Geometry of

Calabi-Yau Metrics

Song Sun

Introduction

Calabi-Yau metrics are named after two mathematicians:
E. Calabi and S.-T. Yau. They are fundamental objects in
geometry and physics.

Let M be a differentiable manifold of dimension m. A
Riemannian metric g defines a smoothly varying family of
inner products on the tangent spaces of M. We fix a point
p in M and choose an identification ¥ between T,M and
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the Euclidean space R™. Then for any piecewise smooth
loop y based at p, parallel transport along y with respect to
the Levi-Civita connection yields an orthogonal transfor-
mation B, : R™ — R™. The holonomy group of g is by defi-
nition the subgroup of O(m) consisting of all such transfor-
mations . This is up to conjugation independent of the
choices of pand W. We say g is a Calabi-Yau metricif m = 2n
and there is a further identification R™ ~ C”" so that the
holonomy group of g is contained in SU(n) C O(m). In
the literature one often uses a weaker notion of local ho-
lonomy group which involves only null-homotopic loops
y. However for our purposes in this article we will take the
above more restrictive definition.

A salient feature of Calabi-Yau metrics is that they
have vanishing Ricci curvature, hence provide solutions to
the Riemannian vacuum Einstein equation. This can be
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deduced as a consequence of the Ambrose-Singer holo-
nomy theorem and the Bianchi identity. In terms of
the Berger classification of Riemannian holonomy groups,
Calabi-Yau metrics are examples of Riemannian metrics
with special holonomy, which play a pivotal role in string
theory.

This article is an expanded version of the notes for some
recent colloquia and mini-school lectures given by the au-
thor. The main goal here is to explain to the readers
some constructions and the geometry of Calabi-Yau met-
rics; in the meantime we aim to selectively discuss several
interesting examples in the field and some recent research
progress. Obviously, this article is by no means supposed
to be a comprehensive historic survey of the subject. The
topics are merely chosen according to the personal taste of
the author, and there are many other related papers em-
phasizing different aspects. Also, for lack of space it is im-
possible to provide precise references to all the results men-
tioned below, but the author hopes that interested readers
can easily look up further details on their own.

The author would like to thank Xuemiao Chen, John
Lott, Holly Mandel, and an anonymous referee for helpful
comments that improved the exposition.

Yau'’s Existence Theorem

We first consider the more flexible notion of Kdihler met-
rics. A Riemannian metric g on a differentiable manifold
M of dimension 2n is Kihler if its holonomy group is
contained in U(n). Since U(n) = GL(n;C) n O(2n), one
can define an almost complex structure on M, i.e., a ten-
sor field J : TM — TM satisfying J> = —Id that is or-
thogonal with respect to g and is parallel under the Levi-
Civita connection. By the Newlander-Nirenberg theorem
it follows that M is a complex manifold, that is to say,
near each point one can find complex-valued coordinates
{zq = x4 + \/_ 1y, }2_; such that the transition functions

are holomorphic and J is represented by J — = % for
a =1,---,n. Furthermore, the associated Kahler form w de-

fined by a)(vl, U,) = g(Juy,U,) satisfies dw = 0, and it can
be locally written as w = \/—133¢ for a real-valued poten-
tial function ¢. In terms of the complex coordinates, the
latter means that

co\/_Z

5 5z 6dza/\dzﬁ

For convenience we also call w a Kdhler metric. Conversely,

8z,0 zﬁ) 18
positive definite defines a local Kdhler metric via the above
formula. If M is compact, a Kihler metric w defines a non-
trivial cohomology class in H>(M;R). A standard example
is the Fubini-Study metric wrg on the complex projective
space CPN. In local affine coordinates (z;,---,zy), one

any real-valued function ¢ such that the matrix (
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can take the potential function ¢ = log(1+ |z, >+ -+ |zn|?).
Clearly wgg also restricts to a Kihler metric on any complex
submanifold of CPN.

Suppose now w is a Kihler metric on a complex mani-
fold M. Then by definition it is a Calabi-Yau metric if and
only if there exists a non-zero complex-valued n-form Q,
locally given as fdz; A--- dz,, which is parallel with respect
to the Levi-Civita connection. This condition is equivalent
to saying that Q is holomorphic and nowhere vanishing,
i.e, Q is a holomorphic volume form, and moreover the
following equation holds:

n=cQAQ, (1)

where c is a constant that can be determined by integrating
over M. A straightforward but crucial computation in Kih-
ler geometry shows that (1) is indeed equivalent to w being
a Ricci-flat metric on a compact Kihler manifold. This is
related to the remarkable feature of Kihler metrics that the
Ricci curvature is determined locally by a real-valued func-
tion, a huge simplification that does not exist for general
Riemannian metrics.

What we have done in the above is to decouple the defi-
nition of a Calabi-Yau metric into two ingredients of differ-
ent flavor. First we need M to be a complex manifold ad-
mitting a holomorphic volume form Q and a Kihler met-
ric. For simplicity we will call such a complex manifold a
Calabi-Yau variety. The existence of Q is a purely complex
analytic condition which, in the case when M is compact
and simply connected, is equivalent to the vanishing of
the first Chern class ¢;(M). Complex algebraic geometry
provides abundant examples of Calabi-Yau varieties.

The second ingredient we need is a Kiahler metric w on
M satisfying (1). For this we have Yau's celebrated solution
of the Calabi conjecturel, which is the reason for the name
“Calabi-Yau.”

Theorem 0.1 ([Yau78]). Given a compact Calabi-Yau variety
M with a holomorphic volume form Q and a Kihler metric w,
there exists a unique Calabi-Yau metric w on M in the cohomol-
ogy class of w.

A classical fact is that since M is compact, any Kihler
metric on M cohomologous to w is of the form g+\/—_165g0
for some globally defined real-valued function ¢. Then (1)
becomes a non-linear PDE in ¢:

(@ +V—133p)" = CQ A Q. (2)

In terms of local complex coordinates this takes the form
of a complex Monge-Ampére equation. Yau's proof of The-
orem 0.1 is by solving (2) via a continuity method. Write

YWe remark that the original Calabi conjecture was stated in a more general
form, and has led to a far-reaching program in Kdihler geometry for the last few
decades, centered around the question of finding canonical Kihler metrics on
complex manifolds.

NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 547



" = e/Q A Q for a smooth function f, and consider a
family of equations parameterized by ¢ € [0, 1]:

(w+V=13p,)" = eI-Df+ecQ A Q, ()

where again c; is a constant determined by integration. Let
T be the set of t € [0,1] such that (%;) has a smooth so-
lution ¢, satisfying f,, ¢;@" = 0. By an integration by
parts argument one sees that such a ¢;, if it exists, must
be unique. Obviously 0 € T and the goal is to show that
1 € T. Therefore it suffices to prove that T is both open
and closed. The openness follows from a standard implicit
function theorem on Banach spaces, using the fact that the
linearization of (2) is the Laplace equation. The closed-
ness will follow if one can obtain a priori estimates, namely,
if one can show that for any ¢t € T, the unique solution ¢,
satisfies the bound |¢;|c3(v) < A for a constant A > 0 in-
dependent of ¢, where the norm is defined with respect to
the fixed metric w. This is the heart of the proof and we
refer interested readers to Yau's original paper [Yau78].

Theorem 0.1 immediately produces many examples of
non-trivial compact Calabi-Yau metrics from algebraic ge-
ometry.

Example 0.2. Let F = F(Z,,---,Z,,1) be a homogeneous
polynomial of degree n+2 and consider the hypersurface X
in CP"*! defined as the zero set of F. For a generic choice
of F, X is smooth. We claim that it is a Calabi-Yau vari-
ety. Indeed, one may write down an explicit holomorphic
volume form Q which, in terms of the homogeneous coor-
dinates, is given by

OF

-1
ﬁ) dZ; A - NdZp4q

o=

oF , .
on the open set {5 # 0}. Yau's theorem implies the ex-
0

istence of a unique Calabi-Yau metric w on X in the coho-
mology class of the restriction of the Fubini-Study metric.

In the above example, when n = 1, we know X is an
elliptic curve and the metric w is a flat metric on the 2-torus.
In this case one can use elliptic integrals to write down a
formula for w in the projective coordinates [Z, : Z; : Z,].
When n > 2, there is no known closed formula for the
metric w.

In light of this, it is interesting to understand more
precisely the geometry of the Calabi-Yau metrics resulting
from Theorem 0.1. This is the topic that we shall discuss
in the rest of this article.

Calabi-Yau Metrics with Symmetry

By the Bochner technique, having vanishing Ricci curva-
ture implies that a compact Calabi-Yau metric cannot ad-
mit any non-trivial continuous symmetry, i.e., any Killing
vector field must be parallel. But this does not have to be
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the case for non-compact manifolds. Indeed, there are ex-
plicit constructions of non-compact Calabi-Yau metrics us-
ing symmetry which, as we shall see later, often provide
models and intuition for understanding the geometry of
compact Calabi-Yau metrics near the degeneration limit.
In the simplest setting when the complex dimension is
2, we recall the well-known Gibbons-Hawking ansatz [GH].
Choose a positive harmonic function V defined on a con-
tractible open set Q in the Euclidean space R®. Then one
can write *dV = d0 for a 1-form 6, where * denotes the
Hodge star operator. On the product space P = Q X S}, we
consider a Riemannian metric given by the formula

3
g=VY dxi+V7l(dt+06)?

i=1

where x;'s are standard coordinates on R3, and ¢ denotes
the standard coordinate on S! = R/Z. This metric is in-
variant under the obvious free S! rotation on the second
factor.

We claim that g is a Calabi-Yau metric. One way of see-
ing this is to define 3 orthogonal almost complex struc-
tures J; (i = 1,2, 3) by setting J;dx; = dx;,, and J;dx;,, =
V~1(dt + 0), where we make the convention to identify
the subscripts modulo 3. They satisfy the quaternionic
relations JiJ;,1 = Ji4,, and it is an exercise to check that
they are all parallel with respect to the Levi-Civita connec-
tion. This means that the holonomy group is given by the
unit quaternions Sp(1), which is isomorphic to SU(2) if we
identify further C? with the quaternions H. Notice there
are indeed a whole family of parallel orthogonal almost
complex structures given by Zle a;J;, where (ay,a,,a3)
lies in the unit sphere in R3. In terms of usual terminology,
the metric g is hyperkdihler.

Conversely, any Calabi-Yau metric in 2 complex dimen-
sions with a free S! action is locally given in the above
form. Indeed, one can recover the coordinates x;’s as the
moment maps with respect to the Kihler form w and the
real and imaginary part of the holomorphic volume form

1

Q, the function V" 2 as the length of the corresponding
Killing field %, and 0 as the dual 1-form of %. Most strik-

ingly, the S' symmetry allows us to reduce the non-linear
PDE for Calabi-Yau metrics to the Laplace equation on R3
which is a linear PDE.

The Calabi-Yau metrics constructed this way have little
topology. The situation becomes more appealing if one
makes certain variants of the construction. First we can let
Q be a domain in a general flat 3 manifold with a global or-
thonormal frame, which we also allow to have non-trivial
topology. The above procedure goes through if V satisfies
an integrality condition that i Jo#dV € Zforall 2-cycles

C € H,(Q;Z). Then P is replaced by a principal S! bundle
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7 : P — Q, and dt + 6 is replaced by a connection 1-form
on P whose curvature is *dV. Next we want to include the
case when the S! action has fixed points. This corresponds
to allowing V to be oo on a discrete subset of Q. The con-
dition for the total space P to be smoothly compactified is
that locally the singular term of V' is given by the Green’s
function % on R3.

At this point we can build various examples. To start
with, we can take Q = R3and V = zi Then we recover

p
the flat metric on C? with the standard holomorphic vol-
ume form, and with the S! action given by 1.(z;,z,) =
(A71z,,12,). The projection map 7 : C? — R? in this case
is the Hopf fibration, explicitly expressed as

(21,22) = (Re(z12,), Im(z2), 5 (1 ~ [2:2).

. k s
If we instead take V = = for a positive integer k > 1, then
r

we get the flat orbifold given by the quotient of C? by a
cyclic subgroup of order k in SU(2).
Next we make a small change, and take V' = % +1on

Q = R3. Then one obtains the Taub-NUT metric. It is a
complete Calabi-Yau metric on R*. Since adding the con-
stant 1 does not change dV, the projection map 7 is still
the Hopf fibration. As discovered by LeBrun [LeB91], for
any choice of complex structure, one can always identify
the underlying Calabi-Yau variety with C? equipped with
the standard holomorphic volume form. However, the ge-
ometry of the Kihler metric w is quite different from that of
the flat metric. For example, near infinity, the Hopf fibers
now have uniformly bounded diameter, and the volume
of a ball of radius R around a fixed point grows at the rate
R3asR — oo.

Now we choose 2 distinct points X;,X, in Q = R3, and

let
1 1

C2x-x|  2x—xo|

Then we obtain the well-known Eguchi-Hanson space. It
contains an embedded 2-sphere S with self-intersection
—2, which can be seen as the inverse image under 7 of the
line segment connecting x; and x,. The space P is diffeo-
morphic to the total space T*S, but the underlying com-
plex manifold depends on choices of the complex struc-
ture J. For generic J, it is bi-holomorphic to the affine
hypersurface {z? + z% + z = 1}; for two special choices
of J, S becomes a complex submanifold and the space is
bi-holomorphic to the total space of the holomorphic line
bundle O(-2) over CP!. The Eguchi-Hanson metric is as-
ymptotic to the flat cone given by the quotient of C? by
the involution z — —z. This follows from the observation
that for x large, V is approximately i The Eguchi-Hanson

|4

space provides a model for singularity formation of Calabi-
Yau metrics, and we will meet it several times later in this
article.
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As a more general example of Q, we consider the prod-
uct of a flat 2-torus T2 and R, where the area of T2 is nor-
malized to be 27z. Notice that in this case on Q there is
no globally positive harmonic function with singularities.
But we can take for example V = bz for a positive inte-
ger b, where z is the coordinate on R. This is positive on
the subset {z > 1}, so the Gibbons-Hawking ansatz yields
a Calabi-Yau metric with a boundary and a complete end.
The resulting space P exhibits interesting inhomogeneous
Riemannian geometry: as z tends to infinity, the size of the
S! orbits shrinks, whereas the size of the base T? expands.
The volume of a ball of radius R around a fixed point grows
at the fractional rate R*3. See Figure 1.

«---- S! bundle over T2

Figure 1. The Calabi model space.

In terms of complex geometry, we can choose a com-
plex structure so that the obvious projection map to the
Riemannian surface T? is holomorphic. Then P is bi-
holomorphic to a neighborhood of the zero section in a
holomorphic line bundle over T2, minus the zero section,
and the S! action acts by the standard multiplication on
each fiber. Viewed this way, the Calabi-Yau metric on P
agrees with the metric obtained via the Calabi ansatz. The
latter is a general way of producing a canonical metric on
the total space of a holomorphic vector bundle over a given
Kihler manifold. In our setting, we consider an n — 1-
dimensional complex manifold endowed with a Kahler
metric wp. Suppose the cohomology class of [iwD] is

integral. Then there exists a holomorphic line bundle Lp
over D and a hermitian metric || - || on Lp whose Chern
connection has curvature form given by —/—1wp. Now if
Qp is a holomorphic volume form on D and wp, is Calabi-
Yau, then one can write down a holomorphic volume form
Q on the complement of the zero section 0 in the total
space of Lp: in a local trivialization U X C of Lp, Q is
given by u='du A Qp, where u is the coordinate on C.
Then one can look for a Calabi-Yau metric on Lp \ {0} of
the form w = \/=133f(||¢|[*), where ¢ denotes a point in
Lp and f is a function of one variable. Equation (1) be-
comes an ODE in f, and one can find a solution given by
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n+1
f(t) = (—logt) n . It gives a complete Calabi-Yau metric
defined on the manifold with boundary defined by |t| < %

We call this a Calabi model space. When n =1 and D is the
flat torus T2, this coincides with the above construction via
the Gibbons-Hawking ansatz (see [HSVZ21]).

In [TY90], Tian-Yau constructed complete Calabi-Yau
metrics asymptotic to the Calabi model space. The under-
lying complex manifold is the complement of a smooth
anti-canonical divisor D in a Fano manifold X. Exam-
ples include the complement of a smooth hypersurface in
CP"*! of degree n+2. The central point is the fact that D is
itself a Calabi-Yau variety, and a punctured neighborhood
of D in X can be approximated by the space Lp \ {0} as
above, where Lp, is the holomorphic normal bundle of D
in X. The importance of both the Calabi model spaces and
the Tian-Yau metrics has been seen recently in the study of
the degeneration of Calabi-Yau metrics. We will discuss
this later in this article.

Of course one can play with the Gibbons-Hawking
ansatz and generate many more examples of non-compact
Calabi-Yau metrics. Often they have significance in model-
ing singularity formations of Calabi-Yau metrics, just like
the Eguchi-Hanson spaces.

Gluing Construction on K3 Surfaces

Now we describe a very different method of construct-
ing compact Calabi-Yau manifolds, via the gluing tech-
nique. There are many references on this, see for example
[Don12].

Let C? be endowed with a standard flat Kihler metric
w, and holomorphic volume form Q. Fix a lattice T in
C? and denote by T = C?/T the corresponding flat torus.
The map ¢ : (z;,2,) » —(z1,2,) on C? induces an involu-
tion on T with 2* = 16 fixed points. The quotient space
Y = T/ is an orbifold with 16 singular points, each of
which is modeled on C?/{t). Denote by Y° the smooth lo-
cus of Y. Then both w, and Q, descend to Y°, making it
an (incomplete) Calabi-Yau manifold.

One can easily resolve the singularities of Y in the sense
of complex geometry, by the well-known Kummer construc-
tion. To see this we consider the local model near each sin-
gularity. Let C2 be the blow-up of C? at the origin. Then
¢ has a natural lift to C2, and the quotient Q = @/(z) is
a smooth complex surface which can be viewed as a reso-
lution of singularity of C2/{t). One can show that Q, in-
duces a holomorphic volume form on Q, so that Q is a
non-compact Calabi-Yau variety. Notice Q can be identi-
fied with the total space of the line bundle ©O(—2) over CP!,
so in particular it contains a holomorphically embedded
CP! with self-intersection —2. One can make this construc-
tion at each of the 16 orbifold points of Y and obtain a
compact Calabi-Yau variety X which contains 16 disjoint
exceptional spheres. This is an example of a K3 surface.
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We want to construct Calabi-Yau metrics on X, by per-
turbing the flat metric on Y°. For this purpose we need to
graft to Y° certain Calabi-Yau metrics on Q. Notice that un-
like the holomorphic volume form, the Kiahler metric w,
cannot extend smoothly across the exceptional sphere on
Q. Conceptually this is because the induced metric space
structure on Y? is intrinsic so its singular behavior does not
depend on the choice of coordinates. Instead one can ex-
plicitly solve the equation (1) again via the Calabi ansatz.
Namely, take a function of one variable F = F(») forp > 0
and consider a Kahler metric of the form w = \/—138F(|z|?)
on C?\ {0}. For w to define a smooth and complete Calabi-
Yau metric on Q, we may take

F(n)=+n2+1 +log\/nz_++1

This is indeed the Eguchi-Hanson metric in disguise. For
5 > 0, the function F5(n) = §F(57%n) defines a Kihler
metric isometric to §%w

Now given € = (€,--,€56) such that each ¢; is small
and positive, we choose 16 Eguchi-Hanson spaces, suit-
ably rescaled so that the exceptional spheres have area ejz-
(j = 1,---,16), and attempt to glue them to a neighbor-
hood of the 16 singular points on Y. More precisely, fix
a smooth cut-off function y : (0, 00) — [0, 00) which van-
ishes for ¢t < % and equals 1 for ¢t > 1. Then we define a

Kihler metric w, on Y, which near each orbifold point p ;
is given by the interpolation \/—_165()((ej‘1|z|2)|z|2 +(1 -
x(e5 ! 2I*)E, (|2]*)), and agrees with w, outside a neighbor-
hood of the orbifold points. By definition it can be viewed
as a smooth Kahler metric on X, and it solves Equation (1)
except in a small “transition region” around the orbifold
points.

Now one wants to correct the error and deform w, to a

genuine Calabi-Yau metric of the form @, = w, +\/—_165¢€.
For this we appeal to a quantitative version of the implicit
function theorem on Banach spaces. Notice that to make
the error small, we need to choose € very small, but then
the metric is very degenerate (for example, the curvature
at the points on the exceptional spheres is comparable to
ej_z), and the usual elliptic estimate for the linearized op-
erator, i.e.,, the Laplace operator, fails to be uniform in e.
However, to compensate for this, we can introduce certain
weights into the Banach spaces. This captures the degener-
ate geometry and results in uniform weighted elliptic esti-
mates. This is the crucial technical point of the construc-
tion, and the upshot is that the correction is possible if ¢
is sufficiently small.

Compared with Yau's existence theorem, an obvious
drawback of the gluing construction is that it can only de-
scribe a small open set of the space of all Calabi-Yau met-
rics. On the other hand, the benefit is that it provides a
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more precise geometric description of the metrics. More
importantly, the gluing technique is also a general con-
struction useful for many other geometric PDEs, where it is
impossible to have an analogue of Yau's existence theorem.
For example, it was used by Joyce to construct compact Rie-
mannian manifolds with holonomy group G, and Spin(7),
which are other examples of special holonomy metrics.

The gluing construction, viewed in reverse, also yields
examples of geometric degenerations of Calabi-Yau met-
rics, fitting into the general convergence theory of Rie-
mannian metrics with bounded Ricci curvature. The latter,
when applied to our setting, states that given a sequence
of complete Calabi-Yau metrics (M;, g;) of fixed dimension
with a choice of base point p; € M;, after passing to a sub-
sequence, one may always obtain a Gromov-Hausdorff limit,
which is a complete metric space M, with a base point p,.
The notion of Gromov-Hausdorff convergence is a conve-
nient one when talking about the convergence of metric
spaces. The convergence above is, roughly speaking, ob-
tained by discretizing M; using an approximation by a lo-
cally finite set, and controlling uniformly the size of the
latter using the non-negative Ricci curvature together with
the Bishop-Gromov inequality. The main question is to
understand the formation of singularities of M.

The theory is well-developed when one imposes a fur-
ther volume non-collapsing condition. This means that there
exists € > 0 such that the volume of the unit geodesic ball
in M; centered at p; has volume bounded below uniformly
by €. Assuming this, Cheeger-Colding theory implies that
M, decomposes into a disjoint union RUS. The regular set
R is asmooth manifold endowed with a Calabi-Yau metric,
and the singular set 8 is a closed set which is small in terms
of Hausdorff dimension. Near a singular point of M, one
can dilate the metric and obtain metric tangent cones. It
is expected that there is always a unique tangent cone at
each singularity, but this has not been proven in general.
Furthermore, one can take a sequence 1; — co and obtain
rescaled Gromov-Hausdorff limits of (M, 4jw;). The set
of all rescaled limits encodes more refined information of
the singularity formation of the convergence. In general,
one can attempt to associate to this a bubble tree structure.
Heuristically, this appears in many other areas of geomet-
ric analysis, such as harmonic maps and Yang-Mills con-
nections.

In the above gluing construction, we are in the non-
collapsing situation, and as € — 0, the Gromov-Hausdorff
limit of the Calabi-Yau metrics (X, @, ) is exactly the flat orb-
ifold we start with. There is one non-trivial rescaled limit
at each singular point, given by the Eguchi-Hanson space
(Figure 2 illustrates the picture at one singular point). This
manifests the fact that the Eguchi-Hanson space is a local
model for the singularity formation of Calabi-Yau metrics.
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The Eguchi-Hanson
space

Figure 2. Gluing construction of Calabi-Yau metrics.

Moduli Spaces

Let (M, g) be a compact Calabi-Yau manifold of complex
dimension n. By Theorem 0.1 we know that the space of all
Calabi-Yau metrics on M can be characterized in terms of
essentially two pieces of algebro-geometric data: the com-
plex structure and the cohomology class of a Kihler metric.
Consequently, the local deformations of the Calabi-Yau
metric are well-understood. First, it is a result of Todorov
and Tian that there is a versal deformation space of com-
plex structures, which is itself an open set in the complex
vector space H"~11(M;C). Then once we fix the complex
structure, the set of cohomology classes of Kihler metrics
form the Kihler cone, which is an open cone in the real
vector space H>!(M; C) n H(M; R).

It is then natural to study the global structure of the
moduli space of Calabi-Yau metrics. In low dimensions,
we have the classical results. Namely, when n = 1, a com-
pact Calabi-Yau variety is simply an elliptic curve. The Kih-
ler cone is a one-dimensional ray, and the moduli space of
complex structures modulo diffeomorphisms is the usual
modular curve, given by the quotient of the upper half-
plane by SL(2; 2).

When n = 2, a compact Calabi-Yau variety is either a
complex torus or a K3 surface. Calabi-Yau metrics on a
torus are always flat and their moduli spaces are higher-
dimensional generalizations of the case n = 1. Calabi-
Yau metrics on a K3 surface are never flat. It is a fact that
the underlying oriented differentiable manifold of all K3
surfaces is unique, which we denote by X. It is simply-
connected and the cup product on H2(X; Z) has signature
(3,19). Denote by M the set of all Calabi-Yau metrics
on X, normalized to have unit diameter, modulo the ac-
tion of the diffeomorphism group Diff(X). Even though
a single Calabi-Yau metric on X does not have an explicit
formula, the space M can be globally understood using
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the Torelli theorem as follows (see for example [KT87]).
Given a Calabi-Yau metric g on X, after choosing a com-
plex structure we have a holomorphic volume form Q and
a Kihler metric w, we then associate to this data a three-
dimensional subspace in H2()X;R) given by the span of
w, Re(Q2), Im(Q). One can see that this subspace does not
depend on the choice of the complex structure. Further-
more, it is positive definite with respect to the intersec-
tion form, so it gives rise to a point in the positive Grass-
mannian Gr* (3, H*(X;R)) ~ 0(3,19)/(0(3) X 0(19)). On
the other hand, the action of Diff(!) is via the homomor-
phism Diff(X) — Aut(H?(X;Z))), and the image is the in-
dex 2 subgroup I preserving the orientation of the positive
part of H2(X; Z). In this way we produce a period map

P M- D=T\Grt(3, H*(X;R)).

The Torelli theorem guarantees that 2 is injective and fur-
thermore, the image is surjective onto the complement
of the set of positive three-dimensional subspaces V' C
H?(X; R) such that there exists § € H,(X; Z) with §% = =2
and f5a # Oforall @ € V. This exceptional set can be filled
in if one includes the non-collapsing Gromov-Hausdorff
limits of elements in M, i.e, the Calabi-Yau orbifolds in
complex dimension 2.

The higher-dimensional situation is more challenging
and there are very few general results. The following is a
folklore question.

Question 0.3. Given n > 3, are there infinitely many topo-
logically distinct compact Calabi-Yau varieties in dimen-
sion n?

When n = 3, it is known that there exist at least tens
of thousands of topologically distinct compact Calabi-Yau
varieties. On the other hand, there is Reid’s fantasy hoping
that all compact Calabi-Yau varieties can be connected via
geometric transitions, through suitable classes of singular
Calabi-Yau varieties.

A closely related question is to study the compactifica-
tion of a fixed connected component of the moduli space
of all Calabi-Yau metrics. Namely, we want to know the
behavior of a sequence of Calabi-Yau metrics (M, w;,J;)
when either w; or J; do not converge smoothly. The Gro-
mov compactness theorem provides a rough compactifi-
cation by adding certain limit metric spaces. But the lat-
ter do not carry much geometric information since we do
not yet have a satisfactory understanding of the singularity
formation process in general. Nevertheless this question
has already generated many new questions, which are very
much related to complex/algebraic geometry. There are
two main directions, which we distinguish as Kdihler degen-
erations and complex structure degenerations, and we will dis-
cuss these in the following sections.
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Kahler Degenerations

Fix a compact Calabi-Yau variety X of complex dimension
n, and denote by K its Kahler cone. By a Kihler degener-
ation we mean a sequence of Calabi-Yau metrics w; on X
whose cohomology classes 8; € K converge to a non-zero
limit 5, € JK. The geometric question is to understand
the metric behavior of w; as i — o0. There have been ex-
tensive recent results in this direction, most of which make
use of known results from algebraic geometry. Below we
will only loosely describe the expected picture, and refer
to the excellent survey paper of Tosatti [Tos] for references
on the precise results and other recent progress and open
problems on this topic.

We divide the discussion in two cases. First we assume
Jx B& > 0. This is the volume non-collapsing situation. In
this case, the conjectural geometric picture is that asi — oo,
the Calabi-Yau metrics w; perform certain birational con-
traction of the null-locus of 8, which is by definition the
union of all subvarieties V' with fj, dime V" — 0, and the
Gromov-Hausdorff limit should be a generalized Calabi-
Yau metric on a singular Calabi-Yau variety Y. For exam-
ple, the gluing construction discussed above fits into this
picture—in that case Y is the flat orbifold. This conjecture
is known to be true when the class 3, is rational. In gen-
eral the question is related to understanding the singular-
ity structure of non-collapsed Gromov-Hausdorff limits of
Calabi-Yau metrics.

Next we assume [y 8% = 0. In this case the Gromov-
Hausdorff limits have lower dimensions. A naive hope is
that under suitable conditions the collapsing is along cer-
tain holomorphic directions. The best scenario is when X
admits a holomorphic fibration p : X — Y onto a possi-
bly singular algebraic variety Y, with generic fiber a lower-
dimensional Calabi-Yau variety. Then one expects that as
i — oo, the Calabi-Yau metrics w; contract the fibers of
p and the Gromov-Hausdorff limit should be a general-
ized Kihler metric on Y whose Ricci curvature character-
izes the variation of complex structures on the fibers of p.
The existence of the algebraic fibration when S, is ratio-
nal is related to a version of the abundance conjecture in
algebraic geometry. Differential geometrically it is an in-
triguing question to investigate what happens to w; near
the singular fibers of p. The first work in this direction was
by Gross-Wilson [GW00], who studied the case of a K3 sur-
face fibered over CP! with 24 nodal fibers. Near a singular
point p of a singular fiber F, the holomorphic fibration is
modeled on the map C? — C;(z;,z,) = z12,. Geomet-
rically, in a neighborhood of F the collapsing Calabi-Yau
metric is modeled on an incomplete Ooguri-Vafa metric,
constructed by applying the Gibbons-Hawking ansatz to
an open set in the flat manifold S! x R2. Moreover, when
further restricted to a small neighborhood of p, it is close
to a rescaling of the Taub-NUT metric. This picture also
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generalizes to higher dimensions; see for example [Li19]
in the case of a holomorphic K3 fibered Calabi-Yau 3-fold
with only nodal singular fibers.

When S, is irrational, wild phenomena can occur. For
example, even on a flat torus, one may see the degen-
eration along a holomorphic foliation with a dense leaf,
whereas the Gromov-Hausdorff limit can be a point.

Complex Structure Degenerations

Discussion of general complex structure degenerations
will necessarily involve some sophisticated terminologies
in algebraic geometry, so to avoid introducing unnecessary
technical jargon, we will focus on the examples of Example
0.2 as these exhibit the main characteristics of the theory.
Consider a family of degree n + 2 homogeneous polyno-
mials F;(Zy, -+-,Z,1) parameterized by t € C, and denote
by X, the corresponding family of hypersurfaces in CP"*!,
If X, is smooth for 0 < |t| < 1 and X is singular, then
this family can often be viewed as a degeneration of com-
plex structures. We would like to understand the behav-
ior of the Calabi-Yau metrics w; as t — 0. Compared to
the case of Kihler degenerations, the link with algebraic
geometry is less obvious and more transcendental geomet-
ric objects may naturally arise. For example, the algebro-
geometric limit Xj, is in general not canonical. Such a sit-
uation occurs when there is a family of linear transforma-
tion A; € GL(n + 2;C) defined for t # 0, such thatast — 0
the new family of polynomials F;, = A}F, converge to a
limit Fy but A, itself diverges. Then, as algebraic varieties,
the corresponding family of hypersurfaces X; are isomor-
phic to X; for t # 0 but in general X may not be isomor-
phic to X,. On the other hand, the Calabi-Yau metrics are
more intrinsic objects and one may hope that they would
yield canonical Gromov-Hausdorff limits. Understanding
the algebro-geometric meaning of these limits could lead
to canonical algebro-geometric invariants of the degenera-
tion. Again there is little general theory known so far, but
there are some examples through which one can already
see interesting geometric phenomena and gain insight for
further development.

Singular Calabi-Yau metrics. Suppose first that we are in
the most generic situation, namely, when X, has only coni-
fold singularities. The latter are by definition isolated sin-
gularities locally modeled on the complex hypersurface

S ={wi+ -+ wpy =0}

in C"*1. We know there is an explicit “Stenzel metric” on
S given by

n+1 n—-1
- 5 ANy
ws =V-195( Y |wil?) " .
i=1
Geometrically, this space is a metric cone whose cross sec-

tion is a homogeneous space SO(n + 1)/SO(n — 1). When
n = 2, one can identify the cone with the flat orbifold
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C2/(+1), but when n > 3 the metric has unbounded curva-
ture near the cone vertex.

The following theorem confirms a folklore conjecture
that goes back to Candelas and de la Ossa [CdlO90] in
1990.

Theorem 0.4 ([HS17]). Suppose X, has only conifold singu-

larities. Then

(a) as t — 0, the Gromov-Hausdorff limit of (X;,w,) is a sin-
gular Calabi-Yau metric on X, which is smooth away from
the singularities, and near each singularity it is asymptotic
to the Stenzel metric;

(b) for each nodal singularity q of X,, there is a special La-
grangian n-sphere in X; for 0 < |t| < 1, which converges
toqast — 0.

The second item requires a little explanation. A
half-dimensional embedded submanifold L of an n-
dimensional Calabi-Yau manifold (M, Q,w) is special La-

grangian if w|; = Im(e\/__wQ)|L = 0 for some constant
6. Special Lagrangians are examples of calibrated subman-
ifolds in the sense of Harvey-Lawson. In particular they
are globally volume minimizing within a given homology
class. They also play a crucial role in the Strominger-Yau-
Zaslow (SYZ) mirror symmetry [SYZ96]. When n = 2, spe-
cial Lagrangians become complex submanifolds for a dif-
ferent choice of complex structure, but in higher dimen-
sions they are genuinely different geometric objects.

The proof of (a) makes use of a variety of techniques.
In particular, it depends essentially on previous work of
S. Donaldson and the author about the complex geome-
try of Gromov-Hausdorff limits, which was motivated by
different reasons.

The proof of (b) follows from understanding the bub-
bles associated to each singularity, which is in turn based
on a gluing construction similar to the case of K3 surfaces.
The point is that there is a complete Calabi-Yau metric on
the smoothing of S given by S, = {w? + - + w2, =€} C
C"*! which is asymptotic to the Stenzel cone at infinity.
When n = 2 this is again the Eguchi-Hanson metric in dis-
guise.

Collapsing to lower dimensions. We now consider the
family of hypersurfaces X; in CP"*! defined by the poly-
nomials

F(Z) =t8(Z) + fo(2) -+ f(2), t€eC,

where g has degree n + 2, and each f; has degree d; > 0

with Zf:o d; = n + 2. For a general choice of these poly-
nomials one may ensure that X; is smooth for 0 < |t| < 1
and X, consists of precisely k + 1 irreducible components
intersecting transversally. One can form a dual intersection
complex, which is a CW complex constructed by associat-
ing a point to each component of X, and two points are
connected by a segment if two components intersect, etc.
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As a simple model case we first suppose thatn = 1. Here
X; is a family of elliptic curves. If k = 1, then X, is a union
of a conicand a line intersecting at two points; if k = 2 then
X, is a cycle of 3 lines. In both cases the dual intersection
complex of X,, is homeomorphic to the circle S! and the
smooth locus of X, comprises a disjoint union of C*’s.

The Calabi-Yau metrics w, are obviously flat. Since the
volume is fixed, it is easy to see that any Gromov-Hausdorff
limit of w; can only be the infinite line R. However we can
rescale w; differently, and obtain two other limits:

« acircle S'. This corresponds to fixing the diameter
of wy;

« aflat cylinder S' xR ~ C*. This arises as a rescaled
limit.

One can make some simple observations from this exam-
ple:

« In general when the volume is collapsing the di-
mension of Gromov-Hausdorff limits can be an
odd integer. So one cannot expect a classical
algebro-geometric interpretation.

« With the diameter fixed, the Gromov-Hausdorff
limit is related to the dual intersection complex
of X, at the topological level.

« Suitably rescaled Gromov-Hausdorff limits are
quasi-projective algebraic varieties, which are re-
lated to the smooth locus of the algebraic limit
X,

Small complex structure limits. Now we move to higher
dimensions so that n > 2, and focus on the example where

F(Z) = tg(Z) + fo(D)f1(2),

with d; = deg(f;). In this case the dual intersection com-
plex of X; is an interval, which has the smallest possible
topological complexity. For simplicity we call this a “small
complex structure limit.”

By making g, f,, fi generic, we can ensure that X, is the
union of two irreducible components Y, and Y;, which are
transversally intersectingalong D = {f; = f; = 0} ¢ CP"*L.
It is also helpful to view the total space of the family as a
subset in CP"*! x C. As such it is singular along H x {0},
where H = {f, = f; = g = 0} can be assumed to be smooth
in CP"*!. Notice H is contained in each X;. See Figure 3.

Let @; be the rescaling of w; to unit diameter. The fol-
lowing theorem characterizes the geometric behavior as
t — 0. The intuitive picture for the case n = 2, k = 1,
dy = 1,d; = 3, is described in Figure 4.

tecC,

Theorem 0.5 ([SZ]). We have

o the Gromov-Hausdorff limit of @, as t — 0 is the in-
terval [0,1];

o certain rescaled limits around the end points of the in-
terval give rise to some complete Calabi-Yau metrics on
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if]

Xo=Y,uY,

Figure 3. The algebraic picture for a small complex structure
degeneration.

Y ;\D. Indeed, these metrics are the ones constructed
by Tian-Yau [TY90] mentioned before.

In particular, the simple observations we made in the
case n = 1 continue to hold in this case.

Notice that in Figure 4 there is a neck region V. It
admits a singular fibration ¥ : N — (0,1). For u #

do , F~Y(u) is a smooth fiber bundle, and each
d0+d1

fiber itself is an S! bundle over D. The degree of the S!
bundle undergoes a wall-crossing as u crosses u,. The
fiber #~!(u,) is an S! bundle over D \ H, and the circle
fibers pinch to a point over H. In Figure 4, H consist of
12 points, illustrated by the X's. Appropriately rescaled
Gromov-Hausdorff limits around these points in H C X;
yield the Taub-NUT metric on C2.

It is worth noticing that most of the topology concen-
trates in the Tian-Yau region, whilst most of the volume
is located in V. This is also manifested by the fact that
in the Gromov-Hausdorff limit one can define a renormal-
ized limit measure, whose density function with respect to
the Lebesgue measure on [0, 1] vanishes at the end points.

The proof of the above results is via a gluing construc-
tion. For simplicity first assume n = 2. The starting point
is that we know each Y; \ D admits a complete Tian-Yau
metric, which is asymptotic to a Calabi model space C; con-
structed via the Gibbons-Hawking ansatz. Then the crux of
the matter is to match the ends of the two Calabi model
spaces. This motivates the construction of the neck region
N. This time we apply the Gibbons-Hawking ansatz to
the Green'’s function on T2 x R with finitely many poles.
One can see this function is asymptotic to a piecewise lin-
ear function, which tends to —co at the two ends. Adding
a large positive number we can make it positive over any
fixed large interval, such that the resulting space has two
boundaries that match well with the two Calabi model
spaces. This is the heuristic reason why a gluing construc-
tion is possible. The actual proof in [SZ] is substantially
more involved. One issue is that in higher dimensions
there is a generalization of the Gibbons-Hawking ansatz

u, =

VoLuME 69, NUMBER 4



\l/ |

0 u, = 1
) do+d;

Figure 4. The metric picture for a small complex structure
degeneration.

by D. Matessi, but the resulting equation is still non-linear
and one cannot write down explicit precise solutions. In-
stead one has to appeal to an adiabatic limit method and
use a certain linearized equation to obtain approximate
solutions. Another issue is that the space V' cannot im-
mediately be seen from the algebraic degeneration picture.
To make a connection between them we have to design a
birational transformation of the total space of the family.

More general setting. The work of [SZ] leads one to spec-
ulate that the trivial observations in the case n = 1 may
indeed hold in general. In other words, the Gromov-
Hausdorff limit of X; should be closely related to the dual
intersection complex of X,,. For example, [SZ] conjectured
that they should be homeomorphic as topological spaces,
and they have the same dimension (which is well-defined
forboth). More precise geometric relationship will involve
the non-Archimedean geometry, which we do not discuss
here, but see [Lia] for example.

For the family of hypersurfaces we considered above,
when k = n + 1, the dual intersection complex is an n-
dimensional sphere. These are examples of large complex
structure limits, and the expectation reduces to a limiting
version of the SYZ conjecture [SYZ96], as formulated by
Gross-Wilson [GW00] and Kontsevich-Soibelman [KS06].
In this case, the limit space is conjectured to be a Rie-
mannian metric with singularities on the sphere, and the
collapsing is along a fibration by special Lagrangian tori.
In the generic region the model is given by a product
U x \/—_1(IR"/€Z”), where U C R" is an open set, and it is
endowed with the standard complex structure. Consider
a Kahler metric w = \/—_16545 for an R"™-invariant function
¢. Then w is a Calabi-Yau metric if and only if ¢ solves a
real Monge-Ampere equation det(¢;;) = C. Given such ¢,
letting € — 0 yields a collapsing along a special Lagrangian
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T" fibration to a Riemannian metric on U defined by the
Hessian of ¢.

There has been recent progress made by Y. Li in this di-
rection. In particular, for the family of hypersurfaces de-
fined by

Fy =2y Zp +H(Z5* + - Z310),

itis shown in [Lib] that for |¢| sufficiently small, X; has a set
of large volume which is locally close to the above model.
The proof makes heavy use of pluripotential theory on
compact Kihler manifolds (see for example [Kot98]).

Open Calabi-Yau Manifolds

An open Calabi-Yau manifold is by definition a complete
non-compact Calabi-Yau manifold. We have seen that they
may appear as rescaled limits of degenerations of compact
Calabi-Yau metrics. The study of open Calabi-Yau metrics
also has its own interest, in particular in the case of com-
plex dimension 2 when the curvature tensor is square inte-
grable, they are the same as gravitational instantons and have
long been studied in both mathematics and physics. There
is a variety of constructions of gravitational instantons in
the literature, which exhibit many non-trivial asymptotic
behaviors.

The underlying complex/algebraic geometry of open
Calabi-Yau metrics is not well-understood in general. For
example, the naive uniqueness as in the compact case can
fail—the Taub-NUT metric on C? provides an immediate
counterexample.

Optimistically we have the following longstanding com-
pactification conjecture of Yau [Yau82]:

Conjecture 0.6. An open Calabi-Yau manifold is bi-
holomorphic to M \ D, where M is a compact Kihler manifold
and D is a divisor in M.

Note this conjecture does not hold on the nose. Us-
ing the Gibbons-Hawking ansatz applied to a harmonic
function on R with infinitely many poles, Anderson-
Kronheimer-LeBrun [AKL89] constructed an open Calabi-
Yau manifold with infinite topology, hence provides a
counterexample to the above conjecture. However, one
can still hope it to be true under suitable extra hypothe-
sis, for example, when we assume a condition of curvature
decay or finite topology.

A related question is to develop an existence theory of
Calabi-Yau metrics on non-compact Calabi-Yau varieties
given in the above form M \ D. There are partial results
in this direction (see for example [TY90]) by constructing
a model infinity and adapting Yau's approach in the com-
pact case. There is much in this field that remains to be
explored.
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