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ABSTRACT
We introduce and study a general version of the fractional online
knapsack problem with multiple knapsacks, heterogeneous con-
straints on which items can be assigned to which knapsack, and
rate-limiting constraints on the assignment of items to knapsacks.
This problem generalizes variations of the knapsack problem and of
the one-way trading problem that have previously been treated sep-
arately, and additionally �nds application to the real-time control of
electric vehicle (EV) charging. We introduce a new algorithm that
achieves a competitive ratio within an additive factor of the best
achievable competitive ratios for the general problem and matches
or improves upon the best-known competitive ratio for special cases
in the knapsack and one-way trading literatures. Moreover, our
analysis provides a novel approach to online algorithm design based
on an instance-dependent primal-dual analysis that connects the
identi�cation of worst-case instances to the design of algorithms.
Finally, in the full version of this paper, we illustrate the proposed
algorithm via trace-based experiments of EV charging.
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1 PROBLEM STATEMENT
We focus on a novel generalization of the fractional Online Multiple
Knapsack Problem (FOMKP), which can unify a wide variety of
classical online problems. On one hand, it is a generalization of two
classical online optimization problems: the one-way trading [1] and
the online knapsack problems [3], bringing together two streams
of research that were previously treated separately in the literature.
On the other hand, it is the core model of many practical online
decision-making applications such as the online electric vehicle
charging and online geographical load balancing problems.

FOMKP considers a setting where items in a set N need to be
packed into knapsacks in a setM. For each item =, the operator de-
cides an assignment vector denoted by ~= := (~=1, . . . ,~=" ), where
each entry ~=< is the fraction of item = packed into the knapsack
<. The set of assignment vectors ~= satisfying (1)-(3) is Y= :’

<2M ~=<  ⇡=, 8= 2 N , (1)’
=2N ~=<  ⇠<, 8< 2 M, (2)

0  ~=<  .=<, 8= 2 N ,< 2 M . (3)

The �rst constraint (1) is a demand constraint, which bounds
the total accepted fractions of the item = by the item size ⇡= . The
second constraint (2) ensures the assigned fractions ~= satisfy the
capacity constraints, of the heterogeneous knapsacks, where ⇠< is
the maximum capacity of the knapsack<. The third constraint (3)
is a rate constraint, which ensures that at most .=< fraction of the
item = can be packed into the knapsack<.

Objective function. The objective of an FOMKP is to optimize
the value of packed items subject to the constraints (1)-(3). More for-
mally, let 6= (~=) : Y= ! R+ denote the value function of the item
=. This function models the value of the item = with an assignment
vector ~= . Optimizing over assignment vectors that satisfy (1)-(3),
the o�ine version of FOMKP can be summarized as

max
~=

’
=2N 6= (~=), s.t. constraints (1) � (3). (4)

Session: Mixed Knapsack SIGMETRICS '21 Abstracts, June 14–18, 2021, Virtual Event, China

67

https://doi.org/10.1145/3410220.3456271
https://doi.org/10.1145/3410220.3456271


Assumptions.We assume that the value functions satisfy the
following regularity conditions.

A��������� 1.1. The value functions {6= : = 2 N} satisfy:
(i) for any = 2 N , 6= (·) is non-decreasing, di�erentiable and

concave;
(ii) for any = 2 N , 6= (0) = 0;
(iii) the partial derivative of 6= (·) is bounded, i.e., there exist con-

stants !,* > 0 such that for any = 2 N and< 2 M, !  m6=
m~=<

 * .

The �rst condition ensures that the value function is smooth
and has diminishing returns. The second condition indicates that
packing no item earns no value. The third condition requires that
the partial derivatives of the value function are lower and upper
bounded by ! and* , respectively. ! and* are assumed to be known
and let \ := * /! denote the �uctuation ratio.

Online formulation. Let I := {⇡=, {.=<}<2M ,6= (·)}=2N de-
note the arrival information corresponding to each item, including
the item size, rate limits, and value functions. We evaluate the per-
formance of an online algorithm under the competitive analysis
framework. Let OPT(I) and ALG(I,A) denote the o�ine optimum
of the FOMKP and the value achieved by an online algorithm A
under an arrival instance I, respectively. The competitive ratio of
the online algorithm A is de�ned as CR(A) = maxI2⌦

OPT(I)
ALG(I,A) ,

where ⌦ denotes the set of all instances that satisfy Assumption 1.1.
An algorithm A is U-competitive if CR(A)  U .

2 ALGORITHMS & MAIN RESULTS

Algorithm 1 Online Threshold-Based Algorithm with Threshold
Function q (OTAq )

1: input: threshold function q := {q< (·)}<2M , and initial knap-
sack utilizationF (1)

< = 0,8< 2 M;
2: while item = arrives do
3: observe item size ⇡= , rate limits {.=<}<2M , and value

function 6= (·);
4: determine knapsack assignment ~⇤= by solving

~⇤= = argmax
~= 2Y=

6= (~=) �
’

<2M
Ø F (=)

< +~=<
F (=)
<

q< (D)3D; (5)

5: update the utilizationF (=+1)
< = F (=)

< + ~⇤=<,8< 2 M.
6: end while

We design an online threshold-based algorithm (OTA), i.e., Algo-
rithm 1, to solve the FOMKP. Its basic idea is to use a threshold
function q to estimate the cost of a knapsack assignment and deter-
mine the online solution by solving a pseudo-utility maximization
problem (5), i.e., the value from the item minus the cost of packing
it. Since OTAq is fully parameterized by q , the key design question
is how to determine the threshold function q such that OTAq is
competitive with the o�ine optimum.

This paper proposes to design the threshold function q using
an instance-dependent online primal-dual (OPD) analysis that ex-
tracts the design of the threshold function from the identi�cation
of a worst-case instance. The novelty of this approach is the con-
struction of instance-dependent o�ine formulations by adding

constraints to the primal problem that are constructed based on on-
line solutions, and then utilizing the corresponding dual objectives
to bound the o�ine optimum. In this way, we actually perform an
instance-dependent OPD analysis. Moreover, by focusing on the
worst-case instances, this approach yields threshold functions that
are tuned to the challenges of the online problem, and are tight
for the worst case. Based on this approach, the main results of our
paper [2] can be summarized as follows.

T������ 2.1. Under Assumptions 1.1,
(i) if the value function is aggregate, i.e.,6= (~=) = 6= (

Õ
<2M ~=<),

when the threshold function of OTAq for the FOMKP is

q⇤< (F) =
8>><
>>:
! F 2 [0, V⇤<)

!4

Uq⇤
⇠<

F�
Uq⇤

Uq⇤ �1 F 2 [V⇤<,⇠<]
, (6)

where V⇤< = ⇠<
Uq⇤�1 , the competitive ratio of OTAq⇤ is the solution of

Uq⇤ � 1 � 1
Uq⇤�1 = ln\ ;

(ii) if the value function is separate, i.e.,6= (~=) =
Õ
<2M 6=< (~=<),

when the threshold function of OTAq for the FOMKP is

q⇤< (F) =
8>><
>>:
! F 2 [0, V⇤<)

*�!
4
Uq⇤ �4Uq⇤ /(Uq⇤ �1) 4

Uq⇤
⇠<

F + !
Uq⇤ F 2 [V⇤<,⇠<]

, (7)

where V⇤< = ⇠<
Uq⇤�1 , the competitive ratio of OTAq⇤ is the solution of

Uq⇤ � 1 � 1
Uq⇤�1 = ln

Uq⇤\�1
Uq⇤�1 .

The competitive ratios of both cases in Theorem 2.1 are bounded
between 1 + ln\ and 2 + ln\ , where 1 + ln\ is a lower bound of the
optimal competitive ratio. Compared to the design proposed in prior
work [3], which uses the same threshold function for all knapsacks,
we achieve improved competitive ratios since the threshold func-
tions (6) and (7) for FOMKP are lower, and consequently estimate
a lower marginal cost at the same utilization level, encouraging a
more aggressive assignment of items.

ACKNOWLEDGMENTS
Bo Sun and Danny H.K. Tsang acknowledge the support received
from the Hong Kong Research Grant Council (RGC) General Re-
search Fund (Project 16202619 and Project 16211220). Ali Zeynali
and Mohammad Hajiesmaili’s research is supported by NSF CNS-
1908298 and CAREER 2045641. Tongxin Li’s research is supported
by NSF grants (CPS ECCS 1932611 and CPS ECCS 1739355). Adam
Wierman acknowledges the support received fromNSF grants (AitF-
1637598 and NSF CNS-1518941). Bo Sun would also like to thank
Dr. Xiaoqi Tan (University of Toronto) for insightful and useful
discussions.

REFERENCES
[1] Ran El-Yaniv, Amos Fiat, Richard M Karp, and Gordon Turpin. 2001. Optimal

search and one-way trading online algorithms. Algorithmica 30, 1 (2001), 101–139.
[2] Bo Sun, Ali Zeynali, Tongxin Li, Mohammad Hajiesmaili, Adam Wierman, and

DannyH.K. Tsang. 2020. Competitive Algorithms for the OnlineMultiple Knapsack
Problem with Application to Electric Vehicle Charging. 4, 3 (2020).

[3] Yunhong Zhou, Deeparnab Chakrabarty, and Rajan Lukose. 2008. Budget con-
strained bidding in keyword auctions and online knapsack problems. In Interna-
tional Workshop on Internet and Network Economics. Springer, 566–576.

Session: Mixed Knapsack SIGMETRICS '21 Abstracts, June 14–18, 2021, Virtual Event, China

68


	Abstract
	1 Problem Statement
	2 Algorithms & Main Results
	Acknowledgments
	References

