
Real-Time Downhole Geosteering Data
Processing Using Deep Neural Networks

On FPGA
Qiyu Wan

ECOMS Lab, ECE Department
University of Houston

Houston, USA
qwan@uh.edu

Yuchen Jin
ECE Department

University of Houston
Houston, USA
yjin4@uh.edu

Xuqing Wu
College of Technology
University of Houston

Houston, USA
xwu8@central.uh.edu

Jiefu Chen
ECE department

University of Houston
Houston, USA

jchen82@central.uh.edu

Xin Fu
ECOMS Lab, ECE Department

University of Houston
Houston, USA

xfu8@central.uh.edu

Abstract—The success of machine learning has
spread the deployment of Deep neural Networks
(DNNs) in numerous industrial applications. As an es-
sential technique in today’s oilfield industry, geosteer-
ing requires performing DNN inference on the hard-
ware devices that operates under the severe down-
hole environments. However, it can produce massive
power dissipation and cause long delays to execute the
computation-intensive DNN inference on the current
hardware platforms, e.g., CPU and GPU. In this
paper, we propose an FPGA-based hardware design to
efficiently conduct the DNN inference for geosteering
tasks in downhole environments. At first, a compre-
hensive analysis is presented to choose the optimal
computation mapping method for the target DNN
model. A detailed description of the customized hard-
ware implementation is then proposed to accomplish
a complete DNN inference on the FPGA board. The
experimental results shows that the proposed design
achieves 7×(1.4×) improvement on performance and
82× (1.3×) reduction on power consumption com-
pared with CPU(GPU).

Index Terms—geosteering, deep neural networks,
FPGA

I. INTRODUCTION

Geosteering is an essential drilling service of
adjusting the well trajectory on the fly to reach the
geological targets or to keep the wellbore within de-
sired formation. An efficient and accurate inversion

Fig. 1. Schematic of current oilfield geosteering service: well
logging data are taken downhole and sent to surface, underground
formation is inferred based on processing of well logging data,
and then the drilling commands are made and sent back to
downhole drilling tool to guide the borehole trajectory.

algorithm is the brain that enables geosteering by
using logging-while-drilling (LWD) sensing data to
reconstruct the formation structure near the bore-
hole. Because solving geosteering inverse problems
is computationally expensive, and due to the lim-
itation of downhole computing resources, existing

2021 14th IEEE International Conference on Industry Applications We4Track C.5

978-1-6654-4118-6/21/$31.00 ©2021 IEEE 1161 ISBN 978-1-6654-4118-6

20
21

 1
4t

h
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
du

st
ry

 A
pp

lic
at

io
ns

 (I
N

D
U

SC
O

N
) |

 9
78

-1
-6

65
4-

41
18

-6
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IN

D
U

SC
O

N
51

75
6.

20
21

.9
52

94
74

Authorized licensed use limited to: University of Houston. Downloaded on June 15,2022 at 03:29:29 UTC from IEEE Xplore. Restrictions apply.

geosteering inversion programs are performed on the
surface using the borehole sensed data transmitted
from downhole to surface (see Fig. 1). Since the
maximum data rate for mud pulse telemetry, a
dominant transmission method used by the industry,
is at 20 bits per second, data transmission from the
downhole to the surface incurs serious delays. This
bottleneck often leads to wrong drilling decision-
making attributed to compromised formation eval-
uation because only a small portion of logging
data can be sent to the surface to facilitate the
geosteering inversion computation. In this paper we
propose a Field Programmable Gate Array (FPGA)
implemented deep neural network (DNN) to en-
able real-time downhole processing of all available
geosteering data without any delay.

To accomplish the geosteering task, conventional
optimization-based subsurface inversion process in-
curs large computation delay and is sensitive to
initial values [1]. As machine learning has emerged
as a panacea for complex optimization problems,
recent efforts [2] has shown that by incorporating
a DNN within the inversion model, the whole in-
verse process could be accomplished much faster
by performing a DNN inference. However, this
solution poses great challenges to the real-world im-
plementation since DNN inference can still be time-
consuming and energy-inefficient when executed on
the traditional hardware platforms, i.e., CPU and
GPU. [3], which could cause severe hazards to the
downhole devices.

To tackle with these problems, we leverage the
FPGA hardware platform to conduct the DNN in-
ference efficiently. Compared with the CPU and
GPU platforms, FPGA embraces important advan-
tages when executing the DNNs in the extreme
downhole environments. Firstly, an FPGA board can
be designed to be a dedicated DNN accelerator
that targets on DNN inference only, thus it will
be much more energy-efficient and time-saving if
running DNN inference on FPGA compared with
general purpose processors like CPU/GPU. Sec-
ondly, modern FPGA boards can provide advanced
communication interfaces such as SFC/SFC+ cages
that can connect with fiber-optic cables, which can
speed up the data transmission between the down-
hole devices and the drilling station. Lastly, the
lifetime of the deployed hardware device should

be considered in the high-temperature and high-
vibration environment. For example, The maximum
allowed operating temperature of FPGA boards can
reach 150 ◦C for downhole applications while the
thermal of NVIDIA TX2 GPU is limited below 80
◦C. Moreover, among the CPU, GPU and FPGA
chips that have the similar computing capability, the
unit cost of an FPGA board is usually the smallest.
Therefore, FPGA is the best hardware platform to
conduct the DNN-based subsurface inversion task in
the downhole environments.

The aforementioned benefits of FPGA motivates
us to implement the target DNN inference on the
real FPGA board. Prior studies [4]–[9] proposed
different optimizations for DNN inference on FP-
GAs. However, none of them is perfectly suitable
to our target DNN for the subsurface inversion task.
Firstly, these works are oblivious of the special
layer structures in our target DNN, which can lead
to inefficient computations. Secondly, the hardware
implementation of instance normalization layer (an
important layer in the target DNN) has not been
proposed yet. In this paper, we address this first
design challenge by adopting an efficient compu-
tation mapping strategy to execute the target DNN
inference through rationally analyzing the exclusive
structures of the target network. Furthermore, we
propose a light-weighted hardware implementation
that realizes the full function of the instance nor-
malization layer, bringing only negligible overhead
to the overall system.

The rest of the paper is organized as follows.
Section II introduces the detailed information of
the target DNN implemented on the FPGA board
and reviews the basic functions of different DNN
layers. In Section III, two methods are proposed to
implement the target DNN inference efficiently. In
Section IV, the effectiveness of the proposed design
is demonstrated by the experimental results.

II. DNN FOR GEOSTEERING

The DNN for the geosteering task (denoted as
Geo-DNN) is a convolutional neural network which
is developed by [2]. The network contains 9 con-
volutional layers, 5 pooling layers and 1 fully-
connected layer. Apart from the aforementioned
three types of layers in common convolutional neu-
ral networks, the network has one instance normal-

1162

Authorized licensed use limited to: University of Houston. Downloaded on June 15,2022 at 03:29:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Geo-DNN Structure.

Fig. 3. Computations of a convolutional layer. The 3-D outputs
are calculated by convolving the 3-D inputs and 4-D weights.

ization layer concatenated after each convolutional
layer and a resistivity/boundary layer attached at
the end of the fully-connected layer. The overall
structure of the target DNN is depicted in Fig. 2. In
this section, we review the functionality of different
types of layers involved in the target network.
Convolutional layer

A convolutional layer aims to capture the fea-
tures/representations of the input data. [10] Fig. 3
depicts three main components of a convolutional
layer. The inputs of a convolutional layer is known
as input feature maps (the green cube shown in the
figure) that have the size of W (width), H (height)
and D (depth). The layer also contains a 4-D weight
matrix that is divided into a group of 3-D filters
(grey cubes). Each filter is composed of D kernels
while each kernel has the size of R×S. Each filter
performs 3-D convolution with the input feature map
individually and generate one output feature map.
Hence, the outputs of the convolutional layer are
totally C output feature maps where C is the number
of filters.
Pooling layer A pooling layer usually appears
between two consecutive convolutional layers. It
reduces the size of input feature maps, i.e., width
and height, and extract more important information
for the next layer. The pooling function can be max
or average. In our target Geo-DNN, all the pooling
layers are average pooling layers. The averaging

function averages all the values of a certain sliding
window and generate one output value. In Geo-
DNN, the size of sliding window is 1 × 2 in all
pooling layers.
Fully-connected layer A fully-connected layer is
commonly attached at the tail of the DNN and used
to generate the final outputs. It can be interpreted as
a special case of a convolutional layer by flattening
the input feature maps and weights into a 2-D
matrix.
Instance normalization layer Normalization tech-
niques are widely used in many popular networks to
improve the training accuracy. [11], [12]. Among the
branches of emerging normalization techniques, the
Geo-DNN adopts the instance normalization tech-
nique in all normalization layers. The unique feature
of instance normalization is that it normalizes across
each channel in each training example. Given the
neuron index j, the channel index c and the index
of training example i, the detailed computations can
be described in the following equations:

x̄ic =
1

L

L∑
j=1

xijc (1)

where xijc represents the j-th neuron in the c-
th channel of the i-th training example and L is
the number of neurons in each channel. The above
equation calculates the mean value of each channel
and then the standard deviation (std) can be obtained
by:

σic =

√√√√ 1

L

L∑
j=1

(xijc − x̄c)2 (2)

The normalized values are calculated as:

yijc = γc

(
xijc − x̄ic
σic + ε

)
+ βc (3)

where γc and βc are the parameters that vary across
different channels and ε is a constant value. Finally,
the normalized values are fed into a PReLU function
and the outputs y′ can be expressed as:

y
′

ijc =

{
yijc, yijc >= 0

αcyijc, yijc < 0
(4)

where αc are also the parameters that vary across
different channels.

1163

Authorized licensed use limited to: University of Houston. Downloaded on June 15,2022 at 03:29:29 UTC from IEEE Xplore. Restrictions apply.

Resistivity/boundary layer The resistiv-
ity/boundary function takes the output of the
fully-connected layer as input and performs non-
linear operations (e.g. Sigmoid function) on it.
Given constant values a1, b1, a2, b2, input data x,
the function of this layer can be described as:

y = a2 + b2 · Sigmoid(a1 + b1x) (5)

III. METHODOLOGY

To improve both performance and energy-
efficiency of the Geo-DNN inference task in the
downhole environment, we propose two major de-
sign methodologies that embrace the advantages
brought by flexible FPGA platform. Firstly, in Sec-
tion III-A, for the convolutional layers, we discuss
the existing computation mapping strategies and
reveal the most efficient one for the target Geo-DNN
by rationally considering the structure of each layer.
Secondly, in section III-B, we give a comprehensive
description of our complete implementation for the
whole inference process. Especially for the instance
normalization layer, a fully-customized hardware
design is proposed to efficiently support the complex
computation flow.

A. Layer-wise Analysis of Computation Mapping

Due to the computation independence between
different output neurons, the operations in a con-
volutional layer can be processed in parallel. Prior
DNN accelerators leveraged this opportunity and
proposed various parallelism schemes to accelerate
the DNN inference [7], [13]–[15]. The key dif-
ference between these parallelism schemes is that
they map the data (e.g., neurons/weights) to the
computation unit (also known as processing element
(PE)) along the different dimensions. Fig. 4 illus-
trates three types of popular computation mapping
methods in existing DNN accelerators. In all these
mapping methods, either neurons or weights are
firstly mapped to the PEs and then being processed
simultaneously.

W&H-mapping W&H-mapping strategy [14] is
conducted along the width and height dimension.
In this strategy, the output neurons, which are spa-
tially distributed on an output feature map, e.g.
N1, N2, N3, N4, are mapped to PEs and being cal-
culated in parallel.

Fig. 4. Illustration of three types of DNN computation map-
ping strategies: W&H-mapping that maps along red arrows, C-
mapping that maps along blue arrow and R&S mapping that maps
along green arrows.

C-mapping C-mapping strategy [13], [15] is
performed along the channel (include both input
channel (referred as depth in Fig.3) and output chan-
nel) dimension. In this strategy, the output neurons,
which locates at the same position in the feature map
but from different channels, e.g. N5, N6, N7, N8, are
mapped to PEs and being calculated in parallel.

R&S-mapping R&S-mapping strategy [7] targets
on the parallel computation of weights. It is con-
ducted along the width and height dimension of
each kernel. In this strategy, the weights that are
spatially distributed on a kernel, e.g. w1, w2, w3, w4,
are mapped to PEs and multiplies with their corre-
sponding inputs in parallel.

We observed that, in some cases no neu-
rons/weights will be allocated to some of the PEs
due to the mismatch between the size of the PE array
and the size of neurons/weights. In some cases the
PEs could become idle for a long time and waste
power and resources. For example, assume the size
of the PE array is 2 × 2 and an output feature
map has the width of 1 and the height of 4, the
W&H mapping can only map two neurons to the
PEs at the same time. Therefore, arbitrarily choosing
a computation mapping strategy for our network
may result in lower PE utilization, which could
further lead to degradation in terms of performance
and energy-efficiency. This motivates us to find the
best one among these three mapping methods. To
determine the most suitable computation mapping
strategy for our network, we rationally calculate the
PE utilization level by analyzing the structure of

1164

Authorized licensed use limited to: University of Houston. Downloaded on June 15,2022 at 03:29:29 UTC from IEEE Xplore. Restrictions apply.

each layer in our target network. In this case, we
assume the size of the PE array to be 8 × 8, which
is a common configuration in the existing DNN
accelerators.

TABLE I
PE UTILIZATION OF DIFFERENT COMPUTATION MAPPING FOR

GEO-DNN.

Layer Output Kernel PE utilization
L H W C R S W&H C R&S

conv1-1 92 1 128 3 1 12.5% 12.5 % 4.7%
conv2-1 46 1 128 3 1 12.5% 100 % 4.7%
conv3-1 23 1 128 3 1 12.5% 100 % 4.7%
conv4-1 12 1 256 3 1 12.5% 100 % 4.7%
conv5-1 6 1 512 3 1 9.4% 100 % 4.7%

fc 1 1 384 384 1 1.6% 100 % 12.5%

Table I shows the PE utilization of three compu-
tation mapping strategies when executing different
layers.
• The PE utilization of the W&H-mapping is

related to the width (W) and height (H) of
the output feature maps. Since the width of
the output feature maps is always 1, only
1/8 (12.5%) of PEs can be utilized in W&H-
mapping and even fewer PEs are utilized when
executing the last two layers.

• The PE utilization of the C-mapping depends
on the number of channels (C) of input/output
feature maps. Since C is always larger than
the PE size except for the first layer, the PE
utilization can reach 100% for most layers.

• The PE utilization of the R&S-mapping relates
to the size of the kernels (R and S). As the
kernel size of Geo-DNN is always 3 × 1 for
all the convolutional layers, only 3/64 (4.7%)
of PEs can be utilized in R&S-mapping. This
number slightly increases when it is executing
the fully-connected layer.

According to the above analysis, we conclude that
C-mapping achieves the best PE utilization level for
our target network, which can potentially boost the
performance and improve the energy-efficiency. We
thus choose C-mapping strategy as the basic com-
putation flow to implement our hardware design.

B. Hardware Implementation
1) Overall Architecture: As shown in Fig. 5,

the overall system is comprised of a global buffer,
a PE array, a resistivity/boundary module, a in-
stance normalization module, a non-linear unit and a

Fig. 5. Architecture overview.

controller. The resistivity/boundary module and the
instance normalization module are customized hard-
ware design to support the special functions/layers,
i.e., resistivity/boundary operations and instance
normalization layers in our target network.

Structure of the PE array The function of a PE
array is to efficiently perform the convolution oper-
ations and matrix multiplications for convolutional
layers and fully-connected layers, respectively. This
function is achieved as the PE array is capable
of conducting large amount of multiply–accumulate
operations (MACs) in parallel. The number of PEs
can be customized based on the requirement of
computation delay. For simplicity we introduce our
design assuming that 8 PEs a re deployed in the PE
array. For each PE, it is responsible for producing
the output neurons located at one output channel.
There are three parts resides in a PE: a multiplier
array, a adder tree and a accumulator. The multiplier
array has 4 identical 32-bit floating point multipliers
working in parallel. At each cycle, each of the four
multipliers receives an input activation and a weight
from a certain input channel. The generated products
are collected by the adder tree and summed up
as a partial sum. The accumulator accumulates the
partial sums until it gets the final value of the output
neuron. Both the adder tree and the accumulator
use the same 32-bit floating point arithmetic as the
multipliers.

Global buffer The global buffer is split into three
sub-buffer: weight buffer, input buffer and output
buffer. The width of the weight sub-buffers is fixed
as # of multipliers per pe×# of PEs× 32-
bits so that it can provide sufficient data to all
the PEs at each cycle. The depths of the weight
sub-buffers are configured to accommodate all the
weights of the conv5-2 layer, which contains the
largest volume of weights. The weights of next
layer are fetched from the DRAM when the exe-

1165

Authorized licensed use limited to: University of Houston. Downloaded on June 15,2022 at 03:29:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. High-level Architecture design for instance normalization
layer.

cution of the current layer is finished. To reduce
the large power consumption caused by frequent
off-chip memory (DRAM) access, we allocate a
large amount of BRAM resources as input/output
buffer to store the intermediate feature maps so that
all the intermediate data accesses are kept on-chip.
Since the input activations are shared across all 8
PEs, the width of input/output buffer is set to be
of multipliers per pe× 32-bits. The depth is
set to be large enough so that it can hold the largest
intermediate feature map in our target network.
When finishing executing one layer, the input buffer
and output buffer swap their role with each other to
avoid unnecessary data movement.

Non-linear unit The non-linear unit operates to
implement the average pooling layers and the ReLU
activation function. It consists of 8 pooling unit and
1 activation unit. Each pooling unit is composed of
an accumulator and a multiplier and the activation
unit is implemented using simple logic gate.

Controller The controller is implemented as a
Finite State Machine (FSM) that has three stages:
convolution, pooling and normalization. The main
function of the controller is to organize the entire
execution flow of the DNN inference. Specifically,
it sends control signals (e.g., reset, enable...) to the
PEs and dynamically generate the correct memory
address for BRAM read/write.

2) Design of Instance Normalization Module:
Fig. 6 illustrates the high-level design of the instance
normalization module. The workflow of this module
can be divided into three phases. In the first phase,
the mean unit, which consists of 8 accumulators
and 8 multipliers, receives the a 256-bit output
data block from the PE array. The data block is
split into 8 32-bit output values and allocated to
different accumulators and multipliers. The mean

unit accumulates and averages the output data and
calculate the mean values of 8 output channels,
which implements the function of Equation 1. The
mean values are then temporarily stored in the mean
buffer with 256 bit per entry. Once the mean values
of all output channels are obtained, the module
goes into second phase and starts calculating the
subtract values of each neuron. The subtract values,
on one path, are fed into std unit, i.e., an array
of square modules, accumulators, multipliers and
square root modules, to obtain the standard deviation
(std), which corresponds to Equation 2. On another
path, these subtract values are temporarily stored
in the subtract buffer for later reuse. In the final
phase, the subtract values and standard deviations
are fetched from their corresponding buffers and fed
into an assembler. The assembler comprises of basic
logic gates, multipliers and adders to perform the
operations in Equation 3 and Equation 4.

3) Design of Resistivity/Boundary Module: The
unique operations required by resistivity/boundary
function is the sigmoid function that demands an
exponential operation on the input data x:

S(x) =
ex

ex + 1
(6)

To achieve the above function, we adopt the existing
Xilinx IP core [16] to implement the exponential
function and use the a few more multipliers and
adders to accomplish the whole function.

IV. EXPERIMENTAL RESULTS

A. Baselines and design extension

To demonstrate the effectiveness of the proposed
methodology, we compare our FPGA design with
two baseline implementation on CPU and GPU.
We choose an Intel Core i5-7400 processor for the
CPU implementation and a NVIDIA Jetson TX2
board, a state-of-the-art machine learning inference
engine for the GPU implementation. The principle
of such comparison is the same as that in the existing
NN acceleration studies, such as [4], [7], [8]. To
demonstrate the flexibility and scalability of our
methodology, we further extend the design to four
classes which have different hardware configura-
tions, i.e., different number of PEs (from 8 to 64).
The performance and energy consumption of all the
implementations are compared in subsection IV-D.

1166

Authorized licensed use limited to: University of Houston. Downloaded on June 15,2022 at 03:29:29 UTC from IEEE Xplore. Restrictions apply.

B. Network training and datasets

The Geo-DNN is trained offline and reaches con-
vergence in 5 epochs. The training and validation
datasets contain 2 million sample data in total and
we use 10% of the total data for validation. The
input features of the Geo-DNN are the sample data
measured by the working station. Each input is a
1 × 92 vector. The output of the Geo-DNN is the
result of the inverse technique, which is a simple
1 × 5 vector. The batch size is set to be 64 during
training.

C. Experiment setup

The overall system design is implemented on
the Xilinx Virtex7 FPGA VC709 Evaluation Board.
All the hardware modules are implemented with
Verilog language and we use Vivado 2018.3 SDK
to simulate and synthesize the hardware design.
The basic function of all the hardware modules
are validated by comparing the outputs of Geo-
DNN between our hardware implementation and the
software implementation. The software version of
Geo-DNN is constructed in TensorFlow framework.
The hardware system operates constantly at a clock
frequency of 100MHz. The performance and energy
consumption of our hardware design are measured
during processing one input data with the size of
92 × 1. The execution time is obtained from the
simulation results and the energy consumption is
calculated by Xilinx Power Estimator. [17]

D. Results

Hardware utilization For the design that the PE
array has the size of 64, we report the hardware
resource utilization in Table II. As can be seen, our
implementation well exploits the hardware resources
on board, especially for BRAM since all the data are
stored in the on-chip memory to reduce the DRAM
access energy.

TABLE II
HARDWARE RESOURCE UTILIZATION.

Resource type Number of usage Total resource on board
Look-up table 271410 433000

Flip-flop 467682 866000
BRAM 1280 1470

Performance and energy consumption As shown
in Table III, our proposed FPGA implementation

Fig. 7. Performance and Energy consumption comparison of four
types of proposed implementations.

with 64 PEs achieves significant performance im-
provement (7×) and energy reduction (82×) com-
pared with the CPU implementation. The proposed
design also outperforms the GPU implementation by
1.4× and 1.3× in terms of performance and energy,
respectively. Fig. 7 further exhibits the performance
trend when we scale up the size of PE array. It can
be observed that the performance is improved by
7.7× if the number of PEs increases from 8 to 64.
It also shows that the power dissipation for Geo-
DNN inference decreases as more PEs are added on
board. The main reason is that the reduced latency
constantly has a larger impact on energy consump-
tion than the increased on-chip power introduced by
more PEs. However, the increased on-chip power
may introduce higher risks of cooling system haz-
ards. Such problem can be alleviated by adjusting
the number of PEs and re-synthesizing according
to the dynamic downhole environment, which is
enabled by the reconfigurable FPGA platform.

TABLE III
PERFORMANCE AND POWER COMPARISON ON GEO-DNN.

Hardware platform Latency(ms) Energy(J)
Intel Core i5-7400 8.42 0.54730

NVIDIA Jetson TX2 1.64 0.00849
Proposed FPGA implementation 1.20 0.00664

Overhead analysis The normalization module con-
tains several on-chip buffers to store the inter-
mediate results, e.g., subtract buffer, to avoid re-
computations. Such design reduces the energy con-
sumption of computations but increases the resource
usage of on-chip BRAMs. Fig. 8 shows that the
resource overhead brought by extra on-chip buffers
in the normalization layer is limited under 8%.

1167

Authorized licensed use limited to: University of Houston. Downloaded on June 15,2022 at 03:29:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. The breakdown of the intermediate data buffers. The
numbers represent the memory size (Byte) of different types of
buffers.

V. CONCLUSION

This paper proposes an FPGA-based hardware
design to accelerate the Geo-DNN inference and
improve the energy-efficiency of the hardware de-
vices that operating in the downhole environment. A
layer-wise analysis of computation mapping strategy
is presented to pick the best mapping scheme for
the target network. Moreover, a complete hardware
implementation is illustrated and especially a fully
customized module design for the instance nor-
malization layer is proposed. The proposed design
achieves 7× (1.4×) improvement on performance
and 82× (1.3×) reduction on power consumption
compared with CPU(GPU).

REFERENCES

[1] W. Lei, F. Yiren, Y. Chao, W. Zhenguan, D. Shaogui, and
Z. Weina, “Selection criteria and feasibility of the inversion
model for azimuthal electromagnetic logging while drilling
(lwd),” Petroleum Exploration and Development, vol. 45,
no. 5, pp. 974–982, 2018.

[2] Y. Jin, X. Wu, J. Chen, and Y. Huang, “A physics-driven
deep learning network for subsurface inversion,” in 2019
United States National Committee of URSI National Radio
Science Meeting (USNC-URSI NRSM). IEEE, 2019, pp.
1–2.

[3] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey
of fpga-based neural network accelerator,” arXiv preprint
arXiv:1712.08934, 2017.

[4] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and
J. Cong, “Optimizing fpga-based accelerator design for
deep convolutional neural networks,” in Proceedings of
the 2015 ACM/SIGDA international symposium on field-
programmable gate arrays, 2015, pp. 161–170.

[5] Y. Zhou and J. Jiang, “An fpga-based accelerator imple-
mentation for deep convolutional neural networks,” in 2015
4th International Conference on Computer Science and

Network Technology (ICCSNT), vol. 1. IEEE, 2015, pp.
829–832.

[6] G. Feng, Z. Hu, S. Chen, and F. Wu, “Energy-efficient and
high-throughput fpga-based accelerator for convolutional
neural networks,” in 2016 13th IEEE International Con-
ference on Solid-State and Integrated Circuit Technology
(ICSICT). IEEE, 2016, pp. 624–626.

[7] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “Cnp: An
fpga-based processor for convolutional networks,” in 2009
International Conference on Field Programmable Logic and
Applications. IEEE, 2009, pp. 32–37.

[8] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss,
and E. S. Chung, “Accelerating deep convolutional neural
networks using specialized hardware,” Microsoft Research
Whitepaper, vol. 2, no. 11, pp. 1–4, 2015.

[9] M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal,
“Memory-centric accelerator design for convolutional neu-
ral networks,” in 2013 IEEE 31st International Conference
on Computer Design (ICCD). IEEE, 2013, pp. 13–19.

[10] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understand-
ing of a convolutional neural network,” in 2017 Interna-
tional Conference on Engineering and Technology (ICET).
Ieee, 2017, pp. 1–6.

[11] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
in International conference on machine learning. PMLR,
2015, pp. 448–456.

[12] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance nor-
malization: The missing ingredient for fast stylization,”
arXiv preprint arXiv:1607.08022, 2016.

[13] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen,
and O. Temam, “Diannao: A small-footprint high-
throughput accelerator for ubiquitous machine-learning,”
ACM SIGARCH Computer Architecture News, vol. 42,
no. 1, pp. 269–284, 2014.

[14] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo,
X. Feng, Y. Chen, and O. Temam, “Shidiannao: Shifting
vision processing closer to the sensor,” in Proceedings of
the 42nd Annual International Symposium on Computer
Architecture, 2015, pp. 92–104.

[15] Q. Wan and X. Fu, “Fast-bcnn: Massive neuron skipping
in bayesian convolutional neural networks,” in 2020 53rd
Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE, 2020, pp. 229–240.

[16] “Xilinx IP core,” https://www.xilinx.com/products/intellectual-
property/floating pt.html, [Online; accessed 19-Jan-2021].

[17] “Xilinx Power Estimator,”
https://www.xilinx.com/products/technology
/power/xpe.html, [Online; accessed 19-Jan-2021].

1168

Authorized licensed use limited to: University of Houston. Downloaded on June 15,2022 at 03:29:29 UTC from IEEE Xplore. Restrictions apply.

		2021-09-06T16:20:34-0400
	Preflight Ticket Signature

