ε in the diagram (∗) may be taken to send nMi to m̂i/n ∈ ωI ,
which is also the image of m̂i/n ∈ ω, as required. �	
The following result, together with the observation that Y must have a linear resolution

up to the last step, gives an alternative proof that X is the direct sum of cyclic modules of
the form S/mdi for various di.

Proposition 4.5 If M is an indecomposable graded S-module of finite length whose first
syzygy has linear resolution, then (up to a shift in grading) M ∼= S/md for some integer d.

Graded local duality implies that the socle ofM all lies in a single degree and in the cyclic
case the result follows—this is the usual (well-known) proof. In the cyclic case the result
also follows from the Herzog–Kühl theorem on pure resolutions [16], as in the argument
below.

Proof Suppose that the generators ofM have degrees g1, . . . , gt and that the relations are
all in degree d. We will show thatM ∼= ⊕iS(−gi)/md−gi .
Let P be the minimal presentation matrix of M, with ith row corresponding to a gen-

erator of degree gi. Set si = (n−1+(d−gi)
n−1

)
. By Boij-Söderberg theory [13, Theorem 0.2],

the Betti table of M is the sum of the Betti tables of the modules S(−gi)/md−gi , and, in
particular, P has

∑
i si columns. If the forms of degree d − gi in the ith column of P span

a space of dimension ei ≤ si, then after suitable column transformations P would have
∑

i si − ∑
i ei columns of zeros, so ei = si for all i. In the case t = 1 the result follows

immediately. (Note that this case does not require the full force of [13, Theorem 0.2], since
when t = 1 the resolution is pure, and its shape is given by the Herzog–Kühl theorem.)
We will prove by induction on t that any t × ∑

i si matrix P without columns of zeros,
whose ith row contains forms of degree d − gi, and whose maximal minors generate an
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m-primary ideal, is the direct sum of 1-rowed matrices such as
⎛

⎜
⎝

f1 · · · fs1 0 . . . 0 0 . . . . . . 0
0 . . . 0 f ′

1 · · · f ′
s2 0 . . . . . . 0

0 . . . 0 0 . . . 0 f ′′
1 . . .

⎞

⎟
⎠ .

The case t = 1 is trivial. After a suitable column operation we may assume that the first
s1 columns of the first row of P contain a basis for the forms of degree d − g1, and that
all the other entries of the first row are zero. Let P′ be the submatrix of P omitting the
first row and the first s1 columns. The ideal of maximal minors of P is the md−g1 times
the ideal of maximal minors of P′, so P′ satisfies the same hypotheses as P. By induction
P′ has the desired form. After further column operations we may assume that the first s1
columns of P have zeros in all but the first row, and thus P is equivalent to a direct sum
of 1-rowed matrices. From this it follows that M is a direct sum of cyclic modules, so M
must be cyclic, and we are done. �	

5 Examples: fractal ideals and obstructions to shelling
In this section we use our previous results to construct examples ofNd,p m-primary ideals
with interesting behavior. Our first construction is inspired by fractal geometry. It gives
us ideals with relatively few generators that have almost linear resolution. We start with
the case n = 3, where a pattern is easiest to describe.

Proposition 5.1 With n = 3, for d = 1, 2 set: Id = md. Inductively, define:
I2r−1 = (xr1, x

r
2, x

r
3)Ir−1,

I2r = xr+1
1 Ir−1 + (xr2, x

r
3)Ir .

The ideal Id has linear presentation for all d.

Proof In terms of diagrams as in Example 4.3, the ideals Id are created by staring from the
simplex of monomials of degree d, and first removing the largest upside-down triangle
of monomials that does not meet the boundary. This leaves three smaller simplices, and
we repeat the pattern within each of them, etc. The result for d = 7 is shown in the first
diagram of Example 4.3. From Theorem 4.2 we see that this produces an ideal satisfying
Nd,n−1. �	

Remark 5.2 Whend = 2r−1, Id = mm[2]m[4] . . .m[2r−1]. As the readermay show, this has
precisely 3r minimal generators which is O(dlog23). By contrast,md has O(d2) generators.
In this situation, the picture of the generators of Id is exactly the so-called Sierpiński

triangle or gasket. See Figure 1.We note that (generalizations of) Sierpiński triangles have
also appeared in [9] where they were used to compute Frobenius powers of monomial
ideals.

For n > 3 variables, it is harder to give a recursive formula for such sparse ideals with
Nd,p. Instead we offer a closed form formula for special values of d:

Proposition 5.3 For any n, each of the following ideals

Ir = (mm[2]m[4] . . .m[2r−1])p−1m[2r ] ⊂ S

satisfies Nd,p.
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Fig. 1 Sierpińsky triangle by Beojan Stanislaus, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?
curid=8862246

Proof We do induction on r, and first consider I1 = mp−1m[2]. Since tp−1(m[2]) = 2p,
m[2]mp−1 = m[2] ∩ mp+1 has linear resolution for p − 1 steps by Proposition 0.1.
For the induction step, write Ir+1 as mp−1J , and note that J is the ideal Ir constructed

inside the polynomial ring S′ = k[x21 , . . . , x2n]. By induction, J has a resolution that is p− 1
step linear in S′, which means that over S, J has a resolution which is quadratic in p − 1
steps. That implies tp − 1(J ) = 2p, and hence Ir+1 = mp−1J satisfies Nd,p, as desired. �	

Remark 5.4 As in 5.2, it can be shown that the ideal Ir constructed in 5.3 aremuch sparser
than md , even in the almost linear resolution case, p = n − 1.

Next, we discuss an application to shelling.We begin by defining the algebraic analogue
of shelling for monomial ideals.

Definition 5.5 Let I be a monomial ideal generated in degree d and f is a degree d
monomial. We say that the transition I �→ (I, f ) is a shelling move if I : f is generated by
a subset of variables. We say that an ideal L is shelled over I if it can be obtained from I
by a sequence of shelling moves.

The next result is the algebraic version of [8, Lemma 3.1].

Proposition 5.6 Let I be a monomial ideal generated in degree d and f be a monomial of
degree d.

(1) If (I, f ) is Nd,2 then I �→ (I, f ) is a shelling move.
(2) If I satisfies Nd,2, then I �→ (I, f ) is a shelling move if and only if (I, f ) also satisfies

Nd,2.
(3) If I satisfies Nd,p for some p ≥ 2 and I �→ (I, f ) is a shelling move, then (I, f ) also

satisfies Nd,p.

Proof We have a short exact sequence of graded S-modules

0 → S/(I : f )(−d) → S/I → S/(I, f )) → 0.

This exact sequence induces the following long exact sequence in Tor:

· · · → Tor2(S/(I, f )), k) →TorS1(S/(I : f )(−d), k) →
TorS1(S/I, k) → TorS1(S/(I, f )), k) → · · ·

ThemapTorS1(S/I, k) → TorS1(S/(I, f )), k) is injective.Hence themapTor2(S/(I, f ), k) →
TorS1(S/(I : f )(−d), k) is surjective. But since S/(I, f ) has linear first syzygy so
TorS2(S/(I, f ), k) ∼= kβS

1 (I,f )(−d − 1). Hence TorS1(S/(I : f )(−d), k) is generated in degree
−d − 1. Thus (I : f ) is generated in degree 1. The proof of (b) and (c) is similar. �	

https://commons.wikimedia.org/w/index.php?curid=8862246
https://commons.wikimedia.org/w/index.php?curid=8862246
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We can characterize when an Nd,n−1 ideal is shelled over another. For an monomial
ideal generated in degree d we write N (I) for the set of monomials of degree d not in I

Corollary 5.7 If I, J are m-primary monomial ideals satisfying Nd,n−1, then J is shelled
over I if and only if N (I) is a disjoint union of N (J ) and a set of singleton shadows M =
{m1, . . . , ms}. If that is the case, the shelling can be obtained by adding elements in M in
any order.

Proof If there were a shelling from I to J then each intermediate ideal would also satisfy
Nd,n−1 by 5.6. But by our structure Theorem 4.2, the difference betweenN (I) andN (J ) is a
disjoint unions of d−1 saturated shadows. But the d−1-saturated shadow of amonomial
is a simplex in the monomial lattice, so if it is not a singleton, then after removing one
monomial it is no longer a shadow.
On the other hand, ifN (J ) \N (I) is a union of singleton shadows, then one can fill them

in one by one to get from I to J in any order, and such collections of moves are shelling as
each intermediate ideal is Nd,n−1 by Theorem 4.2 and 5.6(2). �	
This result implies a rigidity of regularity:

Corollary 5.8 Suppose that I is a primary monomial ideal satisfying Nd,n−1. If reg I ≥
d + 2 and I �→ (I, f ) is a shelling move, then reg(I, f ) = reg I .

Proof The larger simplices in N (I) cannot be changed by a shelling move. �	
Example 5.9 Consider the ideal I = I6 = (x4)m2 + (y3, z3)mm[2] in 5.1. The set N (I)
contains the shadow of x3y2z2, which is the triangle {x3y2z, x3yz2, x2y2z2}. It follows that
m6 is not shelled over I .

From Corollary 5.7 we can deduce a similar result for square-free monomial ideals or,
equivalently, simplicial complexes. If I is generated by monomials of degree d, we let T
be the polynomial ring k[xij]1≤i≤n,1≤j≤d . Define pol : S → T to be the map onmonomials
that takes xri to xi1xi2 . . . xir , and let depol : T → S be the map of algebras that takes xij to
xi. Note that polarization commutes with lcm, and that depol(pol(m)) = m.

Lemma 5.10 If J ⊂ T is a square-free monomial idea satisfying Nd,2 then I := depol(J )
satisfies Nd,2 as well.

Proof By Proposition 2.2, it suffices to show that given any two minimal generators f =
depol(F ), g = depol(G) of I are connected by a path within the support of lcm(f, g). Since
J satisfiesNd,2, Proposition 2.2 shows that there is a path of monomials in J of monomials
dividing lcm(F, G). Depolarizing these monomials we get a path in support of lcm(f, g). �	
Corollary 5.11 Let I, J be Nd,p square-free monomial ideals in T for some p ≥ 2. If J is
shelled over I , then depol(J ) is shelled over depol(I).
Consequently, if I, J are monomial ideals in S and J is not shelled over I , then pol(J ) is

not shelled over pol(I).

Proof Let J0 = I �→ · · · �→ Js = J be a sequence of shelling moves from I to J . By Lemma
5.10, each ideal depol(JI ) isNd,2. Proposition 5.6 implies that depol(J1) �→ · · · �→ depol(Js)
is a sequence of selling moves, so depol(J ) is shelled over depol(I). The second statement
follows from the first and the fact that depol(pol(I)) = I . �	
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Example 5.12 LetT be the ring k[xij]1≤i≤3,1≤j≤6 and S = k[x1, x2, x3]. The ideal depol(m6)
is not shelled over J = depol(I), where I is the ideal in Example 5.9.
Taking the Alexander dual, one obtains a normal (equivalently, satisfying Serre’s con-

dition (S2)) simplicial complex � = �(J∨) of dimension 11 such that the complete 11-
skeleton of the 17-simplex is not shelled over �.
Of course, if we apply the same process using 5.7 with n ≥ 3 variables one gets simplicial

complexes � satisfying Serre’s condition Sn−1 that cannot be extended by shelling to the
complete dim�-skeleton of the simplex on all vertices. That is because the polarization of
Nd,p ideals are alsoNd,p, and the Alexander dual ofNd,p ideals define simplicial complexes
that satisfy Serre’s condition (Sp), see [18].

6 Questions and discussion
In this final section we collect some questions inspired by the literature and our own
work. Let C be a class of monomial ideals in S. The most prominent examples are C =
{square-free ideals} or C = {primary ideals}. Let Nd,p(C) denote the ideals in C that are
Nd,p.

Question 6.1 What canwe say about the Betti numbers of ideals inNd,p(C)? For instance,
it is intuitively clear that such ideals must not have too few generators. Can we prove good
bounds? What about optimal examples?

The only result we are aware of in this direction is [12, Proposition 11.1], where it was
proved that any graded m-primary ideal with almost linear resolution must have at least
(n+d−2

d
) + (n+d−3

d−1
)
generators, with equality if and only if S/I is Gorenstein. See [3] for a

recent survey of the literature on lower bounds for Betti numbers of ideals in general and
monomial ideals in particular.
Equally sensible is the expectation that ideals in Nd,p(C) must have low Castelnuovo–

Mumford regularity.

Question 6.2 Can we establish sharp upper bounds for reg I , I ∈ Nd,p(C)? What about
optimal examples?

In this direction, there is aO(log(n)) bound on regularity ofN2,2 monomial ideals (using
[5] for the square-free case and polarization). Interestingly, we only know monomial N2,2
ideals with regularity O(log(log(n)), using constructions from the study of hyperbolic
Coxeter groups ( [4]). For d > 2, it has been conjectured that square-free Nd,2 ideals have
regularity at most n− � n

d+1� − � n−1
d+1� ( [6,7]). Only the case d = 3 has been settled ( [7]).

One can sometimes show that an ideal is in C is Nd,p by checking the restrictions to
all subsets of variables of size r, for some relatively small value of r, as in Corollary 1.3
and Theorem 2.4. If that is the case we say that Nd,p(C) is r-certifiable. For instance, if C
is the class of all monomial ideals, Nd,p(C) is dp-certifiable. In the quadratic case, much
better bound is known, indeed, N2,p(C) is (p + 2)-certifiable. Note that these bounds do
not depend on n.

Question 6.3 Given d, p, what is the smallest value of r such thatNd,p(C) is r-certifiable?
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