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Abstract

We study monomial ideals with linear presentation or partially linear resolution. We give
combinatorial characterizations of linear presentation for square-free ideals of degree 3,
and for primary ideals whose resolutions are linear except for the last step (the “almost
linear” case). We also give sharp bounds on Castelnuovo-Mumford regularity and
numbers of generators in some cases. It is a basic observation that linearity properties
are inherited by the restriction of an ideal to a subset of variables, and we study when
the converse holds. We construct fractal examples of almost linear primary ideals with
relatively few generators related to the Sierpinski triangle. Our results also lead to
classes of highly connected simplicial complexes A that cannot be extended to the
complete dimA-skeleton of the simplex on the same variables by shelling.

Keywords: Monomial ideals, Ny, conditions, Linear syzygies, Fractals, Shelling
Mathematics Subject Classification: 13F55, 13D02, 13C05

Introduction
Fix an ambient dimension # and a degree d. Let S = k[xy, ..., x,] be a polynomial ring
over a field k, and set m = (xy, ..., x,). For any finitely generated graded S-module M we

write
ts(M) := max{e | Torf(M, k)e # 0}.

We will use these definitions throughout the paper.

We say that a homogeneous ideal / C S satisfies the condition Ny, if (1) = d + s
for all s < p — 1. Thus N is the condition that / is generated in degree d, N, adds
the condition that I is linearly presented, and more generally Ny, is the condition that
I has a linear resolution for p — 1 steps. Green’s condition N, is, in this notation, Ny, ,.
We describe an ideal [ satisfying N, as having linear resolution, here q is the projective
dimension of S/I, and that an ideal satisfying N ,_1 as having almost linear resolution.

Studying ideals satisfying N, is the same as studying the successive maxima of ¢(/) for
arbitrary ideals I:

Proposition 0.1 (Truncation principle, [12, Proposition 1.7]) Let I be a homogeneous
ideal of S as above. For any integer s > 0, the ideal ] = I N m®&W=S has linear resolution
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for s steps, while for r > s we have ¢,.(J) = ¢.(I); thus I N m4 satisfies Ny, for p = max{a |
t,(I) <d+a}+1.

In this paper we focus on monomial ideals. The square-free monomial ideals satisfying
N, were classified in a famous paper of Froberg [15], and the result was extended to a
description of monomial ideals satisfying any N3 ,, in [11, Theorem 2.1]. However, concrete
characterizations of monomial ideals satisfying N, for 4 > 3 are unknown in general,
and many basic questions about them have not been thoroughly investigated. Can we
characterize them combinatorially? What is the computational cost of checking whether
an ideal is N ,,? Are there sharp bounds on Betti numbers of these ideals, in particular,
their number of generators and regularity? What about those that achieve such bounds?
See Sect. 6 for a more detailed discussion of these questions together with brief reviews of
the relevant literature.

Work of Boocher [2] and Peeva—Velasco [19] establishes a locality principle: The con-
dition Ny, is inherited by the ideals generated by various subsets of generators. The
consequences of this, worked out in Sect. 1, are used throughout this paper. Conversely,
if the restriction of a monomial ideal to sufficiently large subsets of the variables satisfies
N, then the same is true of the whole ideal. For example, linear presentation can be
checked by restricting to 2d variables, but for cubic ideals, 4 variables (plus an auxiliary
condition) is enough, as we establish in 2. It would be interesting to know the optimal
results of this type more generally.

Our best results concern primary monomial ideals. We give sharp regularity bounds for
such ideals that satisfy N, in 3. It is well known that m¢ is the only m-primary ideal with
linear resolution. We give a constructive characterization of m-primary ideals with almost
linear resolution—that is, satisfying N;,,_;. We also show that a primary cubic monomial
ideal with linear presentation must contain the degree 3 part of the ideal generated by
the squares of variables, and given that condition, linear presentation can be tested by
restricting to monomials in just 4 of the variables at a time. A fractal construction in 5,
related to the Sierpinniski triangle, yields such ideals whose number of generators is an
arbitrarily small fraction of the number of generators of m.

An old question (both for square-free and other ideals) asks, given a monomial ideal
satisfying some N, ,, when can one adjoin one more monomial, keeping the linearity?
Using our structure theory for almost linear primary ideals, we give many examples where
this is not possible. For instance, if a primary monomial ideal satisfying N, has regu-
larity at least d + 2, then adding a monomial can never both preserve linear presentation
and also change the regularity—thus, for example, it is never possible to reach m?, an
ideal of regularity d, by adding one monomial at a time while preserving linear presenta-
tion. Polarizing such examples, we obtain square-free examples as well. These square-free
monomial ideals correspond to examples of highly connected simplicial complexes (i.e.,
satisfying Serre’s condition (S;)) that cannot be extended to the full skeleton of the simplex
on all variables using shelling moves.

We collect and discuss some of our favorite open questions in Sect. 6.

1 Locality
Let I C S be a homogeneous ideal. If I is a monomial ideal, and m is a monomial, let /<,
denote the ideal generated by monomial generators of / that divide m. If K is a subset of
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{x1, ..., x4} we write Ix for the ideal obtained from I by restricting to the variables in K
(i.e., setting all the variables not in K to zero). We begin by applying a result of Peeva and
Velasco [19] that extend work of Boocher [2] to describe the minimal free resolution of
I<m as a subcomplex of the minimal free resolution of I:

Theorem 1.1 [19, Proposition 3.10] If F is the multi-graded minimal free resolution of a
monomial ideal I C S, and m € S is a monomial, then the minimal free resolution of I,
is the subcomplex of F formed from all summands of terms in F whose degree divides m.

A first consequence is that we can make many ideals satisfying N, from one of them:

Corollary 1.2 If I is a monomial Ny, ideal, then so is I<y, for any monomial m. In
particular,

(a) The square-free part of I (the ideal generated by square-free monomial generators of
1) is also Ny .
(b) The restriction of I to any r < n variables is also Ny .

Proof The first assertion is immediate from 1.1. For a), take m to be the product of all
variables. For b), harmlessly supposing that the variables are x, ..., x,, we take m =

d d
x$...xl. ]

Theorem 1.1 yields a locality principle: The condition N, is determined by relatively
small subsets of the generators of the ideal and by the restrictions to relatively few variables.
In the (generally nonminimal) Taylor resolution G of a monomial ideal /, the degrees of
the generators of G; are the least common multiples of s + 1 minimal generators of I,
and thus these are the only degrees that can occur among generators of the sth module in
a minimal free resolution. Combining this Theorem 1.1 with the behavior of the Taylor
resolution we deduce:

Corollary 1.3 (Locality principle) Let / C S be a monomial ideal. If F is the multi-graded
minimal free resolution of I, then the degrees of the homogeneous generators of F; also
appear in the minimal free resolution of an ideal I, for some monomial m that is the
least common multiple of s + 1 minimal generators of I.

Thus the following are equivalent:

(1) I satisfies Ny,

(2) I<y satisfies N, for all least common multiples m of p of the monomial generators
of I.

(3) The restriction of I to any r = dp variables satisfies N .

Proof (2) follows from (3) since the lcm of p generators involves at most dp variables. O

This result implies that m-primary ideals satisfying N, cannot be too small. Write ml
for the ideal (x%, ..., x%).

Theorem 1.4 Let I be a m-primary monomial ideal satisfying Ny ,. The following hold:

(1) I contains Z{il,...,ip}C[n] (g - - -;xi,,)d'
(2) Ifp = min{n, d}, then I = m?,
(3) Ifd > p then I contains mld—r+Ump=1,
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Proof (1) By the locality principle, it suffices to prove that if the number of variables # is
equal to p, then I = m?, and this is well known: In this case I has linear resolution, so S/I
has regularity d — 1. Since I is m-primary monomial ideal, this implies that S/I is zero in
degrees > d—that is, m¢ C 1.

(2) The case p > n follows from (1). On the other hand, a monomial of degree d can
contain at most d variables, so if p > d, then (1) shows that I contains every monomial of
degree d.

(3) We have to show that every degree d monomial of the form m = x?_p ' is in 1.
Since m' has degree p — 1, it can be divisible by at most p — 1 variables, so m is divisible

by at most p variables. By (1) we have m € I. |

2 Linearly presented monomial ideals

Definition 2.1 Let / be a monomial ideal. We define the dual graph of I, G(I) as follows:
the vertices of G(J) are the minimal monomial generators of I, and there is an edge between
fgifandonlyif | ged(f g)| = |f| — 1 = |g| — 1 (equivalently |lem(f g)| = |f|+1 = |g| + 1).

The following is well known to experts (see for instance [1, Proposition 2.1, Corollary
2.2]), we include it here with a short proof for the convenience of the readers.

Proposition 2.2 A monomialideal l is linearly presented (i.e., is Ny) if and only if G(I<,)
is connected for m = lem(f, g) where f, g are any two minimal monomial generators of I.
More concretely, the condition Ny of I is equivalent to the following: given any monomial
generators f, g of I, there is a path connecting f, ¢ whose vertices are generators dividing

lem(f, g).

Proof By Corollary 1.3, 1 islinearly presented if and only if any /<, is linearly presented for
such m. By the formula computing Betti numbers for monomial ideals using lcm lattices
([10, Theorem 2.1]), this is equivalent to the open interval below m being connected for
any m of size at least d + 2, which is equivalent to G(I<,,) being connected for all m. O

The usual characterization of quadratic square-free ideals [ satisfying Ny, is that the 1-
skeleton of the Stanley—Reisner simplicial complex associated to / should have no induced
cycle of length 4 without a chord, and this comes down to saying that the restriction of /
to 4 variables cannot be x1x7, x3x4. By Corollary 1.3 (3), the condition N33 can be decided
by the restrictions of I to subsets of 6 variables. We have the following characterization:

Theorem 2.3 A square-free monomial ideal I generated in degree 3 is linearly presented
if and only if the restriction of I to at most 6 variables is not, up to relabeling of variables,
a disconnected (in the sense of the dual graph described in 2.1 and 2.2) subset of either

(1) x1%2%3, X4X5X6; OF
(2) x1%2X3, X1%2%4, X1X2X5, X3X4X5.

A similar result is announced in [14, Theorem 2.2].

Proof Iftherestriction is disconnected then, by Proposition 2.2, I is not linearly presented.

Conversely, if I is not linearly presented then there is a pair of generators f, g € I such
that there is no path from f to g within the monomials supported in the support of fg. If
the support of fg were just 4 variables this would be impossible. If the support of fg is 5
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variables, then we must show we are in case (2). (writing numbers in place of variables for
clarity) we can assume that f, g are 123 and 345. If there were another generator of / with
support in 12345 it cannot contain 3, since then it would form a path from f to g. Thus we
may assume that it is 124. Now the only additional monomials that could be in I without
forming a path would be those in (2).

Finally, if f; g involve 6 variables we may assume that they are 123 and 456. If there is no
other generator then we are in case (1). Otherwise, there is another generator with those
variables, and we may suppose that it is 345, which is directly connected to 456. Thus the
restriction to 12345 must be disconnected, and we are in case (2). O

In the case of a primary ideal generated by cubics, we can do with restrictions to fewer
than 6 variables:

Theorem 2.4 Let I be a m-primary monomial ideal generated in degree 3. Then I is
linearly presented if and only if the following hold:

(1) I contains mPm (in other words I contains all non-square-free cubics).
(2) The restriction of I to any four distinct variables contains at least two square-free

cubics or none.

Consequently, a primary ideal generated by cubic monomials is linearly presented if and
only if its restriction to any four variables is linearly presented.

Proof The necessity of (1) follows from Theorem 1.4. If ] is linearly presented, then so is
I restricted to four variables, say J := Ii, 4} If ] contains only one square-free cubic, say
abc, then there is no path between abc and ad?, so ] is not linearly presented. This shows
the necessity of (2).

Conversely, suppose that I satisfies (1) and (2). To prove that [ is N3, it is enough
to check the connectivity condition of Proposition 2.2. Let I’ = ml?lm. Let £ g € I be
generators. If they are both in I’, then since I’ is linearly presented (use 0.1), we know that
there is a path between them in G(I’), and hence also in G(I). So we can assume one of
them is square-free, say f = abc. There are now several cases up to permutations. If the
degree of the lcm of £, g is 4, they are directly connected, so we may assume that the degree
£ of the Icm is 5 or 6. Up to permutation of variables we may assume that:

+ If¢ =5, then g is one of
¢, c?d, cd?, cde,

o If£ = 6, then g is one of
d3, d’e, def,

and in each case we must construct a sequence of monomials in / starting with f and
ending with g such that consecutive pairs have lcm of degree 4 and all the elements divide
lem(f, g). We give a suitable path for each case:

g =% abe, bc?, 3 satisfies the hypothesis because b%c € I by condition (1).

g =c*d: abc bc? c?d.

g =cd®: By condition (2) there must be another square-free monomial in / that divides
abcd, and it must be divisible by d; up to permutation it is say abd or acd. In the first case

we have the path abc, abd, ad?, cd?, while in the second we have abc, acd, cd.
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g = cde:  Again either abd or acd is in I. Restricting to (a, b, ¢, d), (2) tells us there is a
square-free cubic other than abc. If that cubic is directly connected to cde we are done; in
the contrary case it must be abd. Similarly starting from cde we may assume, acd € I, so
we can take the path abc, abd, acd, cde.
g =4d3 By (2) we may assume that abd € I, so we have the path abc, abd, ad?, d>.
g =d?e: Starting as for d® we get the path abc, abd, ad?, de.
g = def: Any of the possible paths from abc to cde considered in the case g = cde
extends to def.

The last assertion follows because (1) and (2) can be checked by restricting to at most
four variables. ]

Example 2.5 The size (4) of subset of variables needed to test linear presentation in 2.4
is optimal. Consider the ideal I = (a2 b% ¢% d*)(a, b, ¢,d) + (abc). I is primary, and its
restriction to any three variables is linearly presented, but I itself is not.

3 Regularity bounds for N, , ideals

If M is a finitely generated graded S-module the (Castelnuovo—Mumford) regularity of
M is defined to be reg M := max,{t;(M) — s}. There has been considerable interest in
bounding the regularity under various assumptions on M. It turns out that the bound for
m-primary monomial ideals is much smaller than that for non-monomial ideals, which
was given in [17].

Theorem 3.1 Suppose thatI C S is an m-primary ideal satisfying Ny, with p > 1.

(1) Ifp =n—1thenregl < 2d — 1, and this bound is sharp for all n, d.
(2) IfI is generated by monomials and p < n then

reg(l) < d + (n —p)L$J-

This bound is sharp for all n, d, p with p < min{n, d}. In particular, ifp = n — 1 then
regl <d+ L%J .

Note that if / is a monomial ideal satisfying N, with p > min{n, d} then I = m? by
Theorem 1.4(2), soregl = d.

Proof of Theorem 3.1 The inequality in item (1) follows from formula (1) in Section 11 of
[12].

For the inequality in item (2), let w11, . . ., my be minimal monomial generators of I : m.
The regularity of I is one more than the maximum of the degrees of the m;, and I is
generated by the monomials of degree d that do not divide any of the ;.

By Theorem 1.4, I contains every monomial of degree d that involves only p variables,
so no m; is divisible by a monomial of degree d in just p variables; that is, the sum of the
largest p exponents of m; is at most d — 1. If we order the variables so that the exponent
of x;j in m; is a non-increasing function of j, then the maximum possible degree of m; is
achieved if the sum of the first p exponents is d — 1, and the rest of the exponents are equal
to the pth exponent. The largest value that the pth exponent could have is | (d — 1)/p].
Thus

d—1

1+degm,‘§d+(rz—p){—J
p
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proving the inequality.
To complete the proof, we give examples of ideals that achieve the bounds. O

Example 3.2 (1) To see that the bound in (1) is sharp, suppose that the field k has char-
acteristic 0, and set A = S/(x%, ..., x%), so that the socle of A is generated by [T/, xld_l,
which has degree n(d — 1). The element 0 = ), x; is a strong Lefschetz element for A
(see, for instance, [17, Theorem 1.1]); that is, multiplication by a power of o induces an
isomorphism A, — A (_1)—, for every e. Set

1= (xii, .. .,xf) . g (n=2)(d-1)

Since A is Gorenstein, so is S/I, and the socle of S/ isin degree n(d —1) — (n—2)(d — 1) =
2d — 2, so regl = 2d — 2. Since multiplication by o "=2@=1) induces an isomorphism
from A, _; to Ag,—1)4—1), we see that ] C m?. Let F be the minimal S-free resolution of /.
It follows that the jth term F; of I is generated in degrees > d +j — 1, and since the S-free
resolution of S/I is symmetric this must be an equality for j < n. Thus I satisfies N ,_;.

(2) To see that the bound in (2) is sharp, letg = [(d—1)/p] and writed —1 = gp+r, with
r < p.Setm = (x1 - - - %,)?u, where u is any monomial of degree , so that degm = gn+r.
Let a; be the exponent of x; in m. Reorder the variables if necessary so thata; > --- > ay;
note that @, = --- = a, sincer < p.

Set] = (x‘le, oo x Ty and note that J : m = J + (m). Finally, let I = m? N /. Since
a; < d for all j, the ideal I is generated by the monomials of degree d not dividing m, and
I:m=1+ (m).

By Proposition 0.1 the ideal I satisfies N ,. We have

regl =1+ degm
=l4a1+---+ay

d—1
=ltart ot implg=d =14 0= pl= =),
as required.

4 Almost linear resolutions: the condition N ,,_4

In this section we give a characterization—in some sense a parametrization—of primary
monomial ideals satisfying N;,_1, that is, with almost linear resolution. We will state the
condition in terms of three definitions:

Definition 4.1 We define the s-shadow of a set of monomials 1, . . ., m, to be the set of
all monomials of degree s that divide some ;.

We say that monomials 1, m' are s-separated if deg gcd(m, m') < s, or equivalently if
their s-shadows do not intersect.

We say that a monomial m is s-saturated if m is divisible by every monomial of degree
< degm — s, or equivalently, if the exponent of each variable in m is at least deg m — s.

Theorem 4.2 Suppose that I C k[xy, . .., x,] is an m-primary monomial ideal generated
in degree d, and let N be the set of monomials of degree d that are not in I.

The ideal I satisfies Ny, _1 if and only if N is the shadow of a set {my, . .., m,} of (d — 1)-
saturated monomials that are pairwise (d — 1)-separated. In this case my, ..., m, are
generators of the socle of S /1, and thus reg I = 1 + max; deg m;.
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Example 4.3 When n = 3 the condition N,,_; = N, is the condition that the ideal I is
linearly presented. The set of monomials of a given degree naturally forms a triangle with
the pure powers at the vertices, and the conditions of the Theorem are easy to visualize. For
example, taking d = 7, the red sets N in the following pictures all satisfy the conditions,
so the monomials of degree 7 corresponding to the black dots generate ideals with linear

presentation:

In terms of such pictures, the fact that N is a shadow, plus the saturation condition,
means that N is the union of solid upside-down triangles of size 1 or more that do not
touch the boundary, while the separation condition means that the upside-down triangles
do not touch one another.

Proof of Theorem 4.2 Set S = k[x1,...,%x,], and m = (x1,...,%,) C S. Given an m-
primary ideal I generated by monomials of degree d, we consider the kernel Y of
the surjection S/I — S/md. Set w = Extg(S/md, S(—n)) = Homk(S/md, k) and
oy = Ext¢(S/L S(—n)) = Homy(S/L k). Dual to

0—Y — S/ —Sm?—0
there is a short exact sequence
00— w—>w—X—0

with X = Ext¢(Y; S(—n)) = Homy(Y; k). We may thus form a (non-minimal) free res-
olution H of w; by the “horse-shoe” construction: letting F and G be the minimal free
resolutions of X and w, respectively, the resolution H has the form

(dp 0) (dp 0)
Fo® Go <— o1 de FeG <« «—F 108G «<— ¢i da FEoG «— -
where dr and dg are the differentials of F and G, and ¢; is a map defined inductively:

Because Fj is free there is a map € : Fp — oy lifting the augmentation map Fy — X along
the surjection w; — X; we take ¢ to be a map lifting € along the composite

Gy —> w — wy.

Fori > 1welet ¢; be the map lifting the composite ¢;_1df; along dg,;—1. This construction
is summed up in the commutativity of the diagram:
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dg dgy
w Go G Gy
J o )
(*) or N .
J/ S N \E N . A N .
X = Fy K F
dra dr

Lemma 4.4 With notation as above, I satisfies Ny, if and only if ¢y—py1 is a split
monomorphism, in which case ¢g is a split monomorphism forallq > n —p + 1.

Proof of Lemma 4.4 Because m? satisfies N;,,,  is generated in degree —d 4 1 and the
resolution of w is linear except for the last step. Thus G; is generated in degree —d + 1+
fori=0..

On the other hand, since Y = m?/I is generated in degree d, the socle of X is generated

on—1.

in degree —d, and thus F,, = S(d — n)Nl, where |N| is the number of monomials of degree
d that are not in I. Since the regularity of X is —d, the generators of F; have degrees
< —d + i; that is, F; has the form

F=@Psd—i+ey)
j

with e;; > 0.

Because I is minimal and the dual of IF is also acyclic, each e;; must be less than or equal
to some e;; 1. Thus if, for a given ip, all the ¢;; are 0, then e;; = 0 for all i > i and all ;.

Now suppose that ¢;, is a split monomorphism so that, in particular, e;; = 0 for i > i.
The map ¢;, takes ker dr;, monomorphically into im dg,,. Since I is a minimal resolution,
S0 ¢;,+1 must be a monomorphism. Because all the e;, 1 1 ; are zero, the free module F;, 1 is
generated in the same degree as G;, so ¢;,+1 is also a split monomorphism, and repeating
the argument we see that ¢; is a split monomorphism for all i > iy. Thus the condition
that ¢,,_py+1 is a split monomorphism is equivalent to the condition that ¢,,_,1 is a split
monomorphism for all p < py.

The minimal free resolution of S/I is obtained from Homg(H, S(x)) by minimizing.
Since H; = G; @ F; and the generators of F; have degree strictly greater than those of G;,
we see that [ satisfies N, for some p < nifand onlyife;; = Oforalli > n—p+1and ¢;
is a split monomorphism for all i > n — p + 1 so that each summand F; in the resolution
H cancels with a direct summand of G;_; for i > n — p + 1. By the argument above, this
is equivalent to the condition that ¢, 1 is itself a split monomorphism.

To complete the proof of the theorem we must show that ¢; is a split monomorphism
if and only if N is the d-shadow of a set of monomials whose elements are (d — 1)-
saturated and pairwise (d — 1)-separated. First, suppose that I ¢ m? satisfies Nz,,_; and
let m;, ..., m, be a minimal set of monomials generating the socle of S/I, so that X is
generated by the dual monomials 71y, . . ., Fizg.

The socle of S/m? is generated by one monomial of each multi-degree with total degree
d — 1. Thus w is generated by one dual monomial of each possible nonnegative multi-
degree having total degree —d + 1. It follows that for ¢, to be a split monomorphism, it
is necessary that the relations of X contain at most generator of each multi-degree with

total degree —d 4+ 1. But every monomial of # of degree deg m; —d + 1 annihilates 7i7; € X,

Page9of15 35
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so X has relations of multi-degree deg m; — deg n, and this must be nonnegative; that is,
n must divide m1;. Thus m; is (d — 1)-saturated.

Similarly, if m; and m; were not (d — 1)-separated, then a multiple of each would be
equal to the same monomial of degree d — 1, and this would give two relations on X with
the same multi-degree. This proves that m, . . ., my satisty the conditions of the theorem,
and we must show that N is their shadow.

From the separation condition it follows that the module X is the direct sum of the cyclic
submodules X; = S71; generated by the 71;. By Lemma 4.4, the module F; is generated in
degree —d + i for all i > 1, so each X; has linear resolution from the first step. It follows
that X; = §/mdegmi—d+1 (deg m;), and the socle of X; consists of the duals of all monomials
of degree d that divide m;; thus N, which is the union of the duals of the socles of the Xj,
is the d-shadow.

Conversely, suppose that N is the d-shadow of a (d —1)-separated set of (d — 1) saturated
monomials my, ..., my. It follows that m; ¢ I but—since m; is (d — 1)-saturated, any
variable times m1; has a divisor of degree d in I, so the m; generate the part of the socle
of S/I of total degree > d, and the 7#; generate X. Because the m; are (d — 1)-separated,
the submodules X; C X intersect in 0, so X = @®1<;<,X;, and the socle of X; is the dual of
the d-shadow of m;. If M; is the generator of F; corresponding to m;, then the first syzygy
of X; is generated by elements nM; where n ranges over all monomial of total degree
degm; — d + 1. Because m; is (d — 1) saturated, m; is divisible by n, and we claim that ¢;
may be taken to send nM; to the generator N; of Go that maps to m/L7 n € w.Since M; € Gy
maps to #iz; € X, the map € in the diagram (*) may be taken to send nM; to nf/\n € wy,

which is also the image of m;/n € w, as required. O

The following result, together with the observation that Y must have a linear resolution
up to the last step, gives an alternative proof that X is the direct sum of cyclic modules of
the form S/m% for various d;.

Proposition 4.5 If M is an indecomposable graded S-module of finite length whose first
syzygy has linear resolution, then (up to a shift in grading) M = S /m? for some integer d.

Graded local duality implies that the socle of M all lies in a single degree and in the cyclic
case the result follows—this is the usual (well-known) proof. In the cyclic case the result
also follows from the Herzog—Kiihl theorem on pure resolutions [16], as in the argument
below.

Proof Suppose that the generators of M have degrees g1, . . ., g; and that the relations are
all in degree d. We will show that M = @;S(—g;)/m? ¢,

Let P be the minimal presentation matrix of M, with ith row corresponding to a gen-
erator of degree g;. Set s; = ("_1:_(?_'5"')). By Boij-Soderberg theory [13, Theorem 0.2],
the Betti table of M is the sum of the Betti tables of the modules S(—g;)/m?%~%, and, in
particular, P has ) ; s; columns. If the forms of degree d — g; in the ith column of P span
a space of dimension e; < s;, then after suitable column transformations P would have
> ;si — >_; & columns of zeros, so e; = s; for all i. In the case ¢ = 1 the result follows
immediately. (Note that this case does not require the full force of [13, Theorem 0.2], since
when ¢ = 1 the resolution is pure, and its shape is given by the Herzog—Kiihl theorem.)

We will prove by induction on ¢ that any ¢ x ), s; matrix P without columns of zeros,
whose ith row contains forms of degree d — g;, and whose maximal minors generate an
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m-primary ideal, is the direct sum of 1-rowed matrices such as

i fy 0...0 0 ... ... 0

0. Of - fL 0 ...... 0
0...00...0f ...

The case t = 1 is trivial. After a suitable column operation we may assume that the first
51 columns of the first row of P contain a basis for the forms of degree d — g1, and that
all the other entries of the first row are zero. Let P’ be the submatrix of P omitting the
first row and the first s; columns. The ideal of maximal minors of P is the m?=€! times
the ideal of maximal minors of P/, so P’ satisfies the same hypotheses as P. By induction
P’ has the desired form. After further column operations we may assume that the first s
columns of P have zeros in all but the first row, and thus P is equivalent to a direct sum
of 1-rowed matrices. From this it follows that M is a direct sum of cyclic modules, so M
must be cyclic, and we are done. O

5 Examples: fractal ideals and obstructions to shelling

In this section we use our previous results to construct examples of N, m-primary ideals
with interesting behavior. Our first construction is inspired by fractal geometry. It gives
us ideals with relatively few generators that have almost linear resolution. We start with
the case n = 3, where a pattern is easiest to describe.

Proposition 5.1 With n = 3, ford = 1,2 set: I; = m?. Inductively, define:
by = (&7, x5, x5) 11,
L, = x{“[r_l + (x5, %),
The ideal I; has linear presentation for all d.

Proof Interms of diagrams as in Example 4.3, the ideals /; are created by staring from the
simplex of monomials of degree d, and first removing the largest upside-down triangle
of monomials that does not meet the boundary. This leaves three smaller simplices, and
we repeat the pattern within each of them, etc. The result for d = 7 is shown in the first
diagram of Example 4.3. From Theorem 4.2 we see that this produces an ideal satisfying
Ngp-1- O

Remark 5.2 Whend =2"—1,1; = mmB2m4 .m[zrfl].As the reader may show;, this has
precisely 3" minimal generators which is O(d'¢23), By contrast, m? has O(d?) generators.

In this situation, the picture of the generators of I; is exactly the so-called Sierpinski
triangle or gasket. See Figure 1. We note that (generalizations of) Sierpinski triangles have
also appeared in [9] where they were used to compute Frobenius powers of monomial
ideals.

For n > 3 variables, it is harder to give a recursive formula for such sparse ideals with
N, Instead we offer a closed form formula for special values of d:

Proposition 5.3 For any n, each of the following ideals
I = mmZm¥ | 2Ty 1nl2 o g

satisfies N p.
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Fig. 1 Sierpinsky triangle by Beojan Stanislaus, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?
curid=8862246

Proof We do induction on r, and first consider I; = m?~'ml?), Since tp_l(m[z]) = 2p,
mZmP~1 = mP N m?*1 has linear resolution for p — 1 steps by Proposition 0.1.

For the induction step, write I,;; as m¥ —17 and note that J is the ideal I, constructed
inside the polynomial ring §’ = k[x%, ..., x2]. By induction, J has a resolution that is p — 1
step linear in §’, which means that over S, J has a resolution which is quadratic in p — 1
steps. That implies tp — 1(J) = 2p, and hence I, ; = m”~1/ satisfies Ngp, as desired. O

Remark 5.4 Asin5.2,it can be shown that the ideal I, constructed in 5.3 are much sparser

d

than m?, even in the almost linear resolution case, p = n — 1.

Next, we discuss an application to shelling. We begin by defining the algebraic analogue
of shelling for monomial ideals.

Definition 5.5 Let / be a monomial ideal generated in degree d and f is a degree d
monomial. We say that the transition I > ([, f) is a shelling move if  : f is generated by
a subset of variables. We say that an ideal L is shelled over I if it can be obtained from I/
by a sequence of shelling moves.

The next result is the algebraic version of [8, Lemma 3.1].

Proposition 5.6 Let I be a monomial ideal generated in degree d and f be a monomial of
degree d.

(1) If(Lf)is Ny, thenI — (L f) is a shelling move.

(2) IfI satisfies N9, then I — (L f) is a shelling move if and only if (I f) also satisfies
Njo.

(3) If I satisfies Ny, for some p > 2 and I — (L f) is a shelling move, then (I, f) also
satisfies Ny p.

Proof We have a short exact sequence of graded S-modules
0—S/U:f)(—d)— S/I— S/(Lf))— 0.

This exact sequence induces the following long exact sequence in Tor:

oo = Tora(S/(Lf)), k) = Tor$(S/( : f)(—d), k) —
Tor; (S/L k) — Tor;(S/(Lf)), k) — - --

The map Tor$ (S/I k) — Tor$(S/(L f)), k) is injective. Hence the map Torx(S/(L f), k) —
Tor‘lg(S /I f )(—d),s k) is surjective. But since S/(If) has linear first syzygy so
Torg(S/(I,f), k) = kP (—d — 1). Hence Torf(S/(I : f)(—d), k) is generated in degree
—d — 1. Thus (I : f) is generated in degree 1. The proof of (b) and (c) is similar. O
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We can characterize when an N, ideal is shelled over another. For an monomial
ideal generated in degree d we write N (I) for the set of monomials of degree d not in /

Corollary 5.7 If L] are m-primary monomial ideals satisfying Ng,,_1, then ] is shelled
over I if and only if N(I) is a disjoint union of N(J) and a set of singleton shadows M =
{m, ..., mg). If that is the case, the shelling can be obtained by adding elements in M in
any order.

Proof 1If there were a shelling from [ to J then each intermediate ideal would also satisfy
N;,,—1 by 5.6. But by our structure Theorem 4.2, the difference between N(I) and N(J) isa
disjoint unions of d — 1 saturated shadows. But the d — 1-saturated shadow of a monomial
is a simplex in the monomial lattice, so if it is not a singleton, then after removing one
monomial it is no longer a shadow.

On the other hand, if N(J) \ N (J) is a union of singleton shadows, then one can fill them
in one by one to get from / to J in any order, and such collections of moves are shelling as
each intermediate ideal is N, by Theorem 4.2 and 5.6(2). O

This result implies a rigidity of regularity:

Corollary 5.8 Suppose that I is a primary monomial ideal satisfying Ng,_,. If regl >
d+2andI > (Lf) is a shelling move, then reg(l, f) = regl.

Proof The larger simplices in N (/) cannot be changed by a shelling move. ]

Example 5.9 Consider the ideal I = Is = (x*)m? + (5%, 23)mml?! in 5.1. The set N(I)
contains the shadow of x3y?z2, which is the triangle {x3y?z, x3yz?%, x%y?z%}. It follows that

6

m® is not shelled over 1.

From Corollary 5.7 we can deduce a similar result for square-free monomial ideals or,
equivalently, simplicial complexes. If I is generated by monomials of degree d, we let T
that takes x} to x;1%;2 . .. x;r, and let depol : T — S be the map of algebras that takes x;; to
x;. Note that polarization commutes with lcm, and that depol(pol(m)) = m.

Lemma 5.10 If] C T is a square-free monomial idea satisfying Ny, then I := depol(J)
satisfies N as well.

Proof By Proposition 2.2, it suffices to show that given any two minimal generators f =
depol(F), g = depol(G) of I are connected by a path within the support of lem(f, g). Since
] satisfies N9, Proposition 2.2 shows that there is a path of monomials in J of monomials
dividing lem(F, G). Depolarizing these monomials we get a path in support of lem(f, g). O

Corollary 5.11 Let I,] be Ny, square-free monomial ideals in T for some p > 2. If ] is
shelled over I, then depol(J) is shelled over depol([).

Consequently, if I, ] are monomial ideals in S and ] is not shelled over I, then pol(J) is
not shelled over pol(I).

Proof LetJo =1+ ---+ J; =] be a sequence of shelling moves from / to /. By Lemma
5.10, each ideal depol(J;) is N 5. Proposition 5.6 implies that depol(/;) > - - - — depol(Jy)
is a sequence of selling moves, so depol(J) is shelled over depol(I). The second statement
follows from the first and the fact that depol(pol(Z)) = I. O
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is not shelled over J = depol(/), where I is the ideal in Example 5.9.

Taking the Alexander dual, one obtains a normal (equivalently, satisfying Serre’s con-
dition (S7)) simplicial complex A = A(JY) of dimension 11 such that the complete 11-
skeleton of the 17-simplex is not shelled over A.

Of course, if we apply the same process using 5.7 with n > 3 variables one gets simplicial
complexes A satisfying Serre’s condition S,_1 that cannot be extended by shelling to the
complete dim A-skeleton of the simplex on all vertices. That is because the polarization of
Ny, ideals are also Njj ,, and the Alexander dual of N, ideals define simplicial complexes
that satisfy Serre’s condition (Sp), see [18].

6 Questions and discussion

In this final section we collect some questions inspired by the literature and our own
work. Let C be a class of monomial ideals in S. The most prominent examples are C =
{square-free ideals} or C = {primary ideals}. Let N,(C) denote the ideals in C that are
Ngp.

Question 6.1 What can we say about the Betti numbers of ideals in N, ,(C)? For instance,
it is intuitively clear that such ideals must not have too few generators. Can we prove good
bounds? What about optimal examples?

The only result we are aware of in this direction is [12, Proposition 11.1], where it was
proved that any graded m-primary ideal with almost linear resolution must have at least
("+2_2) + (" Zf;g) generators, with equality if and only if S/ is Gorenstein. See [3] for a
recent survey of the literature on lower bounds for Betti numbers of ideals in general and
monomial ideals in particular.

Equally sensible is the expectation that ideals in N;;,(C) must have low Castelnuovo-

Mumford regularity.

Question 6.2 Can we establish sharp upper bounds for reg/, I € N, ,(C)? What about
optimal examples?

In this direction, there is a O(log(#)) bound on regularity of Ny 2 monomial ideals (using
[5] for the square-free case and polarization). Interestingly, we only know monomial Ny o
ideals with regularity O(log(log()), using constructions from the study of hyperbolic
Coxeter groups ( [4]). For d > 2, it has been conjectured that square-free N, ideals have
regularity at most n — L#J — LZ—:&J ([6,7]). Only the case d = 3 has been settled ( [7]).

One can sometimes show that an ideal is in C is Ny, by checking the restrictions to
all subsets of variables of size r, for some relatively small value of 7, as in Corollary 1.3
and Theorem 2.4. If that is the case we say that Nj,,(C) is r-certifiable. For instance, if C
is the class of all monomial ideals, N p(C) is dp-certifiable. In the quadratic case, much
better bound is known, indeed, N3 ,(C) is (p + 2)-certifiable. Note that these bounds do

not depend on n.

Question 6.3 Given d, p, what is the smallest value of r such that N;; ,(C) is r-certifiable?
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