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ABSTRACT

In this work!, we study the multi-scale expert problem, where
the rewards of different experts vary in different reward ranges.
The performance of existing algorithms for the multi-scale expert
problem degrades linearly proportional to the maximum reward
range of any expert or the best expert and does not capture the non-
uniform heterogeneity in the reward ranges among experts. In this
work, we propose learning algorithms that construct a hierarchical
tree structure based on the heterogeneity of the reward range of
experts and then determine differentiated learning rates based on
the reward upper bounds and cumulative empirical feedback over
time. We then characterize the regret of the proposed algorithms
as a function of non-uniform reward ranges and show that their
regrets outperform prior algorithms when the rewards of experts
exhibit non-uniform heterogeneity in different ranges. Last, our
numerical experiments verify our algorithms’ efficiency compared
to previous algorithms.
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1 INTRODUCTION

This paper studies an extension of the expert problem that deals
with experts with scaled rewards in different ranges, which is a
practically relevant variant of the Hedge problem, the multi-scale
Hedge problem or MSHedge, for short. The basic Hedge problem
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assumes a homogeneous reward range for each expert, e.g., [0, 1].
In practice, however, there is a broad range of applications such
as dynamic pricing, portfolio selection, etc., where the rewards of
different experts are heterogeneous and scaled in different ranges.
This motivates the model of our interest, which involves multi-
scale experts, those who possess non-uniform reward ranges. In the
MSHedge problem, the reward range of expert i is [L;, U;], where U;
and L; serve as the upper and lower bounds of rewards, whose val-
ues are known to the online player in advance. For ease of technical
presentation, we consider two different models for MSHedge: (1)
MSHedge-U, which only considers heterogeneity in upper bounds
with lower bounds set to 0; and (2) MSHedge-LU, which allows both
upper and lower bounds to be heterogeneous?. It is straightfor-
ward to show that the naive extension of the Hedge algorithm to
the multi-scale setting leads to a regret of O(M~/T log K), which
linearly scales with M, the maximum reward upper bound among
K experts. A related work in [1] improves the regret to scale lin-
early proportional to the reward upper bound of the optimal expert
instead of the largest reward upper bound among all experts. In
this work, we made the following contributions to the MSHedge
problem.

1.1 Contributions

DRate: A hierarchical learning algorithm with differentiated learn-
ing rates. Our key idea is to explicitly capture non-uniform upper
bounds into the algorithm design. Towards this, we propose to
adaptively change the learning rate, and hence the selection proba-
bilities of the expert, based on both the cumulative feedback and
upper bound of the leading experts. We develop two learning al-
gorithms based on Differentiated learning RATEs, called DRate-U
and DRate-LU for short, which work within the MSHedge-U and
MSHedge-LU models, respectively. For simplicity of presentation,
we also refer to those two algorithms together as DRate.

To deal with the heterogeneity of multi-scale reward values,
DRate partitions the set of experts into smaller subsets, placing
experts with similar reward ranges in the same subset. DRate re-
cursively continues to partition the experts into the new subsets
and stops partitioning when the upper bounds in the subset are
uniform. With a given tree, the decision-making process of DRate
is as follows. At each round, DRate traverses the tree by recursively
selecting nodes from the root to a leaf node and possibly running

%In the literature, a well-known special model of MSHedge-LU is the Lipschitz Expert
problem [3].
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Figure 1: The hierarchical structure of the DRate-U algorithm

the Hedge algorithm in the selected leaf node, and eventually, re-
turning an expert associated with the selected leaf node as its final
decision.

Regret Bounds. We first characterize the regret of DRate-U as a
function of the path from root to the node that includes the best
expert. By proper parameter setting and with a balanced binary tree,

we show that DRate-U achieves a regret of O(VU; leiglK Uy T),
where Uy, w.lo.g, is the largest reward upper bound assuming a
descending order of experts based on their upper bounds. Then,
we propose an algorithm that constructs an underlying tree that
minimizes the regret. The regret of DRate-LU also depends on how
the tree is constructed. Given a tree, DRate-LU provides a provable
regret, which is the cumulative regret over the path from root
to the node that includes the best expert. Specifically, by placing
experts with similar reward ranges into the same node, DRate-LU
can reduce the region that the reward fluctuates in a node, as well
as the regret.

2 THE DRATE ALGORITHM

The DRate Algorithm can work in both MSHedge-U and MSHedge-LU.
As an example, we only introduce the DRate-U algorithm for the
first model of MSHedge, where the reward upper bounds of experts
scale in different values. Our high-level idea is to adopt a hierar-
chical learning policy to effectively capture the multi-scale upper
bounds. More specifically, DRate-U leverages a tree structure to
categorize the experts with different upper bounds, and tackles the
original learning problem hierarchically by traversing through the
constructed tree.

In Figure 1, we demonstrate the structure of the decision tree
where the expert set K resides at the root and each internal node
represents a subset of experts. Each node in the tree associated
with more than one experts with different upper bounds can be
further partitioned into two smaller subsets as its children. The
algorithm may choose not to further partition the node when the
upper bounds of the contained experts are the same. Hence, a
leaf node may contain more than one expert. The performance of
DRate-U closely depends on how the tree is constructed.

With a given tree, the decision making process of DRate-U is as
follows. At each time slot, DRate-U traverses the tree by recursively
calling a node algorithm® from the root to a leaf node and possibly
running the Hedge algorithm in the selected leaf node. Eventually,
it returns an expert associated with the selected leaf node as its
final decision.

3In our terminology, the algorithm executed by a non-leaf node in the tree is called
the node algorithm.
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In DRate-U, the node algorithm plays a critical role in dealing
with multi-scale experts in DRate-U, where a function parame-
terized by a learning rate is maintained to generate the selection
probabilities of the child nodes. Let a; (v) be the child of node v with
larger cumulative feedback at time ¢, and f; (v) be the other child.
Consider two cases: CASE-1 occurs when a;(v) is the node with
the larger upper bound; and CAsEg-2, when a; (v) is the node with
smaller upper bound than that of f;(v). The key idea is to assign
aggressive (or larger) learning rate to CAsi-1 and a conservative (or
smaller) learning rate when facing CAse-2. The reason is intuitive:
with multi-scale upper bounds, an important observation is that
when CASE-2 occurs, i.e., the cumulative feedback of the expert
with larger upper bounds falls behind, the risk of large regret is
higher, since the larger upper bound provides a room for the expert
to quickly catch up with the cumulative feedback of the other node.
Thus, in CASE-2, a small or conservative learning rate is preferable.
On the other hand, in Cask-1, i.e., when the expert with lower
upper bound falls behind, it takes longer for it to catch up with the
other one, so, it is safe to select a more aggressive learning rate.

Our analysis shows that the non-uniform structure of expert
upper bounds can lead to different underlying trees that minimize
the regret of DRate-U. In this work, we also provide an algorithm
to generate the optimal tree for any instance of MSHedge-U given
the reward upper bounds.

3 MAIN RESULTS

Also, due to the page limitation, we only present the results for the
DRate-U algorithm.

THEOREM 3.1. (Regret of DRate-U) With proper learning rates for
non-leaf node v and leaf node v’, the regret of DRate-U satisfies the
following upper bound.

Rr <

(V20 Uo, T + Uy, NT) + Uy | Tlog o],

vepath(v*)\{v*}
where v; and v, are left and right children of node v, respectively,
path(v) denotes the set of nodes on the path from the root to node v,
and v+ is the leaf node containing the optimal expert.
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