

STRUCTURAL CHEMISTRY

Received 25 May 2022
Accepted 27 June 2022

Edited by A. Lemmerer, University of the Witwatersrand, South Africa

Keywords: halogen bonding; sp-C-H...O hydrogen bonding; crystal structure; nonconventional hydrogen bonding; diethynylpyridine; halosuccinimide; Sonogashira coupling.

CCDC references: $2170323 ; 2170322$; 2170321

Supporting information: this article has supporting information at journals.iucr.org/c

Co-operative halogen bonds and nonconventional sp-C-H $\cdots \mathrm{O}$ hydrogen bonds in 1:1 cocrystals formed between diethynylpyridines and N -halosuccinimides

Eric Bosch ${ }^{\text {a }}$ and Nathan P. Bowling ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry and Biochemistry, Missouri State University, 901 South National Avenue, Springfield, Missouri 6589, USA, and ${ }^{\text {b }}$ Department of Chemistry, University of Wisconsin-Stevens Point, 2101 Fourth Avenue, Stevens Point, WI 54481, USA. *Correspondence e-mail: ericbosch@missouristate.edu

The rapid evaporation of $1: 1$ solutions of diethynylpyridines and N-halosuccinimides, that react together to form haloalkynes, led to the isolation of unreacted $1: 1$ cocrystals of the two components. The $1: 1$ cocrystal formed between 2,6-diethynylpyridine and N-iodosuccinimide $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{INO}_{2} \cdot \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}\right)$ contains an N -iodo-succinimide-pyridine I $\cdot \cdots \mathrm{N}$ halogen bond and two terminal alkyne-succinimide carbonyl $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The three-dimensional extended structure features interwoven double-stranded supramolecular polymers that are interconnected through halogen bonds. The cocrystal formed between 3,5-diethynylpyridine and N -iodosuccinimide $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{INO}_{2} \cdot \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}\right)$ also features an $\mathrm{I} \cdots \mathrm{N}$ halogen bond and two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. However, the components form essentially planar double-stranded one-dimensional zigzag supramolecular polymers. The cocrystal formed between 3,5-diethynylpyridine and N -bromosuccinimide $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{BrNO}_{2} \cdot \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}\right)$ is isomorphous to the cocrystal formed between 3,5 -diethynylpyridine and N -iodosuccinimide, with a $\mathrm{Br} \cdots \mathrm{N}$ halogen bond instead of an I $\cdots \mathrm{N}$ halogen bond.

1. Introduction

Halogen bonding is widely recognized as a functional tool in molecular recognition, supramolecular chemistry, and crystal engineering (Metrangolo \& Resnati, 2008; Costa, 2017). Fundamental studies comparing the variation in halogen-bond strength for a variety of halogen-bond donors have established that iodoalkynes are versatile and strong halogen-bond donors (Aakeröy et al., 2015; Perkins et al., 2012; Goroff et al., 2005). Traditional methods for the formation of iodoalkynes involved the reaction of metal acetylides with iodine (Jager \& Viehe, 1977), while amine bases, including morpholine and N, N-dimethylaminopyridine, have also been used along with iodine

Scheme 1
(Southwick \& Kirchner, 1962; Meng et al., 2008). Hypervalent iodine sources have also been used, as have oxidants, as co-

Table 1
Experimental details.
For all structures: monoclinic, $P 2_{1} / n, Z=4$. Experiments were carried out at 100 K with Mo $K \alpha$ radiation using a Bruker APEX-I CCD diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2014). Refinement was on 171 parameters with 2 restraints. H atoms were treated by a mixture of independent and constrained refinement.

	26DEP•NIS	35DEP•NIS	35DEP•NBS
Crystal data			
Chemical formula	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{INO}_{2} \cdot \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}$	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{INO}_{2} \cdot \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}$	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{BrNO}_{2} \cdot \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}$
$M_{\text {r }}$	352.12	352.12	305.13
$a, b, c(\AA)$	$\begin{aligned} & 9.4503(8), 12.7805(11), \\ & 10.9605(9) \end{aligned}$	$\begin{aligned} & 10.4088(9), 5.3200(4), \\ & 23.5462(19) \end{aligned}$	10.2264 (9), 5.3123 (5), 23.281 (2)
$\beta\left({ }^{\circ}\right.$)	100.687 (1)	91.606 (1)	92.048 (1)
$V\left(\AA^{3}\right)$	1300.84 (19)	1303.35 (18)	1264.0 (2)
$\mu\left(\mathrm{mm}^{-1}\right)$	2.46	2.45	3.25
Crystal size (mm)	$0.22 \times 0.21 \times 0.13$	$0.20 \times 0.20 \times 0.02$	$0.40 \times 0.20 \times 0.10$
Data collection			
$T_{\text {min }}, T_{\text {max }}$	0.685, 0.746	0.572, 0.746	0.597, 0.746
No. of measured, independent and observed [$I>2 \sigma(I)$] reflections	15683, 2935, 2659	15299, 2931, 2463	13338, 2869, 2462
$R_{\text {int }}$	0.042	0.044	0.036
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.646	0.647	0.649
Refinement			
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.025, 0.055, 1.05	0.022, 0.046, 1.02	0.025, 0.064, 1.06
No. of reflections	2935	2931	2869
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.68, -0.39	0.51, -0.56	0.52, -0.48

Computer programs: SMART (Bruker, 2014), SAINT (Bruker, 2014), SHELXT2018 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b) and X-SEED (Barbour, 2020).
reactants (Liu et al. 2017). Amongst the milder methods reported, several have focused on the application of N -iodosuccinimide in acetic acid (Yao et al., 2020a), with γ-alumina (Yao et al., 2020b), and in acetone with silver nitrate as catalyst (Hofmeister et al., 1984). Herein we report the unexpected isolation and characterization of the unreacted 1:1 cocrystals formed on rapid evaporation of mixtures of the diethynylpyridines 2,6 -diethynylpyridine (26DEP) and 3,5-diethynylpyridine (35DEP), and the N-halosuccinimides N-bromosuccinimide (NBS) and N-iodosuccinimide (NIS) in acetone (Scheme 1).

2. Experimental

2.1. Synthesis of diethynylpyridines

The diethynylpyridines were formed by palladium-catalyzed Sonogashira coupling of the corresponding dibromopyridine with trimethylsilylacetylene, followed by base-catalyzed deprotection. The spectral data are consistent with those reported previously for 2,6-diethynylpyridine (Dana et al., 2002) and 3,5-diethynylpyridine (Bosch \& Barnes, 2000).

2.2. Preparation of cocrystals

Equimolar amounts of the N-halosuccinimide and the corresponding diethynylpyridine were weighed out and placed at the center of a watch glass. Acetone was added dropwise and the mixture swirled with a spatula until a clear solution was obtained. The watch glass was covered to block light, as NIS and NBS are light sensitive, and the solvent allowed to evaporate over the course of several hours, resulting in the formation of small crystals suitable for X-ray analysis of each of 26DEP•NIS, 35DEP•NIS, and 35DEP•NBS. Our efforts to
form the cocrystal 26DEP•NBS under similar conditions were unsuccessful.

2.3. X-ray structure determination

Aromatic and aliphatic H atoms were located in difference maps, placed in idealized positions, and refined with a riding model. Alkynyl protons located in the difference maps were refined with a distance restraint of 0.95 (2) \AA. Crystallographic details are collected in Table 1.

3. Results and discussion

When planning the preparation of bis(iodoalkynyl)pyridines for an as-yet unpublished project, we chose the reaction of terminal alkynes with N-iodosuccinimide catalysed by silver(I) nitrate in acetone (Hofmeister et al., 1984). While formulating exact reaction conditions for the reaction of 2,6-diethynylpyridine (26DEP) and N-iodosuccinimide (NIS), we were surprised to observe some colorless crystalline material on evaporation of an incomplete reaction. X-ray analysis revealed this solid to be the $1: 1$ cocrystal 26DEP•NIS. This cocrystal was then formed independently by evaporation of the solvent from a 1:1 mixture of the components in acetone on a watch glass in the dark. While the formation of this cocrystal was not expected, the formation of pyridyl cocrystals with N-iodosuccinimide has been reported previously (Makhotkina et al., 2015).

The cocrystal 26DEP•NIS crystallized in the monoclinic space group $P 2_{1} / n$. The asymmetric unit has one molecule of each component, as shown in Fig. 1, with a halogen bond from NIS to the pyridine N atom, with an $\mathrm{I} 1 \cdots \mathrm{~N} 1$ separation of

Figure 1
The labeled asymmetric unit of 26DEP•NIS. Displacement ellipsoids are drawn at the 50% probability level for non- H atoms, while H atoms are shown as spheres of arbitrary size. The halogen bond is shown as a dashed line
2.540 (2) \AA and a near linear $\mathrm{N} 2-\mathrm{I} 1 \cdots \mathrm{~N} 1$ angle of 177.43 (8) ${ }^{\circ}$.

The halogen-bond separation is short at 72% of the sum of the van der Waals radii (Bondi, 1964). It should however be noted that this $\mathrm{I} \cdots \mathrm{N}$ separation is slightly longer than the $2.43 \AA \mathrm{I} \cdots \mathrm{N}$ separation in the cocrystal formed between NIS and pyridine and the $2.407 \AA \mathrm{I} \cdots \mathrm{N}$ separation in the cocrystal formed with the strong base 4 -(dimethylamino)pyridine (Makhotkina et al., 2015). The three-dimensional structure is complex. First, the pyridine and succinimide rings are twisted along the $\mathrm{N} 1-\mathrm{I} 1$ bond, with an interplanar angle of $21.34(6)^{\circ}$. The flanking alkynyl H atoms have close contacts to succinimide O atoms of two separate NIS molecules. The shorter, more linear, $s p-\mathrm{C}-\mathrm{H}$ hydrogen bond has an $\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$ separation of 2.22 (2) $\AA, 82 \%$ of the sum of the van der Waals radii, with a $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$ angle of $171(2)^{\circ}$ [symmetry code: (i) $x+1, y, z$]. Proton H 9 has an $\mathrm{H} 9 \cdots \mathrm{O}^{1 i}$ separation of 2.30 (2) $\AA, 82 \%$ of the sum of the van der Waals radii, with a C9-H9…O $1^{\text {ii }}$ angle of 150.0 (3) ${ }^{\circ}$ [symmetry code: (ii) $x-\frac{1}{2}$, $\left.-y+\frac{3}{2}, z+\frac{1}{2}\right]$. It is noteworthy that to accommodate these interactions the alkyne groups are bowed and atoms C1 and

Figure 2
(a) Hirshfeld surface of cocrystal 26DEP•NIS mapped over $d_{\text {norm }}$ for NIS, showing the $\mathrm{I} \cdots \mathrm{N}$ halogen bonds and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions as dashed lines. (b) Complementary Hirshfeld surface of cocrystal 26DEP•NIS mapped over $d_{\text {norm }}$ for 26DEP.

C9 lie above the plane defined by the pyridyl atoms by 0.274 (6) and 0.171 (6) \AA, respectively. These close contacts are well visualized using Hirshfeld surface analysis (Spackman et al., 2021) individually for each of the two components, as shown in Fig. 2, where the red areas denote contacts shorter than the sum of the van der Waals radii.

The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{I} \cdots \mathrm{N}$ interactions lead to a complex three-dimensional structure, shown partially in Fig. 3, that

Figure 3
(a) View along the b axis of two interwoven strands (shown in different colors) of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$-connected molecules of the cocrystal 26DEP•NIS. Adjacent molecules in each strand are connected through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, which are shown as dashed lines. Halogen bonds are shown as grey dashed lines. (b) An orthogonal view of the same interwoven strands.

Figure 4
The labeled asymmetric unit of 35DEP-NIS. Displacement ellipsoids are drawn at the 50% probability level for non- H atoms, while H atoms are shown as spheres of arbitrary size. The halogen bond is shown as a dashed line.
highlights an interwoven double strand of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ connected molecules that are cross connected through halogen bonds. These interwoven strands are connected to
other interwoven double strands through halogen bonds to outward facing I and pyridine atoms labeled as \mathbf{x} and \mathbf{y}, respectively, in Fig. 3. There is a unique close-stacked pair of NIS and 26DEP molecules, with a centroid-to-centroid distance of 3.7513 (16) \AA.

Inspired by this serendipitous structure, we attempted to form similar cocrystals between other combinations of diethynylpyridines and N-halosuccinimides. Thus, rapid evaporation of acetone from a 1:1 mixture of NIS and 3,5-diethynylpyridine in the dark yielded the cocrystal 35DEP•NIS, that also crystallized in the monoclinic space group $P 2_{1} / n$, with one molecule of each component in the asymmetric unit (Fig. 4).

The halogen bond from NIS to the pyridine N atom has an $\mathrm{I} \cdots \mathrm{N}$ separation of $2.498(2) \AA$ and an $\mathrm{N} 2-\mathrm{I} 1 \cdots \mathrm{~N} 1$ angle of $176.71(8)^{\circ}$. The halogen-bond distance is slightly shorter than that in cocrystal 26DEP•NIS at 71% of the sum of the van der Waals radii, and the pyridine and succinimide rings are less twisted along the $\mathrm{N}-\mathrm{I}$ bond, with an interplanar angle of 11.35 (18). The flanking alkynyl H atoms also have close contacts to succinimide O atoms. The proton H 1 has an $\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{iii}}$ separation of 2.22 (2) $\AA, 82 \%$ of the sum of the van

Figure 5
(a) Hirshfeld surface of cocrystal 35DEP NIS mapped over $d_{\text {norm }}$ on NIS, where the $\mathrm{I} \cdots \mathrm{N}$ halogen bonds and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are shown as dashed lines. (b) Hirshfeld surface of cocrystal 35DEP•NIS mapped over $d_{\text {norm }}$ on 35DEP.

Figure 6
(a) Double-stranded zigzag supramolecular polymer within the structure of 35DEP•NIS. Halogen bonds and hydrogen bonds are shown as dashed lines. (b) An orthogonal view of the same zigzag polymer.

Figure 7
The three-dimensional packing within the structure of 35DEP•NIS.
der Waals radii, with a $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{iii}}$ angle of $156(2)^{\circ}$ [symmetry code: (iii) $-x+1,-y,-z+1$]. Similarly, proton H9 has an $\mathrm{H} 9 \cdots \mathrm{O} 1^{\text {iv }}$ separation of 2.27 (2) $\AA, 82 \%$ of the sum of the van der Waals radii, with a $\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O}^{\mathrm{ii}}$ angle of $145(2)^{\circ}$ [symmetry code: (iv) $-x+2,-y+2,-z+1$]. While the location of the alkynes on pyridine 35DEP is different to pyridine 26DEP, the close contacts on the Hirshfeld surface of each component of cocrystal 35DEP•NIS are also dominated by the $\mathrm{I} \cdots \mathrm{N}$ interaction and the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, as shown in Fig. 5.

The orientation of the dialkynyl moieties in 35DEP facilitates the formation of discrete infinite planar double-stranded zigzag supramolecular polymers, shown in Fig. 6, in contrast to the interwoven strands in the structure of 26DEP.NIS. Within the three-dimensional crystal, these double strands are offset slip stacked, while adjacent double strands have a herringbone type of arrangement, as shown in Fig. 7.

Similar rapid evaporation of acetone from a 1:1 mixture of NBS and 3,5-diethynylpyridine provided the cocrystal 35DEP•NBS. The two cocrystals with 35DEP are isomorphous and cocrystal 35DEP•NBS also has one molecule of each component in the asymmetric unit, as shown in Fig. 8.

The halogen bond to the pyridine N atom has a $\mathrm{Br} \cdots \mathrm{N}$ separation of $2.4704(17) \AA, 71 \%$ of the sum of the van der

Figure 8
The labeled asymmetric unit of 35DEP•NBS. Displacement ellipsoids are drawn at the 50% probability level for non- H atoms, while H atoms are shown as spheres of arbitrary size. The halogen bond is shown as a dashed line.

Waals radii, and an $\mathrm{N} 2-\mathrm{Br} 1 \cdots \mathrm{~N} 1$ angle of 176.35 (7) ${ }^{\circ}$. The pyridine and succinimide rings have a similar slight twist, with an interplanar angle of $11.43(14)^{\circ}$. The alkynyl H atoms have close contacts to succinimide O atoms. Proton H1 has an $\mathrm{H} \cdots \mathrm{O}$ separation of 2.25 (2) \AA, with a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ angle of $155.1(18)^{\circ}$, while proton H 9 has an $\mathrm{H} \cdots \mathrm{O}$ separation of 2.30 (2) \AA, with a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ angle of 142 (2) ${ }^{\circ}$. The halogen bond coupled with the two $s p-\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions leads to the formation of a similar double-stranded linear supramolecular polymer.

4. Conclusion

We have described here the isolation and characterization of 1:1 cocrystals formed between two components that undergo reaction in the same solvent. While this was unintentional, the cocrystals provide an example of the combination of a halogen-bond donor with two hydrogen-bond acceptor sites, and a halogen-bond acceptor with two hydrogen-bond donor sites. Indeed, the observed halogen bonds between the two components are complemented by two $s p-\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in all three structures. These unexpected cocrystals complement our earlier isolation of cocrystals formed between the product iodoalkyne 1,2-bis(iodoethynyl)benzene and the base N, N-dimethylaminopyridine, used in the preparation of the iodoalkyne (Bosch, 2014). The results highlight the potential for the deliberate design of supramolecular systems with co-operative nonconventional hydrogen bonding and halogen bonding.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1903593).

References

Aakeröy, C. B., Wijethunga, T. K., Desper, J. \& Đaković, M. (2015). Cryst. Growth Des. 15, 3853-3861.
Barbour, L. J. (2020). J. Appl. Cryst. 53, 1141-1146.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bosch, E. (2014). Cryst. Growth Des. 14, 126-130.
Bosch, E. \& Barnes, C. L. (2000). Organometallics, 19, 5522-5524.
Bruker (2014). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Costa, P. J. (2017). Phys. Sci. Rev. 2, 2010136.
Dana, B. H., Robinson, B. H. \& Simpson, J. (2002). J. Organomet. Chem. 648, 251-269.
Goroff, N. S., Curtis, S. M., Webb, J. A., Fowler, F. W. \& Lauher, J. W. (2005). Org. Lett. 7, 1891-1893.

Hofmeister, H., Annen, K., Laurent, H. \& Wiechert, R. (1984). Angew. Chem. Int. Ed. Engl. 23, 727-729.
Jager, V. \& Viehe, H. G. (1977). Houben-Weyl Methoden der Organische Chemie, Vol. 2, p. 601. Stuttgart: George Thieme Verlag.
Liu, Y., Huang, D., Huang, J. \& Maruoka, K. (2017). J. Org. Chem. 82, 11865-11871.
Makhotkina, O., Lieffrig, J., Jeannin, O., Fourmigué, M., Aubert, E. \& Espinosa, E. (2015). Cryst. Growth Des. 15, 3464-3473.
Meng, L. G., Cai, P. J., Guo, Q. X. \& Xue, S. (2008). Synth. Commun. 38, 1257.

research papers

Metrangolo, P. \& Resnati, G. (2008). In Halogen Bonding: Fundamentals and Applications. Berlin, Heidelberg: Springer.
Perkins, C., Libri, S., Adams, H. \& Brammer, L. (2012). CrystEngComm, 14, 3033-3038.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Southwick, P. L. \& Kirchner, J. R. (1962). J. Org. Chem. 27, 3305-3308.

Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. \& Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.
Yao, M., Zhang, J., Yang, S., Liu, E. \& Xiong, H. (2020a). Synlett, 31, 1102-1106.
Yao, M., Zhang, J., Yang, S., Xiong, H., Li, L., Liu, E. \& Shi, H. (2020b). RSC Adv. 10, 3946-3950.

supporting information

Co-operative halogen bonds and nonconventional sp-C-H...O hydrogen bonds in $1: 1$ cocrystals formed between diethynylpyridines and N-halosuccinimides

Eric Bosch and Nathan P. Bowling

Computing details

For all structures, data collection: SMART (Bruker, 2014); cell refinement: SMART (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: X-SEED (Barbour, 2020); software used to prepare material for publication: X-SEED (Barbour, 2020).

2,6-Diethynylpyridine- N-iodosuccinimide (1/1) (26DEP_u008226NIS)

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{INO}_{2} \cdot \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}$
$M_{r}=352.12$
Monoclinic, $P 2_{1} / n$
$a=9.4503$ (8) A
$b=12.7805(11) \AA$
$c=10.9605(9) \AA$
$\beta=100.687(1)^{\circ}$
$V=1300.84(19) \AA^{3}$
$Z=4$

Data collection

Bruker APEX-I CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3660 pixels mm^{-1}
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\text {min }}=0.685, T_{\text {max }}=0.746$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.055$
$S=1.05$
2935 reflections
171 parameters
2 restraints
Primary atom site location: dual

$$
F(000)=680
$$

$D_{\mathrm{x}}=1.798 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4626 reflections
$\theta=2.6-27.0^{\circ}$
$\mu=2.46 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Cut from cube, colourless
$0.22 \times 0.21 \times 0.13 \mathrm{~mm}$

15683 measured reflections
2935 independent reflections
2659 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=27.3^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-12 \rightarrow 12$
$k=-16 \rightarrow 16$
$l=-14 \rightarrow 14$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0217 P)^{2}+1.2626 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.68 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.39$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. For each complex, a single-crystal was mounted on a Kryoloop using viscous hydrocarbon oil. Data were collected using a Bruker $A P E X 1$ CCD diffractometer equipped with Mo $K \alpha$ radiation with $\kappa=0.71073 \AA$. Data collection at 100 K was facilitated by use of a Kryoflex system with an accuracy of $\pm 1 \mathrm{~K}$. Initial data processing was carried out using the APEX2 software suite (Bruker, 2016). The structures were solved by dual methods using SHELXT (Sheldrick, $2015 a$) and refined against F^{2} using SHELXL (Sheldrick, 2015b) using the program X-SEED as a graphical interface (Barbour, 2020) and for the generation of graphics.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
I1	$0.47984(2)$	$0.62904(2)$	$0.27102(2)$	$0.01364(6)$
O1	$0.5343(2)$	$0.62403(17)$	$-0.01867(19)$	$0.0230(5)$
N1	$0.6258(3)$	$0.64370(18)$	$0.4895(2)$	$0.0150(5)$
C1	$0.9150(4)$	$0.6114(2)$	$0.3373(3)$	$0.0240(7)$
O2	$0.1318(2)$	$0.59239(16)$	$0.15173(19)$	$0.0202(4)$
N2	$0.3523(2)$	$0.61269(18)$	$0.0932(2)$	$0.0140(5)$
C2	$0.8452(3)$	$0.6124(2)$	$0.4132(3)$	$0.0195(6)$
C3	$0.7681(3)$	$0.6209(2)$	$0.5157(3)$	$0.0153(6)$
C4	$0.8422(3)$	$0.6107(2)$	$0.6373(3)$	$0.0189(6)$
H4	0.941671	0.593203	0.653462	0.023^{*}
C5	$0.7698(3)$	$0.6261(2)$	$0.7341(3)$	$0.0191(6)$
H5	0.818836	0.619484	0.817639	0.023^{*}
C6	$0.6261(3)$	$0.6512(2)$	$0.7085(3)$	$0.0172(6)$
H6	0.574839	0.663213	0.774008	0.021^{*}
C7	$0.5566(3)$	$0.6588(2)$	$0.5850(3)$	$0.0154(6)$
C8	$0.4052(4)$	$0.6891(3)$	$0.5569(3)$	$0.0245(7)$
C9	$0.2912(4)$	$0.7176(3)$	$0.5427(3)$	$0.0348(9)$
C10	$0.4077(3)$	$0.6126(2)$	$-0.0148(3)$	$0.0160(6)$
C11	$0.2866(3)$	$0.5959(2)$	$-0.1242(3)$	$0.0203(6)$
H11A	0.302627	0.531575	-0.170131	0.024^{*}
H11B	0.278095	0.656173	-0.181828	0.024^{*}
C12	$0.1517(3)$	$0.5855(2)$	$-0.0665(3)$	$0.0187(6)$
H12A	0.081287	0.641080	-0.097690	0.022^{*}
H12B	0.105560	0.516507	-0.086346	0.022^{*}
C13	$0.2045(3)$	$0.5967(2)$	$0.0719(3)$	$0.0157(6)$
H1	$0.972(3)$	$0.610(3)$	$0.276(2)$	$0.031(10)^{*}$
H9	$0.199(2)$	$0.743(3)$	$0.532(3)$	$0.040(11)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.01337(10)$	$0.01590(10)$	$0.01125(10)$	$0.00052(7)$	$0.00128(7)$	$-0.00083(7)$
O1	$0.0172(11)$	$0.0352(13)$	$0.0175(11)$	$-0.0061(9)$	$0.0059(9)$	$-0.0001(9)$
N1	$0.0168(12)$	$0.0175(12)$	$0.0103(11)$	$0.0024(9)$	$0.0011(9)$	$-0.0009(9)$

C1	$0.0223(16)$	$0.0255(16)$	$0.0234(17)$	$0.0002(13)$	$0.0017(13)$	$-0.0049(13)$
O2	$0.0169(11)$	$0.0254(11)$	$0.0200(11)$	$-0.0008(9)$	$0.0080(9)$	$-0.0024(9)$
N2	$0.0108(11)$	$0.0203(12)$	$0.0105(11)$	$-0.0009(9)$	$0.0009(9)$	$-0.0030(9)$
C2	$0.0156(14)$	$0.0182(14)$	$0.0221(15)$	$0.0009(11)$	$-0.0029(12)$	$-0.0006(12)$
C3	$0.0148(14)$	$0.0134(13)$	$0.0178(14)$	$0.0005(11)$	$0.0036(11)$	$-0.0027(11)$
C4	$0.0142(14)$	$0.0190(15)$	$0.0215(15)$	$0.0015(11)$	$-0.0022(12)$	$-0.0008(12)$
C5	$0.0227(15)$	$0.0182(15)$	$0.0147(14)$	$-0.0021(12)$	$-0.0010(12)$	$0.0028(11)$
C6	$0.0209(15)$	$0.0182(14)$	$0.0133(14)$	$-0.0020(11)$	$0.0056(12)$	$0.0008(11)$
C7	$0.0173(14)$	$0.0174(14)$	$0.0125(13)$	$0.0016(11)$	$0.0051(11)$	$-0.0004(11)$
C8	$0.0327(19)$	$0.0355(18)$	$0.0067(14)$	$0.0018(15)$	$0.0071(13)$	$-0.0009(12)$
C9	$0.036(2)$	$0.055(2)$	$0.0145(16)$	$0.0164(18)$	$0.0077(15)$	$0.0075(15)$
C10	$0.0180(15)$	$0.0169(14)$	$0.0126(13)$	$-0.0014(11)$	$0.0017(11)$	$0.0014(11)$
C11	$0.0187(15)$	$0.0292(16)$	$0.0117(14)$	$-0.0037(12)$	$-0.0004(12)$	$-0.0012(12)$
C12	$0.0139(14)$	$0.0217(15)$	$0.0184(15)$	$-0.0012(11)$	$-0.0025(12)$	$-0.0019(12)$
C13	$0.0160(14)$	$0.0120(13)$	$0.0191(14)$	$0.0007(11)$	$0.0031(12)$	$-0.0022(11)$

Geometric parameters (A, ${ }^{\circ}$)

I1-N2	2.103 (2)	C5-H5	0.9500
$\mathrm{O} 1-\mathrm{C} 10$	1.213 (3)	C6-C7	1.394 (4)
N1-C7	1.347 (3)	C6-H6	0.9500
N1-C3	1.354 (4)	C7-C8	1.459 (4)
$\mathrm{C} 1-\mathrm{C} 2$	1.154 (4)	C8-C9	1.121 (5)
C1-H1	0.936 (18)	C9—H9	0.919 (18)
O2-C13	1.210 (3)	C10-C11	1.512 (4)
N2-C10	1.381 (3)	C11-C12	1.530 (4)
N2-C13	1.387 (3)	C11-H11A	0.9900
C2-C3	1.452 (4)	C11-H11B	0.9900
C3-C4	1.392 (4)	C12-C13	1.514 (4)
C4-C5	1.380 (4)	C12-H12A	0.9900
C4-H4	0.9500	C12-H12B	0.9900
C5-C6	1.372 (4)		
C7-N1-C3	118.2 (2)	C9-C8-C7	174.7 (4)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	179 (2)	C8-C9-H9	178 (2)
C10-N2-C13	112.7 (2)	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{N} 2$	124.3 (3)
C10-N2-I1	123.44 (18)	O1-C10-C11	126.6 (3)
C13-N2-I1	123.83 (18)	N2-C10-C11	109.2 (2)
C1-C2-C3	174.2 (3)	C10-C11-C12	104.5 (2)
N1-C3-C4	121.8 (3)	C10-C11-H11A	110.8
N1-C3-C2	118.3 (2)	C12-C11-H11A	110.8
C4-C3-C2	119.9 (3)	C10-C11-H11B	110.8
C5-C4-C3	119.3 (3)	C12-C11-H11B	110.8
C5-C4-H4	120.3	$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	108.9
C3-C4-H4	120.3	C13-C12-C11	105.1 (2)
C6-C5-C4	119.3 (3)	C13-C12-H12A	110.7
C6-C5-H5	120.3	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	110.7
C4-C5-H5	120.3	C13-C12-H12B	110.7

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$119.0(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.5
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	120.5
$\mathrm{~N} 1-\mathrm{C} 7-\mathrm{C} 6$	$122.3(3)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$118.2(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$119.4(3)$

$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	110.7
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	108.8
$\mathrm{O} 2-\mathrm{C} 13-\mathrm{N} 2$	$125.0(3)$
$\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 12$	$126.5(3)$
$\mathrm{N} 2-\mathrm{C} 13-\mathrm{C} 12$	$108.5(2)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6 — \mathrm{H} 6 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.95	2.43	$3.283(3)$	150
$\mathrm{C} 11 — \mathrm{H} 11 A \cdots \mathrm{I}^{\mathrm{ii}}$	0.99	3.24	$4.128(3)$	150
$\mathrm{C} 12 — \mathrm{H} 12 B \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.99	2.62	$3.506(3)$	148

Symmetry codes: (i) $x, y, z+1$; (ii) $-x+1,-y+1,-z$; (iii) $-x,-y+1,-z$.
3,5-Diethynylpyridine- N-iodosuccinimide (1/1) (35DEP_u008226NIS)

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{INO}_{2} \cdot \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}$
$M_{r}=352.12$
Monoclinic, $P 2_{1} / n$
$a=10.4088$ (9) \AA
$b=5.3200(4) \AA$
$c=23.5462(19) \AA$
$\beta=91.606(1)^{\circ}$
$V=1303.35(18) \AA^{3}$
$Z=4$
$F(000)=680$
$D_{\mathrm{x}}=1.794 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4210 reflections
$\theta=3.2-27.2^{\circ}$
$\mu=2.45 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Cut block, colourless
$0.20 \times 0.20 \times 0.02 \mathrm{~mm}$

Data collection

Bruker APEX-I CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3660 pixels mm^{-1}
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\text {min }}=0.572, T_{\text {max }}=0.746$
15299 measured reflections
2931 independent reflections
2463 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=27.4^{\circ}, \theta_{\text {min }}=1.7^{\circ}$
$h=-13 \rightarrow 13$
$k=-6 \rightarrow 6$
$l=-30 \rightarrow 30$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.046$
$S=1.02$
2931 reflections
171 parameters
2 restraints
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0155 P)^{2}+1.0427 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.51 \mathrm{e} \AA^{-3}$
Primary atom site location: dual

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. For each complex, a single-crystal was mounted on a Kryoloop using viscous hydrocarbon oil. Data were collected using a Bruker $A P E X 1$ CCD diffractometer equipped with Mo $K \alpha$ radiation with $\kappa=0.71073 \AA$. Data collection at 100 K was facilitated by use of a Kryoflex system with an accuracy of $\pm 1 \mathrm{~K}$. Initial data processing was carried out using the APEX2 software suite (Bruker, 2016). The structures were solved by dual methods using SHELXT (Sheldrick, $2015 a$) and refined against F^{2} using SHELXL (Sheldrick, 2015b) using the program X-SEED as a graphical interface (Barbour, 2020) and for the generation of graphics.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
I1	$0.64053(2)$	$0.66847(3)$	$0.38633(2)$	$0.01271(6)$
O1	$0.74212(18)$	$1.0953(3)$	$0.29605(8)$	$0.0186(4)$
O2	$0.38818(18)$	$0.5912(4)$	$0.29871(8)$	$0.0216(4)$
N2	$0.57353(19)$	$0.8234(4)$	$0.30937(8)$	$0.0130(4)$
N1	$0.7240(2)$	$0.5084(4)$	$0.48004(8)$	$0.0144(5)$
C2	$0.6748(2)$	$0.0158(5)$	$0.58877(11)$	$0.0161(6)$
C10	$0.6389(2)$	$1.0113(5)$	$0.28076(10)$	$0.0131(5)$
C4	$0.6758(2)$	$0.3118(5)$	$0.50765(11)$	$0.0148(5)$
H4	0.603413	0.226817	0.491411	0.018^{*}
C11	$0.5590(3)$	$1.0849(5)$	$0.22881(11)$	$0.0162(6)$
H11A	0.605320	1.046894	0.193663	0.019^{*}
H11B	0.538554	1.266611	0.229472	0.019^{*}
C6	$0.8830(2)$	$0.5613(5)$	$0.55450(11)$	$0.0138(5)$
C5	$0.8254(2)$	$0.6301(5)$	$0.50297(11)$	$0.0141(5)$
H5	0.859321	0.769463	0.483115	0.017^{*}
C7	$0.8337(2)$	$0.3556(5)$	$0.58288(10)$	$0.0140(5)$
H7	0.871685	0.302664	0.618033	0.017^{*}
C3	$0.7278(3)$	$0.2267(5)$	$0.55945(11)$	$0.0144(5)$
C1	$0.6360(3)$	$-0.1574(6)$	$0.61448(12)$	$0.0194(6)$
C12	$0.4365(3)$	$0.9272(5)$	$0.23197(11)$	$0.0188(6)$
H12A	0.360566	1.036019	0.237203	0.023^{*}
H12B	0.422869	0.826974	0.196884	0.023^{*}
C8	$0.9874(3)$	$0.7069(5)$	$0.57894(11)$	$0.0160(6)$
C13	$0.4584(3)$	$0.7580(5)$	$0.28265(11)$	$0.0151(6)$
C9	$1.0722(3)$	$0.8197(6)$	$0.60178(11)$	$0.0202(6)$
H9	$1.139(2)$	$0.900(5)$	$0.6217(11)$	$0.027(9)^{*}$
H1	$0.605(3)$	$-0.294(4)$	$0.6351(12)$	$0.028(9)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.01124(9)$	$0.01543(9)$	$0.01138(8)$	$-0.00057(7)$	$-0.00118(6)$	$0.00115(7)$
O1	$0.0176(10)$	$0.0197(10)$	$0.0181(10)$	$-0.0060(8)$	$-0.0029(8)$	$-0.0008(8)$
O2	$0.0192(10)$	$0.0248(11)$	$0.0205(10)$	$-0.0072(8)$	$-0.0034(8)$	$0.0054(8)$

N2	$0.0117(11)$	$0.0158(11)$	$0.0113(10)$	$-0.0017(9)$	$-0.0016(8)$	$0.0020(9)$
N1	$0.0112(11)$	$0.0183(12)$	$0.0137(11)$	$0.0002(10)$	$0.0006(8)$	$-0.0002(9)$
C2	$0.0152(13)$	$0.0156(14)$	$0.0176(13)$	$0.0032(11)$	$0.0010(11)$	$-0.0034(11)$
C10	$0.0153(13)$	$0.0121(13)$	$0.0119(12)$	$0.0019(11)$	$0.0008(10)$	$-0.0013(10)$
C4	$0.0134(13)$	$0.0146(14)$	$0.0166(13)$	$-0.0016(11)$	$0.0013(10)$	$-0.0012(11)$
C11	$0.0192(14)$	$0.0148(13)$	$0.0144(13)$	$-0.0002(11)$	$-0.0019(11)$	$0.0028(10)$
C6	$0.0121(13)$	$0.0136(13)$	$0.0157(13)$	$0.0042(10)$	$0.0005(10)$	$-0.0017(10)$
C5	$0.0127(13)$	$0.0149(14)$	$0.0148(13)$	$0.0005(11)$	$0.0023(10)$	$-0.0003(10)$
C7	$0.0147(13)$	$0.0146(13)$	$0.0125(12)$	$0.0060(11)$	$-0.0003(10)$	$-0.0010(10)$
C3	$0.0155(14)$	$0.0127(13)$	$0.0151(13)$	$0.0032(10)$	$0.0035(10)$	$-0.0016(10)$
C1	$0.0197(15)$	$0.0174(14)$	$0.0213(14)$	$0.0020(13)$	$0.0045(11)$	$0.0004(13)$
C12	$0.0140(14)$	$0.0261(15)$	$0.0159(14)$	$-0.0018(12)$	$-0.0036(11)$	$0.0057(11)$
C8	$0.0178(14)$	$0.0155(15)$	$0.0148(13)$	$0.0026(11)$	$0.0002(11)$	$0.0005(10)$
C13	$0.0141(13)$	$0.0182(13)$	$0.0129(13)$	$0.0000(11)$	$-0.0009(10)$	$0.0005(10)$
C9	$0.0212(15)$	$0.0228(15)$	$0.0166(14)$	$0.0006(13)$	$-0.0027(11)$	$0.0011(12)$

Geometric parameters (A, ${ }^{\circ}$)

I1-N2	2.092 (2)	C11-H11B	0.9900
$\mathrm{O} 1-\mathrm{C} 10$	1.209 (3)	C6-C5	1.387 (3)
$\mathrm{O} 2-\mathrm{C} 13$	1.217 (3)	C6-C7	1.388 (4)
N2-C13	1.382 (3)	C6-C8	1.441 (4)
N2-C10	1.393 (3)	C5-H5	0.9500
N1-C4	1.337 (3)	C7-C3	1.398 (4)
N1-C5	1.339 (3)	C7-H7	0.9500
C2-C1	1.180 (4)	$\mathrm{C} 1-\mathrm{H} 1$	0.936 (17)
C2-C3	1.436 (4)	C12-C13	1.507 (4)
C10-C11	1.511 (3)	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9900
C4-C3	1.396 (3)	C12-H12B	0.9900
C4-H4	0.9500	C8-C9	1.184 (4)
C11-C12	1.531 (4)	C9-H9	0.932 (17)
C11-H11A	0.9900		
C13-N2-C10	112.9 (2)	N1-C5-H5	118.6
C13-N2-I1	123.98 (17)	C6-C5-H5	118.6
C10-N2-I1	123.08 (16)	C6-C7-C3	119.6 (2)
C4-N1-C5	119.0 (2)	C6-C7-H7	120.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	177.1 (3)	C3-C7-H7	120.2
$\mathrm{O} 1-\mathrm{C} 10-\mathrm{N} 2$	124.3 (2)	C4-C3-C7	117.9 (2)
$\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 11$	127.5 (2)	C4-C3-C2	121.9 (2)
N2-C10-C11	108.2 (2)	C7-C3-C2	120.2 (2)
N1-C4-C3	122.5 (2)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	179 (2)
N1-C4-H4	118.8	C13-C12-C11	105.0 (2)
C3-C4-H4	118.8	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	110.8
C10-C11-C12	105.0 (2)	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	110.8
C10-C11-H11A	110.8	C13-C12-H12B	110.8
C12-C11-H11A	110.8	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	110.8
C10-C11-H11B	110.8	H12A-C12-H12B	108.8

C12-C11-H11B	110.8	C9-C8-C6	$176.3(3)$
H11A-C11-H11B	108.8	O2-C13-N2	$124.2(2)$
C5-C6-C7	$118.2(2)$	O2-C13-C12	$127.1(2)$
C5-C6-C8	$120.7(2)$	N2-C13-C12	$108.7(2)$
C7-C6-C8	$121.1(2)$	C8-C9-H9	$176.1(19)$
N1-C5-C6	$122.8(2)$		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11 — \mathrm{H} 11 A \cdots \mathrm{I}^{\mathrm{i}}$	0.99	3.35	$4.219(3)$	147
$\mathrm{C} 11 — \mathrm{H} 11 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.99	2.89	$3.388(3)$	112
$\mathrm{C} 11 — \mathrm{H} 11 B \cdots 1^{\mathrm{i}}$	0.99	2.95	$3.474(3)$	114
$\mathrm{C} 11 — \mathrm{H} 11 B \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.99	2.87	$3.646(3)$	136
$\mathrm{C} 12 — \mathrm{H} 12 A \cdots \mathrm{O} 2^{\mathrm{iv}}$	0.99	2.72	$3.545(3)$	141

Symmetry codes: (i) $-x+3 / 2, y+1 / 2,-z+1 / 2$; (ii) $-x+3 / 2, y-1 / 2,-z+1 / 2$; (iii) $x, y+1, z$; (iv) $-x+1 / 2, y+1 / 2,-z+1 / 2$.
3,5-Diethynylpyridine-N-bromosuccinimide (1/1) (35DEP_u008226NBS)

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{BrNO}_{2} \cdot \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}$
$M_{r}=305.13$
Monoclinic, $P 2_{1} / n$
$a=10.2264$ (9) \AA
$b=5.3123$ (5) \AA
$c=23.281(2) \AA$
$\beta=92.048(1)^{\circ}$
$V=1264.0(2) \AA^{3}$
$Z=4$

Data collection

Bruker APEX-I CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3660 pixels mm^{-1}
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\text {min }}=0.597, T_{\text {max }}=0.746$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.064$
$S=1.06$
2869 reflections
171 parameters
2 restraints
Primary atom site location: dual
$F(000)=608$
$D_{\mathrm{x}}=1.603 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4462 reflections
$\theta=2.2-27.5^{\circ}$
$\mu=3.25 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Cut irregular block, colourless
$0.40 \times 0.20 \times 0.10 \mathrm{~mm}$

13338 measured reflections
2869 independent reflections
2462 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-13 \rightarrow 13$
$k=-6 \rightarrow 6$
$l=-29 \rightarrow 29$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0348 P)^{2}+0.3269 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.52 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.47 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. For each complex, a single-crystal was mounted on a Kryoloop using viscous hydrocarbon oil. Data were collected using a Bruker $A P E X 1$ CCD diffractometer equipped with Mo $K \alpha$ radiation with $\kappa=0.71073 \AA$. Data collection at 100 K was facilitated by use of a Kryoflex system with an accuracy of $\pm 1 \mathrm{~K}$. Initial data processing was carried out using the APEX2 software suite (Bruker, 2016). The structures were solved by dual methods using SHELXT (Sheldrick, $2015 a$) and refined against F^{2} using SHELXL (Sheldrick, 2015b) using the program X-SEED as a graphical interface (Barbour, 2020) and for the generation of graphics.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
Br1	$0.63779(2)$	$0.67284(4)$	$0.37882(2)$	$0.01355(8)$
O1	$0.74663(14)$	$1.0895(3)$	$0.29616(6)$	$0.0196(3)$
N1	$0.71588(16)$	$0.5141(3)$	$0.47372(7)$	$0.0161(4)$
C1	$0.6216(2)$	$-0.1493(4)$	$0.61004(10)$	$0.0206(5)$
O2	$0.38906(14)$	$0.5748(3)$	$0.29840(6)$	$0.0226(3)$
N2	$0.57628(16)$	$0.8139(3)$	$0.30863(7)$	$0.0138(4)$
C2	$0.66177(19)$	$0.0240(4)$	$0.58408(9)$	$0.0169(4)$
C3	$0.7177(2)$	$0.2357(4)$	$0.55483(9)$	$0.0148(4)$
C4	$0.82446(19)$	$0.3649(4)$	$0.57930(9)$	$0.0150(4)$
H4	0.862136	0.313067	0.615272	0.018^{*}
C5	$0.87540(19)$	$0.5707(4)$	$0.55051(9)$	$0.0139(4)$
C6	$0.8179(2)$	$0.6370(4)$	$0.49762(9)$	$0.0147(4)$
H6	0.852812	0.775993	0.477586	0.018^{*}
C7	$0.6661(2)$	$0.3190(4)$	$0.50171(9)$	$0.0173(4)$
H7	0.592777	0.233238	0.484874	0.021^{*}
C8	$0.9816(2)$	$0.7151(4)$	$0.57585(9)$	$0.0163(4)$
C9	$1.0686(2)$	$0.8306(4)$	$0.59860(10)$	$0.0207(5)$
C10	$0.64207(19)$	$1.0029(4)$	$0.28019(8)$	$0.0139(4)$
C11	$0.5594(2)$	$1.0729(4)$	$0.22734(9)$	$0.0161(4)$
H11A	0.606463	1.035557	0.191913	0.019^{*}
H11B	0.536973	1.254153	0.227751	0.019^{*}
C12	$0.4359(2)$	$0.9113(5)$	$0.23041(9)$	$0.0201(5)$
H12A	0.357762	1.018460	0.235124	0.024^{*}
H12B	0.422955	0.809537	0.195041	0.024^{*}
C13	$0.4586(2)$	$0.7437(4)$	$0.28209(9)$	$0.0157(4)$
H9	$1.136(2)$	$0.910(5)$	$0.6179(11)$	$0.034(7)^{*}$
H1	$0.596(2)$	$-0.289(4)$	$0.6303(10)$	$0.024(7)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.01186(11)$	$0.01761(12)$	$0.01104(11)$	$-0.00031(8)$	$-0.00154(7)$	$0.00112(8)$
O1	$0.0187(8)$	$0.0223(8)$	$0.0175(8)$	$-0.0070(7)$	$-0.0036(6)$	$0.0002(6)$
N1	$0.0145(8)$	$0.0193(9)$	$0.0144(8)$	$0.0006(7)$	$-0.0009(7)$	$0.0006(7)$

C1	$0.0203(11)$	$0.0177(12)$	$0.0242(12)$	$0.0023(9)$	$0.0058(9)$	$0.0007(10)$
O2	$0.0180(8)$	$0.0282(9)$	$0.0213(8)$	$-0.0087(7)$	$-0.0045(6)$	$0.0048(7)$
N2	$0.0119(8)$	$0.0181(9)$	$0.0112(8)$	$-0.0004(7)$	$-0.0018(6)$	$0.0014(7)$
C2	$0.0150(10)$	$0.0170(11)$	$0.0188(10)$	$0.0027(9)$	$0.0005(8)$	$-0.0039(9)$
C3	$0.0138(10)$	$0.0136(10)$	$0.0173(10)$	$0.0025(8)$	$0.0033(8)$	$-0.0014(8)$
C4	$0.0158(10)$	$0.0164(11)$	$0.0126(10)$	$0.0043(8)$	$-0.0013(8)$	$0.0001(8)$
C5	$0.0123(10)$	$0.0147(10)$	$0.0149(10)$	$0.0026(8)$	$0.0002(8)$	$-0.0025(8)$
C6	$0.0148(10)$	$0.0156(11)$	$0.0139(10)$	$-0.0003(8)$	$0.0023(8)$	$-0.0002(8)$
C7	$0.0152(10)$	$0.0176(11)$	$0.0189(11)$	$-0.0021(8)$	$-0.0013(8)$	$-0.0035(9)$
C8	$0.0175(10)$	$0.0185(11)$	$0.0130(10)$	$0.0028(9)$	$0.0020(8)$	$0.0008(8)$
C9	$0.0198(11)$	$0.0243(12)$	$0.0176(11)$	$-0.0039(10)$	$-0.0028(9)$	$0.0013(9)$
C10	$0.0158(10)$	$0.0139(10)$	$0.0121(9)$	$0.0016(8)$	$0.0019(8)$	$-0.0029(8)$
C11	$0.0193(11)$	$0.0161(11)$	$0.0128(10)$	$0.0021(9)$	$-0.0015(8)$	$0.0017(8)$
C12	$0.0159(10)$	$0.0296(13)$	$0.0146(11)$	$-0.0004(9)$	$-0.0033(8)$	$0.0040(9)$
C13	$0.0120(10)$	$0.0214(11)$	$0.0136(10)$	$0.0004(9)$	$-0.0017(8)$	$-0.0008(9)$

Geometric parameters (A, ${ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{N} 2$	$1.8853(17)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.394(3)$
$\mathrm{O} 1-\mathrm{C} 10$	$1.210(2)$	$\mathrm{C} 3-\mathrm{C} 7$	$1.399(3)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.335(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.393(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.335(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.391(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.183(3)$	$\mathrm{C} 5-\mathrm{C} 8$	$1.439(3)$
$\mathrm{O} 2-\mathrm{C} 13$	$1.214(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.189(3)$
$\mathrm{N} 2-\mathrm{C} 13$	$1.384(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.514(3)$
$\mathrm{N} 2-\mathrm{C} 10$	$1.390(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.531(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.443(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.508(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6$	$118.81(18)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$123.01(19)$
$\mathrm{C} 13-\mathrm{N} 2-\mathrm{C} 10$	$114.21(17)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 3$	$122.62(19)$
$\mathrm{C} 13-\mathrm{N} 2-\mathrm{Br} 1$	$122.51(14)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 5$	$177.7(2)$
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{Br} 1$	$123.24(13)$	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{N} 2$	$124.44(19)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$176.5(2)$	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 11$	$128.19(19)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 7$	$118.06(19)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11$	$107.37(17)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.56(19)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$105.21(17)$
$\mathrm{C} 7-\mathrm{C} 3-\mathrm{C} 2$	$121.37(19)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$105.32(17)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.39(19)$	$\mathrm{O} 2-\mathrm{C} 13-\mathrm{N} 2$	$124.71(19)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$118.10(19)$	$\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 12$	$127.60(19)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 8$	$121.15(19)$	$\mathrm{N} 2-\mathrm{C} 13-\mathrm{C} 12$	$107.69(18)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8$	$120.72(19)$		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.99	2.63	$3.477(3)$	143
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{Br} 1^{1 i}$	0.99	3.22	$4.066(2)$	144
$\mathrm{C} 11-\mathrm{H} 11 A \cdots 1^{i i i}$	0.99	2.81	$3.303(3)$	111

supporting information

$\mathrm{C} 11 — \mathrm{H} 11 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.99	2.91	$3.442(3)$	115
$\mathrm{C} 11 — \mathrm{H} 11 B \cdots \mathrm{O}^{\mathrm{iv}}$	0.99	2.84	$3.617(3)$	136

Symmetry codes: (i) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (ii) $-x+3 / 2, y+1 / 2,-z+1 / 2$; (iii) $-x+3 / 2, y-1 / 2,-z+1 / 2$; (iv) $x, y+1, z$.

