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Abstract

Dickinsonia is an iconic fossil of the Ediacara biota (~575–539 Ma). It was previously known from siliciclastic successions of the White
Sea assemblage in Australia, Baltica, and possibly India. Here we describe Dickinsonia sp. from the terminal Ediacaran Shibantan Mem-
ber limestone (ca. 551–543 Ma) of the Dengying Formation in the Yangtze Gorges area of South China. The stratigraphic distribution of
Ediacara-type fossils in the Shibantan Member indicates that this biota uniquely preserves both the White Sea and Nama assemblages in
stratigraphic succession. The new data presented here suggests that Dickinsonia had wider paleogeographic and paleoenvironmental
distributions, implying its strong dispersal capability and environmental tolerance.
� 2021 Elsevier B.V. and Nanjing Institute of Geology and Palaeontology, CAS. All rights reserved.
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1. Introduction

Macrofossils of the Ediacara biota (~575–539 Ma;
Linnemann et al., 2019; Matthews et al., in press) domi-
nated marine benthic communities in the middle to late
Ediacaran Period. Most taxa of this diverse, soft-bodied
biota have long been considered a phylogenetic conun-
drum, but some of them are likely metazoans (Fedonkin
and Waggoner, 1997; Bobrovskiy et al., 2018; Chen
et al., 2019; Evans et al., 2020). Although paleoenviron-
ments play a role in controlling the distribution of
Ediacara-type fossils (Gehling and Droser, 2013;
Grazhdankin, 2014; Boag et al., 2016), the Ediacara biota
has been divided into three successive assemblages of differ-

ent ages: the Avalon (~571–560 Ma), White Sea (~560–55
0 Ma), and Nama (~550–539 Ma) assemblages
(Waggoner, 2003). However, the dynamics of evolutionary
transition among these three assemblages is poorly docu-
mented, largely because they are rarely preserved in the
same stratigraphic succession to understand how one
assemblage progresses to another and whether the transi-
tions are gradual or abrupt. Previous studies have shown
that Ediacaran successions in Russia offer an opportunity
to investigate the transition from the Avalon to White
Sea assemblage (Grazhdankin, 2014), and the Ediacaran
Shibantan Member in South China may preserve the tran-
sition from the White Sea to Nama assemblage (Xiao et al.,
2020b).

Dickinsonia is one of the most recognizable taxa of the
Ediacara biota and a potential late Ediacaran index fossil
(Muscente et al., 2019). Extensive studies have been con-
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ducted on Dickinsonia since its discovery in the 1940s
(Sprigg, 1947). There is a general consensus of Dickinsonia

being a mobile metazoan (Ivantsov and Malakhovskaya,
2002; Gehling et al., 2005; Sperling and Vinther, 2010;
Hoekzema et al., 2017; Bobrovskiy et al., 2018; Evans
et al., 2019). However, there is little consensus about its
exact phylogenetic position within the Metazoa, its growth
dynamics, its feeding ecology, and its full environmental
and stratigraphic ranges. Dickinsonia has been variously
interpreted as a relative to ctenophores (Zhang and
Reitner, 2006), a placozoan (Sperling and Vinther, 2010),
a eumetazoan (Evans et al., 2017), and a bilaterian (Gold
et al., 2015). The growth zone of Dickinsonia has been
hypothesized to be at the anti-deltoidal end (Runnegar,
1982; Gold et al., 2015; Ivantsov et al., 2020) or adjacent
to the undivided deltoidal region (Dunn et al., 2017;
Hoekzema et al., 2017). In terms of feeding ecology, Dick-

insonia has been interpreted as a microphagous metazoan
with a mouth and a gut (Dzik, 2002) or as an osmotrophic
placozoan (Sperling and Vinther, 2010). In terms of envi-
ronmental and stratigraphic distributions, thus far Dickin-

sonia has only been reported from siliciclastic facies of the
White Sea assemblage in Australia (Sprigg, 1947; Gehling
and Droser, 2013), Baltica (Keller and Fedonkin, 1977;
Grazhdankin, 2014), and possibly in India (Retallack
et al., 2021). Here we report a partially preserved specimen
of Dickinsonia from a limestone facies in the terminal Edi-
acaran Shibantan Member in the Yangtze Gorges area of
South China. Our discovery extends the paleogeographic,
paleoenvironmental, and stratigraphic ranges of this genus,
and suggests that further investigation of the Shibantan
Lagerstätte has the potential to illuminate the evolutionary
transition from the White Sea to the Nama assemblage.

2. Geological setting

The terminal Ediacaran Dengying Formation (551–
539 Ma) in the Yangtze Gorges area is divided into three
units — the Hamajing, Shibantan, and Baimatuo members
in ascending order (Fig. 1). The Hamajing and Baimatuo
members are both composed of peritidal dolostones,
whereas the Shibantan Member consists of subtidal lime-
stones. Ediacara-type macrofossils are confined to the
Shibantan Member of the Wuhe section (Chen et al.,
2014; Wang et al., 2020; Xiao et al., 2020b).

The Shibantan Member at Wuhe is about 150 m thick. It
comprises dark to light grey, medium- to thin-bedded lime-
stones, with intercalated chert bands and chert/calcite con-
cretions. Storm-related deposits, such as hummocky cross-
stratification and intraclastic breccias, occasionally occur
in the Shibantan Member, indicating depositional environ-
ments above the storm-wave base; storm-induced rapid
burial also likely facilitated soft-bodied fossil preservation
(Xiao et al., 2020a). Dark, organic-rich, crinkled laminae
are ubiquitous in Shibantan limestones, and these laminae

have been interpreted as fossilized microbial mats (Chen
et al., 2013; Xiao et al., 2019). Together with less common
stromatolitic structures, the occurrence of laminated
microbial mats indicates that Shibantan limestones were
deposited in the photic zone. These microbial mats may
have also played an important role in the preservation of
Ediacara-type macrofossils (Gehling, 1999; Callow and
Brasier, 2009; Laflamme et al., 2011; Wang et al., 2020).

The fossiliferous horizons of the Shibantan Member at
Wuhe contain a diverse assemblage of macrofossils. Classi-
cal Ediacara-type fossils, e.g., Arborea, Rangea, Pteri-

dinium, Flabellophtyon, Hiemalora (Chen et al., 2014;
Wan et al., 2020; Wang et al., 2020; Xiao et al., 2020b)
and Dickinsonia described herein, are typically found as
positive and corresponding negative reliefs. Vendotaenid
macroalgae are always preserved as carbonaceous films
surrounded by authigenic clay minerals and pyrite
(Anderson et al., 2011). Abundant trace fossils which
reflect complex behaviors of early metazoans (Chen et al.,
2013, 2018, 2019; Meyer et al., 2014; Xiao et al., 2019)
and the problematic taxa Yangtziramulus (Xiao et al.,
2005; Shen et al., 2009) and Curviacus (Shen et al., 2017)
have also been discovered from the Shibantan Member.
Approximate stratigraphic distribution of these fossils
was given in Xiao et al. (2020b) and shown in Fig. 1B.

3. Material and methods

The Dickinsonia specimen described in this paper was
collected from a stratigraphic horizon that is about 1 m
above the base of the Shibantan Member at the Wuhe
quarry (GPS coordinates 30.789�N and 111.051�E). Both
part and counterpart were recovered, but the stratigraphic
orientation of the specimen was not marked when it was
excavated. The specimen was photographed with a Nikon
D810 digital camera. Measurements were obtained from
photographs using ImageJ v. 1.52a. The specimen is depos-
ited in the Nanjing Institute of Geology and Palaeontology
(NIGP), Nanjing, China (NIGP173490).

4. Systematic paleontology

Genus Dickinsonia Sprigg, 1947
Type species: Dickinsonia costata Sprigg, 1947.

Dickinsonia sp.
(Fig. 2)

2020b dickinsoniomorph – Xiao et al., fig. 5f.

Occurrence: Terminal Ediacaran Shibantan Member,
Dengying Formation, Yangtze Gorges area of South
China.
Description: The only specimen is incomplete and preserved
as a negative relief with a corresponding positive relief. The
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preserved part is 81 mm in width and 27 mm in axial
length, consisting of 26 modules fanning away from a pre-
sumed deltoidal region (the region with the largest, U-
shaped modules; see 5. Discussion below), which is tradi-
tionally regarded as the anterior end (Evans et al., 2019).
The modules appear to be continuous across the midline
(Fig. 2C), suggesting a bilaterally symmetrical body plan,
although the modules on the one side (right side in
Fig. 2A) are better preserved and wider than those on the
other side probably due to taphonomic deformation. The
serially repetitive modules are bent toward the preserved
end, with opposite modules on both sides of the midline
forming a U-shaped pair. In the preserved part of the spec-
imen, the angles between the modules and the midline
decrease toward the deltoidal end from approximately
77� to nearly 0�. The modules also show a substantial ad-
deltoidal decrease in length (or the greater dimension of
the modules; Fig. 3A) and ad-deltoidal increase in width
(or the lesser dimension of the modules, measured at the
margin of the fossil; Fig. 3B). The width of individual mod-
ules also increases distally or away from the midline. No
trace fossil or contraction rim has been founded in associ-
ation with the specimen.
Material: One specimen, NIGP173490.

Remarks: Despite its incomplete preservation, the speci-
men can be identified to the genus Dickinsonia on the
basis of its terminally bent modules that are arranged
on both side of a midline. Furthermore, several lines of
evidence — including the U-shaped module pairs, system-
atic change in module size and shape, and the presence of
an undivided region that is often regarded as the deltoidal
region (Evans et al., 2017) — indicate that the partially
preserved specimen may represent the deltoidal end, which
is regarded as the anterior end as defined by the direction
of movement (Gehling et al., 2005; Evans et al., 2019;
Ivantsov et al., 2020; but see Hoekzema et al., 2017).
However, the dramatic increase in module length away
from the preserved end is more characteristic of modules
at the anti-deltoidal end. Moreover, the diverging angles
of Dickinsonia module pairs typically decrease more
abruptly towards the anti-deltoidal end (from 90� to
nearly 0�) than they do towards the deltoidal end; in this
sense, the sharply bent modules and the abrupt decrease
in diverging angles of the preserved specimen seem to be
more consistent with an anti-deltoidal end. At the present,
it is difficult to unequivocally determine whether the pre-
served specimen represents the deltoidal or anti-deltoidal
end, although we tentatively consider it as the deltoidal

Fig. 1. Geological map and stratigraphic column showing the locality of Wuhe quarry (star in A) and the stratigraphic distributions of Ediacaran fossils.
Star in inset map marks the location of the Huangling anticline, which is enlarged in (A). Star in (B) marks the stratigraphic horizon from which the
Dickinsonia specimen was collected. Modified from Xiao et al. (2020b). Geochronometric data 551.1 ± 0.7 Ma, 632.5 ± 0.5 and 635.2 ± 0.6 Ma from
Condon et al. (2005), 543.4 ± 3.5 Ma from Huang et al. (2020), and 526.4 ± 5.4 Ma from Okada et al. (2014). Dashed arrows mark alternative correlations
of the Miaohe Member (An et al., 2015; Xiao et al., 2017; Zhou et al., 2017). Cam. = Cambrian; Cry. = Cryogenian; Fm. = Formation; HMJ = Hamajing
Member; Mbr. = Member.
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end (Fig. 4) but more completely preserved specimens are
needed to verify this orientation.

At least nine species of Dickinsonia have been described
in the literature, including D. brachinaWade, 1972, D. cost-
ata Sprigg, 1947, D. elongata Glaessner and Wade, 1966,
D. lissa Wade, 1972, D. menneri Keller and Fedonkin,
1977, D. minima Sprigg, 1949, D. rex Jenkins, 1992, D.
spriggi Harrington and Moore, 1955, and D. tenuis

Glaessner and Wade, 1966. Among them, D. spriggi and

D. minima have been synonymized with D. costata

(Glaessner and Wade, 1966). Jenkins (1992) considered
D. brachina and D. elongata as junior synonyms of D. lissa
and D. costata, respectively. The remaining number of spe-
cies may still be inflated (Evans et al., 2019). For example,
D. tenuis and D. costata could be synonymous and repre-
sent different ontogenetic stages (Zakrevskaya and
Ivantsov, 2017). D. tenuis, D. brachina, and D. lissa are also
highly similar and difficult to distinguish from each another

Fig. 2. Dickinsonia (NIGP173490) from the Shibantan limestone, part (A) and counterpart (B). Arrows denote the undivided deltoidal region. (C)
Magnified view of boxed area in (A), showing details of modules in the middle part. Stratigraphic orientation of the specimen is unknown. Scale bars
represent 2 cm (A, B) and 1 cm (C).
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practically. D. rex is characterized by its large size and
elongate shape, but it has yet to be formally diagnosed
and described (Jenkins, 1992), and it may represent large
individuals of D. tenuis or D. costata.

The Shibantan specimen differs from D. menneri in its
larger number of modules, larger size, and relatively smal-
ler deltoidal region. The overall morphological features of
the Shibantan specimen resembles D. tenuis and D. costata
the most. But D. costata has fewer and less densely
arranged modules. Moreover, D. tenuis typically possesses
a smaller deltoidal region than D. costata, making the for-
mer more comparable to the Shibantan specimen. Never-

theless, caution must be exercised in taxonomic
placement before more complete material obtained. Hence,
we choose to place this specimen to the open nomenclature
Dickinsonia sp.

5. Discussion

The age of the Shibantan biota is constrained between
551 Ma and 543 Ma by U-Pb zircon ages (Condon et al.,
2005; Huang et al., 2020). The 551 Ma age is from the
uppermost Miaohe Member which is conventionally
thought to be partially equivalent to Doushantuo Member
IV (Xiao et al., 2017; Zhou et al., 2017). But An et al.
(2015) offered an alternative correlation that the Miaohe
Member is regarded time-equivalent to the lower Shiban-
tan Member of the Dengying Formation, rather than the
Doushantuo Member IV. If An et al.’s (2015) correlation
is correct, it is possible that the Shibantan biota may be clo-
ser in age to 551 Ma rather than 543 Ma. Consequently, the
Shibantan biota may represent either one of the youngest
examples of the White Sea assemblage, one of the oldest
examples of the Nama assemblage, or spans these two
assemblages (Xiao et al., 2020b). The presence of Dickinso-

nia — which was previously known only from the White
Sea assemblage (Xiao and Laflamme, 2009) — in the lower
Shibantan Member is consistent with this assessment.
Other Ediacara-type taxa in the Shibantan biota, including
Arborea (Wang et al., 2020), Charnia (Xiao et al., 2020b),
Flabellophyton (Wan et al., 2020), Pteridinium, Rangea,
Hiemalora, and Aspidella (Chen et al., 2014) are not age-
diagnostic. However, the presence of tubular fossils such
as Wutubus, abundance trace fossils such as
Helminthoidichnites, Torrowangea, Palaeophycus, Yichnus,
Streptichnus, and Lamonte (Weber et al., 2007; Meyer
et al., 2014; Xiao et al., 2019, 2020b), and weakly biomin-
eralized tubular fossils such as Cloudina and Sinotubulites
(Chen et al., 2014; Xiao et al., 2020b) at stratigraphic hori-
zons above the Dickinsonia occurrence in the Shibantan

Fig. 3. Module number (counted toward the preserved deltoidal end) versus module length (A) and module width (B), measured on the wider side of the
specimen (i.e., right side in Fig. 2A, positive relief; N = 22). Module length was measured along the greater dimension of the modules, and module width
was measured along the margin of the fossil.

Fig. 4. Hypothetical reconstruction of Dickinsonia. Preserved part high-
lighted in red. Scale bar represents 2 cm.
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Member indicates that at least the upper part of the
Shibantan biota can be correlated to the Nama assemblage.
In this sense, the Shibantan Member is similar to the Mogi-
lev–Podol’sk and Kanilov groups in Ukraine (Fedonkin
et al., 2007) and the Blueflower Formation in the Macken-
zie Mountains of northwest Canada (Narbonne, 1994;
Carbone and Narbonne, 2014; Carbone et al., 2015) that
contain a mixture of body and trace fossils typically found
elsewhere in the White Sea and Nama assemblages. Such
mixture or transitional biotas blur the boundary between
the traditionally recognized White Sea and Nama assem-
blages (Muscente et al., 2019), but on the other hand, they
offer opportunities for more nuanced understanding of
biostratigraphic subdivision and evolutionary transition
between these two assemblages.

The occurrence of Dickinsonia in the Shibantan biota
markedly expands its paleogeographic and paleoenviron-
mental distributions. Previously only known from Edi-
acaran siliciclastic facies in Baltica (Keller and
Fedonkin, 1977; Grazhdankin, 2014), Australia (Sprigg,
1947; Gehling and Droser, 2013), and possibly India
(Retallack et al., 2021), Dickinsonia from Ediacaran car-
bonate facies in South China reinforces that, like several
other Ediacaran taxa (e.g., Cloudina, Charnia, and Pteri-
dinium; Muscente et al., 2019), Dickinsonia may have
had a cosmopolitan distribution. It is intriguing to note
that Australia and South China share an increasing
number of Ediacaran taxa, including Flabellophyton

(Wan et al., 2020; Xiao et al., 2020c), Arborea

(Laflamme et al., 2018; Wang et al., 2020), Eoan-

dromeda (Zhu et al., 2008; Xiao et al., 2013), and
now Dickinsonia. This similarity suggests that the paleo-
geographic proximity of these two continents — which
has long been recognized in early Paleozoic paleogeo-
graphic reconstructions (e.g., Li et al., 2008; Cawood
et al., 2013; Zhao et al., 2018) — may have started in
the late Ediacaran Period (Fig. 5). Nonetheless, the wide
separation of Baltica from Australia and South China

in independently derived paleogeographic reconstructions
(Fig. 5; Zhao et al., 2018) suggests that Dickinsonia and
other cosmopolitan Ediacaran taxa must have had a
strong dispersal capability, perhaps through waterborne
propagules or planktonic larvae (Darroch et al., 2013;
Cortijo et al., 2015; Mitchell et al., 2015).

The Shibantan Dickinsonia fossil also represents the first
report of its occurrence in carbonate facies. To some
extent, this is not surprising because Dickinsonia is one of
the paleoenvironmentally most widespread taxa in the Edi-
acara Member of South Australia (Gehling and Droser,
2013). But still, its capability to adapt to both siliciclastic
and carbonate substrates implies that Dickinsonia was able
to colonize a wide range of environments, a phenomenon
that has also been observed in several other Ediacara-
type taxa such as Pteridinium, Rangea, Arborea, Charnia,
and Flabellophyton (Grazhdankin et al., 2008; Chen
et al., 2014; Wan et al., 2020; Wang et al., 2020; Xiao
et al., 2020b).

6. Conclusions

A specimen assigned to Dickinsonia sp. is reported from
the terminal Ediacaran Shibantan Member (ca. 551–
543 Ma) of the Dengying Formation in the Yangtze
Gorges area of South China. This represents the first report
of Dickinsonia in South China and in carbonate facies. This
discovery extends the paleogeographic and paleoenviron-
mental distributions of this genus, suggesting that Dickin-

sonia had strong dispersal capability and environmental
tolerance. The occurrence of Dickinsonia in the Shibantan
Member also suggests that this unit uniquely preserves
both the White Sea and Nama assemblages in a strati-
graphic succession, offering an opportunity to dissect the
evolutionary dynamics and possible extinction between
these two assemblages (Darroch et al., 2015; Evans et al.,
2018; Muscente et al., 2019).

Fig. 5. Paleogeographic distribution (dots) of the Ediacara-type fossil Dickinsonia. The paleogeographic map is based on Zhao et al. (2018).
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