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We would like to !rst congratulate Professors Chen, Yang
and Zhang for making yet another important contribution to
the development of theory and methodology for analyzing ten-
sor or multilinear array data. As the data we collect becomes
bigger and bigger, and encodes more and more complex rela-
tionships, it is natural to organize them in the form of mul-
tilinear arrays instead of the classical data matrices. How to
exploit such structure in statistical analysis, however, can be
rather challenging. This is especially the case for time series
where temporal correlation adds another layer of complication.
The elegant methodology developed in this timely contribution
will certainly bene!t a multitude of applications. To further
understand the operating characteristics of the two proposed
estimation procedures, TIPUP and TOPUP, we shall consider
here the simplest case of rank-one matrix time series, and re"ect
upon the comparison between their performance. In doing so,
we also gained insights into the e#ect of the hyper-parameter,
namely the time lag h0.

In particular, consider

Xt = λuv!ft + Et ∈ Rd×d, (1)

where u, v ∈ Rd, ||u1||2 = ||u2||2 = 1. For simplicity, we
assume that Et ∈ Rd×d are independent Gaussian ensembles,
where each entry of Et follows the standard normal distribution,
and that

lim
T→∞

1
T − h

T∑

t=h+1
ft−hft = γ (h), h = 0, 1, 2, . . . .

1. TIPUP versus TOPUP

As shown in the article, under the rank-one model (1),

max{sin ' (ûTIPUP, u), sin ' (v̂TIPUP, v)}

= Op

(
d

λ
√

T
+

√
d3

λ2
√

T

)

and

max{sin ' (ûTOPUP, u), sin ' (v̂TOPUP, v)}

= Op

( √
d

λ
√

T
+ d

λ2
√

T

)
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See, for example, Equations (42) and (49), and Appendix C.4.
The aforementioned rates seemingly suggest that the di#erence
in performance between TOPUP and TIPUP can be simply
characterized by a multiplicative factor of

√
d. However, the

empirical comparison between the two is sometimes more pro-
found.

For illustration, we conducted a set of simulation studies
where the core time series ft follows a stationary AR(1) model:

ft = φft−1 + εt , εt ∼ N (0, 1 − φ2).

We set d = 20, T = 1000, and φ = 0.5. Two di#erent levels
of signal strength, λ = 5 or 30, were considered. The empirical
performance of TIPUP and TOPUP, based on 100 simulation
runs, is given in Figure 1. Figure 1 shows the superiority of
TOPUP over TIPUP, and the advantage is much more evident
for λ = 5 than λ = 30. This seems to suggest a more subtle
di#erence than predicted by the aforementioned rates of con-
vergence. To better understand the operating characteristics, we
took a close look at both estimating procedures and found that
their estimation error under the rank-one model can be more
precisely characterized, at least for su$ciently strong signal, as
follows.

Denote by

γ h0 = [γ (1), γ (2), . . . , γ (h0)]!

and

%h0 =





γ (0) γ (1) . . . γ (h0 − 1)

γ (1) γ (0) . . . γ (h0 − 2)

. . .

γ (h0 − 1) γ (h0 − 2) . . . γ (0)





De!ne

R(h0) :=
√

d
T

√
λ2γ !

h0
%h0γ h0 + ∑h0

h=1 γ (h)2

λ2 ∑h0
h=1 γ (h)2

,

and

R∗(h0) :=
√

d
T

√
λ2γ !

h0
%h0γ h0 + d

∑h0
h=1 γ (h)2

λ2 ∑h0
h=1 γ (h)2

,
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Figure 1. Comparison between TIPUP and TOPUP: each boxplot was summarized
based on 100 simulation runs.

We have

Proposition 1. If λ + d3/2/T1/2 + d3/4/T1/4 + d5/6/T1/6, then

max{sin ' (ûTOPUP, u), sin ' (v̂TOPUP, v)} = [1 + op(1)]R(h0).

If λ + d1/2/T1/4, then

max{sin ' (ûTIPUP, u), sin ' (v̂TIPUP, v)} = [1 + op(1)]R∗(h0),

These bounds further con!rm that the asymptotic error of
TOPUP estimator is no greater than that of TIPUP. The dif-
ference is evident when λ !

√
d and can be as much as a

multiplicative factor of
√

d, that is, when λ = o(1). However,
when λ +

√
d, λ2γ !

h0
%h0γ h0 dominates d

∑h0
h=1 γ (h)2, so that

R∗(h0) = R(h0)(1 + o(1)) and the two estimates are actually
comparable!

We expanded the earlier numerical experiment to demon-
strate the accuracy of the rates above: We set d = 20, T = 2000,
and λ = 4 and run 100 simulations for each choice of h0. The
results were presented in Figure 2. For reference, we also plotted
R∗(h) ∼ h and R(h) ∼ h in the !gure. In particular, R∗(h0) is
minimized when h0 = 2 whereas R(h0) at h0 = 1.

2. E!ect of h0

Proposition 1 also provides insights to an important practical
question for either TIPUP or TOPUP: does it matter which h0 to
choose? In general, we want to choose an h0 to minimize R(h0)
or R∗(h0) so that the estimate has the best rate of convergence.
But how much di#erence does it make?

It is instructive to again consider the case when the core time
series ft follows an AR(1) model:

ft = φft−1 + εt , εt ∼ N (0, 1 − φ2).

In this case, γ (h) = φ|h| for h = 0, ±1, ±2, . . . and thus

R(h0) =
√

d
T

√
λ2 ∑h0

h=1(2h − 1)φ2h + ∑h0
h=1 φ2h

λ2 ∑h0
h=1 φ2h

=
√

d
T




√

1
λ

· φ2 + φ4 − (2h0 + 1)φ2h0+2 + (2h0 − 1)φ2h0+4

(φ2 − φ2h0+2)2 + 1
λ2 · 1 − φ2

φ2 − φ2h0+2



 .

and

R∗(h0) =
√

d
T

√
λ2 ∑h0

h=1(2h − 1)φ2h + d
∑h0

h=1 φ2h

λ2 ∑h0
h=1 φ2h

=
√

d
T




√

1
λ

· φ2 + φ4 − (2h0 + 1)φ2h0+2 + (2h0 − 1)φ2h0+4

(φ2 − φ2h0+2)2 + d
λ2 · 1 − φ2

φ2 − φ2h0+2



 .

When the signal is weak, that is, λ = o(1), both are domi-
nated by the second term on the rightmost hand side. As both
terms are decreasing with h0 suggesting that in this case, it
is preferable to choose a large h0. In general, however, R(h0)

or R∗(h0) may be optimized by a nontrivial choice of h0. To
better comprehend their behavior, we focus on R∗ and plotted
in Figures 3 and 4 how it changes with di#erent choices of φ and
λ in the rank-one model:
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The fact that h0 may play a signi!cant role in determining the
performance of TIPUP or TOPUP suggests it is worthwhile to
investigate more automatic and data-driven choices for it.

3. Summary
In this discussion, we further compare the two estimating pro-
cedures developed by Professors Chen, Yang and Zhang. By
focusing on a simple rank-one model, we found that the com-

Figure 2. Choice of h0 for TIPUP and TOPUP: in each panel the line and crosses
correspond to R∗(h0) or R(h0) for each value of h0.

parison between TIPUP and TOPUP is more complex than it
appears to be. In particular, TIPUP can even yield performance
comparable to TOPUP in the presence of a strong signal. The
exercise also reveals the e#ect of h0 for both procedures and
points to the importance of choosing h0 at least in some settings.
These somewhat surprising observations suggest that the oper-
ating characteristics of both estimating procedures may warrant
further investigation.

Appendix A: Sketch of Proof for Proposition 1

Both TIPOP and TOPUP can be analyzed in identical fashion and we
shall therefore, only discuss TOPUP, The main strategy is to decompose
û ∈ Rd into

û = [1 + op(1)]u + &1 + &2,

and show that

||&1||2 = [1 + op(1)]R(h0), (A.1)

and

||&2||2 = Op

(
d2

λ2T
+ d3

λ4T

)

. (A.2)

Under the assumption of the signal strength, we have ||&2||2 =
op[R(h0)], which then completes the proof.

A.1. Decomposition of û

Recall that û is the leading singular vector of

M :=
[
mat1(Vh), h = 1, . . . , h0

]
.

Under model (1),

Vh = 1
T

T∑

t=h+1
λ2uv! ⊗ uv!ft−hft + 1

T

T∑

t=h+1
λuv!ft−hEt

+ 1
T

T∑

t=h+1
Et−h ⊗ λuv!ft + 1

T

T∑

t=h+1
Et−h ⊗ Et . (A.3)

Denote γ̂ (h) := 1
T

∑T
t=h+1 ft−hft , then

mat1(V1,h)

= λ2u(v - u - v)!γ̂ (h) + λu - v - vec



 1
T

T∑

t=h+1
ft−hEt





Figure 3. R∗(h0) for di!erent φ: in each panel the line and crosses correspond to R∗(h0) ∼ h0. In this example, we set λ = 5.
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Figure 4. R∗(h0) for di!erent λ: in each panel the line and crosses correspond to R∗(h0) ∼ h0. In this example we set φ = 0.5.

+ λ



 1
T

T∑

t=h+1
Et−hft



 - u - v +



 1
T

T∑

t=h+1
Et−h - vec(Et)



 ,

:= Mh,0 + Mh,1 + Mh,2 + Mh,3, (A.4)
where - denotes the Kronecker product. Let

Mj :=
[

Mh,j, h = 1, . . . , h0
]

, j = 0, 1, 2, 3.

Observe that M0 is rank-1 with singular value
√∑h0

h=1 γ̂ (h)2, and right
singular vector

w := (v - u - v) - [γ̂ (1), γ̂ (2), . . . , γ̂ (h0)]!√∑h0
h=1 γ̂ (h)2

, (A.5)

and following from the proof of Theorem 1 in the article,

||M1||S + ||M2||S + ||M3||S = Op

(
λd

T1/2 + d3/2

T1/2

)

. (A.6)

The leading right singular vector of M = M0 + M1 + M2 + M3 can be
expressed as:

ŵ = [1 + op(1)]w + &w
where &w ⊥ w and

||&w||2 = Op

(
d

λT1/2 + d3/2

λ2T1/2

)

. (A.7)

Since û is the leading singular vector of M, we get

û = Mŵ
||Mŵ||2

= (M0 + M1)ŵ
||Mŵ||2

+ (M2 + M3)ŵ
||Mŵ||2

= M0ŵ + M1ŵ
||Mŵ||2

+ [1 + op(1)](M2 + M3)w
||Mŵ||2

+ (M2 + M3)&w
||Mŵ||2

:= ũ + &1 + &2 (A.8)
the third equality follows from (A.7).

Observe that M0&w = 0 (since &w ⊥ w), we have

M0ŵ = [1 + op(1)]M0w = uλ2

√√√√√
h0∑

h=1
γ̂ (h)2.

Combine with bound (A.6), we immediately have

||Mŵ||2 = [1 + op(1)]λ2

√√√√√
h0∑

h=1
γ̂ (h)2. (A.9)

Since M1 is also rank-1 with u as the le% singular vector, applying bound
(A.6) again, we have

ũ = [1 + op(1)]u. (A.10)

A.2. Bounding "s

By de!nition,

&1 = [1 + op(1)](M2 + M3)w
||Mŵ||2

= [1 + op(1)]
λ2 ∑h0

h=1 γ̂ (h)2

h0∑

h=1
γ̂ (h)(M2,h + M3,h)(v - u - v)

= [1 + op(1)]
λ2 ∑h0

h=1 γ̂ (h)2

h0∑

h=1
γ̂ (h)

×



λ



 1
T

T∑

t=h+1
ftEt−hv



 +



 1
T

T∑

t=h+1
Et−hvu!Etv







 ,

let εt = Etv ∈ Rd, then

&1 = [1 + op(1)]
λ2 ∑h0

h=1 γ̂ (h)2

h0∑

h=1
γ̂ (h)

×



λ



 1
T

T∑

t=h+1
ftεt−h



 +



 1
T

T∑

t=h+1
εt−h(u!εt)







 .

(A.11)

Conditional on {ft}, the entries of

y :=
h0∑

h=1
γ̂ (h)



λ



 1√
T

T∑

t=h+1
ftεt−h



+



 1√
T

T∑

t=h+1
εt−h(u!εt)









has mean 0 and variance

Ey2
j = [1 + o(1)]



λ2γ̂ !
h0

%̂h0 γ̂ h0 +
h0∑

h=1
γ̂ (h)2



 , j = 1, 2, . . . , d.

as T → ∞. Equation (A.1) follows from the fact that var(
∑d

j=1 y2
j ) =

O(d2/T) = o(d2) and

γ̂ (h)2 = [1 + op(1)]γ (h)2.

Finally, (A.2) follows by combining (A.6), (A.7) and (A.9).
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