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This paper studies the online energy scheduling problem in a hybrid model
where the cost of energy is proportional to both the volume and peak usage,
and where energy can be either locally generated or drawn from the grid.
Inspired by recent advances in online algorithms with Machine Learned (ML)
advice, we develop parameterized deterministic and randomized algorithms
for this problem such that the level of reliance on the advice can be adjusted
by a trust parameter. We then analyze the performance of the proposed
algorithms using two performance metrics: robustness that measures the
competitive ratio as a function of the trust parameter when the advice is
inaccurate, and consistency for competitive ratio when the advice is accurate.
Since the competitive ratio is analyzed in two di�erent regimes, we further
investigate the Pareto optimality of the proposed algorithms. Our results
show that the proposed deterministic algorithm is Pareto-optimal, in the
sense that no other online deterministic algorithms can dominate the ro-
bustness and consistency of our algorithm. Furthermore, we show that the
proposed randomized algorithm dominates the Pareto-optimal deterministic
algorithm. Our large-scale empirical evaluations using real traces of energy
demand, energy prices, and renewable energy generations highlight that
the proposed algorithms outperform worst-case optimized algorithms and
fully data-driven algorithms.

CCS Concepts: • Theory of computation ! Online algorithms; Lin-
ear programming; • Hardware! Energy generation and storage; Power
estimation and optimization.

Additional Key Words and Phrases: Machine learned advice, online algo-
rithms, renewable generation, Pareto-optimality

1 INTRODUCTION
The electricity bill is a signi�cant operating cost of large energy
customers such as data centers, businesses, and university campuses.
For example, in data center operations, the largest expenditure is
energy consumption, e.g. energy cost is more than 30% of the total
operating costs of Google and Microsoft’s data centers [26]. Con-
sequently, managing the energy consumption and cost of large
energy customers has become critically important. This has led to
substantial research on incorporating local renewable sources [19],
energy-aware server provisioning [18], geographical load balanc-
ing [17, 20], and on-site energy storage systems [32].

The electricity bill for large energy customers is usually based on
a hybrid model that uses both the volume and peak of the energy
consumption. Speci�cally, assuming that each billing cycle can be
divided into ) time slots, and the energy demand in slot C is 4 (C),
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the electricity bill is the sum of the following two terms: (1) the
volume pricing, which is the aggregate energy usage over the cycle,
i.e.,

Õ
C ? (C)4 (C), where ? (C) is the real-time unit price at C , and (2)

the peak pricing, which is the peak demand drawn over the cycle, i.e.,
maxC 2 [) ] 4 (C), multiplied by ?< as the peak price. The contribution
of peak pricing in the electricity bill is usually substantial. The peak
price is often more than 100 times higher than the maximum spot
price, e.g., 118⇥ for PG&E or 227⇥ for Duke Energy Kentucky. Hence,
the contribution of peak charging in the energy bill for large energy
costumers can be considerable, e.g., from 20% to 80% for Google
data centers [31].

A promising approach to reduce the contribution of peak charges
in the �nal electricity bill is to install on-site generation units that
can “shave the peak” by covering that portion of the demand [34].
A notable example is Microsoft’s plan to add 72 new generators at
its Quincy, Washington data center campus [14]. The global market
for on-site generators is growing and expected to reach a revenue
of around $5 billion in 2023 [2]. With an on-site generator, one can
schedule its generation such that part of the total energy demand is
satis�ed by the local generator, hence, the peak net demand from
the grid is reduced over the billing cycle.

However, peak-aware energy generation scheduling of local gen-
erators is a challenging problem due to the uncertainty of the de-
mand of energy customers, especially in data centers. For data cen-
ters the energy demand is highly unpredictable because user demand
for internet services is variable. For instance, a data center serving
videos to users can experience an unexpected �ash crowd of users
for a popular video release. Furthermore, sophisticated optimization
algorithms are being used in Google data centers to improve the en-
ergy e�ciency of data center’s internal operations [10], which can
further increase the variability of energy demand. In geographical
load balancing schemes [17, 20], a global load balancer could move
user demand into or out of the data center, resulting in unexpected
changes in the energy patterns. Lastly, the integration of renew-
ables into data centers provides even more uncertainty, since the
production level of renewables is uncertain and intermittent [11].
The peak-aware energy generation scheduling problem (hence-

forth PAES) has been tackled using the competitive online frame-
work [34]. More speci�cally, two deterministic and randomized
algorithms have been proposed that can achieve the best compet-
itive ratio as the well-established performance metric for online
algorithms [4]. Competitive ratio is de�ned as the ratio between
the cost of an online algorithm and that of the o�ine optimal for
the worst-case over all feasible instances to the problem. The com-
petitive online framework, however, aims to be provably e�cient

ACM SIGENERGY Energy Informatics Review Volume 1 Issue 1, November 2021
60



Fig. 1. Amotivating example for the peak-aware energy scheduling problem.

against worst-case input instances. Toward this end, it assumes
that no stochastic, exact, or noisy measurement of future inputs is
available and tries to make the best decisions without future knowl-
edge. This assumption makes online algorithms overly pessimistic
in practice, since worst-case scenarios rarely happen in reality. On
top of that, it is reasonable to have at least a noisy prediction of
future data in most online problems.

1.1 Motivation
As a motivating example, we consider the performance of online
algorithms designed with three di�erent paradigms. Figure 1 shows
the normalized cost achieved by three algorithms for PAES. The
three online algorithms shown are: (a) the algorithm that achieves
the best competitive ratio for “pessimistic” worst-case inputs for the
energy cost minimization problem [34]; (b) the algorithm that makes
decisions assuming an “optimistic” world of perfect predictions; and
(c) a proposed online algorithm in this paper that aims to perform
well in both worlds. The �gure shows the cumulative probability
distribution of the 99 percentile normalized cost of 100+ trials for
tra�c and energy inputs from 200+ Akamai data center locations
in the United States (details on experimental data and setting in
§6). Although the state-of-the-art “pessimistic” online algorithm
is guaranteed to achieve a bounded normalized cost in the worst-
case, Figure 1 demonstrates that its average performance is not
promising. The average normalized cost is far from optimal, with
even the best performing trials achieving normalized cost no less
than 1.6. Conversely, an “optimistic” data-driven online algorithm
has better average performance, with about 60% of trials having
a normalized cost of 1.25 or lower. As a trade-o�, it has a heavy
tail of worst-case instances where the normalized cost is worse
than 2. However, online algorithms with ML advice (the algorithmic
approach of this work) achieve the best of both worlds: good aver-
age performance as well as the best guarantee for the worst-case
tail performance through prudent usage of predictions spanning
between pure optimism and pure pessimism.

1.2 Algorithmic Approach
The goal of this paper is to design competitive algorithms with
advice for the PAES problem. Our approach is inspired by the recent
e�ort on integrating machine learned (ML) advice to improve the
practical performance of online algorithms [12, 15, 22, 25]. The key

motivation is two-fold: (1) to keep the core competency of online
algorithms, i.e., performance guarantee against the worst-case; and
(2) to achieve a provably improved performance if the accuracy of
ML-predictor is satisfactory. The two motivations could be analyzed
for learning-assisted online algorithms [22, 25] by introducing the
notions of (1) robustness that characterizes the �rst motivation; and
(2) consistency that characterizes the second one.

Speci�cally, suppose that A is a learning-assisted online algo-
rithm that leverages an ML-predictor in decision making. The algo-
rithm A is (U,W)-competitive where U and W represent the robust-
ness and consistency of A, respectively. That is, the competitive ra-
tio ofA is always less than U regardless of the error in ML-predictor.
Also, A is W-consistent if with perfect predictions it achieves the
competitive ratio of W . Robustness measures how well the algorithm
does in the worst-case of poor predictions, while consistency mea-
sures how well the algorithm does under perfect predictions. In
this framework, the performance of an algorithm is evaluated using
two criteria, i.e., robustness and consistency. Hence, investigating
the optimality of an algorithm naturally leads to the consideration
of Pareto optimality. Therefore, the eventual goal in this setting
is to design an algorithm A that is Pareto-optimal, meaning that
there is no other algorithm that can achieve a better consistency
(resp., robustness) than A without sacri�cing the robustness (resp.,
consistency).
With this analytical framework, one is able to achieve “the best

of both worlds” paradigm from the perspective of learning-assisted
competitive algorithms. While it might slightly degrade the robust-
ness against worst-case, or ideally maintain the worst-case guaran-
tee, it resolves the fundamental drawback of competitive analysis
of pessimistic decision making by incorporating ML predictions.
More importantly, unlike classic prediction-based competitive de-
signs [5, 7, 8, 13], the framework used in this paper leverages a trust
parameter that determines how much the algorithms trust the pre-
dictors, enabling the full spectrum coverage from pure worst-case
to fully prediction-based decision making.

1.3 Summary of Contributions
Inspired by the above direction of learning-assisted algorithm design,
we develop deterministic and randomized algorithms for PAES that
take into account advice from an ML model in decision making.
This paper makes the following contributions, with a summary of
theoretical results outlined in Table 1.

First, we propose OnMLEng, a deterministic algorithm parameter-
ized by a trust parameter _ 2 (0, 1], that achieves a competitive ratio
of 1 + (1 � V)/_, where V 2 (0, 1) is a problem-speci�c parameter
that determines the ratio between the unit price of the grid and
local generator. We show that OnMLEng is (1+ (1� V)/_)-robust and
(1 + _(1 � V))-consistent. The trust in ML prediction is interpreted
as follows. Greater trust in ML prediction is achieved by setting _
close to 0, which means that OnMLEng is 1-consistent, i.e., it achieves
the optimal performance with perfect advice. On the other hand,
less trust in ML advice is achieved by setting _ close to 1, and the
robustness result guarantees the optimal online competitive ratio
of 2 � V as in [34]. More importantly, we show that OnMLEng is
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Table 1. A summary of theoretical results. Here _ 2 (0, 1] is the trust parameter, V 2 (0, 1) is a problem-specific parameter, and �1,�2 are expressions for the
randomized algorithm defined in Algorithm 3.

Algorithm Theoretical results Property
OnMLEng

(Deterministic)
Robustness:1 + (1 � V)/_
Consistency:1 + _ (1 � V)

OnMLEng is Pareto optimal

rOnMLEng

(Randomized) Robustness:max{1+�1 (1 � V), 1 + �2 (1 � V) [ (41/_ � 1 � 1/_) (1/_ � 1) + 1/_2 ] }

Consistency:max{1 + �1_
2
(1 � V),1+�2 (1 � V) }

rOnMLEng dominates the Pareto
optimal deterministic algorithm

Pareto-optimal, showing that our deterministic algorithm achieves
the best possible robustness and consistency bounds.
Second, we propose rOnMLEng, a randomized algorithm with a

trust parameter _ that has both robustness and consistency guaran-
tees. With _ = 1, rOnMLEng recovers the competitive ratio of the best
randomized algorithm with the competitive ratio of 4/(4 � 1 + V) 
1.58. With _ ! 0, rOnMLEng is 1-consistent, i.e., it behaves opti-
mally. The design and analysis of rOnMLEng is a signi�cant theo-
retical contribution of this paper. Speci�cally, it is worth noting
that the probability distribution functions of rOnMLEng are carefully
designed to achieve solid robustness and consistency guarantees.
These distribution functions are customized based on Yao’s prin-
ciple [33] to provide robustness and consistency results in a more
systematic manner compared to the randomized algorithm design
for online problems in [15, 22, 25]. Finally, we show that rOnMLEng
dominates the Pareto-optimal deterministic algorithm OnMLEng.

Last, we empirically evaluate the performance of the algorithms
using real-world data traces. We use energy demand traces from
Akamai data centers [24] as an example of large-scale industrial
load, as well as energy price values from New York energy mar-
ket (NYISO). The results show the improved performance of our
proposed online algorithms with ML advice as compared to the
purely online algorithm. We also investigate the impact of several
parameters and provide insights that reveal the practical bene�ts of
learning-assisted algorithms.

2 PROBLEM STATEMENT
2.1 System Model
We consider the scenario where the energy demand can be covered
by either local generators or the external grid. The peak-aware
energy scheduling problem (PAES) aims to prudently choose the
source of energy, so that the energy demand can be met at each
time step while the total cost is minimized.

We focus on one billing cycle T = {1, · · · ,) } with) discrete time
slots of uniform length. The billing cycle is usually one month and
the length of each slot is 5 minutes. Let the energy demand in slot C
be 4 (C) and e = [4 (C)]C 2 [) ] . We consider an online scenario in which
the values of demand are unknown for future slots. The demand
can be covered by two sources, the local generator and external grid.
The local generator can satisfy at most ⇠ � 1 KWs of demand in
each slot, with cost ?6 . In reality, some traditional generators [21]
have maximum ramp-up and ramp-down constraints that limit the
change of output between two adjacent slots. In this paper, we focus
on “fast-responding" generators that can ramp up and down without
any limit. In experiments (§6.3.3), we investigate the impact of ramp
constraints.

We consider a typical energy cost model for industrial energy
customers that follows a hybrid charging model that has both total
usage (a.k.a. energy charge) and peak usage (a.k.a. demand charge)
components. The energy cost is the sum of the following two terms:
(1) the usage-based pricing, which is the total energy usage over the
cycle, and (2) the peak pricing, which is the peak demand drawn over
the cycle. Following the dynamics of the energy market, the grid
provides electricity with a spot price ? (C) at time C,where we assume
? (C) � ?min > 0. In reality, the unit cost of local generators ?6 is
usually higher than that of external grid, i.e., ?6 � ? (C). Otherwise,
it is always optimal to use local generators as much as possible for
both online and o�ine algorithms. However, the expensive local
generator can shave the peak demand (peak charge) of the external
grid. In addition, ?< is the peak charge price that is known and �xed
over the billing cycle. Note that ?< is usually more than 100 times
larger than ? (C). For ease of exposition, denote V , ?min

/?6 < 1 as
the ratio between the minimum grid price and the unit cost of local
generation. We characterize the performance of our algorithms as a
function of V .

2.2 Problem Formulation
Let E (C) and D (C) be the optimization variables that determine the
amount of electricity procured from the external grid and local gen-
erator, respectively. For the grid, its cost consists of volume charge
and peak charge. The volume charge is the sum of volume cost over
the time horizon, i.e.,

Õ
C ? (C)E (C) . The peak charge is based on the

maximum single-slot power and peak price ?<, i.e., ?< maxC E (C)
[31, 34]. The cost of using local generators, is

Õ
C ?6D (C). Therefore,

with u = [D (C)]C 2T and v = [E (C)]C 2T , the PAES problem is de�ned
as

PAES : min
u,v

’
C 2T

? (C)E (C) + ?< max
C

E (C) +
’
C 2T

?6D (C)

s.t., D (C) + E (C) � 4 (C), C 2 T ,

D (C)  ⇠, C 2 T ,

E (C) � 0,D (C) � 0, C 2 T ,

where the �rst constraint ensures that the demand is satis�ed, and
the second constraint is due to the generator capacity limitation.
We note that in our algorithm design we focus on a basic version of
PAES, where the demand 4 (C) only takes binary values 0 or 1. Our
algorithms and competitive analysis, however, could be extended to
the general case as discussed in Section 4.6.
PAES with 4 (C) and ? (C) values known in advance is a linear

program. Hence, it can be solved using any linear programming
algorithm. However, in practice 4 (C) and ? (C) are unknown in ad-
vance and hard to predict, hence an online approach is required. We
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use a recently proposed algorithmic framework [22, 25] for devising
online algorithms with advice, and provide a brief overview of the
framework in the following section.

3 ALGORITHMIC FRAMEWORK
In this section, we give an overview of the recently proposed frame-
work for designing competitive algorithms with ML advice [22, 25].

3.1 Online Algorithms with ML Advice
In this framework the goal is to utilize ML advice to improve the
performance of online algorithms, both in theory and practice. To-
ward this, it is assumed that there is advice from an untrusted ML
model that might be subject to error or even vulnerable to malicious
activities. The goal is to develop online algorithms that are able to
determine the level of trust in the ML advice.

Trust. The trust parameter determines how much the algorithm
trusts the ML advice. More formally, let _ 2 (0, 1] be a trust param-
eter that indicates the level of trust that we place on the advice. In
our algorithms, setting _ ! 0 represents full trust in ML advice,
and _ ! 1 indicates no trust at all, i.e., making worst-case decisions
similar to the classic competitive framework. Any value in between
indicates partial trust in ML advice.

Robustness and Consistency. The performance of an algorithm
in this framework is captured using two metrics that re�ect two
extreme cases when the advice is inaccurate and when the advice
is fully accurate. Speci�cally, suppose that A_ is an online algo-
rithm that leverages ML advice in decision making with the trust
parameter _. Let n be the error of the ML advice, which is the ab-
solute di�erence between the advice and actual outcome. Denote
ALG(n, _) as the cost of A_ given _ as the trust parameter and
n as the error of the ML advice, and OPT as the o�ine optimum,
respectively.

D��������� 1. (Robustness)A_ is U-robust if ALG(n, _)  U ·OPT
for all n and feasible instances to the problem.

D��������� 2. (Consistency) A_ is W-consistent if ALG(0, _) 
W · OPT when the ML advice is accurate (n = 0) and for all feasible
instances to the problem.

Note that U and W could be functions of the problem parameters
as well as _ and n . Intuitively, robustness measures how well the
algorithm does in the worst-case of poor advice, and consistency
measures how well the algorithm does with perfect advice.

Pareto Optimality. In the traditional framework with competitive
ratio as the performance metric, the notion of optimality refers
to an online algorithm that achieves the best possible competitive
ratio. In the new framework with ML advice, the performance of
algorithms is measured by two criteria: robustness and consistency.
The superiority of an algorithm in a bi-criteria setting against an
alternative can be measured using the notion of dominance and
Pareto optimality.

D��������� 3. (Dominance) For comparing two online algorithms
� and ⌫, we say that � dominates ⌫ if it is better in both criteria, i.e.,
U�  U⌫ and W�  W⌫ .

With the trust parameter, we develop a class of online algorithms
in which each instance of the algorithm refers to a speci�c value
of trust parameter. Hence, for analyzing the dominance of the algo-
rithms, our goal is to investigate the Pareto frontier properties of a
class of algorithms.

D��������� 4. (Pareto Optimality) LetA = {�_, _ 2 (0, 1]} be the
class of online algorithms with trust parameter _.A is Pareto-optimal
if for any other online algorithm ⌫, there exists �_ 2 A such that �_
dominates ⌫.

In Section 4, we develop deterministic and randomized algorithms
using the above framework and analyze their robustness, consis-
tency, and Pareto-optimality in Section 5. Our proposed algorithms
are built on top of existing fully online algorithms that do not useML
advice for decision making. We brie�y introduce these algorithms
in the following subsection.

3.2 Existing Online Algorithms without ML Advice
The idea of prior online algorithms (OnEng) [34] lies in constructing a
break-even point that balances between the cost of using generators
and the peak charge of using the grid. Speci�cally, break-even point
f is

f =
1
?<

h ’
C 2T

(?6 � ? (C))4 (C)
i
. (1)

The parameter f plays a critical role in algorithm design. For an
optimal o�ine algorithm, we have E⇤ (C) = 4 (C), 8C 2 T , when
f > 1; and E⇤ (C) = 0, 8C 2 T , otherwise. The optimal output of the
local generator is then D⇤ (C) = 4 (C) � E⇤ (C) .

The value of f can be calculated easily in an o�ine manner. How-
ever, with unknown price and demand values, this value cannot
be fully computed online. The high-level idea of OnEng is make
a decision based on a partially-calculated value of f over the cur-
rent and past slots. Speci�cally, OnEng keeps using the local gen-
erator initially and switches to the grid at the �rst time g such
that

Õg
C=1 (?6 � ? (C))4 (C) � ?< . The competitive ratio of OnEng is

2 � V . The proof ideas are similar to the ski-rental problem and
they show that the break-even point is the best balance between
being aggressive (paying the one-time premium peak cost) and be-
ing conservative (using the local generator). Finally, the competitive
ratio has been improved to 4/(4 � 1 + V)  1.58, by developing
a randomized algorithm (rOnEng), in which the algorithm starts
purchasing grid electricity when

Õ
g (?6 � ? (g)) � B · ?< , where B

is chosen randomly according to the following distribution

5 ⇤ (B) =

8>>>><
>>>>:

4B
4�1+V , when B 2 [0, 1];

V
4�1+V X (0), when B = 1;
0, otherwise.

(2)

4 ALGORITHM DESIGN
In this section, we �rst introduce how the ML advice could be
constructed for the PAES problem, then present a Pareto-optimal
deterministic algorithm, and �nally a randomized algorithm that
dominates our proposed Pareto-optimal deterministic algorithm.
We also highlight our technical results. The detailed derivation of
the theoretical results are given in Section 5.
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4.1 ML advice for the PAES problem
First, we introduce the ML advice. Assume that there is a learning
model that predicts the future values of external grid prices, ?̂ (C), and
energy demand, 4̂ (C). The key idea in our online algorithm design
lies in constructing a break-even point using these two values so as
to balance between the cost of using generators and the peak charge
of using the grid. Given these two values, let f̂ be the predicted
break-even point using the learning model as

f̂ , 1
?<

h ’
C 2T

(?6 � ?̂ (C))4̂ (C)
i
. (3)

Note that it is even possible that the ML model directly predicts the
value of f̂ based on historical break-even points. Hence, predicting
individual values of ?̂ (C) and 4̂ (C) for the cycle is not needed.

4.2 A Simple Consistent and Non-Robust Algorithm
We �rst show that there exists an algorithm Eng-dd for PAES that
naively uses the predicted break-even point and is 1-consistent, i.e.,
its competitive ratio is 1 when the advice is accurate. However, it
is straightforward to show that this algorithm is not robust since
the competitive ratio can be arbitrarily large in the case of incorrect
predictions. We empirically compare the result of our robust and
consistent algorithms with this simple algorithm in Section 6.

Algorithm 1 Eng-dd

if f̂ > 1 then
use the local generator entirely

else
use the grid entirely

end if

4.3 OnMLEng: A Deterministic Robust and Consistent
Algorithm

We propose an online algorithm OnMLEng with ML advice that uses
the trust parameter _ 2 (0, 1] to determine the level of trust in
advice as introduced in Section 3. OnMLEng makes decisions based
on the values of f̂ and _ as summarized in Algorithm 2. Note that
in OnMLEng, _ ! 0 (full trust) is equivalent to running Eng-dd.

Algorithm 2 OnMLEng

if f̂ > 1 then
B  _

else
B  1/_

end if
Use local generator �rst and commit to switching to the grid
starting at the �rst time g where’g

C=1
(?6 � ? (C))4 (C) � B · ?< .

T������ 1. The OnMLEng algorithm achieves the competitive ratio
of 1 + (1 � V)/_, where _ 2 (0, 1].

Algorithm 3 rOnMLEng

Denote �1 = 1
4_�1+_2V and �2 = 1

4
1
_ �1+ 1

_2
V

if f̂ > 1 then

5 ⇤1 (B) =

8>>><
>>>:

�14B , B 2 [0, _];
�1_2VX (0), B = 1;
0, otherwise.

else

5 ⇤2 (B) =

8>>><
>>>:

�24B , B 2 [0, 1_ ];
�2

1
_2 VX (0), B = 1;

0, otherwise.

end if
Pick a value B randomly according to probability distribution
5 ⇤1 (B) or 5

⇤
2 (B), and switch to grid electricity starting at the �rst

time g where
g’
C=1

(?6 � ? (C))4 (C) � B · ?< .

C�������� 1. OnMLEng is (1 + (1 � V)/_)-robust.

C�������� 2. OnMLEng is (1 + _(1 � V))-consistent.

Intuitively, B 2 (0,1) is a function of f̂ and _ that determines
when OnMLEng switches to the grid. Setting _ = 1 will �x B = 1,
which recovers the robustness competitive ratio of 2 � V from the
optimal online algorithm OnEng [34]. This implies that with bad
advice it su�ces to completely distrust the advice to be robust
against worst-case performance. On the other hand, setting _ ! 0
will result in B ! 0 or B !1, which means immediately switching
to the grid or entirely staying with the local generator respectively.
This results in a consistency of 1. Tuning the value of _ e�ectively
adjusts the level of trust in advice by determining B .

Next, in Theorem 2, we show that OnMLEng represents a family of
Pareto-optimal algorithms speci�ed by the trust parameter _, based
on De�nition 4.

T������ 2. OnMLEng de�nes the Pareto frontier of robustness and
consistency for the PAES problem, and is Pareto-optimal for all deter-
ministic algorithms that solve PAES.

The above result shows that OnMLEng de�nes the Pareto fron-
tier. In other words, there is no other family of deterministic algo-
rithms that can achieve a better consistency (resp., robustness) than
OnMLEng without sacri�cing the robustness (resp., consistency).
Furthermore, we show that for any deterministic algorithm A

that solves PAES, it can be expressed by a deterministic algorithm
with a switching parameter, i.e., OnMLEng is Pareto-optimal for any
deterministic algorithm A .

4.4 rOnMLEng: A Randomized Robust and Consistent
Algorithm

In randomized algorithms, the decision making is based on ran-
dom variable draws from a proper probability distribution function.
We develop a randomized algorithm, rOnMLEng, as summarized in
Algorithm 3. In rOnMLEng we modify the probability distribution
function of rOnEng [34] based on _ and f̂ as in Eq. (3).
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T������ 3. rOnMLEng achieves a competitive ratio of

max{1+�1 (1� V), 1 +�2 (1� V) [(41/_ � 1� 1/_) (1/_ � 1) + 1/_2]},

where _ 2 (0, 1], �1 = 1
4_�1+_2V and �2 = 1

41/_�1+1/_2 ·V .

C�������� 3. rOnMLEng is (max{1+�1 (1�V), 1+�2 (1�V) [(41/_�
1 � 1/_) (1/_ � 1) + 1/_2]})-robust.

C�������� 4. rOnMLEng is (max{1+�1_2 (1�V), 1+�2 (1�V)})-
consistent.

C�������� 5. The consistency and robustness bounds of rOnMLEng
are strictly better than those of OnMLEng.

The probability distributions 5 ⇤1 (B), 5
⇤
2 (B) are designed to satisfy

two critical conditions. First, setting _ = 1 retains the original
distribution function of the optimal randomized online algorithm
rOnEng, and therefore would recover its competitive ratio of 4/(4 �
1 + V). Second, setting _ ! 0 guarantees picking B = 0 or B =
1 depending on the advice driven break-even point f̂ . This will
result in a competitive ratio of 1 for consistency, meaning matching
optimal performance once the ML advice is accurate. Note that this
follows the same selection of B in OnMLEng when _ ! 0.

Corollary 5 shows that the proposed randomized algorithm rOnMLEng

dominates OnMLEng, the Pareto optimal deterministic algorithm.
Lastly, in Appendix B we show that the randomized algorithm that
naïvely modi�es the distribution function of OnEng (2) based on the
guidelines in deterministic algorithm fails to achieve satisfactory
robustness and consistency at the same time.

4.5 OnMLEng-dyn and rOnMLEng-dyn: Dynamic
Break-even Point Algorithms

OnMLEng and rOnMLEng utilize a static predicted break-even point
f̂ that persists over the entire billing cycle, but our results can also
be extended to utilizing a set of dynamic break-even points 2̂ =
{f̂1, f̂2, ..., f̂) }. Having a dynamic break-even point captures a broad
range of algorithms and allows a rich design space within OnMLEng

and rOnMLEng. For example, predictions can be adjusted and possibly
improved according to observed values over time. Algorithms that
use a sliding window of predictions also �t within this framework,
since the break-even point is dynamically calculated according to
the available predictions.

De�ne OnMLEng-dyn as the version of OnMLEng where the set of
predictions at each time step may change over time. In other words,
let êg = [4̂g (C)]C 2 [) ] , p̂g = [?̂g (C)]C 2 [) ] , be the set of predictions
for demand and grid price at time g 2 [1,) ]. Then the advice is
dynamically provided as

f̂g =
1
?<

h ’
C 2T

(?6 � ?̂g (C))4̂g (C)
i
, (4)

and the decision to switch from the local generator to the grid is
made according to f̂g and _. Similarly, de�ne rOnMLEng-dyn as the
version of rOnMLEng using a set of break-even points 2 , with all
else remaining the same.

T������ 4. The robustness and consistency of OnMLEng-dyn and
rOnMLEng-dyn are equivalent to those of OnMLEng and rOnMLEng,
respectively.

Algorithm 4 OnMLEng-dyn

Use local generator �rst and switch to the grid starting at the �rst
time g where ’g

C=1
(?6 � ? (C))4 (C) � Bg · ?<,

and Bg is de�ned by

Bg =

(
_, f̂C > 1;
1/_, f̂C  1.

Algorithm 5 rOnMLEng-dyn

Denote �1 = 1
4_�1+_2V and �2 = 1

4
1
_ �1+ 1

_2
V

if f̂g > 1 then

5 ⇤1 (B) =

8>>><
>>>:

�14B , B 2 [0, _];
�1_2VX (0), B = 1;
0, otherwise.

else

5 ⇤2 (B) =

8>>><
>>>:

�24B , B 2 [0, 1_ ];
�2

1
_2 VX (0), B = 1;

0, otherwise.

end if
Pick a value B1 randomly according to probability distribution
5 ⇤1 (B) and B2 likewise from 5 ⇤2 (B).
Switch to grid electricity starting at the �rst time g where

g’
C=1

(?6 � ? (C))4 (C) � Bg · ?<,

and Bg is de�ned by

Bg =

(
B1, f̂C > 1;
B2, f̂C  1.

While the theoretical bounds of dynamic break-even algorithms
are the same for robustness, consistency, and Pareto optimality,
these algorithms are of practical importance because they can cap-
ture scenarios such as a sliding window of available predictions or
improved prediction quality over time. We empirically evaluate the
performance of one such algorithm in Section 6.

4.6 Extending Algorithms for Energy Problem to the
General Case

The proposed algorithms for PAES in the paper are analyzed for a
basic version in which the demand takes binary values of 0 or 1. Also,
the corresponding competitive analyses are dedicated to the basic
setting. However, the results can be straightforwardly extended to
the general problem of non-negative integer demand. This is done
by dividing the integer demand 4 (C) into multiple sub-problems
with binary demand. At a given layer 8 , the layered demand at time
C is 1 if 4 (C)  8 and 0 otherwise. Then the result in [34, Theorem 3]
can be applied. By using the layered sub-problems strategy, the
competitive ratio of an algorithm which solves the sub-problem
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with binary demand is an upper bound to the competitive ratio of
an algorithm which solves the general integer demand problem.
Similarly, the robustness and consistency of the binary demand
setting provide an upper bound to the robustness and consistency
of the general setting.

5 PROOFS OF MAIN RESULTS
In this section, we provide the main proofs for the algorithms. The
proof for the competitive ratio of the randomized algorithm is given
in Appendix A.

5.1 Proof of Theorem 1
We analyze the competitiveness of OnMLEng. Given the structure of
Algorithm 2, we can parameterize any online algorithm by parame-
ter B . LetAB be an online algorithm with a speci�c parameter B , e.g.,
OnMLEng is in this category with the value of B as in Algorithm 2.
Let ⌘(AB ,f) be the ratio between the cost of algorithmAB and that
of an optimal o�ine algorithm given f . The following proposition
characterizes the closed-form value of ⌘(AB ,f), and facilitates the
analysis of the proposed algorithm.

P���������� 1. [34] For any online algorithm AB , we have

when f  1, ⌘(AB ,f) =

(
1, if B > f ;
1 + 1�f+B

f (1 � V), otherwise.

when f > 1, ⌘(AB ,f) =

8>><
>>:
1 + (f�1) (1�V)

(f�1)V+1 , if B > f ;

1 + B (1�V)
(f�1)V+1 , otherwise.

We proceed to prove the robustness and consistency results. We
�rst consider the robustness. The worst-case cost ratio for a general
deterministic algorithm AB with parameter B is when f = B , where
the online algorithm pays for the peak charge premium but has no
net demand to serve anymore. From Proposition 1, this worst case
cost ratio maxf ⌘(AB ,f) is

max
f

⌘(AB ,f) =

(
1 + 1

B (1 � V), if B  1;
1 + B (1�V)

(B�1)V+1 , otherwise.
(5)

We compute the competitive ratio of OnMLEng under two cases:
(i) f̂ > 1: According to OnMLEng, B = _ < 1. From (5), we have

CR(A_) = 1 + (1 � V)/_.
(ii) f̂  1: According to OnMLEng, B = 1/_ > 1. From (5), we have

CR(A1/_) = 1 + (1�V)/_
(1/_�1)V+1 .

This means that OnMLEng is (1 + (1 � V)/_)-robust. Note that
setting _ = 1 recovers the competitive ratio of the optimal online
algorithm.

Next, we consider the consistency. For consistency guarantees, we
compute the competitive ratio assuming the predictions are correct.
There are two cases to consider here:

(i) f̂ = f > 1, i.e., B = _. From Proposition 1, when f > 1 � B = _,
we have CR(A1/_) = 1 + _ (1�V)

(f�1)V+1  1 + _(1 � V).
(ii) f̂ = f  1, i.e., B = 1/_. From Proposition 1, when f 

1  B = 1/_, the worst case occurs when B = 1/_ = f . Then
CR(A1/_) = 1 + _(1 � V) .

This means that OnMLEng is (1 + _(1 � V))-consistent. Note that
setting _ ! 0 results in a competitive ratio of 1, which means
optimal performance with accurate predictions.

5.2 Proof of Theorem 2
First, we establish that OnMLEng is Pareto optimal for all deter-
ministic algorithms with a switching parameter. From Theorem 1,
OnMLEng is (1 + _(1 � V))-consistent and (1 + 1

_ (1 � V))-robust. De-
note the consistency and robustness bounds as W� = 1 + _(1 � V)
and U� = 1 + 1

_ (1 � V).
Consider an arbitrary algorithm �0 that takes prediction-based

advice with a consistency bound W�0 and robustness bound U�0 . �0
switches at either 8 · ?< or 9 · ?< based on the advice. Without loss
of generality, we assume 8  9 .

L���� 1. A’ must be at least W�0 � 1
9 (1 � V)�consistent and

U�0 �
1
9 (1 � V)-robust.

P����. We consider a couple of cases for the true break-even
point f utilizing Proposition 1: First, when f  1, �0 will either
select B = 8 or B = 9 for competitive ratios of 1+ 1

8 (1�V) or 1+
1
9 (1�V),

respectively. We now consider the corresponding consistency and
robustness:

(i) For consistency, �0 has perfect predictions and knows exactly
that f  1. As a result, �0 will rationally pick B = 9, since 8  9
implies that 1

9 (1 � V) 
1
8 (1 � V). Then W�0 �

1
9 (1 � V) .

(ii) For robustness, �0 does not have perfect predictions and can-
not have full certainty that f  1. Then �0 could rationally pick
B = 8 or B = 9 , and in the worst case B = 8 will be chosen. Then
U�0 �

1
8 (1 � V). ⇤

Assume that �0 has a lower consistency bound than OnMLEng, i.e.
W�0  1 + _(1 � V). It follows that 1 + 8 (1 � V)  1 + _(1 � V), and
subsequently 8  _. Applying this to the robustness bound for U�0
yields U�0 � 1 + 1

8 (1 � V) � 1 + 1
_ (1 � V) = U� .

This concludes the proof that OnMLEng is Pareto optimal for all
deterministic algorithms with a switching parameter, sinceW�0  W�
guarantees that U�0 � U� for any algorithm �0 with switching
parameters 8, 9 .

L���� 2. Any deterministic algorithm for PAES can be expressed
by a deterministic algorithm with a switching parameter.

The main idea for proving this lemma is that time slots assigned
to the local generator and the grid can be reordered such that the
assignment can be determined by a single parameter. The full details
of the proof are given in Appendix C. Combining Lemma 1 and
Lemma 2 concludes the proof of Theorem 2.

5.3 Proof of Theorem 4
The key observation is that Proposition 1 still holds with a dynamic
break-even point, where we can characterize the competitive ratio
of any online algorithm AB with parameter B . Although the value
of B will change over time in OnMLEng-dyn with dynamic advice
f̂C , the possible values of B remain the same as the possible values
in OnMLEng. The possible competitive ratios must be the same, and
subsequently the robustness and consistency are the same. Similarly
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for rOnMLEng-dyn and rOnMLEng, B may be time varying but is still
constrained to the same two distributions.

5.4 Extending Results to the General Demand Se�ing
Consider an instance of PAES with integer demand. We can con-
struct a binary demand instance PAES�� at the:-th layer by denoting
4: (C) = 1{4 (C )�: } . The full details of decomposing PAES into PAES�
� are inspired by [34], so we outline the necessary adaptions for
robustness and consistency analysis.
Denote E: (C) and D: (C) the energy usage from the grid and lo-

cal generator respectively from the :-th layer of binary demand.
Note that maxC

Õ
: E

:
(C) =

Õ
: maxC E: (C), i.e. the overall peak

grid utilization is the sum of the layered peak utilization. Similarly,
D (C) =

Õ
: D

:
(C), E (C) =

Õ
: E

:
(C), i.e. the overall grid and generator

usage is the sum of the layered grid and generator usage. Then we
have

cost(PAES � ALG) =
’
:

cost(PAES�� � ALG)

i.e. the cost of PAES is equal to the sum of the costs over the
binary demand problems PAES��.

5.5 Extending Consistency and Robustness Results
Let an algorithm which solves PAES�� be U-robust and W-consistent
in the binary demand setting. Then we demonstrate that extending
to the integer demand setting PAES is also U robust and W consis-
tent. Consider the consistency scenario, where the integer demand
predictions 4̂ (C) are correct. Then each layer prediction 4̂: (C)would
also be correct. We can then use the W consistency bound. Consider
a binary demand layer : :

cost(PAES�� � ALG)  Wcost(PAES�� � OPT),8:
Then summing over : gives:

cost(PAES � ALG)  Wcost(PAES � OPT)

Now consider the robustness scenario, where the overall demand
prediction 4̂ (C) is not necessarily accurate. Then each consider a
binary demand layer : will be U robust:

cost(PAES�� � ALG)  Ucost(PAES�� � OPT),8:
Then summing over : gives:

cost(PAES � ALG)  Ucost(PAES � OPT)

We can just substitute the respective consistency and robust-
ness bounds of OnMLEng and rOnMLEng for W and U . Thus the upper
bounds on OnMLEng and rOnMLEng extend to the general demand
setting.

5.6 Extending the Pareto Optimality of OnMLEng
Observe that PAES�� is a special case of PAES. Then it is impossible
for an algorithm which solves PAES to dominate OnMLEng in the
integer demand setting. If such an algorithm existed, then it would
dominate OnMLEng in the binary demand setting, which contradicts
Theorem 2. Thus the Pareto optimality of OnMLEng extends to the
general demand setting.

6 EXPERIMENTS
Weuse real-world traces to experimentally evaluate the performance
of proposed learning-assisted algorithms as compared to the pure
online algorithms and the o�ine optimum. Our proposed algorithms
characterize a class of algorithms that are determined by the choice
of trust parameter. Our experiments consider such algorithms in
both the worst-case performance and practical average-case perfor-
mance scenarios. The results answer these questions:

(1) How does the OnMLEng algorithm compare to the pure on-
line algorithm? Our results show that OnMLEng consistently
achieves better average performance than the pure online
algorithm, sometimes even achieving near-optimality.

(2) What is the e�ect of varying prediction quality via renewable
penetration? Lower-quality predictions noticeably degrade
the worst-case performance of OnMLEng instances that are too
optimistic about advice, while the performance of OnMLEng
instances with more cautious trust parameter selection is
robust to poorer prediction quality.

(3) How do problem parameters such as peak price and grid capacity
constraints a�ect the performance? The normalized cost of the
best performing OnMLEng algorithm remains extremely close
to optimal under four di�erent varying parameters.

6.1 Data Traces and Comparison Algorithms
6.1.1 Data Center Energy Demands. For representing the energy
demands of data centers, we use a dataset including the server
load information for 300+ Akamai data centers across the United
States, collected every 5 minutes [24]. Since some data centers are
co-located with on-site renewable sources, we use wind data traces
from [16] and inject renewable sources with 40% penetration in
our experiments, unless the penetration level is otherwise stated.
Two sample one week trajectories of energy demand for di�erent
locations in the United States are depicted in Figure 2. While we see
a roughly diurnal pattern for the New York City energy demand,
the pattern is less visible for Rochester. For both cities, the high
unpredictability of renewable generation leads to comparable unpre-
dictability in the net energy demand, regardless of diurnal patterns
in energy demand. These observations show the importance of ML
advice, as well as the possibility of tuning the level of trust in a
principled manner.

6.1.2 Energy Pricing Data. We use the 2018 spot energy prices
from the New York Electricity Market (NYISO). The value of spot
prices changes in real-time over intervals of 5 minutes. As an ex-
ample, the spot prices in April 2018 vary between $13.69/MWh
and $64.62/MWh. The value of ?< is set to be roughly 100 ⇥
maxC 2T ? (C), which is based on common practice by U.S. utilities
such as PG&E and Duke Energy. The cost of local generation is set
to ?6 = maxC 2T ? (C). Finally, the capacity of the local generator is
set to be roughly 60% of the energy demand.

6.1.3 Comparison Algorithms. Table 2 summarizes the acronyms
for di�erent algorithms in our experiments. Here, we use three
approaches to determine the trust parameter: �rst, o�ine optimal
selection of the trust parameter – this approach searches over all
possible values of _ in a brute force manner as input to OnMLEng
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(a) New York City (b) Rochester

Fig. 2. Time-varying energy demand with incorporation of renewables for two Akamai data centers in NY. Although there is a roughly diurnal pa�ern for
energy demand in New York City, Rochester is comparably more unpredictable.

Table 2. Summary of algorithms that are evaluated

The online algorithms with ML advice that we evaluate
OnMLEng-opt OnMLEng with the optimal trust parameter (o�ine)

OnMLEng-hist
OnMLEng with the best historical trust parameter
(online)

OnMLEng-hist-dyn
OnMLEng-hist with time-varying predictions that
are adjusted to align with observed values

OnMLEng-ALF
OnMLEng with trust parameter determined
according to ALF algorithm (online)

OnMLEng-static
OnMLEng with the optimal static trust parameter
for online learning (o�ine)

Eng-dd

A simple data-driven algorithm for PAES that fully
trusts the break-even point of the previous
instance

Other algorithms for comparison
ENG-OPT Optimal o�ine cost for PAES
OnEng [34] The best competitive online algorithm for PAES

and selects the best performing choice of _. Although selecting
the best choice of _ is not possible in online settings, the optimal
hybrid algorithm serves to demonstrate the full potential of algo-
rithms withML advice. In experiments, the o�ine optimal algorithm
OnMLEng-opt is used for PAES. Second, as a practical online selec-
tion, we choose the trust parameter based on the historical optimal
value, that is the best _ for the previous instance of the problem. The
algorithm OnMLEng-hist is used for this scenario. To demonstrate
time-varying predictions, algorithm OnMLEng-hist-dyn aligns the
predictions used in OnMLEng-hist according to observed values in
an online manner. Third, we use the adversarial Lipschitz algorithm
in a full-information environment (ALF) [23] to learn the choice for
_ based on a history of previous instances. For this online learning
setting, we compare against OnMLEng-static, the best static choice
of _ over the full history of instances.
In experiments, we report the normalized cost of di�erent algo-

rithms. The normalized cost is the ratio between the cost of the
algorithm and the o�ine optimal cost (i.e., ENG-OPT for PAES). The
normalized cost is always greater than or equal to 1. The lower
the cost ratio of an algorithm, the better the performance. Finally,
to show how online algorithms with ML advice achieve the best
of both worlds, we compare their normalized cost to pure online

algorithms (OnEng [34]) and naive data-driven algorithms that fully
trust the advice (Eng-dd).

6.2 Large-scale Trace-Driven Evaluation
6.2.1 Analysis at a Single Renewable Penetration Level. We �rst
evaluate the performance of the proposed algorithms over a large
variety of locations and trials, with emphasis on demonstrating
how the proposed algorithms are able to achieve the best of both
worlds. In Figure 3, we report results for PAES over 338 locations
and 30 trials at 30%, 40%, and 50% renewable penetration. To begin,
we focus on the cumulative probability distribution of normalized
cost at a 30% renewable penetration. Speci�cally, we observe that
OnEng is strictly upper bounded by the theoretically guaranteed
bound of approximately 1.85, but the majority (over 80%) of loca-
tions have normalized cost of greater than 1.6. The Eng-dd algorithm
has comparatively better normalized cost for the majority of loca-
tions, but has a heavy tail. OnMLEng-opt and OnMLEng-hist clearly
outperform OnEng and Eng-dd since they leverage advice for better
decision making. Last but not least, the performance of OnMLEng
and its variants largely depend on the level of uncertainty in energy
demand.

6.2.2 Analysis at Multiple Renewable Penetration Levels. We now
consider the e�ect of all three di�erent renewable penetration levels
in Figure 3. Overall, increasing the penetration degrades the accu-
racy of the predictions and subsequently drives the normalized cost
higher. This is most prevalent in the worst case scenario, where the
heavy tails beyond the theoretical guarantee increase from 20% to
40% for Eng-dd. On the other hand, the mean normalized cost is
relatively robust degrading predictions via penetration level. For all
algorithms, the mean normalized cost remains below the theoretical
guarantee.

6.2.3 Evaluating a Dynamic Break-even Point Algorithm. A natural
choice for a dynamic break-even point algorithmwithin OnMLEng-dyn
is one that aligns the predictions with observed past and current
values, i.e. once ? (C), 4 (C) are observed at time g 0 then the pre-
dictions for all current and future time slots g � g 0 are set as
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(a) 30% penetration.

(b) 40% penetration.

(c) 50% penetration.

Fig. 3. Cumulative probability distribution of normalized cost of di�erent algorithms at 30%, 40%, and 50% penetration levels. We consider some key
observations from these plots. First, algorithms with ML advice almost strictly outperform OnEng in mean normalized cost, but careful selection of trust level
is important as prediction quality decreases. Second, the worst-case performance in OnMLEng-hist is noticeably robust to degrading prediction quality when
compared to Eng-dd, indicating that careful selection of trust level will restrict poor worst-case performance.

Fig. 4. Cumulative probability distribution of dynamic vs. static break-even advice algorithms at 50% penetration. The key observation is that OnMLEng-hist-dyn
is slightly be�er than OnMLEng-hist in worst case scenarios, but equivalent in the practical average case scenario.
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?̂g�g0 (C) = ? (C), 4̂g�g0 (C) = 4 (C). This type of algorithm is a nat-
ural middle ground between OnEng and OnMLEng, since the pre-
dicted break-even points are gradually aligning with observed val-
ues. We consider a variant of this algorithm OnMLEng-hist-dyn

which uses the best historical trust parameter, and compare it against
OnMLEng-hist. From Figure 4, we see that OnMLEng-hist-dyn is
slightly better than OnMLEng-hist in worst case and 99 percentile
scenarios, but functionally equivalent in the average case scenario.
This correlates closely with Theorem 4, as the two algorithms have
equivalent theoretical robustness bounds.

6.3 Evaluation Results for PAES
In this section, we investigate the impact of di�erent parameters on
the performance of the proposed algorithms.

6.3.1 The Impact of Trust Parameter. Introducing the trust parame-
ter in the algorithm design allows e�ective usage of predictions in
algorithmic actions. Speci�cally, setting _ close to 0 represents more
trust in predictions, while _ close to 1 represents almost no trust
in predictions. To scrutinize the impact of _ on the performance of
OnMLEng, in Figure 5(a) we vary the value of _ from 0 to 1. We report
the average normalized cost over several locations and trials, with
ML advice in three regimes: (i) accurate denotes perfect ML advice,
(ii) high error denotes poor ML advice, and (iii) previous with the
values of the previous run of the algorithm as the ML advice. These
three regimes represent a broad range of ML advice and the goal is
to investigate the impact of level of trust in di�erent algorithms. The
notable observations are summarized as follows: (1) With accurate
ML advice, and _  0.1, OnMLEng achieves the optimal performance.
(2) With high error in ML advice, unfavorable values of _ (high trust
on prediction) lead to even worse performance than the pure online
algorithms. (3) Favorable setting of _, e.g., _ � 0.4 for OnMLEng,
achieves better performance even with high error in ML advice.
This experiment signi�es the importance of setting right values for
the trust parameter in order to outperform purely online algorithms
without advice.

6.3.2 The Impact of Peak Price. The peak price ?< is an important
parameter that impacts the break-even point. Case studies show
that the peak charge varies substantially in di�erent geographical
locations, ranging from 20% to 80% of the total electricity bill [31].
In this experiment, we investigate the impact of this parameter on
di�erent algorithms. We scale the value of peak price from 1⇥ to
20⇥ of its original value and report the average normalized cost
values of 30 runs in Figure 5(b). The result shows that the normal-
ized cost of OnMLEng with trust _ = 0.5 is constantly better than
OnEng. OnMLEng-hist is always very close to OnMLEng-opt and is
substantially better than OnEng. Interestingly, the normalized costs
of all algorithms are better in the extremes of low and high peak
prices. This is reasonable since with low peak prices it is natural to
use the grid. At high peak prices, the optimal decision is clearly to
fully utilize the generators. So, despite the uncertainty of the input,
decisions in these two extreme regimes are trivial.

6.3.3 The Impact of Ramp Constraints. The algorithms proposed in
this paper work for fast-response generators. In practice, there are
several generators that are slow-response and cannot switch their

output level quickly. The proposed algorithms are easily modi�ed
to incorporate ramp constraints. Speci�cally, let ' be the ramp con-
straints, so that |D (C) � D (C � 1) |  ',8C 2 T , i.e., the changes in
generator output level should be always less than '. We can easily
modify OnMLEng and OnEng, as explained in [35, Section 4], to re�ect
the ramp constraint. The idea is to �rst run the algorithm without
the ramp constraints, and then, project the obtained values to the
feasible region to respect the ramp constraints. In Figure 5(c), we
vary the ramp to capacity ratio from 10% to 100%, and report the av-
erage normalized cost of OnEng and OnMLEng. The result shows that
OnMLEng always achieves better performance than OnEng. Although
the normalized costs for OnEng and OnMLEng increase as we relax
the ramp constraints, for OnMLEng-hist and OnMLEng-opt those
values are robust.

6.3.4 The Impact of Local Generation Capacity. A drawback of pure
online algorithms such as OnEng is that they are too conservative in
decision making. An example of such performance degradation is
once the capacity of the generator is above 60% of the total energy
demand (see Figure 5 in [34]). By leveraging ML advice, we can
e�ectively prevent this performance degradation. To show this, we
investigate the cost saving of di�erent algorithms as the capacity of
generator changes. We de�ne d = ⇠/maxC 4 (C) as the ratio between
the capacity of generator and the maximum energy demand, and
change this value from 10% to 100%. Figure 5(d) shows the normal-
ized cost of of di�erent algorithms. To better illustrate the bene�t
of algorithms with ML advice, in Figure 5(e) we report the cost
reductions as compared to a baseline without local generation. With
d  30%, all algorithms perform more or less similarly. However,
with d > 40% the performance of OnEng and OnMLEng with _ = 0.5
degrades substantially, while the cost reduction of OnMLEng-opt
and OnMLEng-hist increases. We consider this observation as an-
other critical motivation to use online algorithms with ML advice
for tackling online problems.

6.4 Parameter Selection with Online Learning
The previous sections largely consider the normalized cost of one
billing period as the evaluation metric for di�erent algorithms. An-
other perspective is the online learning scenario, where we evaluate
the performance of algorithms over a sequence of billing period
instances. This is a useful scenario since online learning is an al-
ternative method of learning the trust parameter _ over multiple
instances, beyond the basic method of looking at the previous in-
stance alone as in OnMLEng-hist.

Speci�cally, we consider the problem of selecting _ over# rounds.
For each round = 2 [1,# ], we receive a problem instance PAES=
and must choose a trust parameter _= to use this round. Let the cost
in round = be cost(PAES=, _=). The best single o�ine optimal static
trust parameter _static satis�es

_static = argmin
_

’
=2 [1,# ]

cost(PAES=, _) .

Then the goal of online learning is to choose _= each round such
that the regret is minimized compare to using _static, i.e.,
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(a) Trust parameter (b) Peak price (c) Ramp constraints

(d) Capacity (e) Cost reduction

Fig. 5. Evaluation results of five di�erent experiments for PAES. Key observations are noted in 6.3.
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Fig. 6. Evaluation of parameter selection via online learning, measured by average cumulative cost and regret. The key result is that the average cost converges
to the static optimal as the number of learning rounds increases.

Regret(# ) =
’

=2 [1,# ]

cost(PAES=, _=)�
’

=2 [1,# ]

cost(PAES=, _static).

In our experiments for online learning, we use the adversarial
Lipschitz algorithm [23] in a full-information setting to choose _.
ALF initially samples _= from a uniform distribution, but gradually
updates the probability distribution upon observing the cost of each
setting of _ on the instance PAES= . In other words, choices of _
with low cost will be more likely to be sampled in the next round.

We report the results of online learning over 372 billing period
instances. Figure 6(a) compares the average cumulative cost of

OnMLEng-ALF and OnMLEng-static, and Figure 6(b) plots the re-
gret of OnMLEng-ALF. Initially in early rounds, there is a large gap
between OnMLEng-ALF and OnMLEng-static because ALF is still
sampling _= for each round. As the number of rounds increases, ALF
begins to settle on a choice of _ and the gap with OnMLEng-static

narrows, with the gap appearing to become constant in later rounds.
This convergence to the static o�ine optimal is also re�ected in the
regret plot, which shows the growth of regret slowing drastically
after 50 rounds, and growing only marginally near the end of the
learning process.
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7 ALGORITHMIC DISCUSSION
The framework of ML advice for online algorithms is recently pro-
posed and has been utilized for several online problems, e.g., online
caching [22, 27, 29], bin packing [1], ski rental [3, 25, 28, 30] and
job scheduling [25, 30]. However, this work is the �rst that uses
this framework in the context of energy scheduling. Traditional
approaches incorporating predictions often assume the prediction
or prediction error follows a particular distribution or stochastic pro-
cess, which limits the generality and practicality of their prediction
framework. Other works [8, 9] use prediction windows of limited
size that do not provide any information about events further into
the future. These works apply predictions directly into the opti-
mization for decision making. In this paper, predictions are used to
generate advice for decision making. From our theoretical analysis
and numerical evaluation, using advice is more powerful because
only high-level structure such as break-even points is needed. This
is in contrast to requiring detailed prediction of each time slot and
modelling the error structure of each prediction.
PAES is an extended version of the ski-rental problem [6], in

which a skier is going to ski for an unknown number of days. For
each day, the skier can either rent skis at unit price or buy them
for a higher price of 1 > 1 and ski for free from then on. The
best known deterministic algorithm for ski-rental problem is the
break-even algorithm: rent the �rst 1 � 1 days and buy on day 1. In
PAES, there is a rent-vs-buy dilemma in usage-based vs. peak-based
decision making and the online algorithms in literature follow the
break-even structure [34]. However, there is an additional unique
challenge dedicated to PAES, namely that the “buy” option is not
fully free and has an additional time-varying unit price. In our
algorithm design with ML advice, we assume that an ML model
provides an estimate of the break-even point to the problem. We do
not assume any modeling from ML and treat it as a black-box that
provides input to our algorithms.

8 CONCLUDING REMARKS
This paper improves the performance of classic competitive algo-
rithms with ML advice in a principled manner for the peak-aware
energy scheduling problem. Di�erent from prior literature on using
prediction for online algorithms, our algorithms are empowered
with a parameter that determines the level of trust in the ML ad-
vice. For all algorithms we characterized the competitive ratio as a
function of the trust parameter and showed that our algorithms are
provably the best possible algorithms in this framework since they
are Pareto optimal. By extensive large-scale experiments we showed
the improved performance of the proposed algorithms against pure
online algorithms as well as data-driven algorithms that naively
trust the advice, verifying that our algorithms achieve the best of
both worlds. While we focused on an energy scheduling problem,
the rent-vs-buy nature and the category of break-even point al-
gorithms appear frequently in broad application domains such as
server on/o� scheduling, TCP acknowledgment, and renting cloud
servers, and a promising future direction is to extend the break-even
point algorithms for those problems. Another promising direction
is to incorporate the energy storage systems into the peak-aware
energy scheduling problem.
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A PROOF OF ROBUSTNESS AND CONSISTENCY OF
RONMLENG

A.1 Proof of Corollary 3 and Corollary 4
P����. First we show the consistency and robustness bounds of

Corollary 3 and Corollary 4 hold when f̂ > 1.
(i) f̂ > 1,f  _ < 1. Note this is an incorrect prediction scenario,

so the �nal upper bound lies in the robustness setting. The expected

cost is given by
Ø
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(ii) f̂ > 1, _  f < 1. Note this is an incorrect prediction scenario,
so the �nal upper bound lies in the robustness setting. The expected
cost is given by
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Case (ii) is clearly upper bounded by case (i), so the robustness
bound holds.
(iii) f̂ > 1, _ < 1 < f . Note this is a best case correct prediction

scenario, so the �nal upper bound lies in the consistency setting.
The expected cost is given by
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where (a) holds true since we have 0  4_ � 1� _ for _ 2 (0, 1] from
the discussions in Case (i), and _ � 1  0.
We now consider the cases where f̂  1.
(iv) f̂  1, 1  1

_ < f . Note this is a worst case failed prediction
scenario. The expected cost is given by
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where (c) holds since (f � 1)V + 1 � 1 and (4
1
_ � 1 � 1

_ ) is positive
as shown in case (i) that 5 (1/_) is increasing for _ 2 [0, 1] so
5 (1/_) � 5 (1) > 0.
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(v) f̂  1, 1  f < 1
_ . Note this is a worst case failed prediction

scenario. The expected cost is given by
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where (e) is true since f < 1
_ . The �nal step is is true since inequality

(e) is equivalent to inequality (b) from case (iv), so the competitive
ratio of case (v) reduces to the competitive ratio of case (iv). So the
same robustness bound from (iv) will also dominate OnMLEng.
(vi) f̂  1,f  1 < 1

_ . This is a correct prediction scenario. The
expected cost is given by
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⇤

A.2 Proof of Corollary 5
P����. We show that Corollary 5 is true for each of the above 6

cases. We begin with the cases where f̂ > 1.
(1) Consider case (i) above with bound 1 + �1 (1 � V). We show

that this bound is better that of the deterministic algorithm, i.e.,
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(2) The result for case (i) holds, since case (ii) is upper bounded

by case (i).
(3) Consider case (iii) above with bound 1+_2�1 (1� V). We show

that this bound is better than that of the deterministic algorithm,
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which holds true from case (i).
So cases (1) - (3) demonstrate that when f̂ > 1, rOnMLEng domi-

nates the robustness and consistency bounds of OnMLEng.
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where (d) holds true from (4
1
_ � 1 � 1

_ ) is positive. The inequal-
ity holds true, thus the robustness bound of rOnMLEng dominates
OnMLEng when f̂  1.

(5) The result for case (iv) holds, since case (v) is upper bounded
by case (iv).

(6) Consider case (vi) above with bound 1 + �2 (1 � V). We show
that this bound is better than that of OnMLEng, i.e., 1 + �2 (1 � V) 
1 + _(1 � V), i.e., �2  _. It is easy to show that 4
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_ � 1 � 1

_ .

Then 4
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Therefore, we have �2  _. Thus the competitive ratio dominates
the consistency bound of OnMLEng. So cases (3) - (6) demonstrate
that the rOnMLEng dominates the robustness and consistency bounds
of OnMLEng when f̂  1. ⇤

B A RANDOMIZED ALGORITHMWITH DIRECT
EXTENSION OF THE EXISTING RANDOMIZED
ALGORITHM

The goal in this section is to show that a naive incorporation of
the ML advice in designing a randomized algorithm lead to an
algorithm that is neither robust nor consistent. Speci�cally, we
show that a randomized algorithm that modi�es the distribution
function proposed in Equation (2) fails to achieve both robustness
and consistency at the same time. In particular, a �rst attempt to
change the distribution function is to naturally modify according
to the enhancements in deterministic algorithms and obtain the
following functions:
if f̂ > 1:
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Our analysis below demonstrates that with these functions, rOnMLEng
ismax

n
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-robust and (1/V)-consistent.

This means that with above distribution functions the consistency
could be large as V approaches 0.

(i) f̂ > 1,f  _ < 1. This is an incorrect prediction scenario. The
expected cost is given by

Ø
B ⌘(B,f) 5

⇤
1 (B)3B

=
π f

0

"
1 +

1 � f + B

f
(1 � V)

#
4B

4_ � 1 + V
3B+

π _

f

4B

4_ � 1 + V
3B + (1)

V

4_ � 1 + V

=
4_ � 1

4_ � 1 + V
+

1 � V
4_ � 1 + V

+
V

4_ � 1 + V

=
4_

4_ � 1 + V
.

(ii) f̂ > 1, _  f < 1. This is an incorrect prediction scenario. The
expected cost is given by

Ø
B ⌘(B,f) 5

⇤
1 (B)3B

=
π _

0

"
1 +

1 � f + B

f
(1 � V)

#
4B

4_ � 1 + V
3B + (1)

V

4_ � 1 + V



π _

0

4B

4_ � 1 + V
3B +

π f

0

"
1 � f + B

f
(1 � V)

#
4B

4_ � 1 + V
3B+

V

4_ � 1 + V

=
4_ � 1

4_ � 1 + V
+

1 � V
4_ � 1 + V

+
V

4_ � 1 + V

=
4_

4_ � 1 + V
.

(iii) f̂ > 1, _ < 1 < f . Note this is a correct prediction scenario.
The expected cost is given by

Ø
B ⌘(B,f) 5

⇤
1 (B)3B

=
π _

0

"
1 +

B (1 � V)
(f � 1)V + 1

#
4B

4_ � 1 + V
3B+

"
1 +

(f � 1) (1 � V)
(f � 1)V + 1

#
V

4_ � 1 + V

= 1 +
1

4_ � 1 + V

"
(1 � V)4_ (_ � 1)
(f � 1)V + 1

+ (1 � V)

#

=
4_

4_ � 1 + V
�

4_

4_ � 1 + V

"
(1 � _) (1 � V)
(f � 1)V + 1

#


4_

4_ � 1 + V
.

(iv) f̂  1, 1  1/_ < f . This is an incorrect prediction sce-
nario.The expected cost is given by

Ø
B ⌘(B,f) 5

⇤
2 (B)3B

=
π 1/_

0

"
1 +

B (1 � V)
(f � 1)V + 1

#
4B

41/_ � 1 + V
3B+

"
1 +

(f � 1) (1 � V)
(f � 1)V + 1

#
V

41/_ � 1 + V

=
41/_

41/_ � 1 + V

"
1 +

(1/_ � 1) (1 � V)
(f � 1)V + 1

#

(2)


41/_

41/_ � 1 + V

"
1 + (1/_ � 1) (1 � V)

#

(3)


41/_

41/_ � 1 + V

"
1 + (1/_ � 1)

#

=
1
_

41/_

41/_ � 1 + V
,

where (c) holds since (f � 1)V + 1 � 1, and (d) is true since 0 
1 � V  1. However, note the following upper bound also holds:

1 +
(1/_ � 1) (1 � V)
(f � 1)V + 1

 1 +
(f � 1) (1 � V)
(f � 1)V + 1

 1 +
(f � 1) (1 � V)

(f � 1)V

 1 +
(1 � V)

V


1
V
.

Then the competitive ratio in this case isπ
B
⌘(B,f) 5 ⇤2 (B)3B  min

n
1/V, 1/_

o
·

41/_

41/_ � 1 + V
.

(v) f̂  1, 1  f < 1/_. This is an incorrect prediction scenario.
The expected cost is given by

Ø
B ⌘(B,f) 5

⇤
2 (B)3B

=
π f

0

"
1 +

B (1 � V)
(f � 1)V + 1

#
4B

41/_ � 1 + V
3B

+

"
1 +

(f � 1) (1 � V)
(f � 1)V + 1

# " π 1/_

f

4B

41/_ � 1 + V
3B +

V

41/_ � 1 + V

#

=
41/_

41/_ � 1 + V

"
1 +

(1/_ � 1) (1 � V)
(f � 1)V + 1

#

=
41/_

41/_ � 1 + V

(f � 1/_)V +
1
_

(f � 1)V + 1
(3)


41/_

41/_ � 1 + V

1/_
1

=
1
_

41/_

41/_ � 1 + V
,

where (d) is true since 1  f  1/_, f � 1/_ < 0, and f � 1 � 0.
Then the competitive ratio in this case isπ

B
⌘(B,f) 5 ⇤2 (B)3B  min

n
1/V, 1/_

o
·

41/_

41/_ � 1 + V
.
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(vi) f̂  1,f  1 < 1/_. Note this is a correct prediction scenario.
The expected cost is given by

Ø
B ⌘(B,f) 5

⇤
2 (B)3B

=
π f

0

"
1 +

1 � f + B

f
(1 � V)

#
4B

41/_ � 1 + V
3B+

π 1/_

f

4B

41/_ � 1 + V
3B (1)

V

41/_ � 1 + V

=
π 1/_

0

4B

41/_ � 1 + V
3B +

π f

0

"
1 � f + B

f
(1 � V)

#
·

4B

41/_ � 1 + V
3B

+
V

41/_ � 1 + V

=
41/_ � 1

41/_ � 1 + V
+

1 � V
41/_ � 1 + V

+
V

41/_ � 1 + V
=

41/_

41/_ � 1 + V
.

Next, we consider the consistency. For consistency guarantees, we
compute the competitive ratio assuming the predictions are correct.
There are two cases to consider here

(i) f̂ = f > 1. With a selected parameter B from the distribution
5 ⇤1 (B), the algorithm uses the local generator for the �rst ) B time
slots before switching to the grid. Then the cost of the algorithm is
ALG =

Õ) B

C=1 ?64 (C) +
Õ)
C=) B ? (C)4 (C) + ?< . Since f > 1, the optimal

o�ine solution uses the grid for the whole duration with cost OPT =Õ)
C=1 ? (C)4 (C) + ?< . Then we have the following:

ALG =
) B’
C=1

?64 (C) +
)’

C=) B+1
? (C)4 (C) + ?<

=
) B’
C=1

(?6 � ? (C))4 (C) +
)’
C=1

? (C)4 (C) + ?<

 B · ?< +

)’
C=1

? (C)4 (C) + ?<  (1 + B) · ?< +

)’
C=1

? (C)4 (C)

 (1 + B) (?< +

)’
C=1

? (C)4 (C))  (1 + B)OPT.

To compute the expected expected cost of the randomized algo-
rithm, we need to know a special case of the cost of ALGwhen B = 1.
With B = 1, the algorithm never switches to grid electricity

ALG{B=1} =
)’
C=1

?64 (C) =
)’
C=1

?6
? (C)

? (C)4 (C) 
?6

?<8=

)’
C=1

? (C)4 (C)

=
1
V

)’
C=1

? (C)4 (C) 
1
V

)’
C=1

? (C)4 (C) +
1
V
?< =

1
V
OPT.

Then the expected cost of the randomized algorithm is

E[ALG] =
π
B
ALG · 5 ⇤1 (B)3B



π _

0
(1 + B) (OPT)

4B

4_ � 1 + V
3B +

1
V
(OPT)

V

4_ � 1 + V


OPT

4_ � 1 + V

"
1 +

π _

0
4B + B4B3B

#

=
OPT

4_ � 1 + V
(1 + _4_) .

If _ = 0, we have (1/V)-consist.
(ii) f̂ = f  1. With the trust parameter _, the algorithm uses

the local generator for the �rst ) 1/_ time slots before switching
to the grid, where ) 1/_

 ) . Then the cost of the algorithm is
ALG =

Õ) 1/_

C=1 ?64 (C) +
Õ)
C=) 1/_+1 ? (C)4 (C) + ?< . Since f  1, the

optimal o�ine solution uses the grid for the whole duration with
cost OPT =

Õ)
C=1 ?64 (C). Then we have the following:

ALG =
) 1/_’
C=1

?64 (C) +
)’

C=) 1/_+1

? (C)4 (C) + ?<



) 1/_’
C=1

?64 (C) +
)’

C=) 1/_+1

?64 (C) + ?< = OPT + ?<

(4)
 OPT + _

 
) 1/_

+1’
C=1

(?6 � ? (C))4 (C)

!

 OPT + _

 
)’
C=1

?64 (C)

!

= (1 + _)OPT,

where (e) is true from Algorithm rOnMLEng.

C PROOF OF LEMMA 2
We show that an arbitrary deterministic algorithm can be expressed
by a deterministic algorithm with a switching parameter.
We �rst de�ne two algorithms: (i) Generic-set-selection, a

deterministic algorithm that is not limited by a switching parameter;
and (ii) Converted-switching-parameter, rearranges price and
demand ? (C), 4 (C) such that Generic-set-selection is replicated.

Algorithm 6 Generic-set-selection

Use local generator for a set of timeslots ); ✓ T , and use grid
electricity starting for the set of timeslots )6 = T �);

We consider Algorithm 6 with ); ,)6 , and an arbitrary determinis-
tic algorithm A modeled by Algorithm 6 with ); ,)6 .

Let C⇤ be the last timeslot before |); | in the new demand ordering
4 0(C) with nonzero demand, i.e. C⇤ is de�ned by

C⇤ = max
C  |); |,40 (C )=1

C .

We will show that the switching parameter algorithm will switch
at time C⇤. In other words, the timeslots chosen for local generator
and the grid will be the same as); and)6 , except for some timeslots
from C⇤ to |); | with 0 demand. As a results, the cost is equivalent
since timeslots with 0 demand contribute nothing to the cost.
Since 4 0(C) = 0 for C⇤ < C  |); |, we have

B =
1
?<

’
|); |

C=1
(?6 � ?

0
(C))4 0(C)

=
1
?<

’C⇤

C=1
(?6 � ?

0
(C))4 0(C) +

1
?<

’
|); |

C=C⇤+1
(?6 � ?

0
(C)) · 0
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Algorithm 7 Converted-switching-parameter

Let the timeslots of ); be speci�ed ); = {;1, ;2, ..; |); | } and )6 be
speci�ed )6 = {61,62, ..6 |)6 | }.
De�ne a new ordering of price and demand ? 0(C), 4 0(C) according
to:

? 0(C)=

(
? (;C ), if C  |); |,

? (6C ), otherwise.

4 0(C)=

(
4 (;C ), if C  |); |,

4 (6C ), otherwise.

Choose switching parameter B according to:
1
?<

’
|); |

C=1
(?6 � ?

0
(C))4 0(C) = B .

Under the new ordering, use local generator �rst and switch to
the grid electricity starting at the �rst time g where’g

C=1
(?6 � ?

0
(C))4 0(C) � B · ?< .

=
1
?<

’C⇤

C=1
(?6 � ?

0
(C))4 0(C) + 0,

i.e.,
ÕC⇤
C=1 (?6 � ?

0
(C))4 0(C) = B · ?< .

Similarly, since 4 0(C⇤) = 1, ? 0(C) < ?6,8C , we have

B =
1
?<

’C⇤

C=1
(?6 � ?

0
(C))4 0(C)

=
1
?<

’C⇤�1
C=1

(?6 � ?
0
(C))4 0(C) +

(?6 � ? 0(C⇤))4 0(C⇤)

?<

>
1
?<

’C⇤�1
C=1

(?6 � ?
0
(C))4 0(C),

i.e.,
ÕC⇤�1
C=1 (?6 � ? 0(C))4 0(C) < B · ?< .

Therefore the �rst time g where
Õg
C=1 (?6 � ?

0
(C))4 0(C) � B · ?<

will be at g = C⇤.
Timeslots 1, · · · , C⇤ are selected for the local generator. These are

correctly assigned since C⇤  |); |. If C⇤ < |); |, then timeslots C⇤ <
C  |); | are incorrectly assigned to the grid. However, 4 0(C) = 0 for
C⇤ < C  |); |, which means there is no di�erence in cost. Timeslots
|); | +1, · · · ,) are correctly assigned to the grid. Therefore switching
at time C⇤ in the new ordering has an equivalent cost as assigning
); and )6 .
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