
34

Hierarchical Learning Algorithms for Multi-scale Expert
Problems
LIN YANG, University of Massachusetts Amherst, USA
YU-ZHEN JANICE CHEN, University of Massachusetts Amherst, USA
MOHAMMAD H. HAJIESMAILI, University of Massachusetts Amherst, USA
MARK HERBSTER, University College London, UK
DON TOWSLEY, University of Massachusetts Amherst, USA

In this paper, we study the multi-scale expert problem, where the rewards of di�erent experts vary in di�erent
reward ranges. The performance of existing algorithms for the multi-scale expert problem degrades linearly
proportional to the maximum reward range of any expert or the best expert and does not capture the non-
uniform heterogeneity in the reward ranges among experts. In this work, we propose learning algorithms that
construct a hierarchical tree structure based on the heterogeneity of the reward range of experts and then
determine di�erentiated learning rates based on the reward upper bounds and cumulative empirical feedback
over time. We then characterize the regret of the proposed algorithms as a function of non-uniform reward
ranges and show that their regrets outperform prior algorithms when the rewards of experts exhibit non-
uniform heterogeneity in di�erent ranges. Last, our numerical experiments verify our algorithms’ e�ciency
compared to previous algorithms.

CCS Concepts: • Computing methodologies! Online learning settings; Sequential decision making.

Additional Key Words and Phrases: Multi-scale online learning, hedge model, expert problem

ACM Reference Format:
Lin Yang, Yu-zhen Janice Chen,MohammadH. Hajiesmaili, MarkHerbster, and Don Towsley. 2022. Hierarchical
Learning Algorithms for Multi-scale Expert Problems. Proc. ACM Meas. Anal. Comput. Syst. 6, 2, Article 34
(June 2022), 29 pages. https://doi.org/10.1145/3530900

1 INTRODUCTION
In the past few decades, a broad range of online learning problems has been studied and applied to
various applications, such as online shortest path routing, online advertisement, channel allocation,
recommender systems, etc. This paper studies an extension of the expert problem that deals with
experts with scaled rewards in di�erent ranges.
Prediction with Expert Advice (PEA) (a.k.a, the expert problem) has been extensively studied

since the seminal work [16, 25, 35], and further developed in follow-up works [13, 34]. This paper
focuses on the Hedge problem as a classic variant of PEA. The Hedge problem is a repeated game,
where an online learner must make sequential decisions over) slots, choosing experts from a
given expert set of size . A series of rewards is associated with each expert, whose values are
generated by an oblivious adversary from a given range, e.g., from [0, 1] in the basic setting. At

Authors’ addresses: Lin Yang, University of Massachusetts Amherst, USA, linyang@cs.umass.edu; Yu-zhen Janice Chen, Uni-
versity of Massachusetts Amherst, USA, yuzhenchen@cs.umass.edu; Mohammad H. Hajiesmaili, University of Massachusetts
Amherst, USA, hajiesmaili@cs.umass.edu; Mark Herbster, University College London, UK, m.herbster@cs.ucl.ac.uk; Don
Towsley, University of Massachusetts Amherst, USA, towsley@cs.umass.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2476-1249/2022/6-ART34 $15.00
https://doi.org/10.1145/3530900

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

https://doi.org/10.1145/3530900
https://doi.org/10.1145/3530900

34:2 Lin Yang et al.

each slot, the online player selects an expert and earns the reward associated with the chosen
expert. The feedback model is full information, which means that the online player observes the
rewards of other experts after selecting an expert. The learner’s goal is to minimize its regret with
respect to the best expert. The most studied strategy for the above problem is called the Hedge
algorithm [16, 17], which achieves the order-optimal regret of $ (

p
) log) for the Hedge problem.

In this paper, we focus on a practically relevant variant of the Hedge problem, the multi-scale
Hedge problem or MSHedge, for short. The basic Hedge problem assumes a homogeneous reward
range for each expert, e.g., [0, 1]. In practice, however, there is a broad range of applications such
as dynamic pricing, portfolio selection, etc. (see §2.3 for motivating examples), where the rewards
of di�erent experts are heterogeneous and scaled in di�erent ranges. This motivates the model of
our interest, which involves multi-scale experts, those who possess non-uniform reward ranges. In
the MSHedge problem, the reward range of expert 8 is [!8 ,*8], where*8 and !8 serve as the upper
and lower bounds of rewards, whose values are known to the online player in advance. For ease of
technical presentation, we consider two di�erent models for MSHedge: (1) MSHedge-U, which only
considers heterogeneity in upper bounds with lower bounds set to 0; and (2) MSHedge-LU, which
allows both upper and lower bounds to be heterogeneous. It is straightforward to show that the
naive extension of the Hedge algorithm to the multi-scale setting leads to a regret of$ ("

p
) log),

which linearly scales with " , the maximum reward upper bound among experts. The algorithm
in [11] improves the regret to scale linearly proportional to the reward upper bound of the optimal
expert instead of the largest reward upper bound among all experts. We review the most relevant
literature in §2.4 and more extensively in §7.
Prior algorithms in the mainstream literature for the Hedge problem select experts in a proba-

bilistic manner in each round, i.e., the higher the cumulative empirical reward of an expert, the
higher the selection probability. However, this algorithmic idea ignores the impact of multi-scale
reward upper bounds on how fast experts with larger cumulative rewards can be changed over time.
More speci�cally, consider a scenario where the cumulative empirical reward of an expert with a
large upper bound falls behind some others. Then, the large upper bound of this expert provides
room for her to catch up with others quickly, and hence, the leading expert can be changed faster.
We propose learning algorithms that explicitly capture this observation in the decision-making
process, and we discuss them in the following.

1.1 Contributions
DRate: A hierarchical learning algorithm with di�erentiated learning rates. Our key idea is to

explicitly capture the above intuitive observation into the algorithm design. Towards this, we
propose to adaptively change the learning rate, and hence the selection probabilities of the expert,
based on both the cumulative feedback and upper bound of the leading experts. We develop
two learning algorithms based on Di�erentiated learning RATEs, called DRate-U and DRate-LU for
short, which work within the MSHedge-U and MSHedge-LU models, respectively. For simplicity of
presentation, we also refer to those two algorithms together as DRate.

To deal with the heterogeneity of multi-scale reward values, DRate partitions the set of experts
into smaller subsets, placing experts with similar reward ranges in the same subset. DRate recur-
sively continues to partition the experts into the new subsets and stops partitioning when the
upper bounds in the subset are uniform. With a given tree, the decision-making process of DRate
is as follows. At each round, DRate traverses the tree by recursively selecting nodes from the root
to a leaf node and possibly running the Hedge algorithm in the selected leaf node, and eventually,
returning an expert associated with the selected leaf node as its �nal decision.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

Hierarchical Learning Algorithms for Multi-scale Expert Problems 34:3

The core idea of DRate is to determine di�erentiated learning rates within node algorithms.
Generally, the learning rate determines the convergence speed of decisions to the leading child
node, i.e., the node with the largest cumulative reward. Intuitively, the leading children nodes with
di�erent upper bounds have di�erent impacts on the regret of a learning algorithm. Hence, the
learning rate should be carefully tuned based on the upper bounds of the leading child node. Take
MSHedge-U as an example. When the leading child node only contains experts with small upper
bounds, an algorithm has high risk to encounter large regret loss, since the leading child node
can be easily catch up with by the other one. In this case, a small or conservative learning rate
is preferable. On the other hand, when the leading child node contains experts with large upper
bounds, it usually takes longer for the other nodes to catch up. The algorithm may have more
con�dence in the leading node, and thus a higher or aggressive learning rate is more e�cient. In
§3, we present the details of DRate and rigorously explain the technical implementation of the
intuitive idea of hierarchical partitioning of experts and calculating the di�erentiated learning rates
to traverse the underlying tree.

Regret results for MSHedge-U. We �rst characterize the regret of DRate-U as a function of the
path from root to the node that includes the best expert (Theorem 1). By proper parameter setting
and with a balanced binary tree, we show that DRate-U achieves a regret of$ (

p
*1

Õlog
;=1

p
*2;�1)),

where *1, w.l.o.g, is the largest reward upper bound assuming a descending order of experts based
on their upper bounds. Then in §4.3, we propose an algorithm that constructs an underlying tree that
minimizes the regret characterized in Theorem 1. We also demonstrate the signi�cance of the regret
of DRate-U as compared to related results in §4.2.Whenmost reward upper bounds aremuch smaller
than the largest one, *1, DRate-U attains a much smaller regret than the Hedge algorithm, whose
regret is $ (*1

p
) log). This also improves the result in [11], which is $ (max82K *8

p
) log) in

the worst case. We �nally derive regret lower bounds for a special case of MSHedge with only two
experts and the general case with more than two experts. For the two-experts case, the lower bound
is ⌦(

p
*1*2)), which matches the regret upper bound of DRate-U.

Regret results for MSHedge-LU. The regret of DRate-LU also depends on how the tree is con-
structed. Given a tree, DRate-LU provides a provable regret, which is the cumulative regret over
the path from root to the node that includes the best expert (Theorem 4). Speci�cally, by placing
experts with similar reward ranges into the same node, DRate-LU can reduce the region that the
reward �uctuates in a node, as well as the regret. Note that we also discuss how our results applies
to other variations of the expert problem such as the Lipschitz expert setting in §5.3.

Numerical results. Last, we evaluate the performance of DRate through numerical experiments in
§6. Our numerical results using di�erent heterogeneity scenarios of the multi-scale expert problem
shows that DRate outperforms the Hedge [16, 17], a variant of the Hedge [14], and the algorithm
in [11].

2 THE MULTI-SCALE EXPERT PROBLEM
In this section, we formally de�ne the multi-scale expert problem, highlight a few motivating
examples, and �nally review the most relevant prior results for this problem. A summary of main
notations in the system model and algorithms is given in Table 1.

2.1 Prediction with expert advice and the Hedge problem
Prediction with Expert Advice has been studied extensively by the community in past decades. The
study of PEA dates back to early work by Littlestone, Warmuth, and Vovk [16, 25, 35], and was
further developed in follow-up works [13, 34]. In this paper, we focus on an extended version of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

34:4 Lin Yang et al.

Table 1. Summary of main notations related to MSHedge and DRate

Notation Description
) The number of time slots, indexed by C
K Set of all expert, indexed by 8 , and = |K |

GC (8) Reward of expert 8 at time slot C
*8 Reward upper bound of expert 8
!8 Reward lower bound of expert 8
�C The selected expert of the online player at time slot C
E A node (either internal or leaf) in the decision tree of DRate
> The root (sink) node of the decision tree in DRate

E; The left child of node E
EA The right child of node E
E=? The =-th ancestor of node E; speci�cally, we simplify E’s parent node, E1? , as E?
E⇤ The leaf node containing the optimal expert

path(E) The set of nodes in the path from the root to node E
*E The largest reward upper bound of the experts in node E, i.e.,*E = max82E *8

!E The smallest reward lower bound of the experts in node E, i.e., i.e., !E = min82E !8
ĜC (E) Feedback of node E at time slot C
-̂C (E) Cumulative feedback of node E up to time slot C

[1 (E) and [2 (E) The di�erentiated learning rates for node E
[0 (E) The learning rate of the Hedge algorithm in the leaf node E
UC (E) The child of node E which has larger or equal cumulative reward at time C
VC (E) The child of node E which has smaller cumulative reward at time C
?C (E) The selection probability of node E at time slot C
?̂C (E) The selection probability of child node E by node E? at time slot C
?̂C (8) The selection probability of expert 8 by the leaf node E containing expert 8
') Regret over) time slots

') (E) Individual regret of node E over) time slots

the Hedge problem, as a classic variant of PEA. The Hedge problem is a repeated game, where an
online learner is required to make sequential decisions, choosing experts from a given expert set of
size . We denote the expert set as K = []. The game lasts) time slots. Associated with each
expert 8 is a series of rewards, G8 (C), C = 1, 2, . . . ,) , assigned over time, whose values are generated
arbitrarily from a given range. In the standard Hedge setting, the range of the reward is usually
[0, 1], and rewards are generated by an oblivious adversary that is unaware of the actions of the
online player. At time slot C , the online player selects an expert �C , and earns the reward associated
with the selected expert, i.e., GC (�C). The feedback model is full information, which means that the
online player can observe the rewards of every expert, GC (8), 8 2 [], after selecting an expert. The
goal of the learner is to receive as much cumulative reward as possible, and her performance can
be measured by comparing the cumulative rewards of the learner and that of the optimal expert,
i.e., the one with the largest cumulative reward. To this end, we de�ne pseudo-regret as

') := max
82K

)’
C=1

GC (8) � E
"
)’
C=1

GC (�C)
#
, (1)

where the �rst term on the right-hand side expresses the cumulative reward of the best expert
in hindsight, and the second one corresponds to the cumulative expected reward received by the
learning algorithm. In the rest of the paper, we refer to pseudo-regret simply as regret. The most
commonly studied strategy for the above problem is called the Hedge algorithm [16, 17], which
achieves an order-optimal regret of $ (

p
) log) for the Hedge problem. The Hedge problem is a

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

Hierarchical Learning Algorithms for Multi-scale Expert Problems 34:5

well-established framework for learning under uncertainty, and since the early works in the 1990s
there has been substantial literature tackling the extended variants or developing better algorithms.
We review the most relevant literature in §2.4 and more extensively in §7.

2.2 MSHedge: Hedge with multi-scale experts
The basic versions of the above framework assume a homogeneous reward range, [0, 1] for each
expert. In practice, however, there are a broad range of applications where the rewards of di�erent
experts are constrained in di�erent ranges. This motivates the model of our interest, which involves
multi-scale experts, those who possess non-uniform reward ranges.

In the Hedge problem with multi-scale experts, or MSHedge for short, the reward range of expert
8 is de�ned as [!8 ,*8], where*8 and !8 serve as the upper and lower bounds of rewards, and satisfy
*8 > !8 � 0. For ease of technical presentation of the proposed algorithms, we consider two
di�erent models for MSHedge: the �rst one, referred to as MSHedge-U, only involves heterogeneity
in upper bounds, and we set !8 = 0, 8 2 K ; and the second one, referred to as MSHedge-LU, allows
both upper and lower bounds to be non-uniform. We assume the bounds for those reward ranges
are known to the learning algorithm as prior knowledge. In MSHedge, we continue to use the regret
de�ned in Equation (1) as the performance metric for a learning algorithm. Yet, the regrets of
learning algorithms in MSHedge are expected to depend on the non-uniform reward ranges, instead
of a normalized uniform reward range in the standard Hedge setting, whose in�uence in regret is
usually ignored. To distinguish our multi-scale setting from the basic uniform setting, we refer to
the regret in the multi-scale case as the non-uniform regret.

2.3 Motivating examples for multi-scale experts
MSHedge can �nd many practical applications in real world and we highlight a few in the following.
The �rst application is online auction and dynamic pricing. The dynamic pricing problem has

been extensively studied using a broad range of online learning tools including online algorithms,
multi-armed bandits, and expert problem [10]. In its basic setting, upon arrival of a buyer, the
online decision maker posts a price for an item, and the buyer buys the item only if the posted price
is less than their private valuation. In the context of MSHedge, each possible posted price could be
considered as an expert with possible rewards of either 0 when the buyers rejects the posted price,
or* > 0, when the buyer buys the item.

Another example is portfolio selection [9, 11], each type of asset is modeled as an expert, and the
learning algorithm decides on the portfolio of assets at each round with the aim to maximize earned
pro�ts. In practice, one usually observes heavy-tailed price �uctuations in a �nancial market, and
the prices of di�erent types of assets can vary in much di�erent ranges. Hence, the online learning
model must de�ne di�erent reward ranges for each expert.
The last example is the online learning algorithm in recommender systems that are allowed

to provide each user with a set of advertisements with di�erent weights, rather than individual
one, and the total weights of the recommendations in the set must respect some constraints. For
example, a webpage can only contain a �nite number of advertisements, since the sum of the sizes
of the advertisements have to respect the capacity of the webpage. The reward is proportional
to the number of advertisements that the user clicks, and the upper reward limit of a set of
recommendations is the sum of those for each individual advertisement in this set. Also, the reward
ranges are known to the online learner, since they can observe the advertisements in each set.

2.4 The state-of-the-art results for MSHedge
An initial idea for extending the uniform reward range assumption in the basic Hedge model to
multi-scale setting is to normalize the reward ranges based on the largest value and then study

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

34:6 Lin Yang et al.

how the normalization of this range impact the regret of existing algorithms. For example, scaling
the rewards by * = max8 *8 , yields a new reward range for rewards, [0,*]. Without any major
modi�cation, the algorithms, such as Hedge [6], developed for the [0, 1] case guarantee the reward
bound

- ⇤) �
q
*- ⇤) log ,

where - ⇤) is the cumulative reward of the best expert over the time horizon, which could be
as large as *) . Hence, the algorithm su�ers a regret of $ (*

p
) log) in the worst case, which

degrades linearly with respect to the largest reward upper bound of experts. To improve this linear
dependence on reward upper bound, there has been another study in expert problem with non-
uniform reward ranges [10], where a model similar to our �rst model MSHedge-U is tackled. In [10]
a modi�ed de�nition of the regret is used to analyze the performance of the proposed learning
algorithms. Speci�cally, with di�erent reward ranges across experts, they de�ne the action-speci�c
regret, ') ,8 , which is

') ,8 :=
)’
C=1

GC (8) � E
"
)’
C=1

GC (�C)
#
. (2)

Speci�cally, we have ') = max82K ') ,8 . Then, using the action-speci�c regret, a multi-scale learning
algorithm is devised and its performance is demonstrated by the development of upper bounds
of the action-speci�c regrets for each expert 8 . The regret of the proposed algorithm for expert
8 depends linearly on *8 , and thus the worst-case regret de�ned in Equation (1) depends on the
reward upper bound of the best expert. While this is an improvement over dependence on the
largest reward upper bound among any expert (either optimal or sub-optimal), in the worst case,
where the best expert has the largest upper bound, the regret reduces to the standard result of the
Hedge algorithm, i.e., $ (max82K *8

p
) log). In this paper, we will develop learning algorithms

that explicitly take into account di�erent reward ranges of experts in their decision making.
Last, we note that in another direction, some works consider additional structured settings such

as Lipschitz continuity for the expert problem, which implicitly introduce heterogeneity to the
reward ranges. In particular, dependence or correlation can be introduced across the rewards of
di�erent experts, resulting in various �uctuations of the rewards. A classic example of the structured
setting is the Lipschitz expert problem[27, 37], where the indices of experts lie in a metric space and
the rewards of the experts have to satisfy the Lipschitz continuity condition. In §5.3, we compare
our model with these structured settings. Speci�cally, we show that with some modi�cations of our
proposed algorithm for the MSHedge model, we can extend our algorithms to capture the Lipschitz
expert problem as well.

3 THE DRATE ALGORITHM
In this section, we introduce the DRate-U algorithm for the �rst model of MSHedge, where the reward
upper bounds of experts scale in di�erent values. The contribution of experts with heterogeneous
reward upper bounds to regret is di�erent, so, our high-level idea is to adopt a hierarchical learning
policy to e�ectively capture the multi-scale upper bounds. More speci�cally, DRate-U leverages
a tree structure to categorize the experts with di�erent upper bounds, and tackles the original
learning problem hierarchically by traversing through the constructed tree.

In Figure 1, we demonstrate the structure of the decision tree where the expert set K resides at
the root and each internal node represents a subset of experts. Each node in the tree associated
with more than one experts with di�erent upper bounds can be further partitioned into two smaller
subsets as its children. The algorithm may choose not to further partition the node when the upper
bounds of the contained experts are the same. Hence, a leaf node may contain more than one expert.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

Hierarchical Learning Algorithms for Multi-scale Expert Problems 34:7

Root Node

Internal NodeInternal Node

Leaf Node Leaf Node Leaf Node Leaf Node

Part 1:
Hierarchical
Learning
Policy
Implementing
Node
Algorithms

Part 2:
Hedge
Algorithms
without Set
Partitioning

Fig. 1. The hierarchical structure of the DRate-U algorithm

The performance of DRate-U closely depends on how the tree is constructed. However, we �rst
need to characterize the regret performance of the node algorithm in the non-leaf nodes, and then,
based on the characterization of the regret, we can optimize the construction of the tree. Hence, we
discuss the optimal tree construction given the expert upper bounds in §4.3.
With a given tree, the decision making process of DRate-U is as follows. At each time slot,

DRate-U traverses the tree by recursively calling a node algorithm1 from the root to a leaf node
and possibly running the Hedge algorithm in the selected leaf node. Eventually, it returns an expert
associated with the selected leaf node as its �nal decision. In DRate-U, the decision making in each
non-leaf node can be considered as an independent two-expert problem, where children of the node
are taken as super experts. The node algorithm plays a critical role in dealing with multi-scale
experts in DRate-U, where a function parameterized by a learning rate is maintained to generate
the selection probabilities of the child nodes. The node algorithm in DRate-U adjusts the learning
rate based on the upper bounds of the leading child node, i.e., the one with the larger cumulative
reward. We present the intuitions and details in §3.1.
By formal de�nition of the main notations in Table 1, we proceed to explain the the technical

details of the algorithm. Let E denote a node (either internal or root) in the tree. The left and right
children of node E are denoted as E; and EA , respectively.
At time slot C , DRate-U determines the selection probability of choosing each child of node E ,

which is denoted as ?̂C (E;) and ?̂C (EA), respectively. The values of ?̂C (E;) and ?̂C (EA) are determined
based on past reward feedback, and their sum is one, i.e., ?̂C (E;) + ?̂C (EA) = 1. Given per-node
selection probabilities, we can derive the actual selection probability of each node, denoted as ?C (E),
which is

?C (E) =
÷

E0 2path(E)
?̂C (E 0),

where path(E) denotes the set of nodes on the path from the root to node E .
When DRate-U commits to an expert, rewards associated with experts are revealed and DRate-U

updates the feedback of each node. We denote ĜC (E) to be the feedback of node E at time C and
de�ne it as

ĜC (E) :=
’
82E

?C (8)
?C (E)

GC (8) .

1In our terminology, the algorithm executed by a non-leaf node in the tree is called the node algorithm.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

34:8 Lin Yang et al.

Note that ĜC (E) is the expected reward conditioned on node E is selected. One can calculate ĜC (E)
recursively using feedback from the children, i.e.,

ĜC (E) = ?̂C (E;)ĜC (E;) + ?̂C (EA)ĜC (EA). (3)

Last, let -̂C (E) denote the cumulative feedback of node E up to time slot C , that is

-̂C (E) :=
C’
g=1

Ĝg (E).

For consistency, we set -̂0 (E) = 0.

3.1 Di�erentiated learning rates for the node algorithm
Now we focus on how to select a child node in the node algorithm of DRate-U, where the goal is to
solve a two-expert problem. The idea in the mainstream literature is to select the leading expert, i.e.,
the expert with the larger cumulative feedback, with higher probability. However, this approach
ignores the impact that multi-scale reward upper bounds can have on how fast the leading expert
may be changed over time. In contrast, we propose to adaptively change the learning rate, and
hence the selection probabilities, depending on both the cumulative feedback and upper bound of
the leading expert. We �rst give an intuition and then formally present the technical idea.

Let UC (E) be the child of node E with larger cumulative feedback at time C , and VC (E) be the other
child, i.e., -̂C (UC (E)) � -̂C (VC (E)). There are two cases to consider: C���-1 occurs when UC (E) is the
node with the larger upper bound, i.e., *UC (E) � *VC (E) ; and C���-2, when UC (E) is the node with
smaller upper bound than that of VC (E), i.e.,*UC (E) < *VC (E) . The key idea is to assign aggressive (or
larger) learning rate to C���-1 and a conservative (or smaller) learning rate when facing C���-2.
The reason is intuitive: with multi-scale upper bounds, an important observation is that when
C���-2 occurs, i.e., the cumulative feedback of the expert with larger upper bounds falls behind, the
risk of large regret is higher, since the larger upper bound provides a room for the expert to quickly
catch up with the cumulative feedback of the other node. Thus, in C���-2, a small or conservative
learning rate is preferable. On the other hand, in C���-1, i.e., when the expert with lower upper
bound falls behind, it takes longer for it to catch up with the other one, so, it is safe to select a more
aggressive learning rate.

With the above intuition, we proceed to formally determine the learning rates in the node algo-
rithm of DRate-U. For node E , the node algorithm maintains two learning rates [1 (E) and [2 (E) as-
sociated with C���-1 and C���-2, respectively. During the learning process, the learning rates [1 (E)
and [2 (E) may be alternatively adopted by DRate-U. Further, de�ne⇡C (E) := -̂C (UC (E)) � -̂C (VC (E)),
C = 0, 1, 2, . . . ,) , as the gap between the cumulative feedback of the two experts up to time C . Then,
we set the selection probabilities for the two children of node E as follows

?̂C+1 (UC (E)) = 1 �
✓
1
2
� ⇡C (E)[I (E)

◆+
, ?̂C+1 (VC (E)) =

✓
1
2
� ⇡C (E)[I (E)

◆+
, (4)

where [I (E), I 2 {1, 2} represents the learning rates used in the two cases and plays a critical role
in determining the speed at which the node algorithm converges to the better child. The larger
[I (E) is, the faster the algorithm converges to the leading child. In our analysis, we derive values
[1 (E) and [2 (E) that optimize the regret.

3.2 The Hedge algorithm in leaf nodes with multiple experts
Once a leaf node with more than one experts is selected, DRate-U calls the Hedge algorithm to
select an expert in the leaf node as the �nal decision. For any leaf node E with more than one expert,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

Hierarchical Learning Algorithms for Multi-scale Expert Problems 34:9

Algorithm 1 Node algorithm for node E at time C (subscript C is dropped)
1: Initialization: U (E) = E; , V (E) = EA , [1 (E) > 0, [2 (E) > 0, -̂ (E;) = 0, -̂ (EA) = 0
2: if node E is selected by E? then ù Select a child node
3: if *U (E) � *V (E) then ù represents C���-1
4: [I (E) [1 (E)
5: end if
6: if *U (E) < *V (E) then ù represents C���-2
7: [I (E) ! [2 (E)
8: end if
9: Select a child node with probability ?̂C (U (E)) and ?̂C (V (E)) , whose values are given in Equation (4)
10: end if
11: Receive feedback from node E’s children, ĜC (E;) and ĜC (EA) ù Update feedback of nodes
12: Update -̂ (E;) and -̂ (EA) : -̂ (E;) -̂ (E;) + ĜC (E;) , -̂ (EA) -̂ (EA) + ĜC (EA)
13: Calculate the feedback of node E, ĜC (E) , based on Equation (3), which will be used to calculate the feedback of node E?
14: if -̂ (U (E)) < -̂ (V (E)) then
15: Swap the values of U (E) and V (E)
16: end if

DRate-U maintains a series of weightsFC (8), 8 2 E . For convenience, we setF0 (8) = 1. At each time
slot C , DRate-U normalizes the rewards observed on each expert and update the weights as follows.

FC (8) = FC�1 (8) · exp([0(E)GC (8)/*8),
where [0(E) > 0 is the learning rate in the Hedge algorithm. Then, the selection probability of
expert 8 in node E at time slot C + 1 is

?̂C+1 (8) =
FC (8)Õ
80 2EFC (8 0)

, 8 2 E .

For consistency, we set ?̂C (8) = 1 if there is only one expert in a leaf node. Let E be the leaf node
that contains expert 8 . Then, the actual selection probability of expert 8 at time slot C is

?C (8) = ?C (E)?̂C (8) = ©≠
´

÷
E0 2path(E)

?̂C (E 0)™Æ
¨
?̂C (8).

Last, we recall that our discussion on how to design a decision tree for the DRate-U algorithm
is given in §4.3. Our regret analysis in the next section characterizes the regret of DRate-U as
a function of the regret introduced by the nodes in path(E⇤) (see Lemma 1). Thus, the optimal
construction of the underlying tree should minimize the aggregate regret over di�erent paths.

4 REGRET ANALYSIS FOR DRATE-U

We �rst state our main results and remarks for the regret of DRate-U in §4.1. In §4.2, we provide a
few examples to clarify the signi�cance of the regret of DRate-U. The regret of DRate-U depends on
how the underlying tree structure is constructed. In §4.3, we present an algorithm for the optimal
construction of the tree.

4.1 Main results and remarks
We de�ne the notion of node regret of DRate-U. In the following, non-leaf nodes refer to either the
root or internal nodes. All proofs are given in the appendix of the paper.

D��������� 1. (Node Regret) Given a tree for DRate-U, de�ne node regret ') (E) for node E over
horizon) as

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

34:10 Lin Yang et al.

(1) If E is a non-leaf node,

') (E) := max

(
)’
C=1

ĜC (E;),
)’
C=1

ĜC (EA)
)
�

)’
C=1

(?̂C (E;)ĜC (E;) + ?̂C (EA)ĜC (EA)) . (5)

(2) If E is a leaf node,

') (E) :=
⇢
max82E

Õ)
C=1 GC (8) �

Õ)
C=1

Õ
82E ?̂C (8)GC (8), |E | > 1;

0, |E | = 1 (6)

The �rst term on the right-hand side of Equation (5) corresponds to the maximum cumulative
feedback of the children of node E , and the second term corresponds to the cumulative expected
feedback of node E . Generally, the node regret of node E characterizes the speed that its decisions
converge to the child generating the larger cumulative feedback.
The following lemma implies that the regret of DRate-U is upper bounded by the sum of the

node regrets on the path from the root node to the leaf node which contains the optimal expert.

L���� 1. The regret of DRate-U satis�es

') 
’

E2path(E⇤)
') (E).

With Lemma 1, the remaining analysis is to upper bound the node regret for each non-leaf node
and the leaf node containing the optimal expert, respectively.
Let *E be the maximum reward upper bound of the experts in node E , i.e., *E := max82E*8 . In

the following proposition, we provide an upper bound for the node regret of any non-leaf node E ,
which depends on the largest reward upper bounds of E ’s children, i.e.,*E; and*EA .

P���������� 1. (Node Regret of a Non-leaf Node) Let E be a non-leaf node of the tree of DRate-U,
assume*E; � *EA . With learning rates [1 (E) > 0 and [2 (E) > 0, we have

') (E) 
1

[1 (E)
+)* 2

EA[1 (E) +
1

[2 (E)
+ 2)*E;*EA[2 (E) +*E; +*EA .

P���������� 2. (Node Regret of a Leaf Node, Theorem 1.5 in [18]) Let E be a leaf node in the
tree of DRate-U and |E | > 1. With learning rate [0(E) > 0, we have

') (E)  [0(E)* 2
E) + log |E |

[0(E) .

By assuming, without loss of generality, *E; � *EA holds for every non-leaf node E in the
constructed tree, and combining propositions 1 and 2, and Lemma 1, we present the main result.

T������ 1. (Regret of DRate-U) With learning rates [1 (E) > 0 and [2 (E) > 0 for non-leaf node
E and [0(E 0) > 0 for leaf node E 0, the regret of DRate-U satis�es the following upper bound.

') 
’

E2path(E⇤)\{E⇤ }

✓
1

[1 (E)
+)* 2

EA[1 (E) +
1

[2 (E)
+ 2)*E;*EA[2 (E) +*E; +*EA

◆
+&1,

where &1 = [0(E⇤)* 2
E⇤) + log |E⇤ |

[0 (E⇤) , if |E⇤ | > 1; 0, otherwise.

The following corollary gives the result of DRate-U under the learning rates minimizing the
upper bound in Theorem 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

Hierarchical Learning Algorithms for Multi-scale Expert Problems 34:11

Fig. 2. Balanced binary tree for DRate-U.

C�������� 1. With [1 (E) = 1/(*EA
p
)), [2 (E) = 1/

p
2*E;*EA) , and [0(E 0) =

p
log |E 0 |/) /*E0 ,

the regret of DRate-U satis�es the following upper bound.

') 
’

E2path(E⇤)\{E⇤ }

⇣p
2*E;*EA) +*EA

p
)
⌘
+*E⇤

p
) log |E⇤ |.

The above results imply that the regret of DRate-U depends on theway that the tree is constructed.
In the following corollary, we further specify the regret of DRate-U when the expert set is fully
partitioned into a balanced binary tree as shown in Figure 2.

C�������� 2. (Regret of DRate-U with a Balanced Binary Tree) Given a balanced binary tree in
DRate-U, assuming *1 � *2 � · · · � * , and with [1 (E) = 1/(*EA

p
)), [2 (E) = 1/

p
2*E;*EA) , the

regret of DRate-U satis�es

') = $

 p
*1

log ’
;=1

p
*2;�1)

!
.

R����� 1. (Comparison with the Hedge Algorithm [18]) We �rst clarify that the regret in Corol-
lary 2 is not always better than the optimal result by Hedge. For example, when all upper bounds
are all equal to * , DRate-U yields a regret of $ (*

p
) log), while Hedge achieves a better regret of

$ (*
p
) log). However, DRate-U achieves much better performance than Hedge in heterogeneous

settings with non-uniform upper bounds across experts. We further scrutinize this claim by providing
several examples of non-uniform upper bound structures in §4.2. A promising future direction is to
develop an algorithm that can simultaneously achieve the optimal regret bound under both uniform
and non-uniform settings.

R����� 2. (Comparison with Multi-scale Learning Algorithm in [11]) The proposed algorithm
in [11], analyzes the results for an action-speci�c regret de�ned in Equation (2) through a multi-scale
learning algorithm. Speci�cally, the action-speci�c regret for expert 8 is $ (*8

p
) log())). Hence, the

real regret of the multi-scale learning algorithm proposed in [11] is $ (*8⇤
p
) log())), which can

be as large as $ (max82 [] *8
p
) log())) in the worst case, similar to the result by Hedge. Hence,

the similar arguments for non-uniform upper bounds in Remark 1 could be applied to the algorithm
proposed in [11]. Note that in addition to more analytical examples in §4.2, we numerically compare
the performance of these algorithms with DRate-U in §6.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

34:12 Lin Yang et al.

In the following, we present the lower bounds for MSHedge. We �rst present the lower bound for
a special case with two experts.

T������ 2. Consider a two-expert problem, where the upper bounds is*1 and*2, respectively.
The regret of any algorithm is ⌦

�p
*1*2)

�
.

Combined with Corollary 1, we observe that the above bound is tight for the two expert case.
It is much more complicated to analyze the lower bound in the general case, due to the di�culty
in summarizing the lower bounds with di�erent values of the upper bounds. In the following, we
provide a (loose) lower bound for the general MSHedge problem with more than two experts.

T������ 3. Consider the MSHedge problem with experts. For any 1  8  , the regret of any
algorithm is ⌦

⇣
1

num(*8)
Õ
80:*80 �*8

p
*8*80) log num(*8)

⌘
, where num(*8) denotes the number of experts

whose upper bounds are larger than or equal to*8 .

R����� 3. Assume*1 � *2 � · · · � * �1 � * . A straightforward lower bound for the MSHedge
algorithm is $ (*:

p
) log). Theorem 3 improves the naive lower bound, since we can easily derive

a tighter lower bound from it, which is ⌦(1

Õ
8=2

p
8) log). Also, in the uniform setting with

reward ranges in [0,*] for each expert, the above lower bound becomes tight.

4.2 Additional examples on the impact of tree structure on the regret
In this section, we provide two special instances of MSHedge with particular structures on non-
uniform reward upper bounds of experts, and show how they require di�erent tree structures to
achieve the optimal value of regret for DRate-U as characterized in Theorem 1.

E������ 1. Consider a special instance of MSHedge-U with experts, with the �rst expert with
upper bound* � 1, and the remaining � 1 experts with upper bound of one.

To construct the optimal tree, we place the �rst expert into one set as the left child of the root
node and put the other �1 experts as the right child of the root without further partitioning it into
smaller nodes, since the contained experts have identical reward ranges. Then, a node algorithm
is implemented in the root node and a Hedge algorithm in its right child, respectively. The node
algorithm in the root node uses di�erentiated learning rates, with an aim to select a child node;
and the Hedge algorithm selects an expert from the right child.

With [1 (>) = 1/
p
) and [2 (>) = 1/

p
2*) , the node regret of the root node > is$ (

p
*)). Further,

the node regret of >A is $ (
p
) log(� 1)), as the direct result of the regret of Hedge. By Lemma 1,

the regret of DRate-U with a two-layer tree is the sum of the node regrets, and thus the regret of
DRate-U is$ (

p
*) +

p
) log(� 1)). With su�ciently large* , the regret is dominated by the node

regret of the root, i.e., $ (
p
)). For comparison, the regret of Hedge in this case is $ (

p
) log)

for this special case; hence, DRate-U outperforms Hedge. We also note that combining Theorem 2
and the lower bound result for the basic Hedge problem, yields a regret of any algorithm for the
above setting to be ⌦(

p
*) +

p
) log(� 1)), which implies that the regret of DRate-U is order

optimal.
In the above example, there is only one expert whose upper bound is di�erent from others and

we can achieve the best regret of DRate-U by a hierarchical learning structure with only two layers.
When there is greater heterogeneity in the reward upper bounds, more layers have to be added to
the tree. In the following, we show another example where the upper bounds of experts di�er from
any other’s and DRate-U achieves the best result with many more layers.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

Hierarchical Learning Algorithms for Multi-scale Expert Problems 34:13

2

Fig. 3. Unbalanced tree constructed for Example 2.

E������ 2. Consider a special case of MSHedge-U with experts with di�erent reward upper
bounds in a descending order. With * > 1 and 0 < 1, the upper bounds are set as *1 = 00* ,*2 =
01* , . . . ,* �1 = 0 �1* ,* = 0 * .

For the above special instance of MSHedge, we construct an unbalanced tree as shown in Figure 3.
In this tree, the right child all non-leaf nodes is always one expert. At the ;-th layer, the upper
bound of the rewards of the experts associated with the node on the right hand side is 0;�1* . Given
this tree construction, by applying the results in Corollary 2, DRate-U guarantees the following
regret upper bound.

') = $

p
*
 +1’
;=1

p
*0

;�1
2
p
)

!
= $

* · 1 �

p
0
 +1

1 � p0
p
)

!
 $

✓
*

1 � p0
p
)

◆
.

We �rst compare the above regret with that of the Hedge algorithm and the result in [11]. The
above regret holds for any > 1, and thus it implies that DRate-U attains a regret of $ (*

p
))

for an arbitrary number of experts. When 1 � p0 is not too small, DRate-U enjoys substantial
improvement over the Hedge algorithm and the result in [11], whose regrets are $ (*

p
log()))

in the worst case. For a two-expert problem with upper bounds being* and 0* , the lower bound
of the regret for any algorithm is ⌦(0*

p
)) [11]. This also serves as a lower bound of the regret

for our example, since our example involves an extended expert set. Ignoring the constant factor 0,
the above regret for DRate-U is order optimal.

4.3 Optimal tree construction
In the previous examples, we outlined two special cases of MSHedge-U and showed how the non-
uniform structure of expert upper bounds can lead to di�erent underlying trees that minimize the
regret of DRate-U based on the main result in Theorem 1. In this section, we present an algorithm
to generate the optimal tree for any instance of MSHedge-U given the reward upper bounds.

Let ') (q) be the regret of DRate-U with a tree q . From Lemma 1, we have

') (q)  max
E2leafnodes

’
E0 2path(E)

') (E 0)  max
E2leafnodes

’
E0 2path(E)\{E }

⇣q
2*E0;*E0A) +*E0A

p
)
⌘
+*E

p
) log |E |.

The above equation suggests that a good way to guarantee a small regret for DRate-U is to
balance the cumulative node regrets across the paths from the root node to leaf nodes. With this
intuition, we present a simple algorithm to construct the optimal tree.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

34:14 Lin Yang et al.

Algorithm 2 optimal_regret(E)
1: A = *E

p
log |E |

2: if E = ; then
3: return 0, ;, ;
4: end if
5: for any E0 ⇢ E and E0 < ; do
6: temp max{optimal_regret1 (E0), optimal_regret1 (E\E0) } +

p
2*E0*E\E0 +min

�
*E0 ,*E\E0

7: if temp < A then
8: A temp

9: E; E0

10: end if
11: end for
12: if A = *E

p
log |E | then ù Compare with the case of no splitting

13: return*E
p
log |E |, E, ;

14: end if
15: return A , E; , E\E;

De�ne the function optimal_regret(E), implemented in a recursive manner. Given a node
E , optimal_regret(E) returns the optimal regret for the tree with E being the root. Speci�cally,
optimal_regret(E) returns three output arguments in order: the smallest cumulative regret from
E to E⇤ (optimal_regret(>) corresponds to the regret of DRate-U), the optimal left child and the
optimal right child. When optimal_regret(E) returns empty set, it implies DRate-U cannot gain
from adding additional levels by splitting E and thus we will add E to the tree as the leaf node. For
simplicity, we use optimal_regret_8 (E) (8 = 1, 2, 3) to denote the 8-th returned argument. The
recursive procedure of optimal_regret(E) is formally de�ned in Algorithm 2. Since for each node
E , optimal_regret(E) exhaustively compares the optimal regrets of all possible partitions on the
experts in E (include no partition), it returns the optimal partition as children of node E . Note that
the maximum cumulative regret on the path from node E to a leaf node is equal to the the node
regret of E plus the larger one of the maximum cumulative regret on the path from E; and EA . Hence,
by recursively calling function optimal_regret(E), one gets the optimal children of each node,
and eventually the optimal tree.

5 MSHedgeWITH NON-UNIFORM UPPER AND LOWER BOUNDS
In this section, we study the MSHedge-LU, where both lower and upper bounds of the rewards are
in di�erent scales, i.e, the reward range of the 8-th expert is within [!8 ,*8]. We propose DRate-LU
as an extended version of DRate-U to deal with the new challenge in the model.

5.1 The DRate-LU algorithm
Similar to DRate-U, DRate-LU also uses a binary decision tree, which is constructed exactly in the
same way as that of DRate-U. Hence, we skip the details on how to construct the decision tree for
DRate-LU, and one can refer to §4.3 for more details.

Associated with each node, DRate-LU also assigns a randomized node algorithm to each non-leaf
node, and a Hedge algorithm to each leaf node with more than one expert. In non-leaf nodes,
DRate-LU uses the function as de�ned in Equation (4) to determine the selection probabilities,
but it rede�nes the per-time-slot expected feedback. Let E be any node except the root node. The
expected feedback of node E at time slot C , ĜC (E), is rede�ned as

ĜC (E) :=
’
82E

?C (8)
?C (E)

⇣
GC (8) � !E?

⌘
=

’
82E

?C (8)
?C (E)

GC (8) � !E? ,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

Hierarchical Learning Algorithms for Multi-scale Expert Problems 34:15

where !E is the smallest reward lower bound of the experts in node E , i.e., !E = min82E !8 . By the
above de�nition, we can derive a range for ĜC (E), which is

⇥
0, *̂E

⇤
, where *̂E := *E � !E? . Note

that, *̂E represents the gap between the largest and smallest rewards of the experts in node E , and
thus re�ects the �uctuation of the reward associated with the experts in node E . Similarly, we
de�ne -̂C (E) :=

ÕC
g=1 Ĝg (E) as the cumulative reward of node E up to time C (set -̂0 (E) = 0) and

⇡C (E) := -̂C (UC (E)) � -̂C (VC (E)) as the gap between the cumulative rewards of the children nodes
of E up to time C . With this rede�nition of notation and similar to DRate-U, DRate-LU calculates
the selection probabilities for the children of node E as follows.

?̂C (UC (E)) = 1 �
✓
1
2
� ⇡C (E)[I (E)

◆+
, ?̂C (VC (E)) =

✓
1
2
� ⇡C (E)[I (E)

◆+
, (7)

where [I (·), I = {1, 2} are the di�erentiated learning rates in node E for C���-1 and C���-2,
respectively, as de�ned in §3.1.

5.2 Regret results for DRate-LU
DRate-LU rede�nes the feedback for each node E except the root node, whose range is [0, *̂E]. The
regret of DRate-LU can be analyzed by similar techniques as those for DRate-U. In order to analyze
the regret of DRate-LU, we �rst give the following propositions demonstrating the node regret
for DRate-LU, whose de�nition is the same as that in (5). Without loss of generality, we assume
*̂E; � *̂EA holds for each non-leaf node E .

P���������� 3. (Node Regret of DRate-LU) Let E be a non-leaf node of the tree constructed by
DRate-LU. With learning rates [1 (E) and [2 (E), DRate-LU guarantees the following per-node regret
for node E .

') (E) 
1

[1 (E)
+)*̂ 2

EA[1 (E) +
1

[2 (E)
+ 2)*̂E; *̂EA[2 (E) + *̂E; + *̂EA .

P���������� 4. (Node Regret of Leaf Node) Let E be the leaf node of the tree constructed by
DRate-LU and |E | > 1. With learning rate [0(E) > 0, DRate-U guarantees the following node regret
for leaf node E .

') (E)  [0(E)*̂ 2
E) + log |E |

[0(E) .

The above propositions can be proved by slightly modifying the proofs of Proposition 1 and 2,
respectively, and thus we skip the proofs. The result in Lemma 1 is applicable to DRate-LU. Hence,
combining the results in Lemma 1 and the above propositions yields the following theorem.

T������ 4. (Regret of DRate-LU) The regret of DRate-LU satis�es the following upper bound.

')
’

E2path(E⇤)\{E⇤ }

✓
1

[1 (E)
+)*̂ 2

EA[1 (E) +
1

[2 (E)
+2)*̂E; *̂EA[2 (E) + *̂E; +*̂EA

◆
+&2,

where &2 = [0(E⇤)*̂ 2
E⇤) + log |E⇤ |

[0 (E⇤) , if |E⇤ | > 1; 0, otherwise.

The following corollary demonstrates the regret with the optimal learning rates.

C�������� 3. By setting learning rates [1 (E) = 1/(*̂EA
p
)) and [2 (E) = 1/

q
2*̂E; *̂EA) for non-

leaf nodes, and [0(E 0) =
p
log |E 0 |/) /*̂E0 for leaf nodes with more than one experts, DRate-LU achieves

the following regret upper bound.

') 
’

E2path(E⇤)\{E⇤ }

✓q
2*̂E; *̂EA) + *̂EA

p
)

◆
+ *̂E⇤

p
) log |E⇤ |.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

34:16 Lin Yang et al.

We skip the proofs for DRate-LU, since once can prove the above results by slightly modifying
the proofs for DRate-U. With similar arguments as in Remark 1, we can show that with non-
uniform reward ranges, the regret of DRate-LU is much smaller than that of Hedge. The regret of
DRate-LU also depends how the tree is constructed. It is much more complicated to construct a
tree for DRate-LU than for DRate-U, since DRate-LU contains two sources of heterogeneity in the
reward ranges. Intuitively, placing the experts with similar reward ranges into the same subset can
reduce the values of *̂E , as well as the entire regret of DRate-LU. In order to show the e�ciency of
DRate-LU, we construct a simple example as follows.

E������ 3. Consider a special case of MSHedge-LU with two sets of experts: one expert with
reward range in [!1,*1]; and the second group of the remaining � 1 experts, whose reward range is
[!2,*2]. We assume [!2,*2] ⇢ [!1,*1].
To construct a tree of the problem instance in Example 3 for DRate-LU, we place the experts

with the same reward range in the same set and construct a two-layer tree as follows.

The Expert with reward range

The Expert with reward range

Fig. 4. A two-layer tree structure for DRate-LU.

For the root note, DRate-LU executes the node algorithm with di�erentiated learning rate; for
the right child of the root node, the Hedge algorithm is used to select among the contained � 1
experts. With the above construction, the node regret of the root node is$ (

p
(*1 � !1) (*2 � !1))),

and the node regret of the right child of the root node is $ ((*2 � !2)
p
) log). By Lemma 1, the

total regret of DRate-LU for the above problem is $ (
p
(*1 � !1) (*2 � !1)) + (*2 � !2)

p
)).

5.3 MSHedge and the Lipschitz expert problem
In this section, we discuss the relationship between MSHedge-LU and another structured settings of
PEA, known as the Lipschitz expert problem [22, 27]. We call this problem LipHedge and de�ne it
formally in the following.

D��������� 2. (The LipHedge Problem) In LipHedge, non-uniform reward ranges of each expert
depends on neighbouring experts. Assumes there are experts. Speci�cally, the time-varying reward
range for the 8-th expert in LipHedge can be denoted as [!8,C , !8,C + 1], 8 2 []. In addition, the lower
bounds of any two adjacent experts satisfy the “Lipschitz Condition”, that is

|!8,C � !8�1,C |  2, 2 > 0, for all 8 = 2, 3, . . . , , and C = 1, 2, . . . ,) . (8)

Compared to MSHedge, LipHedge involves an additional condition on the rewards of adjacent
experts, that is similar to the Lipschitz continuous condition in the Lipschitz Expert problem [22, 27].
We can extend DRate-LU for the LipHedge problem. Toward this, we �rst partition the expert set
recursively and construct a tree with subsets being nodes and construct the same balanced tree as
Figure 2.
We can use the continuous condition for adjacent experts to bound the rewards of the experts

in a node. Consider a node E , which lies in the ;-th layer (take the layer containing the root

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

Hierarchical Learning Algorithms for Multi-scale Expert Problems 34:17

node as the �rst layer). Then, there are /2;�1 adjacent experts associated with node E , and the
reward gap between any two experts will be at most (/2;�1 + 1)2 . Thus, *̂E , satis�es *̂E 
(/2;�2 + 1)2 . Substituting it to Theorem 4 and Corollary 3 yields the regret result of DRate-LU for
LipHedge. By a balanced tree with leaf nodes containing only one expert, DRate-LU attains the
following regret. With setting the learning rates as Corollary 3, DRate-LU guarantees the regret of
') = $

⇣Õlog �1
;=0 2 2;

p
)
⌘
= $

⇣
2
p
)
⌘
for LipHedge. Note that the gap between the maximum and

minimum rewards of experts can be as large as 2 . Thus, Hedge can attain a regret of$ (2
p
) log).

The above theorem shows that DRate-LU is much more e�cient to address LipHedge than Hedge.
Also, compared to standard techniques used in Lipschitz Expert problems [24, 27, 37], our method
attains the same or better performance, but our model can be applied to more general models of
structured PEA.

6 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our proposed algorithms for MSHedge through
numerical experiments and compare them to the basic and extended versions the Hedge algorithm
and prior algorithms for multi-scale experts [11].

6.1 Overview of setup and baseline algorithms
We consider a scenario with = 8 experts with Bernoulli rewards. We scale the Bernoulli processes
by di�erent factors, and take them as rewards for the experts. The lower bound of the reward range
is zero, and the upper bound is di�erent based on the scaling factor. This captures the �rst model
of MSHedge. In all experiments, we report the cumulative regret after 3,000 rounds. All reported
values are averaged over 10 independent trials and standard deviations are plotted as shaded areas.

Comparison algorithms. We compare DRate with three prior algorithms: (1) the Hedge algorithm
with learning rate [=

p
log()/) /(max82 [] 2*8); (2) AdvHedge, which is an extended variant of

Hedge [14] that adjusts the learning rate based on empirical e�ective reward ranges of experts, which
can be non-uniform over time. We set the learning rate of AdvHedge to [=

p
log()/) /(2 ⇤ EmpRR),

where EmpRR stands for the empirical e�ective reward ranges of experts. The third baseline is the
Multi-Scale Multiplicative-Weight (MSMW) algorithm in [11]. MSMW �rst normalizes the reward of
each expert for updating weights and then projects the weights to a simplex by a smooth multi-scale
projection for making the sampling probability distribution over the experts. In our experiment, we
set the learning rate of MSMW to [=

p
log())/) /3. We note that all learning rates for the baseline

algorithms are chosen according to the suggested values in the original work to optimize the regret.
Last, since the reward lower bound is set to zero in our experiments, in our experiments we only
implement DRate-U with [1 (E) = 1/(*E;

p
)) and [2 (E) = 1/(

p
2*E;*EA)), where *E; � *EA . We

expect similar results for the case of multi-scale lower bounds.

6.2 Experimental results
In the following, we evaluate the performance of DRate in two di�erent scenarios.

Non-uniform reward ranges with uniformly selected reward means. In the �rst experiment, eight
experts are categorized into two groups of four experts each. The experts in the same group have a
common reward range of [0, 1], while that for the second group is [0,*],* > 1. Mean rewards of
all experts are randomly selected from [0, 1]. The results in Figures 5(a) and 5(b) demonstrate the
regrets of the investigated algorithms with di�erent reward ranges for the experts in the second
group, i.e., [0, 2], [0, 3], [0, 4], [0, 5], [0, 6]. Speci�cally, Figure 5(a) corresponds to the case where
the optimal expert lies in the �rst group, and Figure 5(b) corresponds to the case where the optimal

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

34:18 Lin Yang et al.

(a) Best expert lies in the �rst group (b) Best expert lies in the second group

(c) Fixed non-uniform reward ranges and means (d) Random reward ranges and means

Fig. 5. Performance comparison with non-uniform reward ranges and means.

expert lies in the second group. Figure 5(a) shows that DRate, MSMW and AdvHedge signi�cantly
outperform the Hedge algorithm. This observation matches our expectation that the performance
of Hedge degrades quickly with large reward upper bounds. In contrast to Hedge, DRate e�ciently
deals with non-uniform reward ranges, with regret slightly increasing as heterogeneity in reward
ranges increases. In Figure 5(b), DRate and AdvHedge outperform others, and the performance of
MSMW is largely degraded. The performance degradation of MSMW matches its theoretical results that
the performance of MSMW linearly degrades as a function of the upper bound of the best expert.
Compared to the �rst set of results in Figure 5(a), one observes that the performance of AdvHedge
remains unchanged and works as well as DRate. That is because, AdvHedge tunes its learning rate
based on empirical reward gaps, and thus mitigates the impact of large reward upper bounds when
empirical rewards of all experts are much smaller than the upper bound. However, as we show in
the next experiment, AdvHedge fails to be competitive in some other experimental scenarios, where
mean rewards of experts also becomes non-uniform.

Non-uniform reward ranges with non-uniform mean rewards. In the second experiment, we
assign non-uniform reward ranges to experts, and then randomly select mean rewards from the
corresponding reward ranges. Results are shown in Figures 5(c) and 5(d). In the �rst experiment,
experts are evenly divided into two groups. The reward ranges of experts in the �rst group are
all set to [0, 1], and those for the second group are set to [0,*],* > 1. Figure 5(c) demonstrates
the regrets of di�erent algorithms for* = 2, 3, 4, 5, 6. In the second experiment in Figure 5(d), no

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

Hierarchical Learning Algorithms for Multi-scale Expert Problems 34:19

�xed upper bounds are assigned to experts. Instead, the upper bound of every expert is randomly
selected from a given range. The larger the range, the greater the heterogeneity in reward ranges.
Figure 5(d) gives the regret results when reward upper bounds of experts are randomly selected
from the ranges [0, 4], [0, 8], [0, 12], [0, 16], [0, 20].
Both Figures 5(c) and 5(d) verify the advantages of DRate over the three baseline algorithms.

Notable observations are summarized as follows. (1) When the heterogeneity of reward ranges
increases, the regrets of all algorithms increase, yet, the regret of DRate is much smaller and
increases at a slower rate than the others. (2) AdvHedge and MSMW perform slightly better than
Hedge, but their regrets increase quickly with non-uniform reward ranges when mean rewards are
randomly selected from the corresponding reward ranges. Speci�cally, for the AdvHedge algorithm,
when mean rewards are randomly selected, it cannot bene�t from mitigating the in�uence of small
empirical rewards as in the �rst set of experiments where mean rewards for all experts lie in a very
small range. The performance of MSMW algorithm also degrades quickly, since the best expert is
likely to have a larger upper bound, resulting in a worse regret.

7 RELATEDWORK
7.1 PEA with generalized reward ranges

Non-uniform reward ranges. In §2.4, we have reviewed this kind of work and compared the results
in those works with ours. Thus, we skip the details here.

Structured rewards. In some works, the reward ranges are characterized by de�ning dependence
or correlation among the rewards of the experts, which introduces heterogeneity to reward ranges
implicitly. For example, the works in [22, 23] assume a structured class of payo� functions over
experts (or decision points called in their work), whose structure is induced by a metric on the
decision space, where correlation or dependence is de�ned among decision points. That is, there
are no �xed reward ranges for decision points, but the reward of each decision point has to satisfy
some dependence or correlation conditions among the decision points. By leveraging the structure
as prior knowledge of algorithms, one is able to design e�cient learning algorithms [31, 33]. For
example, the authors in [24, 27, 37] consider Lipschitz experts in a Euclidean space of constant
dimension, with proven regret upper bound. The above model can be generalized by considering
discontinuity points in the continuous condition, and one can refer to [8, 32]. For the structured
settings of PEA, we have shown the e�ciency of our frameworks by theoretical results in §5.3.
Last, for bandit version of this kind of work, where only partial information on the decision points
can be acquired at each time slot, one can refer to [1, 2, 7, 20, 21] etc.

Time-varying reward ranges. Some other work considers time-varying reward upper bounds.
For example, the works in [3, 19, 36] considered the model where the reward upper bounds can be
time-varying and even unbounded. For example, the work in [36] considered rewards to satisfy
time-varying upper bounds over time, and proposed an algorithm which is optimal as the scaled
�uctuations of one-step losses of experts of the pool tend to zero. In addition to [36], Poland and
Hutter in [19] have studied the games where one-step losses of all experts at each step C are bounded
from above, and the upper bounds consist of an increasing sequence *C , C = 1, 2, . . . ,) , which
are given in advance. They presented a learning algorithm that is asymptotically consistent for
*C = C1/16. However, all of the above works did not consider internal heterogeneity among experts
in a single time slot.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

34:20 Lin Yang et al.

7.2 PEA with specific reward realizations
Another direction of work focuses on devising learning algorithms whose performance depends on
the realization of rewards. Those works assume uniform reward ranges, but the resulting regret
upper bounds can vary with di�erent realizations. Even though the setting of their model di�ers
from ours, we are still interested in comparing their works with ours from the angle of algorithm
design and theoretical results.
In [28], the authors investigated learning algorithms, that can achieve the best performance

of both worlds, that is, attaining optimal regret both for adversarial rewards and for stochastic
rewards. Similarly, the authors in [5] considered a setting where the environment is benign and
generates losses stochastically, but the feedback observed by the learner is subject to moderate
adversarial corruption. They proved that a variant of the classical Multiplicative Weights algorithm
with decreasing step sizes achieves constant regret in this setting and performs optimally in a wide
range of environments, regardless of the magnitude of the injected corruption. Speci�cally, regret
can be expressed as a function of the amount of corruption. Also, one �nds similar results in the
bandit setting [12, 29, 30].
In addition, there are many works on designing parameter-free algorithms, whose regret is

independent of the number of experts to some degree. To do this, we can order the cumulative
payo�s of all actions from highest to lowest and de�ne the regret of the learner to the top n-quantile,
n 2 [0, 1] to be the di�erence between the cumulative reward of the d#ne-th element in the sorted
list and that of the learner. In [15], the authors proposed a novel algorithm, NormalHedge, that
achieves a regret of $ (

q
) ln 1

n + ln2) with respect to the above new de�nition, which means the
algorithm su�ers at most this amount of regret for all but an n fraction of the experts. Note that this
bound does not depend on at all and is at most $ (

p
) ln + ln2), since n � 1/ . This is close

to the result for the Hedge algorithm di�ering by a small additive term ln2 . Then, [26] obtains a
regret of $ (

p
) ln(ln))/n)) for a new algorithm, NormalHedge.DT, which drops the dependence

on . Note that, in the cases where there are many “good” experts whose rewards are close to each
other, the above result is substantially better than that by the Hedge algorithm.

Last, there is another kind of work which attains better regret performance with small expectation

and variance of realized rewards. For example, the authors in [14] reported a regret of$ (
qÕ)

C=1⌧
2
C),

where⌧C is the e�ective range of the rewards at round C , i.e.,⌧C = max82 [] GC (8) �min80 2 [] GC (8 0).
Apparently, when the realization of payo�s is much smaller than the upper bound, the algorithm
signi�cantly outperforms the Hedge algorithm.

Generally, all the aboveworks focus on the performance of the algorithmwith speci�c realizations
of inputs, and the resulting regrets can be based on the heterogeneous payo� realizations over
di�erent experts. However, those work can not improve on the performance of the algorithm under
the worst case. Moreover, those works only leverage the e�ective reward range of all experts, but
none of them take into account the non-uniform reward ranges across experts in a single time slot.

8 CONCLUDING REMARKS
Motivated by the problems of dynamic pricing and portfolio selection, in this paper, we studied an
extended version of the classic Hedge problem where there are multiple experts with non-uniform
reward ranges, and the goal of an online learner is to �nd the best expert. We developed hierarchical
learning algorithms that explicitly consider the heterogeneity of the reward range of experts
into their sequential decision-making. Our theoretical regret analysis shows that the proposed
algorithms outperform the existing algorithms when the heterogeneity of the expert rewards is

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

Hierarchical Learning Algorithms for Multi-scale Expert Problems 34:21

high. We also veri�ed our theoretical observations by numerical experiments and showed the our
algorithms outperforms multiple existing algorithms in the literature.

A limitation of this work is that in the current result, the tight lower bound and optimal result for
our setting in the general case is still missing. We leave developing an algorithm with the optimal
regret for MSHedge as an open problem. Developing a uni�ed algorithm that performs well under
both uniform and non-uniform reward structures is another promising future direction. Another
interesting future work is to extend MSHedge to the bandit setting where the algorithm can only
observe the reward of the selected expert (or arm in the bandit context). Speci�cally, an interesting
problem for the bandit setting with multi-scaled reward ranges is whether we can achieve a better
regret by using the hierarchical learning policy.

ACKNOWLEDGMENTS
This research is supported by NSF CPS 2136199, CAREER 2045641, CNS 2102963, CNS 1908298,
and CNS 2106299, U.S. Army Research Laboratory Army Research Laboratory under Cooperative
Agreement W911NF-17-2-0196 (IoBT CRA), and U.S. Army Research Laboratory and the U.K.
Ministry of Defence under Agreement W911NF-16-3-0001.

REFERENCES
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. 2011. Improved algorithms for linear stochastic bandits.

Advances in neural information processing systems 24 (2011), 2312–2320.
[2] Rajeev Agrawal. 1995. The continuum-armed bandit problem. SIAM journal on control and optimization 33, 6 (1995),

1926–1951.
[3] Chamy Allenberg, Peter Auer, László Györ�, and György Ottucsák. 2006. Hannan consistency in on-line learning

in case of unbounded losses under partial monitoring. In International Conference on Algorithmic Learning Theory.
Springer, 229–243.

[4] Noga Alon and Joel H Spencer. 2004. The probabilistic method. John Wiley & Sons.
[5] Idan Amir, Idan Attias, Tomer Koren, Roi Livni, and Yishay Mansour. 2020. Prediction with corrupted expert advice.

arXiv preprint arXiv:2002.10286 (2020).
[6] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The multiplicative weights update method: a meta-algorithm and

applications. Theory of Computing 8, 1 (2012), 121–164.
[7] Peter Auer, Ronald Ortner, and Csaba Szepesvári. 2007. Improved rates for the stochastic continuum-armed bandit

problem. In International Conference on Computational Learning Theory. Springer, 454–468.
[8] Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. 2018. Dispersion for data-driven algorithm design, online

learning, and private optimization. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE, 603–614.

[9] Avrim Blum, Vijay Kumar, Atri Rudra, and Felix Wu. 2004. Online learning in online auctions. Theoretical Computer
Science 324, 2-3 (2004), 137–146.

[10] Sébastien Bubeck, Nikhil R Devanur, Zhiyi Huang, and Rad Niazadeh. 2017. Multi-scale online learning and its
applications to online auctions. arXiv preprint arXiv:1705.09700 (2017).

[11] Sebastien Bubeck, Nikhil R Devanur, Zhiyi Huang, and Rad Niazadeh. 2017. Online auctions and multi-scale online
learning. In Proceedings of the 2017 ACM Conference on Economics and Computation. 497–514.

[12] Sébastien Bubeck and Aleksandrs Slivkins. 2012. The best of both worlds: Stochastic and adversarial bandits. In
Conference on Learning Theory. JMLR Workshop and Conference Proceedings, 42–1.

[13] Nicolo Cesa-Bianchi, Yoav Freund, David Haussler, David P Helmbold, Robert E Schapire, and Manfred K Warmuth.
1997. How to use expert advice. Journal of the ACM (JACM) 44, 3 (1997), 427–485.

[14] Nicolo Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. 2007. Improved second-order bounds for prediction with
expert advice. Machine Learning 66, 2 (2007), 321–352.

[15] Kamalika Chaudhuri, Yoav Freund, and Daniel J Hsu. 2009. A parameter-free hedging algorithm. In Advances in neural
information processing systems. 297–305.

[16] Yoav Freund and Robert E Schapire. 1997. A decision-theoretic generalization of on-line learning and an application to
boosting. Journal of computer and system sciences 55, 1 (1997), 119–139.

[17] Yoav Freund and Robert E Schapire. 1999. Adaptive game playing using multiplicative weights. Games and Economic
Behavior 29, 1-2 (1999), 79–103.

[18] Elad Hazan. 2019. Introduction to online convex optimization. arXiv preprint arXiv:1909.05207 (2019).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

34:22 Lin Yang et al.

[19] Marcus Hutter and Jan Poland. 2004. Prediction with expert advice by following the perturbed leader for general
weights. In International Conference on Algorithmic Learning Theory. Springer, 279–293.

[20] Robert Kleinberg. 2004. Nearly tight bounds for the continuum-armed bandit problem. Advances in Neural Information
Processing Systems 17 (2004), 697–704.

[21] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. 2008. Multi-armed bandits in metric spaces. In Proceedings of the
fortieth annual ACM symposium on Theory of computing. 681–690.

[22] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. 2019. Bandits and experts in metric spaces. Journal of the ACM
(JACM) 66, 4 (2019), 1–77.

[23] Robert David Kleinberg. 2005. Online decision problems with large strategy sets. Ph.D. Dissertation. Massachusetts
Institute of Technology.

[24] Walid Krichene, Maximilian Balandat, Claire Tomlin, and Alexandre Bayen. 2015. The hedge algorithm on a continuum.
In International Conference on Machine Learning. PMLR, 824–832.

[25] Nick Littlestone and Manfred K Warmuth. 1994. The weighted majority algorithm. Information and computation 108, 2
(1994), 212–261.

[26] Haipeng Luo and Robert E Schapire. 2014. A drifting-games analysis for online learning and applications to boosting.
Advances in Neural Information Processing Systems 27 (2014), 1368–1376.

[27] Odalric-Ambrym Maillard and Rémi Munos. 2010. Online learning in adversarial lipschitz environments. In Joint
european conference on machine learning and knowledge discovery in databases. Springer, 305–320.

[28] Jaouad Mourtada and Stéphane Gaï�as. 2019. On the optimality of the Hedge algorithm in the stochastic regime.
Journal of Machine Learning Research 20 (2019), 1–28.

[29] Chloé Rouyer and Yevgeny Seldin. 2020. Tsallis-INF for Decoupled Exploration and Exploitation in Multi-armed
Bandits. In Conference on Learning Theory. PMLR, 3227–3249.

[30] Yevgeny Seldin and Aleksandrs Slivkins. 2014. One practical algorithm for both stochastic and adversarial bandits. In
International Conference on Machine Learning. PMLR, 1287–1295.

[31] Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, and Andreas Krause. 2019. No-regret learning in unknown
games with correlated payo�s. Advances in Neural Information Processing Systems 32 (2019), 13624–13633.

[32] Dravyansh Sharma, Maria-Florina Balcan, and Travis Dick. 2020. Learning piecewise Lipschitz functions in changing
environments. In International Conference on Arti�cial Intelligence and Statistics. PMLR, 3567–3577.

[33] Aleksandrs Slivkins. 2011. Contextual bandits with similarity information. In Proceedings of the 24th annual Conference
On Learning Theory. JMLR Workshop and Conference Proceedings, 679–702.

[34] Vladimir Vovk. 1998. A game of prediction with expert advice. J. Comput. System Sci. 56, 2 (1998), 153–173.
[35] Volodimir G Vovk. 1990. Aggregating strategies. Proc. of Computational Learning Theory, 1990 (1990).
[36] Vladimir V V’yugin. 2011. Online Learning in Case of Unbounded Losses Using Follow the Perturbed Leader Algorithm.

Journal of Machine Learning Research 12, 1 (2011).
[37] Lin Yang, Lei Deng, Mohammad H Hajiesmaili, Cheng Tan, and Wing Shing Wong. 2018. An optimal algorithm for

online non-convex learning. Proceedings of the ACM on Measurement and Analysis of Computing Systems 2, 2 (2018),
1–25.

A SUPPLEMENTARY PROOFS
In this section, we give the proofs of the upper and lower bounds. Note that, given the upper
bounds, the learning rate selected by node E is actually based on the index of the leading child,
which is UC (E). Hence, we can use [(UC (E)) to denote the learning rate adopted by node E at time
slot C . For example, if*E; � *EA , we have

[(UC (E)) =
⇢
[1 (E), UC (E) = E; ;
[2 (E), UC (E) = EA .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

Hierarchical Learning Algorithms for Multi-scale Expert Problems 34:23

A.1 A proof of Lemma 1
Lemma 1 can be proved by recursively applying the de�nition of feedback of nodes. Speci�cally,
we have

') =max
82K

)’
C=1

GC (8) � E
"
)’
C=1

GC (�C)
#
= max

82K

)’
C=1

GC (8) �
)’
C=1

’
82K

?C (8)GC (8)

=
)’
C=1

ĜC (E⇤) �
)’
C=1

ĜC (>) =
)’
C=1

ĜC (E⇤) �
)’
C=1

ĜC ((E⇤)?) +
)’
C=1

ĜC ((E⇤)?) �
)’
C=1

ĜC (>)

') ((E⇤)?) +
)’
C=1

ĜC ((E⇤)?) �
)’
C=1

ĜC (>)

') (E⇤)?) +
)’
C=1

ĜC ((E⇤)?) �
)’
C=1

ĜC ((E⇤)2?) +
)’
C=1

ĜC ((E⇤)2?) �
)’
C=1

ĜC (>)

=') ((E⇤)?) + ') ((E⇤)2?) +
)’
C=1

ĜC ((E⇤)2?) �
)’
C=1

ĜC (>).

By recursively applying the de�nition of ĜC (·), the above equation can be rewritten as

') 
’

E2path(E⇤)
') (E).

This completes the proof.

A.2 Analysis of the Node Regret of DRate-U (Proof of Proposition 1)
In this subsection, we provide a detailed proof of Proposition 1, which characterizes the node regret
of any non-leaf node E when executing DRate-U. Generally, the proof consists of the following
three parts.

Part I: De�ne Per-step Regret.
To ease our analysis, we �rst de�ne the “per-step regret” for node E , which is

AC (E) := -̂C (UE,C) � -̂C�1 (UC�1 (E)) � (?̂C (UC (E))ĜC (UC (E)) + ?̂C (VC (E))ĜC (VC (E))) .
Intuitively, the per-step regret, AC (E), which can be negative, characterizes the changing amount of
the node regret at any time slot C . It follows from the de�nition of AC (E) that

') (E) = max

(
)’
C=1

ĜC (E;),
)’
C=1

ĜC (EA)
)
�

)’
C=1

(?̂C (E;)ĜC (E;) + ?̂C (E;)ĜC (EA))

= -̂) (U) (E)) �
)’
C=1

(?̂C (E;)ĜC (E;) + ?̂C (E;)ĜC (EA))

=
)’
C=1

⇣
-̂C (UC (E))�-̂C�1 (UC�1 (E))

⌘
+-̂0 (U0 (E))�

)’
C=1

(?̂C (UC (E))ĜC (UC (E))+?̂C (VC (E))ĜC (VC (E)))=
)’
C=1

AC (E).

The above equation implies that the node regret of E can be rewritten as the summation of its
per-step regrets over all time slots.

Part II: De�ne stack (.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

34:24 Lin Yang et al.

To analyze the per-step regret, we de�ne stack (which only exists in our analysis. Our later
analysis will show that the above de�ned per-step regret can be characterized through the elements
in (. Speci�cally, (is empty at the beginning, and its elements are updated at each time slot based
on the feedback gap between the two children of node E . Speci�cally, we denote the feedback gap at
time slot C as 6C , i.e., 6C := ĜC (UC (E)) � ĜC (VC (E)). With 6C , the elements in (are updated according
to the following three rules.

(1) When 6C = 0: do nothing to the stack.
(2) When 6C > 0: push 6C to the top of the stack.
(3) When 6C < 0: if |6C | is larger than the sum of all the elements in (, denoted as sum((), empty

the stack and add a new element with value being the |6C | � sum(() as a new top; otherwise, pop
items until the sum of the values of popped items is larger than or equal to |6C |. If their sum is larger
than |6C |, a new item with value being the sum minus |6C | will be pushed into the stack as a new
top. We use the following �gure to demonstrate the updates of the stack with di�erent values of 6C .

New Stack New Stack

Fig. 6. Stack evolution according to di�erent values of |6C |.

Considering that the elements of (can be time-varying, we use (C to denote the state of the stack
at the end of time slot C and BC,: to denote the value of the :-th element from the bottom at time slot C .

Part III: Analyze Per-step Regret.
In this part, we proceed to analyze the per-step regret case by case.
Case 1: UC (E) = UC�1 (E). In this case, the index of the leading child is the same as the previous

time slot. By the de�nition of the per-step regret, there is

AC (E) = -̂C (UC (E)) � -̂C�1 (UC�1 (E)) � (?̂C (UC (E))ĜC (UC (E)) + ?̂C (VC (E))ĜC (VC (E)))
= ĜC (UC (E)) � (?̂C (UC (E))ĜC (UC (E)) + ?̂C (VC (E))ĜC (VC (E)))
= (1 � ?̂C (UC (E))) ĜC (UC (E)) � ?̂C (VC (E))ĜC (VC (E))
= ?̂C (VC (E)) (ĜC (UC (E)) � ĜC (VC (E)))

=
✓
1
2
� ⇡C�1 (E)[(UC�1 (E))

◆+
(ĜC (UC (E)) � ĜC (VC (E)))

=
✓
1
2
� ⇡C�1 (E)[(UC (E))

◆+
(ĜC (UC (E)) � ĜC (VC (E))) ,

(9)

Note that, the sum of the values of all elements in the stack is always equal to the gap of
cumulative feedback between the leading child and the other one, i.e., sum((C) = ⇡C (E), for any C .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

Hierarchical Learning Algorithms for Multi-scale Expert Problems 34:25

Hence,

AC (E) =
✓
1
2
� ⇡C�1 (E)[(UC (E))

◆+
(ĜC (UC (E)) � ĜC (VC (E)))

=
✓
1
2
� sum((C�1)[(UC (E))

◆+
(ĜC (UC (E)) � ĜC (VC (E)))

=

1
2
�

len((C�1)’
:=1

BC,:[(UC (E))
!+
6C ,

(10)

where len(·) returns the length of the stack.
We continue to consider the following two cases.
Case 1(a): When 6C � 0, we have

AC (E) =

1
2
�

len((C�1)’
:=1

BC ,:[(UC (E))
!+
6C = �((C) � �((C�1),

where �((C) is a potential function with respect to the elements in stack (at time slot C , and de�ned
as

�((C) :=
len((C)’
:=1

1
2
�

:’
:0=1

BC,:0[(UC (E))
!+
BC,: .

Case 1(b): When 6C < 0, we have

AC (E) =

1
2
�

len((C�1)’
:=1

BC�1,:[(UC (E))
!+
6C

=

1
2
�
len((C)’
:=1

BC,:[(UC (E))
!+
6C + ©≠

´

1
2
�
len((C�1)’
:=1

BC�1,:[(UC (E))
!+
�

1
2
�
len((C)’
:=1

BC,:[(UC (E))
!+™Æ

¨
6C .

(11)

By applying the analysis in A.3, we have

AC (E) 

1
2
�

len((C)’
:=1

BC ,:[(UC (E))
!+
6C + [(UC (E))62C . (12)

If UC (E) = E; , we have 6C = ĜC (E;) � ĜC (EA) < 0, and thus |6C |  |ĜC (EA) |  *EA . The second term
in Equation (12) satis�es

[(UC (E))62C  [(E;)* 2
EA . (13)

If UC (E) = EA , we have
|6C |  *E; ,

|6C | =
len((C�1)’
:=1

BC�1,: �
len((C)’
:=1

BC ,:  (=C + 1)*EA .

In the above equation, =C is the number of elements popped from the stack at time slot C . The last
inequality of the second equation uses the fact that BC ,:  *UC (E) . Then, we have

[(UC (E))62C  [(EA) (=C + 1)*EA*E; . (14)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

34:26 Lin Yang et al.

Combining Equation (12), (13) and (14) yields

AC (E) 

1
2
�

len((C)’
:=1

BC ,:[(UC (E))
!+
6C + (=C + 1)*E;*EA[(EA) +* 2

EA[(E;)

�((C) � �((C�1) + (=C + 1)*E;*EA[(EA) +* 2
EA[(E;),

where the second inequality is based on the de�nition of the the potential function �((C).
Concluding cases (1.1) and (1.2), we have

AC (E)  �((C) � �((C�1) + (=C + 1)*E;*EA[(EA) +* 2
EA[(E;).

Case 2: UC (E) < UC�1 (E).
In this case, we also upper bound the per-step regret by using the potential function with respect

to the de�ned stack. Based on the de�nitions, we rewrite the per-step regret as follows.

AC (E) = -̂C (UC (E)) � -̂C�1 (UC�1 (E)) � (?̂C (UC (E))ĜC (UC (E)) + ?̂C (VC (E))ĜC (VC (E)))
= -̂C (UC (E)) � -̂C�1 (UC�1 (E))

�
⇣
?̂C (UC (E))-̂C (UC (E)) � ?̂C (UC (E))-̂C�1 (UC (E)) + ?̂C (VC (E))-̂C (VC (E)) � ?̂C (VC (E))-̂C�1 (VC (E))

⌘
= -̂C (UC (E)) � -̂C�1 (UC�1 (E))

�
⇣
?̂C (UC (E))-̂C (UC (E)) � ?̂C (UC (E))-̂C�1 (VC�1 (E)) + ?̂C (VC (E))-̂C (VC (E)) � ?̂C (VC (E))-̂C�1 (UC�1 (E))

⌘
= (1�?̂C (UC (E))) -̂C (UC (E))� (1�?̂C (VC(E)))-̂C�1 (UC�1(E))+?̂C (UC (E))-̂C�1 (VC�1(E))�?̂C (VC (E))-̂C (VC (E))

= ?̂C (VC (E))
⇣
-̂C (UC (E)) � -̂C (VC (E))

⌘
� ?̂C (UC (E))

⇣
-̂C�1 (UC�1 (E)) � -̂C�1 (VC�1 (E))

⌘
= ?̂C (VC (E))⇡C (E) � ?̂C (UC (E))⇡C�1 (E).
It follows from the de�nition of the potential function that

?̂C (VC (E))⇡C (E)  �((C),
and

�?̂C (UC (E))⇡C�1 (E)  �
1
2
⇡C�1 (E)  ��((C�1).

Combining the above three equations yields

AC (E)  �((C) � �((C�1).
Concluding cases (1) and (2), we have

AC (E)  �((C) � �((C�1) + (=C + 1)*E;*EA[(EA) +* 2
EA[(E;), for any C 2 [)] .

Summing AC (E) up yields the node regret of node E :

') (E) =
)’
C=1

AC  �(()) � �((0) +
)’
C=1

�
(=C + 1)*E;*EA[(EA) +* 2

EA[(E;)
�

 1
[(E;)

+)* 2
EA[(E;) +

1
[(EA)

+ 2)*E;*EA[(EA),

where the inequality uses the facts that �((0) = 0, �(())  max{[�1 (E;),[�1 (EA)}, and
Õ)
C=1 (=C +

1)  2) . Substituting [1 (E) and [2 (E) into [(E;) and [(EA) yields the �nal result. This completes
the proof.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

Hierarchical Learning Algorithms for Multi-scale Expert Problems 34:27

A.3 A proof of Equation (12)
We prove the equation case by case.

Case 1: 1
2 �

Õlen((C�1)
:=1 BC�1,:[(UC (E))  0.

It is straightforward that

AC (E) = 0 

1
2
�

len((C)’
:=1

BC ,:[(UC (E))
!+
6C . (15)

Case 2: 1
2 �

Õlen((C�1)
:=1 BC�1,:[(UC (E)) > 0.

In this case, we have 1
2 �

Õlen((C)
:=1 BC,:[(UC (E)) > 0, since

Õlen((C�1)
:=1 BC�1,: �

Õlen((C)
:=1 BC,: when

6C < 0. It follows that

1
2
�

len((C�1)’
:=1

BC�1,:[(UC (E))
!+
�

1
2
�

len((C)’
:=1

BC,:[(UC (E))
!+

=
1
2
�

len((C�1)’
:=1

BC�1,:[(UC (E)) �
1
2
+

len((C)’
:=1

BC ,:[(UC (E)) = 6C[(UC (E)) .

Applying the above results to Equation (11), we have

AC (E) 

1
2
�

len((C)’
:=1

BC ,:[(UC (E))
!+
6C + [(UC (E))62C .

One refers to Figure 7 for a visualized characterization of the terms in the above equation.
Speci�cally, the absolute value of the �rst term on the right hand side of the above equation
corresponds to the sum of the sizes of Area 1 and 2 in Figure 7, and the second term corresponds to
the size of Area 1.

Concluding the above two cases, we complete the proof.

0.5

Area 1

Area 2

Fig. 7. Visualized proof for Case (2).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

34:28 Lin Yang et al.

A.4 A proof of Corollary 2
The sum of the node regrets except the leaf node is

’
E2path(E⇤)\{E⇤ }

✓
1

[1 (E)
+)* 2

EA[1 (E) +
1

[2 (E)
+ 2)*E;*EA[2 (E) +*E; +*EA

◆

=$ ©≠
´

’
E2path(E⇤)\{E⇤ }

p
2*E;*EA) +*EA

p
)
™Æ
¨
= $

 p
*1

log ’
;=1

p
*2;�1)

!
.

The leaf node only contains one expert, and thus its regret is 0. This completes the proof.
Adding the node regret of the leaf node E⇤ yields the �nal result.

A.5 Proof of the Lower Bounds
We �rst prove the lower bound for the two-expert case in Theorem 2. To prove the lower bound,
we construct the rewards for the two experts as follows. For the �rst expert, we set rewards to be
*1/2 over all the) time slots. For the second expert, we �rst randomly select)*1/*2 time slots
from the entire time horizon with the same probability. The set of selected time slots is denoted
by TB . Then, we assign 0 or*2 rewards to those time slots with equal probability. In this way, the
reward means of both experts are*1/2.

For ⌘ ) /4*1*2, the probability that the cumulative empirical rewards of the second expert is
larger than or equal to)*1/2 + ⌘ is

Pr

"’
C 2TB

GC (2) �
*1)

2
+ ⌘

#
= Pr

"’
C 2TB

GC (2) �
)*1

*2
· *2

2
+ ⌘

#

= Pr

"’
C 2TB

GC (2)
*2
�)*1

*2
· 1
2
+ ⌘

*2

#

� 1
15

exp

�16)*1

*2

✓
⌘

)*1

◆2!
=

1
15

exp
✓
�16 ⌘2

*1*2)

◆
,

The last inequality is based on the standard concentration results for binomial distribution with
mean 1/2 for)*1/*2 trails (see [4]). Let ⌘ =

p
*1*2) /8, we have

Pr

"’
C 2TB

GC (2) �
)*1

2
+ 1
8
p
*1*2)

#
� 1

15
exp

✓
�1
4

◆
>

1
20

.

It follows that

E

"
max
8=1,2

)’
C=1

GC (8)
#
� 1

20

✓
)*1

2
+
p
*1*2)

8

◆
+ 19
20

·)*1

2
=
)*1

2
+ 1
160

p
*1*2) .

Any algorithm can only attain*1) /2 reward in expectation. Thus, the regret of any algorithm is
⌦(
p
*1*2)). This completes the proof.

In the following, we proceed to analyze the general cases with more than two experts. Speci�cally,
we use num(*8) to denote the number of experts whose upper bound is larger than or equal to*8 .

Let 8 be any expert in K . We set rewards of the 8-th expert to be *8/2 over all the) time slots
and those in the experts whose upper bound less than *8 as 0. For the 8 0-th expert whose upper
bound is large than or equal to*8 , we �rst randomly select)*8/*80 time slots from the entire time
horizon with the same probability. The set of selected time slots is denoted by T80 . Then, we assign

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

Hierarchical Learning Algorithms for Multi-scale Expert Problems 34:29

0 or *80/*8 rewards to those time slots with equal probability. In this way, the reward means of all
experts are*8/2.

Similar to the above proof, for 8 0 satisfying*80 � *8 , we have

Pr
266664
’
C 2T80

GC (8 0) �
*8)

2
+ ⌘

377775
= Pr

266664
’
C 2T80

GC (8 0)
*80

� *8)
2*80

+ ⌘

*80

377775
� 1

15
exp

�16)*8

*80

✓
⌘

)*8

◆2!
=

1
15

exp
✓
�16 ⌘2

*8*80)

◆
,

where⌘ ) /4*8*80 . De�ne�80 as the event
Õ
C 2T80 GC (8 0) �

*8)
2 +⌘80 , where⌘80 =

p
*8*80) ln num(*8)/4.

It follows that

%

 ÿ
80:*80 �*8

�̄80

!


÷
80:*80 �*8

✓
1 � 1

15num(*8)

◆


✓
1 � 1

15num(*8)

◆num(*8)
 exp(�1/15) < 0.95.

�80 happens with equal probability. Hence,

E

"
max
82K

)’
C=1

GC (8)
#
�

’
80:*80 �*8

1
20

1
num(*8)

)*80

2
+

p
*8*80) ln num(*8)

8

!
+ 19
20

·)*8
2

=
)*8
2

+ 1
160

1
num(*8)

’
80:*80 �*8

p
*8*80) ln num(*8).

Any algorithm can only attain*8) /2 reward in expectation. Thus, the regret of any algorithm is
⌦

⇣
1

num(*8)
Õ
80:*80 �*8

p
*8*80) ln num(*8)

⌘
. We complete the proof of Theorem 3.

Received February 2022; revised March 2022; accepted April 2022

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.

	Abstract
	1 Introduction
	1.1 Contributions

	2 The Multi-scale Expert Problem
	2.1 Prediction with expert advice and the Hedge problem
	2.2 MSHedge: Hedge with multi-scale experts
	2.3 Motivating examples for multi-scale experts
	2.4 The state-of-the-art results for MSHedge

	3 The DRate Algorithm
	3.1 Differentiated learning rates for the node algorithm
	3.2 The Hedge algorithm in leaf nodes with multiple experts

	4 Regret Analysis for DRate-U
	4.1 Main results and remarks
	4.2 Additional examples on the impact of tree structure on the regret
	4.3 Optimal tree construction

	5 MSHedge with Non-uniform Upper and Lower Bounds
	5.1 The DRate-LU algorithm
	5.2 Regret results for DRate-LU
	5.3 MSHedge and the Lipschitz expert problem

	6 experimental results
	6.1 Overview of setup and baseline algorithms
	6.2 Experimental results

	7 Related Work
	7.1 PEA with generalized reward ranges
	7.2 PEA with specific reward realizations

	8 Concluding Remarks
	Acknowledgments
	References
	A Supplementary Proofs
	A.1 A proof of Lemma 1
	A.2 Analysis of the Node Regret of DRate-U (Proof of Proposition 1)
	A.3 A proof of Equation (12)
	A.4 A proof of Corollary 2
	A.5 Proof of the Lower Bounds

