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Abstract—Recently, the recurrent neural network, or its most to 4.25%) on energy. We hope this work can shed some light on

popular type—the Long Short Term Memory (LSTM) network— how to design high logic utilization for future NPUs.

has achieved great success in a broad spectrum of real-world ap- Index Terms—Machine Learning, Neural nets, Recurrent Neu-
plication domains, such as autonomous driving, natural language ral Network, Accelerator

processing, sentiment analysis, and epidemiology. Due to the com-

plex ff:atures' of the. real-world tasks, cu1:rent LSTM modles be- I. INTRODUCTION

come increasingly bigger and more complicated for enhancing the

learning ability and prediction accuracy. However, through our In recent years, machine learning and its special set of

in-depth cl'laracterization on the state-of-the-art general-pm:pf)se algorithms—artificial neural networks—have been experienc-
deep-lgarmng ac'celeragors,. we observe that the LSTM training ing an unprecedented growth in terms of adaptation and
execution grows inefficient in terms of storage, performance, and L. .
energy consumption, under an increasing model size. With fur- social impact. The recurrent neural network, or one of its
ther algorithmic and architectural analysis, we identify the root most popular types—the Long Short Term Memory (LSTM)
cause for large LSTM training inefficiency: massive intermediate network—has achieved great success in a broad range of
variables. To enable a highly-efficient LSTM training solution for application domains including autonomous driving [1], [2],
the ever-growing model size, we exploit some unique memory- . .

natural language processing [3], [4], business process man-

saving and performance improvement opportunities from the . .
LSTM training procedure, and leverage them to propose the agement [5], sentiment parsing [6] and even recent tasks

first cross-stack training solution, 7-LSTM, for large LSTM addressing the COVID-19 pandemic [7], [8]. However, due
models. n-LSTM comprises both software-level and hardware- to the complex features of the real-world tasks, the LSTM
level innovations that e.ffectively lower the memory footprint models become increasingly bigger for enhancing the learning
upper-bound and excessive data movements during large LSTM ability and prediction accuracy [9], [10]. Previous studies [11]—

training, while also drastically improving training performance . ] . . .
and energy efficiency. Experimental results on six real-world  [13] mainly focus on improving the execution efficiency of

large LSTM training benchmarks demonstrate that n-LSTM LSTM inference, but enabling highly-efficient training for
reduces the required memory footprint by an average of 57.5% large LSTM models has been an open problem.

(up to 75.8%) and brings down the data movements for weight In this work, we first provide a detailed characterization
matrices, activation data, and intermediate variables by 40.9%,

32.9%, and 80.0%, respectively. Furthermore, it outperforms the on sta.te—of-the-art la.rge LSTM training and analysis for its
state-of-the-art GPU implementation for LSTM training by an inefficiency and design challenges (Sec. III). We have ob-
average of 3.99x (up to 5.73X) on performance and 2.75Xx (up served that training larger LSTMs frequently results in lower
hardware throughput and energy efficiency. To identify the
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These variables are generated by forward (FW) propaga-
tion, stored and then reused by backpropagation (BP) for
the gradient calculations. Due to their long reuse distances,
they are typically stored in the DRAM during FW to release
on-chip resources for other live variables that have shorter
reuse distances. After further analysis, we find that these
intermediate variables produced by state-of-the-art LSTM
training flows pose a negative impact on storage (large memory
footprint), performance (training latency and throughput) and
energy efficiency. There have been several recent studies
focused on reducing the large memory footprint induced by
large intermediate variables during forward- and backward-
propagation types of execution [14]-[16], e.g., VDNN [14]
and SuperNeurons [15] for CNNs, and Echo [16] for the
Transformer. However, LSTM training exhibits a unique and
complex computation pattern that precludes these previous
approaches from being applied (Sec.III).

To enable a highly-efficiency LSTM training solution with
ever-growing model sizes, we exploit several unique memory-
saving and performance improvement opportunities from
LSTM training, and leverage them to propose a cross-stack
training solution, 7-LSTM (pronounced /'a-to/ LSTM), which
comprises both software-level and hardware-level innovations.

At the software-level, 1n-LSTM primarily focuses on re-
ducing the large intermediate variables generated during FW
propagation via tackling two major factors that determine the
size of the intermediate variables: LSTM cell-level variable
reduction (Sec.IV-A) and BP layer length reduction (Sec.IV-
B). The corresponding designs for them are based on our two
key observations about LSTM training. First, the cell-level
intermediate variables possess very limited opportunities for
compression; but with our execution reordering design, both
the memory footprint and training latency can be effectively
reduced. Second, not all the BP cells produce significant
gradients for weight updating; thus, we can skip the execution
for these “insignificant” BP cells to further reduce memory
footprint, data movement and training latency.

At the hardware-level, we propose new hardware designs
and optimizations to effectively support our software-level in-
novations and provide further architecture-level enhancements
on performance and energy efficiency. Based on design space
exploration, we discover that our proposed memory-saving
optimizations will cause low hardware utilization when per-
formed on the state-of-the-art NN accelerators [11]-[13], [17],
resulting in inefficient execution and increased training time
(Sec. V-A). To address this design challenge, we propose a
novel PE design named Omni-PE (Sec. V-B) that can perform
all the operations in LSTM training and its runtime resource
allocation scheduler (Sec. V-C) that dynamically distributes
the computational resources according to the LSTM work-
load requests, resulting in high hardware utilization. Finally,
we offer a detailed overall hardware design along with its
optimizations for n-LSTM (Sec. V-D). This study makes the
following contributions:

« We conduct a comprehensive characterization study for

large LSTM training on modern GPUs and identify its
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Fig. 1: The execution flow for one LSTM layer during the
forward- (FW) and back-propagation (BP) phases. T represents
timestamps.

root cause for training inefficiencies;

« We exploit several unique memory-saving and perfor-
mance improvement opportunities in LSTM training and
leverage them to propose the first highly-efficient cross-
stack training solution for large LSTM models, which
comprises both software-level and hardware-level inno-
vations;

o At the software level, we introduce several key observa-
tions regarding the unique LSTM training data patterns,
which are then leveraged to enable large reduction on
memory footprint, data movements and training latency;

o At the hardware level, we propose novel architecture
designs that enable high logic utilization on customized
NPUs, while supporting our software-level optimizations
and further enhancing LSTM training performance and
energy efficiency;

o The experimental results show that for large LSTM train-
ing scenarios, our pure software-level memory-saving
optimizations reduce the memory footprint by an average
of 57.52% (up to 75.75%) and reduce data movement
for weight matrices, activation data and intermediate
variables by 40.85%, 32.89% and 80.04% respectively. In
return, our memory-saving techniques improve the state-
of-the-art GPU (Nvidia V100 32GB) implementation by
1.56x (up to 1.79x) on performance and 1.54x (up
to 1.78x) on energy with no convergence speed issues
and negligible accuracy impact. And our pure hardware
architecture design can achieve an average of 1.67x (up
to 2.69x) better energy over the state-of-the-art GPU
design. Combining them together, our overall n-LSTM
design surpasses the state-of-the-art GPU implementation
by an average of 3.99x (up to 5.73x) on performance
and 2.75x (up to 4.25X) on energy.

II. BACKGROUND: LSTM TRAINING

The Long-Short Term Memory (LSTM) network is a pop-
ular type of recurrent neural network (RNN) which has been
adopted in a wide range of real-world applications. Similar to
other supervised learning networks such as convolution neural
networks (CNNs), LSTM training comprises both forward-
(FW) and backpropagation (BP) procedures. However, com-
mon LSTM networks exhibit a unique execution flow that is
different than CNNs or CNN-like networks. For example, as
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Fig. 2: The zoom-in view of the LSTM cell execution during
training: (a) forward- (FW) and (b) back-propagation (BP).

illustrated on the left, “rolled”, side of Fig. 1, within each
layer, the operations of mapping the inputs to the outputs are
integrated into one FW cell, while the operations of mapping
the output gradients to the weight gradients and input gradients
are integrated into one BP cell. Both cells are executed
recurrently because they need to adopt the historic self-output
information. This feature helps model the context dependency
within the input activation for the modeling sequence tasks
(e.g., language modeling, trajectory prediction, etc). It also
forces the layer’s input to be consumed step-by-step to form a
sequential execution. Such sequential execution of one LSTM
layer can be unrolled into a sequence of cells for both FW
and BP to represent the cell states at different timestamps',
as shown on the right, “unrolled”, side of Fig. 1, where
all the unrolled cells within the same layer share the same
weight matrices. Since the adjacent cells in both FW and BP
exhibit context dependency [18], they can only be processed
sequentially.

Fig. 2 also shows the zoom-in view of the actual com-
putation in both FW and BP LSTM for the cells located
at the fth timestamp. In the FW cell (Fig. 2a), the matrix-
multiplication (FW-MatMul) and the element-wise operations
(FW-EW) leverage the layer input x; and the context output
of its previous cell h;_; to produce the values for the multiple
LSTM gate; in the cell (circled in red), including the forget
gate f;, the input gate i, the cell gate ¢; and the output gate

0. Their computation share a similar function:
gatet = AF(Wf,i,c,oxt + Uf,i,c,ohtfl + bf,i,c,o) (1)

'In this paper, we focus on the LSTM unrolling analysis [18], in which a
cell in a layer is an unrolled cell at a certain timestamp.
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where AF' represents the activation functions including
sigmoid (o) for f;, i; and o;; and the hyperbolic tangent (tanh)
for ¢;. Wyico and Uy, ., are the weight matrices for x;
and h;_j, respectively, which are different when computing
towards different gate values. by ; ., represents the offsets.
By leveraging another element-wise operation, gate; generates
the cell state s;, the context link h; for the next cell, and the
output y; for the cell in the next layer. Note that x;, hy_1,
and s, are saved into memory as intermediate parameters for
future usage during FW.

On the other hand, in the BP cell shown in Fig. 2b,
the gates gradients (dgate;) and the cell state gradients for
the previous cell (65;_1) are generated through performing
element-wise operation (BP-EW) on the following parameters:
the feedback of the output gradients (0Y;) from the next layer,
the context gradients (0 H;) from the next timestamp, the cell
state gradients (0.5;) and the gate values for this timestamp
calculated previously during FW (gate;). Then, these gradients
will be applied to generate the gradients for the two cells
through inner-product (-) matrix-multiplication (BP-MatMul):
the cell in the previous layer with the same timestamp (§.X;),
and the cell at the current layer with the previous timestamp
(0H;—1).

(6X¢, 6Hy—1) = (Wi o Ufico) Ogatesy  (2)

And these gradients will also be used to produce the weights
gradients (W, U) through the outer product () matrix-
multiplication (BP-MatMul):

(0Wtico0 0Ufico) += dgatesy ®(mtT, rl )

III. CHALLENGES FOR LARGE LSTM TRAINING

3)

Due to the complex features of the real world tasks, neu-
ral network models have been growing exponentially larger,
enhancing learning ability and prediction accuracy [9], [10].
Additionally, today’s network compression and pruning tech-
niques [19]-[21] require training of large NN models at the
beginning for better non-linearity fitting, before pinpointing
and reducing the model redundancy. Thus, it is inevitable that
LSTM models are growing large, e.g., expanding the hidden
size (i.e., determines the weight matrices size), layer length
(i.e., represents the number of cells per layer) and layer num-
ber (i.e., indicates the model depth). Previous studies [11]—
[13] mainly focus on improving the execution efficiency of
LSTM inference, but techniques for enabling highly-efficient
training for large LSTM models remain unexplored. Next, we
provide a detailed characterization on the state-of-the-art large
LSTM training and an analysis of its inefficiency and design
challenges.

A. Initial Characterization: LSTM Training on General-
purpose Accelerators

As GPUs become increasingly popular as general-purpose
accelerators for performing neural network training, we con-
duct a comprehensive characterization on two state-of-the-
art GPUs (i.e., 16GB Nvidia Quadro RTX 5000 with the
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Fig. 3: The performance and energy efficiency comparison of training LSTM on the latest GPUs (Nvidia RTX5000 with Turing
architecture and V100 with Volta architecture) when scaling up the LSTM model size by increasing (a) the hidden size, (b)

the layer number, or (c) the layer length.

Turing architecture [22] and 32GB Nvidia Tesla V100 with
the Volta architecture [23]) to evaluate the LSTM training
efficiency with the ever-increasing model sizes. We first use
PyTorch [24] to implement the LSTM training algorithms
with various model configurations, and then apply Nvidia Pro-
filer [25] to extract GPU runtime information, e.g., execution
latency, power consumption and unit utilization. More detailed
experimental setup can be found in Sec. VI-A.

There are three typical ways for increasing LSTM model
size: increasing the hidden size, increasing the number of
layers, and increasing the layer length. Fig. 3 illustrates the
comparison in throughput and energy efficiency of the LSTM
training when scaling up the LSTM model size by increasing
the hidden size, the layer number, or the layer length. We have
the following observations:

Impact of varying the hidden size. To study the impact
of hidden size on LSTM training efficiency, we implement
different LSTM models for the real-world task of the language
modeling using the Penn TreeBank (PTB) dataset [26] with a
fixed layer number of 3 and layer length of 35 (determined
by the dataset). Fig. 3a shows that when the hidden size
is increased, the GPU throughput will first increase and
then plateau. Since matrix multiplications (MatMul) are the
main computation tasks for LSTM training, this throughput
increment directly originates from the MatMul optimizations
on modern GPUs. Specifically, when model is small (e.g., the
hidden size is < 1024 [27]), the increased model size demands
higher thread number, which creates opportunities for better
parallel execution and high ALU utilization. However, once the
model reaches a certain size, the ALU units are saturated and
the throughput is not further improved; however, the energy
efficiency starts to decline when further increasing the model
size beyond the throughput saturation point. This indicates an
increasing energy consumption due to the memory activities.

Impact of varying the layer number. To demonstrate the
impact of the varying number of layers on LSTM training
efficiency, we also implement different LSTM models for
the PTB language modeling with the fixed hidden size of
2048 and layer length of 35. Fig. 3b shows that with the
hidden size set large, although the GPU throughput varies
little when scaling the number of layers, the corresponding
energy efficiency decreases. This suggests that larger number
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Fig. 4: Data movements caused by parameter, activation data,
and intermediate variables.

of layers may not significantly impact the overall throughput
but it can cause extra energy overhead for training. Note that
due to the native memory size limitation, the 7- and 8-layer
LSTM models cannot be trained on the 16G RTX 5000 GPU.

Impact of varying the layer length. The LSTM layer
length is associated with the dataset, which cannot be easily
tuned like other configurations, e.g., the hidden size and layer
number. To illustrate the impact of the increasing layer length
(i.e., indicating the model depth) on LSTM training efficiency,
we implement different LSTM models for different datasets
shown in Table. I with the fixed hidden size of 1024 and
layer number of 3. Fig. 3¢ demonstrates that when increasing
the layer length, the overall throughput tends to decrease,
resulting in energy efficiency drop. This suggests that longer
layer lengths can cause negative impact on both throughput
and energy efficiency.

In summary, we have observed that training larger LSTMs
frequently results in lower hardware throughput and energy
efficiency. To identify its root causes, we profile the GPU unit
utilization with Nvidia Profiler and observe that the Load/Store
(LDST) unit utilization significantly increases for large LSTM
models, indicating the memory-subsystem related overheads.
Next, based on these high-level hints, we further investigate
the inefficient LSTM training and its root cause.

B. Root Cause for Large LSTM Training Inefficiency

During the forward computation phase, the FW-EW oper-
ations of each LSTM cell generates a group of intermediate
variables, including i;, f;, ¢, o¢ and s;. When conducting
LSTM inference, these intermediate variables are abandoned
shortly after the current (i, fi, ct, 0¢) or the next cell (s¢)
computation. However, for the LSTM training processing,
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Fig. 5: The total size (line) and the breakdown (bar) of the
GPU memory footprint.

due to the chain rule, these variables (i.e., is, f:, ¢, O,
s¢ and s;_1) are reused in the BP cell computation during
backpropagation. Since the typical BP execution does not
start until the completion of the FW computation, the reuse
distances of these variables can be quite long. In the state-of-
the-art LSTM implementations, they are commonly stored in
the DRAM to release on-chip resources for other live variables
that have short reuse distances. After further characterization
and analysis, we discover that these intermediate variables
produced by the state-of-the-art training flow pose several
major negative impacts on large LSTM training, including
storage, performance and energy inefficiencies.

Storage Inefficiency: Fig. 5 illustrates the breakdown of
the memory footprint for the aforementioned LSTM training
scenarios in Fig. 3, representing three major portions of
runtime data: the weight matrices, the activation data, and the
intermediate variables. Here, H256-H3072 correspond to the
LSTM training models from Fig. 3a with different configura-
tions of the hidden sizes; LN2-LN8 correspond to the LSTM
training models from Fig. 3b with different configurations of
layer numbers; and LL18-LL303 correspond to the LSTM
training models from Fig. 3c with different configurations
of layer lengths. We observe that on average 47.18% (up
to 74.01%) of the memory footprint is contributed by the
intermediate variables, which can easily surpass the GPU’s
on-chip memory capacity. Frequent accesses to them during
the training may cause a large number of random memory
accesses, resulting in large sub-memory system access over-
head. Additionally, due to this storage overhead, large LSTM
training could be easily bounded by the native hardware’s
storage limitation. For instance, as shown in Fig. 3b, the 7-
and 8-layer LSTM models cannot even be trained on a 16G
RTX 5000 GPU. This inefficiency substantially hinders real-
world LSTM model design and implementation.

Performance Inefficiency: In Fig. 3¢, we observe that GPU
throughput declines for the LSTM training with a larger layer
length. As shown in Fig. 5, we find that the memory footprints
of the intermediate variables can grow significantly for these
LSTM models with longer layer lengths. Since the memory
accesses to these variables are usually on the critical path of
training, they cause not only the end-to-end training perfor-
mance degradation but also the decreased hardware throughput
due to the significant memory access overhead. Note that the
layer length is associated with the specific training dataset. As
the real-world tasks become increasingly complex, LSTM’s
layer length is somewhat inevitable to be expanded to better
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capture long-term context between inputs.

Energy Inefficiency: We also find that that the large data
movements between the on-chip and off-chip memories caused
by accessing the intermediate variables during training directly
contribute to the aforementioned energy efficiency declines
shown in Fig. 3. For instance, Fig. 4 quantifies the amount
of GPU-DRAM data movement from the activation data and
the intermediate variables, respectively. Their DRAM accesses
are much more difficult to reduce than the weight matrices
because they are produced at runtime and often do not exhibit a
certain data pattern which will be benefited from compression.
We observe an average of 4.34x additional data movements
(up to 4.81x) caused by the intermediate variables over that
from the activation data. Moreover, the size of the intermediate
variables also grows faster than activation data.

C. Ineffectiveness of the State-of-the-art Techniques

There have been some studies focusing on reducing the large
memory footprint caused by the intermediate variables during
forward- and backward-propagation types of execution, e.g.,
vDNN [14] for the CNNs, SuperNeurons [15] for the CNNs,
and Echo [16] for the Transformer. The core concept of these
works is trading-off memory footprint with re-computation to
carefully balance between the memory consumption upper-
bound and the training performance. For instance, to reduce
memory footprint, Echo [16] makes a key observation that in
the attention layers of Transformers some partial intermediate
variables during forward propagation can be used to derive
the other key intermediate variables when needed in the back-
propagation. So Echo only needs to store a small amount of
these partial variables for the backpropagation re-computation
to calculate the gradients. However, as discussed in Section
II, the LSTM training exhibits a unique computation pattern
that the stored intermediate variables (e.g., i¢, f:, ¢, 04 and
s¢) are independent of each other and cannot be derived from
each other. Without the essential memory-saving opportunities,
Echo becomes ineffective for LSTM training. On the other
extreme, to minimize the memory footprint without storing
any intermediate variables, the entire FW cell needs to be
recomputed from scratch during the BP cell processing. This
is infeasible in practice since it will substantially extend
the back-propagation latency and cause serious performance
overhead for LSTM training.

Additionally, the state-of-the-art LSTM acceleration ap-
proaches mainly focus on weight compression (e.g., pruning)
for LSTM inference. For example, S.Han et al. [11] and
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S.Wang et al. [17] reduce the number of weight columns
in MatMul computation to cut down the LSTM inference
workload; and S.Wang et al. [13] propose to transform the
weight matrices into a smaller block-circulate format for
weight compression. However, these approaches cannot reduce
the size of the intermediate variables in large LSTM training
and address the aforementioned inefficiencies caused by them.

IV. UNIQUE LSTM MEMORY-SAVING OPPORTUNITIES
AND OPTIMIZATIONS

To enable a highly-efficiency LSTM training solution with
ever-growing model sizes, we exploit some unique memory-
saving and performance improvement opportunities in the
LSTM training procedure and leverage them to propose a
cross-stack training solution, 1-LSTM, which comprises both
software-level (Sec. IV) and hardware-level (Sec. V) inno-
vations. In this section, we introduce key observations and
software-layer designs in 7-LSTM which effectively reduce
the large intermediate variable size and the massive data
movements between FW and BP cells during LSTM training.
Specifically, we focus on optimizing two major factors that
determine the intermediate variables’ size: the number of
variables in each cell (Sec. IV-A) and the number of cells
within one layer (i.e., layer length; Sec. IV-B).

A. Cell-level Reduction for Intermediate Variables

Basic idea. First, we attempt to reduce the size of cell-level
intermediate variables. Specifically, we focus on compressing
the intermediate variables (e.g., f:, i, ¢t,0¢, and s;) generated
by the FW cells since these variables typically cannot be
immediately consumed and have to be stored for BP to
accelerate the calculation for the gradients in the state-of-
the-art implementations. They comprise the memory footprint
upper-bound of the entire LSTM training. Through further
investigation on the computation flow, we make a key observa-
tion that the cell-level intermediate variables generated by FW
possess very limited opportunities for effective compression
(discussed next). One intuitive solution for this is to quickly
consume these variables during FW for certain important
computation outcomes, instead of fully storing them during the
training process to cause different efficiency issues (Sec.III).
Guided by this intuition, we find that it is possible to reorder
the LSTM training execution flow to quickly and effectively
consume these FW intermediate variables while maintaining
computation correctness. More surprisingly, we discover that
this reordering creates a new set of variables that exhibit much
higher data compression opportunities and can be effectively
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compressed to travel between FW and BP cells, resulting in
significant memory footprint and latency reduction for LSTM
training. Next, we provide more detailed discussion on the
cell-level variable reduction.

Enhancing Data Compression Opportunities via Ex-
ecution Reordering. To explore the opportunities of cell-
level variable reduction, we collect the FW’s intermediate
variables from six large LSTM training benchmarks evalu-
ated in this paper, shown in Table. I and investigate their
value distributions. Note that the BP-EW computation can
be divided into two computation stages: BP-EW-P1, which
performs computation relying on only FW intermediate vari-
ables, and BP-EW-P2, which takes the outputs from BP-
EW-P1 to calculate gradients during backpropagation. For
example, the formula to calculate the input gate gradient is:
81y = 05, O e Oir O —iyr). Since ¢; and iy are generated
by the FW procedure, ¢; () i; (O(1—i;) belongs to BP-EW-P1,
while the computation involving gradients belongs to BP-EW-
P2. Fig. 6 shows the cumulative absolute value distribution for
the FW generated intermediate variables and the calculated
results from BP-EW-P1 phase, at different training epochs.
The x-axis represents the absolute value range of the FW
intermediate variables and the results from BP-EW-P1 phase,
which is [0,1]. Note that both FW intermediate variables and
BP-EW-P1 results are within this range based on formulation
(Fig. 2 in Sec.Il), e.g., FW intermediate variables are produced
by the activation functions.

From Fig. 6, we can observe that only around 25% of
the FW intermediate variables have values smaller than 0.1.
On the other hand, BP-EW-P1 phase (which only depends
on the FW intermediate variables for computation) generates
approximately 65% of the data outputs with values smaller
than 0.1, representing a very different data value pattern than
FW intermediate variables. Also, this interesting data pattern
is not impacted by different training epochs either. Since BP-
EW-P1 computation only relies on FW intermediate variables,
if hardware resources are available, it is possible to reorder the
LSTM training by bringing the BP-EW-P1 phase forward into
the FW phase to execute concurrently, immediately consuming
all the FW intermediate variables. There are two direct benefits
associated with this design. First, based on Fig. 6, BP-EW-
P1 results’ data value pattern can significantly enhance the
data compression opportunities for reducing LSTM’s training
memory footprint upper-bound bounded by FW intermediate
variables, e.g., experiments show that applying a near-zero
pruning at the value threshold around 0.1 provides both
large memory savings and little training accuracy loss (See
Sec. VI-B4 for more discussion.). Second, after the reordering,
BP-EW-P1 will generate much smaller compressed results
which replace the FW intermediate variables to be requested
by the BP processing. In other words, these large cell-level FW
generated intermediate variables are no longer needed to be
stored for BP processing, resulting in large memory footprint
reduction. Additionally, the rest of the BP process now takes
the decoded format of the outputs from BP-EW-P1 in FW,
which also helps skip some unnecessary computation in both
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Fig. 8: The weight gradients magnitude for different
timestamp BP cells when implementing (a) single loss
LSTM - IMDB [28] and (b) per-timestamp loss LSTM -
WMT(MLPerf) [29].

BP-EW-P2 and BP-MatMul (e.g., near-zero operands). The
overall execution reordering strategy is illustrated in Fig. 7
and its hardware support is discussed in Sec. V.

B. BP Layer Length Reduction

Basic idea. After the cell-level variable reduction, we
further extend our exploration to the layer-level for additional
memory footprint reduction and latency improvement oppor-
tunities. Specifically, we focus on analyzing whether or not
the demands from BP process for the intermediate variables
produced in FW can be reduced. After all, if BP does not
demand such reuse for fast computation, there is no need to
store FW-generated intermediate variables. Based on this in-
tuition and further evaluation, we make a key observation that
not all the BP cells produce significant gradients for weight
updating. Therefore, we propose to predict these insignificant
BP cells and skip their execution. This skipping will require
no intermediate variables to be stored in the corresponding
FW process as if performing LSTM inference (calculating loss
only), further reducing the memory footprint and training la-
tency. We elaborate the observations and proposed techniques
as follows.

Key observation: Since the LSTM layer is unrolled into
a sequence of LSTM cells, the BP cells in the same layer
generate the gradients (6 and 0U) for updating the same
weight matrices. To explore the characterization of these
weight gradients generated by different BP cells of the same
layer, we collect the gradients from the different layers of
two real-world LSTM training benchmarks (IMDB and WMT
(MLPerf) from Table. I) and compare magnitudes (i.e., the
accumulated value for all their absolute scalar data), shown in
Fig. 8.

Interestingly, we find that how the loss is calculated is
determined by LSTM model designers and it impacts which
BP cell can be skipped. For instance, we have identified two
types of LSTM models based on how the loss is computed:
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Fig. 9: The diagram of BP cell Skipping. The left figure
represents the original BP cell execution, the middle and right
figures represent our BP cell skipping approach for single loss
LSTM and per-timestamp loss LSTM, respectively.

single loss LSTM and per-timestamp loss LSTM. For the
former, LSTM models are designed to calculate the loss based
on the last timestamp cell at the final layer, e.g., IMDB
model for reviewing attitude classification. For the latter,
LSTMs calculate the loss per timestamp BP cell at the final
layer, e.g., LSTM model from MLPerf performing machine
translation. Fig. 8 further demonstrates these two types of
LSTM models: different models exhibit different patterns of
gradients magnitude. For the single loss LSTMs (e.g., IMDB),
the gradients magnitude per layer decreases from the last to
the first cell. This is because the single loss vanishes with the
increased propagation distance [30]. For per-timestamp loss
LSTMs (e.g., WMT), the gradients magnitude grows at each
layer from the last cell to the first cell. This is because each
cell will receive the loss of the corresponding timestamp and
this loss information gets accumulated from the last cell to the
first cell. Note that the per-timestamp loss LSTM generates
insignificant gradients at the beginning of BP process.

Prediction for the Insignificant BP Cells. By leveraging
the key observation above, we propose to skip the execution
for those insignificant BP cells. First, we need to build
an effective mechanism to identify which BP cells produce
insignificant gradients for weight updating. Since it is a futile
attempt to perform this identification after the BP cells com-
plete their execution, we aim to identify these BP cells ahead
of their execution via the loss information as it determines
the magnitude of the gradients for each BP cell. Furthermore,
we find that the gradients exhibit a certain correlation with the
propagation distance: (1) for the cells at certain timestamp, the
gradients increase from the last layer to the first layer; (2) for
the cells from the same layer, the weight gradients decrease
for single loss LSTMs and increase for per-timestamp loss
LSTMs, from the last timestamp to the first timestamp. Based
on these, we can build a model with the information of loss,
layer and timestamp as inputs to predict the weight gradients
magnitudes for each BP cell as follows:

a- Y loss- (LN — layerID)

oW _Mag =
-y (LL — timeStamp)?

)

Here, ) loss represents the loss accumulation from the last
timestamp to the current timestamp. For single loss LSTMs,
>~ loss is only the loss from the last timestamp cell at the
final layer. LN and LL represent the layer number and the
layer length of the LSTM model, respectively. layerI D and
timeStamp indicate the BP cell location in the LSTM graph.
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£ indicates gradients magnitude trend according to the LSTM
type: for single loss LSTMs, § equals to 17, and for per-
timestamp loss LSTMs, /3 equals to ”-1”. Finally, « is the
factor determined by the LSTM model and the dataset, which
can be calculated using the results of the first training epoch.
These predicted weight magnitude will be used to compare
with the threshold to determine the importance of the BP cells.

However, the basic method above can only reduce the
intermediate variables’ loading without reducing the actual
memory footprint caused by these variables. This is because
this basic strategy requires loss information to determine the
importance of BP cell, and the loss is be produced after all
FW cells’ execution. Therefore, to obtain BP cells” importance
prior to the FW execution, we propose to predict the loss for

current training epoch using historic loss results:
(lossy_o — loss,_1)?

(&)

pred_loss, = loss,_1 —
108S,,—3 — 10882
Here pred_loss, represents the predicted loss results for
nth epoch, and loss represents the actual loss generated by
previous epochs. Note that the first three epochs will not
perform the prediction as the prediction requires the historic
loss from previous three epochs. With the loss predicted,
the importance of BP cells can be predicted before the FW
cells’ execution, thus, avoiding data movements and memory
footprint caused by storing these insignificant variables.
Convergence-Aware BP Execution Skipping. To reduce
the impact of skipping BP execution and maintain the conver-
gence speed, we propose to offset the value loss. As shown
in the Fig. 9, since the BP cells from the same LSTM layer
generate the gradients for the same weights, the value loss
can be potentially offset via amplifying the weight gradients
results from those significant BP cells: 6Wiayer = 6Wpartial X
factor, here the scaling factor is determined by the predicted
weight gradients and the number of the skipped BP cells.

V. n-LSTM ARCHITECTURE DESIGN

In this section, we discuss our hardware designs and opti-
mizations to effectively support our software-level innovations
and provide further enhancements for enabling highly-efficient
large LSTM training. Based on design space exploration,
we discover that our proposed memory-saving optimizations
will induce low hardware utilization when performed on the
state-of-the-art NN accelerators, resulting in inefficient execu-
tion and increased training time (Sec. V-A). To address this
design challenge, we propose a customized highly-efficient
LSTM training architecture comprised of a novel PE design
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values to be accumulated.

(Sec. V-B) and its matching runtime scheduler (Sec. V-C).
Finally, the overall n-LSTM architectural design is illustrated
in Sec. V-D.

A. Hardware Design Challenge Induced by our Memory-
Saving Optimizations

Irregular Workload Pattern: As discussed in the previous
section, our memory-saving optimizations move some com-
putation from the BP cells to the FW cells which further
reduces the computation workload per BP cell. As discussed
in Fig. 2 in Sec.Il, as a result, the amount of MatMul and
EW operations varies across cells and even becomes different
for the same cell at different computation phases (FW or BP).
Additionally, the reduction of the computation workload in
each BP cell relies on runtime information, making the amount
of the MatMul and the EW operations vary across different
training iterations, training epochs, and datasets. Thus, the
workload pattern becomes more irregular under our memory-
saving optimizations which requires special hardware support.

Ineffectiveness of the State-of-the-Art NN Accelerators:
There have been several architectural designs for accelerating
NN execution, e.g., NPUs [31], [32] and LSTM inference
accelerator [11]-[13], [17], [33]. Some designs, e.g. [33],
adopt a unified processing element design to include a large
number of logic for performing all the essential functionalities
(e.g., multiplication, add, accumulation, activation), resulting
in low logic utilization and high area cost. More commonly,
some designs, e.g. [11], [13], [17] statically distribute the
computation resources into several hardware modules (e.g.,
MatMul and EW modules) with each hardware module con-
ducting different operations. The logic resources per hardware
module are determined by the amount of the operations.
However, this kind of static allocation approach may cause
inefficient execution as the workload pattern becomes more
irregular under our memory-saving optimizations for highly-
efficient LSTM training. As shown in Fig. 10, when the EW
execution in the BP cell becomes sparse, the corresponding
hardware logic will be idle for a long period of time, causing
low logic utilization and degraded performance.

B. Omni-Processing Element Design

To achieve high hardware utilization and corresponding
performance benefit, we propose to dynamically distribute
the computational resources according to the workload re-
quests. To this end, we first group the hardware computational
resources into fine-grained pieces, i.e., processing elements
(PEs), to enable flexible resource allocation. We then propose
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a novel universal PE design, Omni-PE, that is able to conduct
the streaming processing for all the operations involved in
the LSTM training. To be specific, we aim to reduce the PE
resource consumption via maximizing the logic reuse between
MatMul and EW operations.

The MatMul computation requires the multiplier and accu-
mulator to process the streaming input each cycle, while the
EW computation requires the multiplier, adder and activation
function unit for the streaming input. Since the activation
function unit can be implemented using the on-chip storage
to build the look-up table [11], the major logic difference
between MatMul and EW lies in the differences between the
accumulator and the adder units.

Though both the accumulator and the adder perform the
addition operation, their designs are very different. At each
cycle, the accumulator sums up the current cycle’s input with
the accumulated value produced by the previous cycle [34].
However, when using the adder to implement this execution
flow, it is unable to accept input at every cycle to support
the streaming processing as performing addition in the adder
takes multiple cycles (e.g., 8 cycles in our study), which peri-
odically stalls the accumulation to wait for the addition output.
Therefore, the accumulator and adder usually exhibit different
low-level designs for enabling the streaming processing and
they often cannot directly perform each other’s functionality.

In this study, we enable the streaming accumulation in the
adder by rearranging the computation flow. Instead of always
waiting for the full accumulation results from the previous
cycles, our design leverages partial outcomes to achieve the
streaming processing, as illustrated by an example in Fig. 11.
To simplify the discussion, we assume the add latency takes
2 cycles in this example. As it shows, at the beginning of the
accumulation, the computation is conducted every 2 cycles
given the streaming inputs since it takes 2 cycles to finish one
addition. With the partial outputs ready later (e.g., at 4th cycle
in the figure), the partial outputs (e.g., A+B) will be sent back
to the adder while waiting for the next steaming input (e.g.,
F). As can be seen, the adder is effectively pipelined which
is able to accept input at every cycle to support the streaming
processing. Finally, when there is no more data from the input
stream (e.g., from 9th cycle), all the partial accumulated results
will be summed up to produce the final result.

Given that the adder is able to conduct the streaming
accumulation, we then propose our Omni-PE design which
can perform both MatMul and EW operations, as illustrated
in Fig. 12. Our Omni-PE contains one multiplier and one
adder. There are four multiplexers (MUX) inserted between
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the multiplier and adder, where the left two MUXs will flip
per cycle to ensure the data evenly transmitted to the two input
ports of the adder, and right two MUXs select the input for
the adder as either the PE’s input or the multiplier’s output.
The adder’s output is then sent to a partial output queue
for accumulation. Finally, a MUX is employed before the
output queue to select the appropriate output from either the
multiplier or the adder. With the control signals generated by
the controller, our Omni-PE can be dynamically configured to
perform the following operations for LSTM training:

o For matrix-vector multiplication (-), both the multiplier
and adder will be activated; the adder acts as the accu-
mulator and the output MUX collects the results from the
partial output queue;

o For element-wise multiplication (()) and outer-
production (), only the multiplier will be activated,
and its output will be sent to the output queue through
the final MUX to skip the adder;

o For element-wise addition (+), only the adder will be
activated which will take both inputs to the PE. The final
MUX will select results from the partial output queue.

C. Runtime Resource Allocation

We then explore a Runtime Resource Allocation (R?A)
scheduler that concurrently launches the data dependence
operations (i.e., MatMul and EW) and intelligently assigns
our omni-PEs to these operations for the optimal performance
and energy-efficiency. Our R2A scheduler first estimates the
amount of workloads (i.e., the operation types and their num-
ber) through the entire LSTM training, which is determined by
the model configuration. Based on the estimated workloads of
MatMul and EW, the scheduler will then divide the PEs into
two groups with each group configured to perform MatMul
and EW operations, respectively. During the LSTM training,
some PEs become idle when assigned operation is not ready
to start due to the data dependency on another operation. To
improve the PE utilization, those idle PEs will be firstly re-
assigned to conduct operations with ready inputs and then
switch back later to perform the operations originally assigned
by the scheduler.

For example, PEs are divided to perform MatMul and
EW operations. During the forward propagation, since the
EW operations depend on the results from MatMul, the PEs
assigned for EW will first support MatMul (i.e., swing PEs)
and then return to process EW once the adequate inputs
have been generated from MatMul. Note that there exists no
pipeline stalls as the swing PEs design can effectively avoid
dependency waiting by reassigning the necessary number of
PEs from EW for MatMul outputs generation. This results in
efficiently overlapped execution between these two kernels.
Both the PE assignment and the functionality switch are
performed by the controllers illustrated in Fig. 12.

D. The Overall n-LSTM Architecture

As shown in Fig. 13a, the 7-LSTM accelerator groups
the Omni-PEs into channels for the parallelism enhancement
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and the control complexity reduction. We expand the concept
of swinging individual PE’s functionalities in our runtime
resource allocation, to swing channels’ functionalities as a
group of PEs (i.e., swing channel design). Additionally, it also
includes a customized direct memory access (DMA) module,
a scratchpad and an 7-LSTM controller (performing RZA
scheduler). The detailed designs are described as follows:

Channel Architecture: As Shown in Fig. 13b, one chan-
nel is composed of 32 Omni-PEs and a channel controller
which manipulates all PEs’ controllers within the channel.
The channel controller is also responsible for performing data
communication with the on-chip scratchpad. Note that for the
operation like outer-product, all the PEs could request the
same input data. To improve the data distribution efficiency,
we insert a broadcasting queue inside the channel controller
to provide data to all the PEs. Additionally, we apply an
activation module inside each channel for calculating the
activation functions, i.e., sigmoid (o) and hyperbolic tangent
(tanh). To reduce the area overhead, the activation module
only contains one sigmoid unit and one hyperbolic tangent
unit for all the 32 Omni-PEs as the workloads of activation
operations are much lower than other operations in the LSTM.
We further adopt a lookup table design to avoid the complex
logic design for either the sigmoid (o) or hyperbolic tangent
(tanh) unit.

Customized DMA Module: To enable the cell-level in-
termediate variables’ reduction and skipping execution for
insignificant BP cells, we customized our DMA module that
includes a data compression module and a decoder module.
When the DMA module receives data from the channels, it will
first identify the received data as dense or sparse; the dense
data will be sent to the WT data queue, and the sparse data
will be sent to the compression module to perform pruning
according to their value magnitudes. The compression module
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TABLE I: Large LSTM Training Benchmarks.

Name Abbr. Hidden_Size Layers Length
TREC-10 [35] QC 3072 2 18
PTB [26] LM 1536 4 35
IMDB [28] SA 2048 3 100
WAYMO [36] AD 1024 3 128
WMT [29], [37], [38] | MT 1024 4 151
BABI [39] QA 1280 5 303

will output the important data and their indices to the WT
data queue and WT index queue, respectively. Finally, the
data in the WT data queue and WT index queue will be
stored either in the on-chip Scratchpad or off-chip DRAM via
the I/O interface. When the DMA module receives the data
requests from the channels, the dense data will be loaded via
1/0O interface and stored into the RD data queue waiting to be
distributed by the 7-LSTM controller. On the other hand, the
sparse data value and their indices will be stored in the RD
data queue and RD index queue, respectively. Note that the
sparse intermediate variables can help locate the unimportant
computation, providing the opportunities in further reducing
the data requests for involving dense variables. In order to
only load the data for important computation from the dense
variables, we introduce the decoder module using the index
information of the sparse operand to locate the corresponding
address of the operand. Finally, the operands in the RD data
queue will be sent to the channels for the training execution.

Scalability Discussion: Since our channel architecture sup-
ports SIMT execution (e.g., 1 channel supports 32 PEs)
and the explicit execution dependency between channels is
eliminated by our swing channel design, n-LSTM supports
highly parallel execution. Thus, by adding more channels, 7-
LSTM can achieve linearly increasing throughput within the
constraints of thermal, power and area. Additionally, since
our co-design strategy enables both drastic intermediate data
reduction (software) and their fast consumption (hardware),
the memory cost is not required to linearly grow with the
number of channels. Thus, n-LSTM exhibits good design
scalability.

VI. EVALUATION

A. Experimental Methodology

Training Benchmarks: We employ six representative large
LSTM applications listed in the Table. I as our training
benchmarks. Each application has its unique LSTM model
configuration in terms of the hidden size (Hidden_Size), layer
number (Layers), and layer length (Length). TREC-10 [35]
performs question segmentation (QC) that classifies the ques-
tions into 10 categories. PTB [26] represents Penn TreeBank,
which is widely used for word-level language modeling (LM).
IMDB [28] performs the sentiment analysis (SA) that predicts
the positive or negative attitude from texts. WAYMO [36] is a
commercial LSTM model to perform object tracking for au-
tonomous driving (AD). WMT [29] is a representative LSTM
model included in the MLperf benchmark [38] which performs
German-English machine translation (MT) [37]. BABI [39]

Authorized licensed use limited to: University of Houston. Downloaded on June 15,2022 at 03:30:54 UTC from IEEE Xplore. Restrictions apply.



8x|@ Baseline B MS1 @ MS2 @ Combine-MS O LSTM-Inf @ Static-Arch B Dyn-Arch @ r]-LSTN‘

TREC10 WAYMO

(a)

25 [mBaseline B MS1 @ MS2 O Combine-MS O LSTM-Inf @ Static-Arch & Dyn-Arch B n-LSTM

[N)

=
wn

[,

=
[0

o

Normalized Energy Consumption

TREC10 PTB WAYMO

(b)
Fig. 15: The (a) speedup and (b) normalized energy consump-
tion of 7-LSTM design compared against other designs.

performs the question answering (QA) for automatic text
understanding and reasoning.

Environment Setup: The baseline and our software-level
optimizations for the LSTM training are implemented using
Pytorch [24], a popular open-sourced machine learning frame-
work that supports dynamic computation graphs on the state-
of-the-art GPUs. We conduct 32-bit floating-point LSTM train-
ing with a moderate batch size (i.e., 128) for our evaluation.
On the hardware side, we implement all the hardware design
optimizations discussed in Sec. V in Verilog and synthesized
on the Xilinx Vertex-UltraScale+ HBM VCU128 FPGA eval-
uation board [40]. The design is operated at S00MHz. For
the off-chip memory access evaluation, we adopt the HBM
IP interface [41] connected to the on-board external HBM
memory. The execution latency results are obtained from the
post-synthesis design, and the energy consumption is evaluated
using the Vivado Power Analysis [42] at the post-route level.
Note that there are hardware resource differences between the
NVIDIA GPUs and the FPGA board. For example, VCU128
only has an 8GB HBM memory while V100 has a 32GB
HBM with double bandwidth. To provide fair evaluation, we
implemented 40 channels on the VCU128 and set the HBM
bandwidth as 224GB/s, which provides nearly a quarter of
NVIDIA V100’s computational capability and memory re-
sources; and then we assemble our LSTM training accelerator
with four VCU128 boards for performing the LSTM training
(e.g., 1/4 training workload per board). We collect the latency
and energy consumption accordingly.

Comparison Cases: To evaluate the effectiveness of 7-
LSTM, we compare it with the following design scenarios: (1)
Baseline: the state-of-the-art GPU accelerated LSTM training
execution; (2) MS1: our cell-level variables’ reduction op-
timization (Section IV-A) implemented on top of the state-
of-the-art GPU; (3) MS2: our BP cell computation reduc-
tion mechanism (Section IV-B) implemented on GPU; (4)
Combine-MS: our combined software-level memory-saving
optimizations from Sec. IV implemented on GPU; (5) LSTM-
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Inf: state-of-the-art LSTM inference accelerator design [11];
(6) Static-Arch: the architectural design for LSTM training
with computational resources statically distributed across sev-
eral hardware modules for conducting different operations (the
distribution is based on the TREC10 configuration); and (7)
Dyn-Arch: our architectural design of #-LSTM with dynamic
resource allocation but without software-level memory-saving
optimizations.

B. Experimental Results

1) Effectiveness on Performance and Energy Consumption:
Fig. 15 illustrates the normalized performance and energy
consumption of our 7-LSTM design compared with other de-
sign scenarios. We first evaluate the effectiveness of memory-
saving optimizations. From the figure, we observe our cell-
level variable reduction (MS1) achieves on average 1.21x (up
to 1.35x%) speedup and saves 17.66% (up to 26.01%) energy,
i.e.,, 1.21x (up to 1.35% energy improvement), comparing
with the baseline case. Our BP cell computation reduction
(MS2) achieves on average 1.32x (up to 1.56x) speedup and
23% (up to 35.75%) energy saving, i.e., 1.30x (up to 1.56x)
energy improvement, comparing with the baseline case. We
observe that MS1 is more effective for LSTM training with
larger hidden size, and MS2 is more effective for the LSTM
training with larger layer length. This is because the LSTM
with large hidden size provides more opportunities for MS1 to
locate the trivial intra-cell variables, and more trivial BP cells
can be identified in the LSTM with a long layer length that
help achieve better performance and energy saving. Overall,
our optimizations achieve on average 1.56x (up to 1.79x)
speedup and 35.26% (up to 43.94%) energy saving, i.e.,
1.54x (up to 1.78x) energy improvement, comparing with
the baseline case.

We then evaluate the effectiveness of our architectural
design. From the figure, we observe that the LSTM-Inf on
average decreases the performance by 27.52% and incurs
76.56% additional energy cost. This is because LSTM-Inf
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suffers from the resource-consuming PE design which results
in significantly lower throughput under the resource limitation.
Additionally, LSTM-Inf adopts a static computational resource
allocation scheme, which is based on the TREC10 dataset
in our experiment. This allocation strategy makes it hard
for LSTM-Inf to be efficient for different LSTMs. By using
Omni-PE in Static-Arch, the average performance is decreased
by 3.36% with 33.03% additional energy overhead over the
baseline. Although improved from LSTM-Inf, this still suffers
from the same static computational resource allocation issue
as that in LSTM-Inf. On the other hand, our Dyn-Arch design
outperforms the baseline case by 1.42x (up to 1.85x) on
performance and 9.5% (up to 33.66%) on energy saving, i.e.,
1.10x (up to 1.51x) energy improvement. We further compare
the energy efficiency among baseline, LSTM-Inf, Static-Arch,
and Dyn-Arch as shown in Fig. 16. From the figure, the energy
efficiency of LSTM-Inf is always lower than the baseline. The
energy efficiency of Static-Arch varies for different LSTM
benchmarks, and only when the LSTM workload matches the
on-chip resource distribution, the energy efficiency of Static-
Arch can outperform the baseline case. However, our Dyn-
Arch can always outperform the baseline case and achieve on
average 1.67x (up to 2.69x) energy efficiency.

Finally, our n-LSTM takes the advantages of both the
software and hardware optimizations, and outperforms the
baseline case by 3.99x (up to 5.73x) on speedup and 63.70%
(up to 76.48%) on energy saving, i.e., 2.75x (up to 4.25x)
energy improvement.

2) Effectiveness on Data Movement Reduction: Fig. 17
shows the effectiveness of our memory-saving optimizations
on the data movement reduction. From the figure, we observe
that MS1 on average reduces the data movement of weight
matrices and intermediate variables by 31.79% and 60.27%,
respectively. But MS1 has no impact on reducing the activation
data movement. The MS2 on average reduces the data move-
ment of weight matrices, activation data, and intermediate
variables by 24.67%, 32.89%, and 49.34%, respectively. The
MST1 outperforms MS2 on data movement for weight matrices
and intermediate variables, but MS2 provides unique opportu-
nity of deducting the activation data movement. Overall, these
two optimizations can reduce the data movement involved in
the LSTM training from different levels (i.e., cell-level and
layer-level). Our 7-LSTM outperforms the baseline case by on
average 40.85%, 32.89% and 80.04% on the data movement
reduction for weight matrices, activation data and intermediate
variables, respectively.

3) Effectiveness on Memory Footprint Reduction: We then
evaluate the effectiveness of our memory-saving optimizations
on the memory footprint reduction. As shown in Fig. 18,
all our optimizations efficiently reduce memory footprint.
Specifically, the MS1 and MS2 achieve on average 32.37%
(up to 39.09%) and 41.65% (up to 61.68%) memory footprint
reduction, respectively. Overall, our integrated memory-saving
optimizations achieve on average 57.52% (up to 75.75%)
reduction in memory footprint.
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Fig. 18: The effectiveness of our memory-saving techniques
on the memory-footprint reduction.

TABLE II: Accuracy Impact

TREC10 PTB IMDB WAYMO WMT BABI
Baseline 78.82% | 217.19 PPL | 76.78% | 0.138 MAE | 3.13 BLEU | 68.75%
Combined-MS | 78.80% | 218.36 PPL | 76.78% | 0.138 MAE | 3.13 BLEU | 68.69%

PPL: Perplexity (Lower is Better);
MAE: Mean Absolute Error (Lower is Better);
BLEU: BiLingual Evaluation Understudy (Higher is Better)

4) Accuracy Impact: Note that our memory-saving op-
timizations perform approximate computing. Therefore, we
conduct the accuracy analysis in terms of the convergence
speed and the final accuracy difference. We find that the
convergence speed is not affected for all our LSTM bench-
marks. This is because the neural network training exhibits
superior ability for tolerating noise and small changes, and
more importantly, we adopt the convergence speed aware
scaling for our BP cell skipping technique that compensates
the negative impact on the convergence speed. As illustrated by
Table. II, our memory-saving optimizations only incur < 1%
accuracy difference compared to the baseline case.

5) Analysis on Adder-Based Accumulator Design: We com-
pare our adder-based accumulator design with the Xilinx accu-
mulator IP [34]. As the results demonstrated by Table. III, we
first observe that our design saves 43.61% LUT and 37.25%
FF compared with the Xilinx IP design. Besides, our design
reduces the energy consumption by 17% compared with Xilinx
IP design. This is because the Xilinx IP targets translating the
32-bit floating-point accumulation into 64-bit fixed-point ac-
cumulation, thus consuming more logic resources and causing
more dynamic power overhead. Finally, we observe that the
Xilinx IP exhibits lower latency compared with our design.
However, since we are targeting the large LSTM training, the
streaming input for accumulation is long. Our design only
causes < 2.87% latency overhead for conducting accumulation
with more than 1024 streaming inputs. Note that we already
include this latency overhead in our overall evaluation.

VII. RELATED WORKS

Neural Network Acceleration: There have been massive
numbers of studies focusing on the acceleration of the NN
workload [43]-[48]. For example, Procrustes [49] exploits the
sparsity in the CNN training and conducts the customized ac-
celerator design. TensorDash [50] also designs an accelerator
for sparse CNN training with a smart workload distribution
for the dynamic variable sparsity. However, the LSTM training
exhibits significantly different execution pattern from the CNN
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TABLE III: The comparison between the Xilinx accumulator
IP and our adder-based accumulator design.

Utilization Dynamic Power (W) Latency

LUT | FF | Clock | Signal | Logic | Total | (Cycle)
Xilinx IP 821 | 969 | 0.026 | 0.031 | 0.043 | 0.1 20
Our Design | 463 | 608 | 0.014 | 0.039 | 0.03 | 0.083 50

training, the previous works can hardly reduce the intermediate
variable size.

There are also several studies that focus on exploiting
the software and architectural co-designs for accelerating the
LSTM inference execution [11]-[13], [17], [51], [52]. For
example, ESE [11] and DeltaRNN [12] compress the weight
matrices and propose accelerator designs to improve the in-
ference performance. Since the massive intermediate variable
movement is caused by the unique features of LSTM train-
ing processing, these LSTM inference works fail to address
this challenge. Additionally, the static computational resource
allocation employed in these accelerator designs causes inef-
ficient logic utilization to memory-saving optimizations that
decreases the overall performance.

Memory Footprint Reduction: Several studies have ex-
plored trading the memory footprint reduction with the
re-computation [14]-[16], [21]. For example, SmartEx-
change [21] proposes to encode the weight matrices into
a small format and decode once they are loaded on-chip.
However, there is very limited opportunity to compress or
encode the FW intermediate variable involved in the LSTM
training as discussed in Section IV-A. On the other hand,
Echo [16] proposes to store partial intermediate variable
for attention layer during the FW processing and perform
the re-computing based on partial variables to generate the
entire variables. However, the LSTM training exhibits different
computation pattern that the generated intermediate variables
are independent with each other, hence, Echo can hardly be
applied for LSTM training.

VIII. CONCLUSION

To enable a highly-efficient LSTM training solution for
the ever-growing model size, we propose the first cross-stack
training solution, n-LSTM, for large LSTM models. n-LSTM
comprises both software-level and hardware-level innovations
that effectively lower the memory footprint upper-bound and
excessive data movements during large LSTM training, while
also drastically improving training performance and energy
efficiency. Experimental results on six real-world large LSTM
training benchmarks demonstrate that 7n-LSTM significantly
reduces the memory-footprint and the data movement for the
LSTM training. Furthermore, it outperforms the state-of-the-
art GPU implementation for LSTM training on performance
and energy efficiency.
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