
Prepublication copy provided to Professor David Eisenbud. Please give confirmation to AMS by August 13, 2021.

Not for print or electronic distribution. This file may not be posted electronically.

Contemporary Mathematics

Tate resolutions and MCM approximations

David Eisenbud and Frank-Olaf Schreyer

Abstract. Let M be a finitely generated Cohen-Macaulay module of codi-
mension m over a Gorenstein Ring R = S/I, where S is a regular ring. We
show how to form a quasi-isomorphism φ from an R-free resolution of M to the
dual of an R-free resolution of M∨ ∶= ExtmR (M,R) using the S-free resolutions
of R and M . The mapping cone of φ is then a Tate resolution of M , allowing
us to compute the maximal Cohen-Macaulay approximation of M .

In the case when R is 0-dimensional local, and M is the residue field, the
formula for φ becomes a formula for the socle of R generalizing a well-known
formula for the socle of a zero-dimensional complete intersection.

When I ⊂ J ⊂ S are ideals generated by regular sequences, the R-module
M = S/J is called a quasi-complete intersection, and φ was studied in detail
by Kustin and Şega. We relate their construction to the sequence of “Eagon-
Northcott”-like complexes originally introduced by Buchsbaum and Eisenbud.

Introduction

Tate resolutions. Let R be a Gorenstein local ring, and let M be a finitely
generated R-module. A Tate resolution or complete resolution T of M is a free,
doubly infinite complex that coincides with a free resolution of M in sufficiently
high homological degree (it suffices to truncate the resolution at the first syzygy
module that is a maximal Cohen-Macaulay module). If T is minimal, in the sense
that the differential of R/mR ⊗T is 0, then we speak of a minimal Tate resolution.
Such minimal Tate resolutions exist for any finitely generated R-module M , and
are unique up to (typically non-unique) isomorphism. As explained below, the
Tate resolution of M is the same as the Tate resolution of the essential maximal
Cohen-Macaulay (MCM) approximation M ′ of M , so information about the Tate
resolution gives information about the MCM approximation.

In Section 1 we study the construction of Tate resolutions of a (not necessarily
maximal) Cohen-Macaulay module M over a Gorenstein ring R: we show that the
Tate resolution of M is the mapping cone of a quasi-isomorphism φ from the free
resolution of M to the dual of the resolution of the dual, M∨ ∶= ExtcodimR M(M,R),
appropriately shifted. If R = S/I, with S regular, then we show how to construct
φ from the S-free resolutions of R and M .
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2 DAVID EISENBUD AND FRANK-OLAF SCHREYER

Quasi-complete intersections. If R and M ∶= R/J are both complete inter-
sections in S, then R/J is called a quasi-complete intersection in R, and the map
R → R/J is a special case of what is called a quasi-complete intersection morphism,
studied in [AHS]. In this case the module M is self-dual, and its minimal free reso-
lution G was constructed by Tate [Tate]. The quasi-isomorphism φ ∶ G→ G

∗[−m],
where m is the codimension of J in R and (−)∗ ∶= HomR(−,R), was constructed
by Kustin and Şega [KS] as part of a much larger study of quasi-complete inter-
sections. In Section 2 we give a basis-free exposition of this construction, adding
the observation that the Tate resolution is naturally a double complex in which
the “vertical” strands are the complexes generalizing the Eagon-Northcott complex
that were described in [BE]. This is explained in Theorem 2.3.

Maximal Cohen-Macaulay approximations. Auslander and Buchweitz
[AB] defined the maximal Cohen-Macaulay (MCM) approximation of a finitely
generated module M over a local Gorenstein ring R to be the unique minimal
surjection from an MCM R-module N such that the kernel of N → M has finite
projective dimension (see [EP] for a recent summary and application of the theory).
The module N may always be decomposed as the direct sum of a free module and
an MCM R-module M ′ with no free summand. The module M ′, with its induced
map to M , is called the essential MCM approximation of M . If k is any integer
≥max(2,depthR − depthM) then M ′ is isomorphic to the minimal k-th syzygy of
the dual into R of the minimal k-th syzygy of M .

Thus the essential MCM approximation M ′ of M is the cokernel of the first
differential in the minimal Tate resolution of M . The original motivation for our
work was to compute the minimal number of generators of the essential MCM
approximation of a complete intersection M = S/J as a module over a complete
intersection R = S/I. This is done in Corollary 2.4.

1. Duality in the Tate resolution of a Cohen-Macaulay module

Tate resolutions associated with Cohen-Macaulay modules always exhibit a
sort of duality. The result is well-known in the case dimR = 0 (see for example
[LW]), and appears in an unpublished manuscript of Buchweitz in the general case
[Bu, Subsetion 4.5 and Section 5]

Proposition 1.1. Let R be a Gorenstein ring, and let M be a Cohen-Macaulay
R-module whose annihilator has codimension m in R. Let (F, δ) and (G, ∂) be R-
free resolutions of M and of M∨ ∶= ExtmR (M,R), with terms Fi and Gi, respectively.
There is a quasi-isomorphism φ ∶ F→ G

∗[−m]:

⋯ G∗m G∗m−1 ⋯ G∗0 0

F0 F1 ⋯ Fm ⋯

∂∗ ∂∗ ∂∗ ∂∗

φ0 φ1

δ δ

φm

δ δ

.

The mapping cone M(φ), the total complex of the double complex above, is a Tate
resolution for M , and M(φ∗) is a Tate resolution of M∨.



Prepublication copy provided to Professor David Eisenbud. Please give confirmation to AMS by August 13, 2021.

Not for print or electronic distribution. This file may not be posted electronically.

TATE RESOLUTIONS AND MCM APPROXIMATIONS 3

Thus in the local case (possibly after factoring out a free summand), the essen-
tial MCM approximation of M over R has a presentation

F0 ⊕G∗m−1 �

⎛
⎜
⎝
δ 0
φ1 ∂∗

⎞
⎟
⎠
F1 ⊕G∗m−2.

Remark. If we drop the Gorenstein hypothesis but still assume that R is
Cohen-Macaulay, and replace (−)∗ with (−)∨ = HomR(−, ωR), then similar state-
ments still hold.

Proof. Because M and M∨ are Cohen-Macaulay modules of codimension m
we have M ≅ ExtmR (M∨,R) = Hm(G∗), while ExtiR(M∨,R) = 0 for i ≠m.

The isomorphism M = H0(F) ≅ Hm(G∗) lifts to a map F0 → G∗m which induces
a map F1 → G∗m−1, and thus to a quasi-isomorphism φ ∶ F → G

∗ of cohomological
degree m. It follows that the mapping cone M(φ) of φ has no homology. Since it
coincides with F in large homological degree, it is a Tate resolution of M .

Since the image of each map in M(φ) is a maximal Cohen-Macaulay module,
every truncation of M is a resolution of such a module, and thus the dual M∗(φ) =
M(φ)∗ has no homology. It follows that φ∗ is also a quasi-isomorphism. �

From Proposition 1.1 we see that, beyond the free resolutions of M and M∨,
the new information in the Tate resolution lies in the description of the map of
complexes φ. The rest of this paper is devoted to further description of this map.

In the situation of Proposition 1.1, suppose in addition that R = S/I. To
construct a (generally non-minimal) R-free resolution F of M one might take an S-
free resolution K of M , tensor with R, and then extend it to an R-free resolution.
The next result applies, in particular, to the case when S is regular local and
R = S/I is Gorenstein, and also to the case where S is arbitrary and I is generated
by a regular sequence, and gives a way of constructing the map of complexes in
Proposition 1.1. In the special case of Proposition 1.4 the maps σM are made more
explicit.

Theorem 1.2. Suppose that S and R = S/I are Noetherian rings and that R
has an S-free resolution E

E ∶ S �∂1
E1

� ⋯ � Ec−1 �∂c
Ec

� 0.

with ∂c ≅ ∂∗1 . Let M be an R-module, and let (K, δ) be an S-free resolution of M .
Let σM be a map of complexes E ⊗ K → K that induces the multiplication map
R⊗M →M , and let

σM
i,j ∶ Ei ⊗Kj →Ki+j

be the components of σM . The diagram

⋯ R⊗Kc−1 R⊗Kc R⊗Kc+1 ⋯

0 R⊗K0 R⊗K1 ⋯

R⊗ δ R⊗ δ R⊗ δ R⊗ δ

R⊗ σM
c,0 R⊗ σM

c,1

R⊗ δ R⊗ δ

⋯ .

is a map of complexes inducing an isomorphism M = H0(R ⊗K) → Hc(R ⊗K) =
TorSc (R,M).
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Lemma 1.3. If S and R are as in Theorem 1.2, then the functor TorSc (R,−),
restricted to the category of R-modules, is equivalent to the identity functor.

Proof of Lemma 1.3. We compute TorSc (R,M) using the given resolution of
R. Because ∂∗1 ⊗M = 0 we see that

TorSc (R,M) = ker(Ec ⊗M
∂∗1⊗M� Ec−1 ⊗M) ≅M.

Any choice of an isomorphism Ec ≅ S gives an equivalence between this functor
and the identity functor. �

Proof of Theorem 1.2. We first prove that the maps σM
c,∗ form a map of

complexes σM
c ∶ R ⊗ K → R ⊗ K[−c]. From the definition of the σM

i,j we see that
there are commutative diagrams

R⊗Ki−1+c R⊗Ki+c

R⊗ ((Ec ⊗Ki−1) ⊕ (Ec−1 ⊗Ki)) R⊗Ec ⊗Ki

R⊗ (σM
c,i−1 σM

c−1,i) R⊗ σM
c,i

R⊗ ( δ ⊗ 1
±1⊗ ∂

)

However, R⊗ (1⊗ ∂) ∶ Ec → Ec−1 is 0, so the diagrams

R⊗Ki−1+c R⊗Ki+c

R⊗Ec ⊗Ki−1 R⊗Ec ⊗Ki

R⊗ σM
c,i−1

δ ⊗ 1

R⊗ σM
c,i

also commute, as required.
We next show that for any R-module M the map σM

c induces a functorial

isomorphism M = TorS0 (R,M) → TorSc (R,M). We first prove functoriality. Let
α ∶ M → N be a homomorphism of R-modules, let L be the S-free resolution of
N , and let α̃ ∶ K → L be a map extending α. Choose maps σM ∶ E ⊗K → K and
σN ∶ E⊗L→ L extending the multiplication maps as above.

There is a homotopy τ between the two compositions

E⊗K
σN○(1⊗α̃)� L

and

E⊗K
α̃○σM

� L.

because they cover the same map R⊗M → N and L is acyclic. Because R⊗∂c = 0,
this homotopy restricts to a homotopy between the induced maps

R⊗Ec ⊗K
R⊗(σN○(1⊗α̃))

� R⊗L

and

R⊗Ec ⊗K
R⊗(α̃○σM )� R⊗L.
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In particular, the diagrams

TorSi+c(R,M) TorSi+c(R,N)

TorSi (R,M) TorSi (R,N)

TorSi+c(R,α)

σM
c,i∗

TorSi (R,α)

σN
c,i∗

commute. This proves the functoriality.
We next observe that σR

c,0 is an isomorphism. This follows because we may

choose σR ∶ E⊗E→ E to restrict to the identity map on the subcomplex E⊗E0 = E.
It follows that σRs

c,0 is an isomorphism for any s.
From the right exact sequence

R⊗K1 → R⊗K0 →M → 0

we get a commutative diagram

TorSc (R,R⊗K1) TorSc (R,R⊗K0) TorSc (R,M) 0

TorS0 (R,R⊗K1) TorS0 (R,R⊗K0) TorS0 (R,M) 0

σK1

c,0 σK0

c,0 σM
c,0

.

The bottom row is the R-free presentation of M , and the top row is also right
exact because TorSc (R,−) is an equivalence on the category of R-modules. The
two left-hand vertical maps are isomorphisms because R⊗K1 and R⊗K0 are free.
It follows by a diagram chase that σM

∗ is an isomorphism as well, completing the
proof. �

If R is a complete intersection in S the maps σi,j of Theorem 1.2 have a simpler
description:

Proposition 1.4. Suppose that S is a Noetherian ring, that g1, . . . , gc is a
regular sequence in S, and that R = S/(g1, . . . , gc), so that the S-free resolution of
R is the Koszul complex

S �∂
Sc �∂ 2

⋀Sc �∂ ⋯ �∂ c

⋀Sc � 0.

Suppose that K is an S-free resolution of an R-module M , and, for 1 ≤ j ≤ c, let
τj ∶ K → K[1] be a homotopy for multiplication by gj on K. Let e1, . . . , ec be a basis
for Sc such that ∂(ei) = gi. The map

σi,j ∶
i

⋀Sc ⊗Kj →Ki+j

that takes an element ei1 ∧⋯∧ eis ⊗a with i1 < ⋯ < is to τi1 ○⋯○ τis(a) satisfies the
properties of the maps σ of Theorem 1.2.

In particular, the map σc,i ∶ Ki → Kc+i of Theorem 1.2 may be chosen to be
τ1 ○ ⋯ ○ τc.

Note that if (F, δ) is any complex and τ is a homotopy for multiplication by an
element g, then δ anti-commutes with τ modulo g. Thus the order of the τi in the
formula does not matter modulo I.
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Proof. Since the elements ei1 ∧⋯∧eis with i1 < ⋯ < is form a basis for ⋀s Sc,
the maps σi,j are well-defined.

Write δ for the differential of K. The differential of E ⊗K acts on Es ⊗Kj as
∂ ⊗ 1 + 1⊗ (−1)sδ. From the defining property of the homotopies τi we have

δσs,j(ei1 ∧⋯ ∧ eis ⊗ a)
= δ ○ τi1 ○ ⋯ ○ τis(a) = (gi1 − τi1) ○ δ ○ τi2 ○ ⋯ ○ τis(a) = ⋯

= (
i−1
∑
j=0

(−1)jgij τi1 ○ ⋯ ○ τ̂iij ○ ⋅ ⋅ ⋅ ○ τis(a)) + (−1)
sτi1 ○ ⋯ ○ τis ○ δ(a)

= σs−1,j(∂(ei1 ∧⋯∧ eis) ⊗ a) + σi,j−1(ei1 ∧⋯∧ eis ⊗ (−1)sδ(a))
as required. �

To apply Proposition 1.1 using Theorem 1.2, we will use the following result in
the case N =M∨,N ′ = R.

Lemma 1.5. Suppose that S is a Noetherian ring, let R = S/I, and let N,N ′

be a finitely generated R-modules. Let L be an S-free resolution of N and let G

be an R-free resolution of N , and let α ∶ L → G be a map of complexes extending
the identity map of N . If the depth of J ∶= annN on N ′ is m, then the map

Hm(HomR(G,N ′)) α∗� Hm(HomS(L,N ′)) is an isomorphism.

Remark. It is well-known from duality theory that

Hm(HomR(G,N ′)) = ExtmR (N,N ′)
≅ ExtmS (N,N ′) =Hm(HomS(L,N ′));

the point of the Lemma is that the comparison map α induces the isomorphism,
which doesn’t seem to follow immediately from the standard proofs.

Proof. Suppose first that m = 0. Since α induces the identity on N it induces
the identity on HomR(N,N ′) = HomS(N,N ′).

We now induct on m, and we may suppose m > 0. We may choose an element
x ∈ J that is a non-zerodivisor on N ′, and consider the diagram

0 HomR(G,N ′) HomR(G,N ′) HomR(G,N ′/xN ′) 0

0 HomL(L,N ′) HomS(L,N ′) HomS(G,N ′/xN ′) 0

x

x

Since Extm−1S (N,N ′) = 0 = Extm−1R (N,N ′) while x annihilates ExtmS (N,N ′) and
ExtmR (N,N ′). Thus we get a commutative diagram with exact rows

0 Hm−1HomR(G,N ′) HmHomR(G,N ′/xN ′) 0

0 Hm−1HomS(L,N ′) HmHomS(L,N ′/xN ′) 0

Hm−1Hom(α,N ′) HmHom(α,N ′)

and the left-hand vertical map is an isomorphism by induction. �
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2. The case of two regular sequences

In this section we give an exposition from a double-complex point of view of
the complete resolution of a quasi-complete intersection that was described in [KS].
We fix the following notation: S will denote a Gorenstein ring. Let M = S/I, where
I is generated by a regular sequence f1, . . . , fn. Let R = S/J where J ⊂ I is also
generated by a regular sequence (g1, . . . , gc). We set m = n − c, and we write K for
the Koszul complex of f1, . . . , fn over S.

Let A ∶ Sc → Sn be a map making the diagram

(1)

S Sn

S Sc

(f1, . . . , fn)

1 A

(g1, . . . , gc)

that is, gj = ∑n
i=1 ai,jfi. We choose an identification of ⋀c Sc with S and write

α ∈ ⋀c Sn for the image of 1 under ⋀cA.
Before doing the general case, it may be helpful to see the case m = 0, which

was worked out by Tate himself, in the form that we will generalize:

Example 2.1. With notation as above, suppose c = n and that M is the residue
field of R.

Tate’s paper [Tate] provides an explicit minimal free resolution that may be
written as the total complex of a double complex beginning

F ∶ R Rc ⋀2Rc ⋯

⋯

Rc ⊗R Rc ⊗Rc ⋯

⋯

(f1 . . . fc)

Here we have written Rc⊗R instead of Rc to emphasize that the second row is the
tensor product of Rc with the first row.

Because M = S/(f1, . . . fc) is a maximal Cohen-Macaulay module over R the
dual F∗ = HomR(F,R) is exact except at F ∗0 . Furthermore,

H0(F∗) = ker(F ∗0 ≅ S

⎛
⎜⎜⎜⎜
⎝

f1
⋮
fc

⎞
⎟⎟⎟⎟
⎠
� Sn∗ ≅ F ∗1 ) ≅M

Thus the Tate resolution of M is obtained by “splicing” together F and F
∗ via a

map α ∶ S → S ≅ S∗ which may be taken to be multiplication by any generator of
(g1, . . . , gc) ∶ (f1, . . . fc). One well-known expression for such a generator is detA,
where A, as in diagram (1) is a matrix expressing the gi as linear combinations of
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the fi. Thus the Tate resolution of M has the form:

. . .

⋯ Rc∗ ⊗Rc∗ Rc∗

⋯

⋯ ⋀2Rc∗ Rc∗ R

R Rc ⋀2Rc ⋯
⋯

Rc ⊗R Rc ⊗Rc ⋯

⋯

⎛
⎜
⎝

f1
⋮
fc

⎞
⎟
⎠

detA
(f1 . . . fc)

We now turn to the general case, m = n − c ≥ 0.
We will give an explicit description the Tate resolution of M over R in terms

of K and α, following the outline of Proposition 1.1. What makes this case simpler
than the more general case treated in Section 1 is the that we can choose the map
σc,∗ to kill certain differentials in the resolution of M .

We recall the construction of the minimal R-free resolution F of M . Following
Tate, it is usually written as a complex whose underlying graded free module is the
tensor product of R⊗K with D(Rc), the divided power algebra on the free module
Rc. For our purposes it will be useful to write it as the total complex of the double
complex:

R ⋀1 ⋀2 ⋯ ⋀k ⋯ ⋀n 0

F ∶

D1 D1⋀2 ⋯ D1⋀k−1 ⋯ D1⋀n−1 D1⋀n

D2 ⋯ D2⋀k−2 ⋯ D2⋀n−2 D2⋀n−1

⋮ ⋯ ⋮ ⋯

Dk⋀k−1 ⋯ Dk⋀n−k D2⋀n−k+1

⋯ ⋮ ⋯

where for compactness we have written ⋀i for R⊗⋀i Sn and Di for the i-th divided
power of Rc and suppressed the tensor product signs so that, for example, we write
D2⋀k in place of D2R

c ⊗S ⋀k Rn.
Because M is a complete intersection in S, we have M∨ = ExtmR (M,R) ≅

ExtcS(M,S) ≅ M , and thus the R-free resolution of M∨ is again F. By Proposi-
tion 1.1 the Tate resolution of M is the mapping cone of any map of complexes
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φ ∶ F→ F
∗[−m] that induces an isomorphism

M =H0(F) →H0(F∗[−m]) =H0(F∗[−m]) ≅M.

We will see that such a map of complexes can be constructed from the maps σc,i ∶
Ki → Ki+c of Theorem 1.2. By virtue of Proposition 1.4, these take a particularly
simple form. (A similar result holds for all the σi,j , but we do not need this.)

Proposition 2.2. Let e′1, . . . e
′
n be a basis of Sn, and let δ1 ∶ Sn → S send

e′i → fi. Let (K, δ) be the Koszul complex

K ∶ S �δ1
Sn �δ2

2

⋀Sn � ⋯

The homotopy for an element g = ∑j ajfj on K is exterior multiplication by ∑j aje
′
j.

Thus if A ∶ Sc → Sn is a map as in diagram (1), and α is the image of the generator
of ⋀c Sc in ⋀c Sn, under ⋀cA then σc,0 ∶ K → K[−c] may be taken to be exterior
multiplication by α.

Proof. It is easy to check directly that a homotopy for fi on K is exterior
multiplication by e′i. The given formula for a homotopy for g follows by linearity.

By Proposition 1.4 the maps σi,j are defined by compositions of the homotopies
τj for the gj on K, and the composition τ1 ○ ⋯ ○ τc is thus exterior multiplication
by α = ⋀cA(e1 ∧⋯∧ ec), as claimed. �

Theorem 2.3. With notation as above, let K be the Koszul complex resolving
M over S and let F be the resolution of M over R as in the diagram above. Let
φ′ ∶ R ⊗ K → R ⊗ K[−c] ≅ R ⊗ K

∗[−m] be the composition of the map defined
in Proposition 2.2 with the isomorphism induced by a choice of isomorphism β ∶
⋀n Sn → S. Let φ ∶ F→ F

∗[−m] be the composition

F
π� R⊗K

φ′� R⊗K
∗[−m] π∗� F

∗[−m].

where π is the projection with kernel ⊕i≥1Di(Rc) ⊗K[−i]. The map φ is a homo-
morphism of complexes and maps M =H0(F) isomorphically to H0(F∗[−m]). Thus
the mapping cone M(φ) of φ is a Tate resolution of M over R. If I ⊂ mJ , then this
Tate resolution is minimal.

Note that π and π∗ are not maps of complexes (the complex R ⊗K is a sub-
complex of F, not a quotient complex.). Nevertheless, the composition φ is a map
of complexes.

Proof of Theorem 2.3. Let S(Rc) denote the symmetric algebra of Rc as
an R-module. Consider the doubly infinite diagram whose i-th and i+1-st columns
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are:

⋯ S1(Rc) ⊗⋀i+c+1Rn S1(Rc∗) ⊗⋀i+c+2Rn ⋯

⋯ ⋯

⋯ ⋀i+cRn ⋀i+c+1Rn ⋯

⋯ ⋀iRn ⋀i+1Rn ⋯

⋯ ⋯

⋯ D1(Rc) ⊗⋀i−1Rn D1(Rc) ⊗⋀iRn ⋯

(−1)iφ′i (−1)i+1φ′i+1

with the term ⋀iRn in position (i, 0), where the maps in the bottom two rows of
the diagram are those of the minimal R-free resolution of S/(f1, . . . , fn). Using the
isomorphism β we may identify ⋀j Rn with ⋀n−j(Rn∗), and with this identification,
taking into account that (DiR

c)∗ is is naturally isomorphic to Si(Rc∗), the upper
two rows of the diagram are isomorphic to the dual of the lower two rows, shifted
m steps to the left. Thus each row is itself a complex and the squares in the lower
two rows, and dually in the upper two rows, commute up to sign.

We claim that, with the map φ′ between the two middle rows, the diagram is
a double complex: that is, the squares in the middle two rows commute up to sign,
and the vertical maps as well as the horizontal ones compose to zero.

The lower of the middle two rows is the Koszul complex of f1, . . . , fn, and the
upper of the middle two rows is the same Koszul complex, shifted c steps to the
left. We have already shown in Proposition 2.2 that the maps φi commute with the
differentials of the these Koszul complexes.

We must still show that the composition of consecutive vertical maps is 0. But
the columns of the diagram are exactly the complexes first described in [BE, Section
2] and [Ki], and given an exposition in [E97, Appendix A.2.10]. (See also the more
conceptual construction in [W], which follows ideas of [Ke].)

However, as this is the only fact about the vertical columns that we need,
it seems worth pointing out that the result is elementary, a direct extension of
“Cramer’s rule” for solving linear equations: since the whole diagram is self-dual
up to shifts, it may be reduced to showing that the composition

D1(Rc) ⊗
i−1
⋀Rn = Rc ⊗

i−1
⋀Rn →

i

⋀Rn φ′�
i+c
⋀Rn

is zero, and direct computation shows that the components of this map are the
(c + 1) × (c + 1) minors of the matrix derived from A by repeating a row.
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Finally, we must show that the composed map of complexes π∗ ○φ′ ○π induces
an isomorphism H0(F) →H0(F∗[−m]) =H−m(F∗). To this end, consider the maps
of complexes

R⊗K ⊂

ι� F
π∗○φ′○π� F

∗[−m] ι∗�� R⊗K
∗[−m]

where ι is the natural inclusion of complexes. It is obvious that ι induces an
isomorphism M = H0(R ⊗ K) → H0(F). Lemma 1.5 shows that ι∗ induces an
isomorphism

H0(F∗[−m]) =H−m(F∗) →H−m(R⊗K
∗) =Hc(R⊗K).

Finally, the composition ι∗○(π∗○φ′○π)○ι is just φ′ composed with the isomorphism
R⊗K[−c] ≅ R⊗K

∗[−m] induced by β. This induces an isomorphism H0(R⊗K) →
H0(R⊗K

∗[m]) by Proposition 2.2. Thus

π ○ φ′ ○ π ∶H0F→H0(F∗[−m])
is an isomorphism as well, completing the proof. �

From the description in the proof we see that the mapping cone M(φ) is the
total complex of the double complex below, where we have illustrated the case
when m = n − c = 2k + 1 is odd, and the dotted line below runs through the terms
of homological degree 0. The bold arrows are given by wedge product with α. The
columns are the complexes Ci that appear in Figure A2.6 of [E97]. The dashed line
passes through the terms of homological degree 0.

R0 ⋀1 ⋀2 ⋯ ⋀k ⋯ ⋯ ⋀n−c ⋀n−c+1

0 D1 D1⋀1 ⋯ D1⋀k−1 ⋯ ⋯ D1⋀n−c−1 D1⋀n−c

0 D2 ⋯ D2⋀k−2 ⋯ ⋯ D2⋀n−c−2 D2⋀n−c−1

⋮ ⋯ ⋮ ⋯

0 Dk ⋯ ⋯ Dk⋀n−c−k D2⋀n−c−k+1

⋱ ⋱ ⋱ ⋱

⋀c ⋀c+1 ⋀c+2 ⋯ ⋀c+k ⋯ ⋀n−1 ⋀n 0⋀c−1

S1⋀c S1⋀c+1 S1⋀c+2 S1⋀c+3 ⋯ S1⋀c+k+1 ⋯ S1⋀n 0

⋮ ⋮ ⋮ ⋮ ⋮

Sn−c−k⋀n−k−1 Sn−c−k⋀n−k Sn−c−k⋀n−k+1 Sn−c−k⋀n−k+2 ⋯ Sn−c−k⋀n 0

⋱ ⋱ ⋱ ⋱

Tate Resolution of M ; case when m is odd.

Here the entries of the matrices represented by horizontal arrows are the fi,
and the entries of the matrices represented by the vertical arrows are entries of a
matrix representing A, except for the bold arrows, whose entries are the c×c minors
of A.

The part of the complex represented by the lower half of the diagram is infinite.
Each row is a tensor product of a Dk or an Sk with the Koszul complex on f1, . . . , fn.
The columns, on the other hand, are the complexes Ci that appear in Figure A2.6
of [E97].

Corollary 2.4. The minimal free resolution of the essential maximal Cohen-
Macaulay approximation M ′ of M has the form shown in Figure 2. Thus M ′
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requires

1 + ∑
1≤i≤(n−c−1)/2

( n

c + 1 + 2i
)(c − 1 + i

i
)

generators.

Proof. Add the ranks of the free modules appearing along the 0-th diagonal
of the Tate resolution of M (this is marked with a dashed line in the diagram
above.) �

R ⋀1 ⋀2 ⋯ ⋀k ⋯ ⋯ ⋀n−c ⋀n−c+1

D1 D1⋀1 ⋯ D1⋀k−1 ⋯ ⋯ D1⋀n−c−1 D1⋀n−c

D2 ⋯ D2⋀k−2 ⋯ ⋯ D2⋀n−c−2 D2⋀n−c−1

⋮ ⋯ ⋮ ⋯

Dk ⋯ ⋯ Dk⋀n−c−k D2⋀n−c−k+1

⋯ ⋯ ⋮ ⋯

⋀c+1 ⋀c+2 ⋯ ⋀c+k ⋯ ⋀n−1 ⋀n 0

S1⋀c+3 ⋯ S1⋀c+k+1 ⋯ S1⋀n 0

⋮

Sk⋀n 0

Resolution of the essential MCM approximation M ′ of M
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