JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2022,VOL. 117,NO. 537, 124-127: Theory and Methods Discussion
https://doi.org/10.1080/01621459.2022.2028630

Taylor & Francis
Taylor & Francis Group

‘ '.) Check for updates

Comments on “Factor Models for High-Dimensional Tensor Time Series”

Jialin Ouyang and Ming Yuan

Columbia University, New York, NY

We would like to first congratulate Professors Chen, Yang
and Zhang for making yet another important contribution to
the development of theory and methodology for analyzing ten-
sor or multilinear array data. As the data we collect becomes
bigger and bigger, and encodes more and more complex rela-
tionships, it is natural to organize them in the form of mul-
tilinear arrays instead of the classical data matrices. How to
exploit such structure in statistical analysis, however, can be
rather challenging. This is especially the case for time series
where temporal correlation adds another layer of complication.
The elegant methodology developed in this timely contribution
will certainly benefit a multitude of applications. To further
understand the operating characteristics of the two proposed
estimation procedures, TIPUP and TOPUP, we shall consider
here the simplest case of rank-one matrix time series, and reflect
upon the comparison between their performance. In doing so,
we also gained insights into the effect of the hyper-parameter,
namely the time lag hy.

In particular, consider

X; = awv' f; + E; € R4, (1)

where u,v € RY |lu1]l, = ||luzll» = 1. For simplicity, we
assume that E;, € R are independent Gaussian ensembles,
where each entry of E; follows the standard normal distribution,
and that
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1. TIPUP versus TOPUP

As shown in the article, under the rank-one model (1),
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See, for example, Equations (42) and (49), and Appendix C.4.
The aforementioned rates seemingly suggest that the difference
in performance between TOPUP and TIPUP can be simply
characterized by a multiplicative factor of /d. However, the
empirical comparison between the two is sometimes more pro-
found.

For illustration, we conducted a set of simulation studies
where the core time series f; follows a stationary AR(1) model:

fi = dfic1 +&r & ~ N(0,1 — ¢?).

We set d = 20, T = 1000, and ¢ = 0.5. Two different levels
of signal strength, A = 5 or 30, were considered. The empirical
performance of TIPUP and TOPUP, based on 100 simulation
runs, is given in Figure 1. Figure 1 shows the superiority of
TOPUP over TIPUP, and the advantage is much more evident
for A = 5than A = 30. This seems to suggest a more subtle
difference than predicted by the aforementioned rates of con-
vergence. To better understand the operating characteristics, we
took a close look at both estimating procedures and found that
their estimation error under the rank-one model can be more
precisely characterized, at least for sufficiently strong signal, as
follows.

Denote by
Vi =D,y @),y (ho)]"
and
v (0) y(1) y(ho — 1)
I — y() y(0) y(ho —2)
hy —
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Figure 1. Comparison between TIPUP and TOPUP: each boxplot was summarized
based on 100 simulation runs.
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We have
Proposition 1. TfA > d>/2/TV? + d3/* )TV 4 d5/6 ) TV/®, then
max{sin Z(#"PY, ), sin LGPV, v)} = [1 + 0,(1)IR(ho).
If x> d'/?2/T'/4, then
max{sin Z(# PP u), sin ZGTPUP )} = [1 + 0p(1)IR* (ho),

These bounds further confirm that the asymptotic error of
TOPUP estimator is no greater than that of TIPUP. The dif-
ference is evident when A < +/d and can be as much as a
multiplicative factor of /d, that is, when A = o(1). However,
when A > V/d, Az)’]jorho}’ho dominates d ZZO=1 y (h)?, so that
R*(hg) = R(ho)(1 + o(1)) and the two estimates are actually
comparable!

We expanded the earlier numerical experiment to demon-
strate the accuracy of the rates above: We set d = 20, T = 2000,
and A = 4 and run 100 simulations for each choice of hg. The
results were presented in Figure 2. For reference, we also plotted
R*(h) ~ hand R(h) ~ h in the figure. In particular, R*(ho) is
minimized when hy = 2 whereas R(hg) at hg = 1.

2. Effect of hg

Proposition 1 also provides insights to an important practical
question for either TIPUP or TOPUP: does it matter which h to
choose? In general, we want to choose an hg to minimize R(hy)
or R*(hg) so that the estimate has the best rate of convergence.
But how much difference does it make?

It is instructive to again consider the case when the core time
series f; follows an AR(1) model:

.ft = ¢)ﬁ—1 + Ets
In this case, y (h) = ¢!l for h = 0,41, +2, ... and thus

g~ N(0,1 — ¢?).
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When the signal is weak, that is, . = o(1), both are domi-
nated by the second term on the rightmost hand side. As both
terms are decreasing with Ao suggesting that in this case, it
is preferable to choose a large hy. In general, however, R(hy)

22 220:1 ¢2h
d | |1 ¢>+¢*— (2hg + 1)¢p2hot2 4 (2hg — 1)gp?hots g 1— ¢?
VT A (p? — p2hot2)2 + A2 g2 — p2hot2

or R*(hyp) may be optimized by a nontrivial choice of hy. To
better comprehend their behavior, we focus on R* and plotted
in Figures 3 and 4 how it changes with different choices of ¢ and
A in the rank-one model:
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The fact that hy may play a significant role in determining the
performance of TIPUP or TOPUP suggests it is worthwhile to
investigate more automatic and data-driven choices for it.

3. Summary

In this discussion, we further compare the two estimating pro-
cedures developed by Professors Chen, Yang and Zhang. By
focusing on a simple rank-one model, we found that the com-
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Figure 2. Choice of hg for TIPUP and TOPUP: in each panel the line and crosses
correspond to R* (hg) or R(hg) for each value of hg.
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parison between TIPUP and TOPUP is more complex than it
appears to be. In particular, TIPUP can even yield performance
comparable to TOPUP in the presence of a strong signal. The
exercise also reveals the effect of hy for both procedures and
points to the importance of choosing Ay at least in some settings.
These somewhat surprising observations suggest that the oper-
ating characteristics of both estimating procedures may warrant
turther investigation.

Appendix A: Sketch of Proof for Proposition 1

Both TIPOP and TOPUP can be analyzed in identical fashion and we
shall therefore, only discuss TOPUP, The main strategy is to decompose
i € R% into
u=[l+o0p()]u+ A1+ Ay,
and show that
[1A1l12 = [1+ 0p(1)IR(ho), (A1)

and

a &P

Under the assumption of the signal strength, we have ||Az][2
0p[R(ho)], which then completes the proof.

A.1. Decomposition of i

Recall that # is the leading singular vector of
M .= [matl(Vh),h =1... ,h()] .
Under model (1),
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Denote p (h) := % Zththt—hft, then
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Figure 3. R*(hq) for different ¢: in each panel the line and crosses correspond to R* (hg) ~ hg. In this example, we set A = 5.
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Figure 4. R* (hg) for different A: in each panel the line and crosses correspond to R* (hg) ~ hg. In this example we set ¢ = 0.5.

T T
+A Y Epfi|ouov+|= Y E_p0vecE |,
t=h+1 t=h+1
= Mpo + Mpy + My + Mp3, (A4)
where © denotes the Kronecker product. Let
Mj = [Mh,j,h=1,...,ho], i=0,1,2,3.
Observe that My is rank-1 with singular value ,/ ZZOZI 7 (h)2, and right
singular vector
(1), 7(2), ..., 7 (ho)]T
_ouovoly),ry® 7 (ho)] , (A5)

IR P2

and following from the proof of Theorem 1 in the article,
a a2
7172 + 12 ) (A.6)

The leading right singular vector of M = My + M) + Mp + M3 can be
expressed as:

[IM1lls + [|Malls + [|M3]]s = (

Ww=1[1+0p(DIw+ Ay

4372
w272 |-

Since # is the leading singular vector of M, we get
Mw
[|Mw]2
_ (Mo + Mp)w
o IMwl
_ Mow + Miw
T IM|
=u+ A1+ A
the third equality follows from (A.7).
Observe that Mg A, = 0 (since Ay, L w), we have

where Ay, L wand

d
NAwll2 = ( + (A7)

ATL/2

u =
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[|Mw]|2
[1+ 0p()I(M2 + M3)w
(1MWl

(M + M3) Ay
1MWl
(A.8)

Mo = [1 + 0p(1)IMow = u?

Combine with bound (A.6), we immediately have

ho
IM#|l2 = [1+ 0p(IAZ | Y P (W2
h=1

(A9)

Since M is also rank-1 with u as the left singular vector, applying bound
(A.6) again, we have

+ op(D)]u. (A.10)

A-S* e 0.0158 A=20
& 0.0156 o _—H——H——%
0.0154 | /
0.0152 /
0.015 7
0.0148 | ¥
0.0146
0.0444 |
oozt |/
. ' 0.014 .
[3 8 10 0 2 4 3 8 10
h(\ hﬂ
A.2. Bounding As
By definition,
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(A.11)

Conditional on {f;}, the entries of

ho
y:=2ﬁ<h>x thth +
h=1

t h+1
has mean 0 and variance

Z & h(u &t)

t h+1

0
Ey]—[l—{—o(l)] Azyhof‘hoyho—}—Z)?(h)z . j=12,...,d

as T — oo. Equation (A.1) follows from the fact that Var(ZJd=1 y]z) =
0(d?/T) = 0(d*) and

P()* =14 0p()]y (W,
Finally, (A.2) follows by combining (A.6), (A.7) and (A.9).
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