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Spatial resolution of Normalized Difference Vegetation Index
and greenness exposure misclassification in an urban cohort
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BACKGROUND: The Normalized Difference Vegetation Index (NDVI) is a measure of greenness widely used in environmental health
research. High spatial resolution NDVI has become increasingly available; however, the implications of its use in exposure

assessment are not well understood.

OBJECTIVE: To quantify the impact of NDVI spatial resolution on greenness exposure misclassification.

METHODS: Greenness exposure was assessed for 31,328 children in the Greater Boston Area in 2016 using NDVI from MODIS
(250 m?), Landsat 8 (30 m?), Sentinel-2 (10 m?), and the National Agricultural Imagery Program (NAIP, 1 m?). We compared
continuous and categorical greenness estimates for multiple buffer sizes under a reliability assessment framework. Exposure

misclassification was evaluated using NAIP data as reference.

RESULTS: Greenness estimates were greater for coarser resolution NDVI, but exposure distributions were similar. Continuous
estimates showed poor agreement and high consistency, while agreement in categorical estimates ranged from poor to strong.
Exposure misclassification was higher with greater differences in resolution, smaller buffers, and greater number of exposure
quantiles. The proportion of participants changing greenness quantiles was higher for MODIS (11-60%), followed by Landsat 8

(6-44%), and Sentinel-2 (5-33%).

SIGNIFICANCE: Greenness exposure assessment is sensitive to spatial resolution of NDVI, aggregation area, and number of
exposure quantiles. Greenness exposure decisions should ponder relevant pathways for specific health outcomes and operational

considerations.

Keywords: Normalized Difference Vegetation Index (NDVI); Spatial resolution; Greenness; Exposure assessment; Exposure
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INTRODUCTION

Research across multiple disciplines has drawn attention to the
critical role of vegetation in maintaining environmental quality,
facilitating social cohesion, and promoting healthy behaviors in
urban areas [1-4]. Vegetation can moderate exposure to environ-
mental hazards by reducing ambient concentrations of air
pollution [5, 6], acting as a physical and psychological buffer for
noise [7, 8], and reducing heat exposure [9]. Accumulating
evidence suggests predominantly beneficial associations between
exposure to vegetation and multiple mental and physical health
outcomes [10-15]. While there is growing consensus on the
salutatory effects of vegetation, research findings on the
greenness-health relationship are mixed for several outcomes,
including birth outcomes [16-18], academic performance [19-22],
and asthma and allergic respiratory diseases [23-25]. These
inconsistencies might arise from differences in study area and
population, or differences in study design, including how exposure
to green spaces is conceptualized and measured. In fact, the
heterogeneity in green space data and spatial methods used to

assess exposure have been pointed as potential driver behind the
conflictive evidence observed in the literature [26, 27].

Many environmental health studies rely on greenness data —a
measure of relative abundance and spatial distribution of
vegetation— to characterize exposure [28-30]. Greenness is
generally assessed with spectral indices that identify vegetation
using reflectance measurements taken by instruments on
satellites and planes. Among the many vegetation indices
available, the Normalized Difference Vegetation Index (NDVI) is
the most commonly used in urban green space assessment [31]
and environmental health studies [26, 27, 32]. NDVI applications
have increased due to the availability of satellite data over long
periods of time and geographic extents at increasingly higher
spatial and temporal resolution [24, 27, 33]. Coarser resolution
data (pixel size of 250 m? or more) are more likely to include a mix
of land cover classes (e.g., impervious, water, vegetation, etc.)
within the extent of each pixel [34-37]. The mix of signals from
different surfaces dilutes the spectral signal of vegetation,
hampering the identification of small green spaces such as
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Fig.1 Greenness in the Greater Boston Area and city of Boston, Massachusetts in summer 2016. NDVI was derived from Landsat 8 surface

reflectance data.

backyards, pocket parks, and street trees, which account for a
large share of greenness exposure in urban contexts [38].
Oppositely, the smaller pixels in high-resolution NDVI data (pixel
size of 10 m? or less) are more likely to capture pure land cover
classes, and therefore can better identify small-scale green cover.
This is especially relevant for exposure assessment in urban areas
where land cover presents high variability [39]. Moreover, NDVI
presents strong spatial scale dependencies when assessing
vegetation over mixed surfaces, suggesting that NDVI derived
from data at different spatial resolutions might not be directly
comparable in such settings [36]. While this issue is less relevant
for pixels of pure vegetation, such as forests [40], the majority of
epidemiologic studies are set in urban areas, where land cover is
highly heterogeneous. Together, these conditions suggest that
spatial resolution of NDVI data might impact greenness exposure
estimates.

Greenness exposure is typically assigned to individuals by
averaging NDVI within radial buffers centered on residential
addresses or locations of interest [25, 28, 41-43]. Buffers of different
radii are used to represent a variety of spatial scales and exposure
contexts where interactions with natural green space occur. Smaller
buffer sizes capture vegetation in the immediate surroundings of
individuals, such as private yards and street trees, and larger buffer
sizes account for neighborhood-level greenness that might be
encountered during commuting or recreational activities [26, 27, 44].
Studies exploring the interactions between scale of analysis and
NDVI resolution have observed changes in effect size and statistical
significance of associations across buffer sizes for several health
outcomes [45-47]. While these differences might owe to the
definition of aggregation areas or reflect the fact that different
ecosystem services of vegetation occur at different scales, they also
suggest that the associations between greenness and health might
be susceptible to scale problems. However, few studies have

SPRINGER NATURE

explicitly analyzed how greenness data resolution and aggregation
areas might impact estimates of greenness exposure [48], and more
studies are needed to understand the extent to which scales of
analysis and NDVI resolution impact greenness exposure assessment.

Overall, there is limited understanding on the impact of
methodological decisions regarding aggregation scale and spatial
resolution of NDVI data on greenness exposure estimates. NDVI
derived from multiple sensors at different spatial resolutions are
usually treated as interchangeable in their ability to characterize
exposure to vegetation in the environmental health literature.
Furthermore, the implications of using NDVI at a specific spatial
resolution in relation to different scales of analysis are rarely
addressed in the greenness-health literature. In this study, we
illustrate the impact of NDVI resolution and scale of analysis on
greenness exposure misclassification in a cohort of urban children.

MATERIALS AND METHODS

Study area and population

The study area corresponds to the Greater Boston Area (GBA), a
predominantly urban region comprising the easternmost third of the
state of Massachusetts. The GBA presents humid continental climate with
hot, humid summers and cold winters. We used addresses from a database
of electronic health records of patients between 5 and 18 years who
received medical attention at the Boston Medical Center (BMC), located in
Boston, Massachusetts, USA. BMC is the largest urban safety net hospital in
New England and primarily serves low-income and vulnerable population.
For this study, we selected a subset of the cohort corresponding to 31,328
children whose addresses were registered during visits to BMC in 2016.
Addresses were geocoded using a cascading matching method using both
the MassGIS Statewide Master Geocoder [49] and the ESRI ArcGIS World
Geocoder in ArcMap version 10.7. [50]. Protocols were approved by
the Institutional Review Board at Boston University. Figure 1 shows the
distribution of NDVI in the GBA and the City of Boston, where 63% of
the study population is located. NDVI greater than zero is indicative of live

Journal of Exposure Science & Environmental Epidemiology



R.B. Jimenez et al.

vegetation, whereas negative values indicate highly reflective surfaces, 8 o o gl e

such as water, ice, or impervious surfaces. §53 &%
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Greenness data sources and data processing e R B )

NDVI for the GBA was derived from four remote sensing datasets: E “w 8 ©
Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat 8, §g 8 22 23 .
Sentinel-2, and the National Agricultural Imagery Program (NAIP). We g_g v 8 8 8 S £
selected remote sensing data collected during a five-week period during g S HERElS }3
top-growth season in the Northern Hemisphere in 2016, as this is the most i=RcH RO N I QE)
recent year in which NAIP data was available for the study area. Table 1 a £
provides the technical specifications of remote sensing instruments g S
associated to each dataset, overpass time in study area, and date range = 8 ;
of selected images. a & <
(i) MODIS (250 m?): The Terra MODIS Vegetation Indices version 6 is a s i ]
. . = o — O ©
post-processed data product developed by the U.S. National Aeronautics g S ¥ Mm -
and Space Administration. A dataset of NDVI estimates with global o = 2| 2 = g
coverage is generated every 16 days at 250 m? spatial resolution using an g
algorithm that chooses the best available pixel value from all the £ N
acquisitions from the 16-day window, selecting low cloud cover and the = =
highest NDVI value [51]. This dataset is readily available for download or 2 z
use in web-based GIS platforms and it is widely used in environmental = L
health studies. § g
(i) Landsat 8 (30 m?): Surface reflectance data from the Operational Land = =
Imager instrument on the Landsat 8 satellite is available every 16 days at ¢ ﬁ
30 m? resolution with global coverage. We selected images for the study ‘a s
area with cloud cover less than 10%. IS 3
(iii) Sentinel-2 (10 m?): The Multispectral Instrument on board of the 3 S -
Sentinel-2 satellite collects multispectral images at 10 m? resolution with Ic] = Sl 3 = £
global coverage every 5 days. To minimize the influence of atmospheric 3
disturbances, the inclusion of images was restricted to those with cloud S §
cover less than 10%. s £
(iv) NAIP - National Agricultural Imagery Program (1 m?): Multispectral :Es. = &8 @ =) & g
aerial imagery acquired during the agricultural growing season in the e T:- ?' ?' Q C|>' a
continental United States. NAIP data are collected, managed, and validated = 5l &= 2 ) & §'
by the U.S. Department of Agriculture [52] and it is used as the base for the S 2 o S o © o
development of high-resolution land cover maps in several states of the U.S. K} £
Reflectance measurements at 1 m? resolution for each state are available g 3B 2Bl B <
every 3-5 years [53]. All images from the 2016 campaign in the study area : Cli S < CIS 3
were included, yielding minor overlap of images and complete spatial £ T3I gl E 2
coverage of the study area. -] £ o S o o =
MODIS, Landsat 8, Sentinel 2, and NAIP data were retrieved and z
processed in Google Earth Engine, a cloud-based computer platform that E L U U o <
leverages publicly available remote sensing data repositories and Google’s K=} BE|ElE s
computational capabilities to perform large scale spatial analysis that 8 g~ % % % %
typically challenge computational infrastructure due to processing = < v unwn ]
requirements [54]. First, NDVI for each Landsat 8, Sentinel-2, and NAIP 9
scene was calculated from reflectance measurements in the red (R) and g &
near infrared (NIR) bands using the following equation: (NIR — R)/(NIR + R). e €
Large water bodies and cloudy pixels were masked from NDVI calculations 4 &
to reduce misclassification of non-vegetated pixels. Then, we created a 9 © 32
greenest pixel composite (i.e., selecting the highest pixel value observed 5 =) %
during the study period) for each NDVI dataset, integrating all available 1S -g a
imagery into a single raster file with continuous coverage for the § S g
study area. e I = =
o g D £
£ S o §p O b
Greenness exposure assessment = Q § 9 £ g
Greenness exposure was assigned using Euclidean buffers of 50 m, 250 m, « < g El 5 S
500 m, and 1000 m radii centered at participant’s geocoded residential % ~§ £ o5 58 % T
addresses, following exposure assessment methods traditionally used in IS g = Eu ° %’ z"°
the greenness-health literature [14, 25, 28, 41-43]. Residential greenness g . ] = &L ¢ ®
was estimated as the pixel area-weighted average NDVI for each buffer 5 § § 5 g B €3
size. Negative NDVI values were included in calculations, as setting e g (U IS = g g o £
negative NDVI values to zero prior aggregation in buffers would bias = = S % g 3 o ‘;—[
exposure distributions by truncating its left tail, thus artificially reducing its E £ 3=so0=& ?g%
variance. Nevertheless, we calculated greenness exposure estimates from ‘S S c
the four NDVI datasets setting negative NDVI pixels to zero, to evaluate the :-J. s § %
sensitivity of our findings to this methodological decision. = E5 g vy
2 5%
Statistical analysis g B 5 E
Using a reliability assessment framework, we evaluated continuous and =g N < ;
categorical (two, three, four, and five quantiles) estimates of NDVI, - 2 T B n 238
matching how greenness exposure is operationalized in environmental K g o £ 34 2
. . . e L . . = = c c O © >
epidemiology studies. Reliability is defined as the extent to which = g £ 85 s z0
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Fig.2 Comparison of spatial resolution of NDVI from NAIP, Sentinel-2, Landsat 8, and MODIS. The figure shows NDVI from the four data
products next to a true-color image of the Boston Common and Public Garden in Massachusetts during the summer season of 2016.

greenness exposure estimates for the study population can be replicated
using NDVI data at different spatial resolution. We considered each NDVI
sensor as a rater, thus, the inter-rater reliability assessment measures how
alike are exposure estimates from different sensors for the same set of
subjects. Agreement and consistency in continuous NDVI exposure
estimates were evaluated using Intra-Class Correlation Coefficients (ICC).
The ICC provides a measure of the magnitude of the relationship between
multiple assessments of the same variable across raters, while taking into
account rater bias [55]. ICC ranges between 0 and 1, where greater values
indicate higher reliability. We use mixed models to derive the ICC [56],
incorporating subjects’ variability using a random effect, and between-
rater variability using a fixed effect for raters. Following the model
definitions by McGraw and Wong [57], we used two-way mixed models to
estimate ICC for consistency (ICC(C,1)) and absolute agreement (ICC(A,1)).

Reliability in categorical estimates was assessed in terms of agreement
in participants’ exposure quantiles across combinations of buffer size and
number of classes in categorical variables. Light's kappa (k), a multi rater
generalization of Cohen’s k [58, 59], was used to assess agreement in
exposure quantiles derived from all NDVI datasets. Cohen’s k was used to
evaluate pairwise agreement in categorical estimates from Sentinel-2,
Landsat 8, and MODIS data using NAIP data as reference, under the
assumption that the most granular data is less prone to be affected by the
mixed pixel problem and therefore provides the best representation of
ground vegetation. Values of k are interpreted as follows: 0-0.20 indicates
no agreement, 0.21-0.39 minimal, 0.40-0.59 weak, 0.60-0.79 moderate,
0.80-0.90 strong, and >0.9 indicates almost perfect agreement [58]. Finally,
using NAIP data as reference, we evaluated the magnitude of misclassifica-
tion by quantifying the proportion of the study population that shifts
greenness quantiles across buffer size.

We replicated statistical analyses using exposure estimates from the four
datasets where pixels with negative NDVI values were set to zero prior
aggregation in buffers, in order to evaluate the sensitivity of our results to
the decision of keeping negative values in our calculations. Sensitivity
analyses are presented in Supplementary Information (SI).

RESULTS

Continuous greenness exposure estimates

Figure 2 presents the final NDVI datasets in relation to a true color
image in the study area, emphasizing the differences in spatial
resolution of the data.

Figure 3 presents the distributions of greenness exposure
estimates derived from the four NDVI datasets by buffer size. A
comparison of the exposure distributions excluding and including
negative NDVI values in calculations is provided in Supplementary
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Fig. 1. Summary statistics are presented in Table 2. Greenness
exposure estimates were greater for coarser resolution data and
decreased with higher spatial resolution of NDVI. Exposure
distributions followed similar trends within and across buffer
sizes, where estimates from NAIP were consistently lower than
Sentinel-2, Landsat 8, and MODIS data, respectively. In general,
narrower ranges and higher mean and median values were
observed at coarser pixels and larger buffers. For all buffer sizes,
the mean and median of NAIP estimates were negative, while for
Sentinel-2, Landsat 8 and MODIS, were greater than zero.

Table 3 shows ICC coefficients of agreement and consistency for
continuous NDVI exposure variables by buffer size. Overall,
agreement in continuous exposure estimates was poor, with
small, statistically significant coefficients and wide confidence
intervals across buffer sizes. Consistency ranged from good to
excellent, indicating that exposure estimates from the four NDVI
data products yield similar distributions of exposure estimates in
terms of participant’s ranked order. Agreement and consistency
increased with buffer size, indicating that exposure estimates are
more alike in larger aggregation areas. Agreement and consis-
tency between estimates where negative NDVI pixels were set to
zero followed similar trends; however, agreement was higher and
consistency was lower compared to estimates where negative
NDVI values were included (Supplementary Fig. 2).

Categorical greenness exposure estimates

Figure 4 shows Light's k for combinations of greenness exposure
quantiles and buffer sizes. The results show agreement increases
with buffer size and less number of quantiles, and that differences
in agreement between categorical variables decrease with
buffer size. The lowest level of agreement was k=0.39 (five
quantiles, 50 m buffer), while the highest was k=0.88 (two
quantiles, 1000 m buffer). Agreement in categorical greenness
estimates where negative NDVI values were set to zero followed
similar trends (Supplementary Fig. 3).

Greenness exposure misclassification

Figure 5 shows agreement between NDVI exposure estimates
from Sentinel-2, Landsat 8, and MODIS compared to NAIP across
buffer size and NDVI quantiles. The highest levels of agreement
were observed for Sentinel-2, followed by Landsat 8, and MODIS,
suggesting that differences in exposure estimates relative to the
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Fig. 3 Greenness exposure distributions for the study population (n = 31,328) across different buffer sizes. Panels show the distributions
of continuous greenness exposure estimates derived from NAIP, Sentinel-2, Landsat 8, and MODIS in residential buffers of 50 m, 250 m, 500 m,

and 1000 m radii.

Table 2. Summary statistics of greenness exposure distributions.
Buffer size NDVI data Min Max Median
50m NAIP —0.47 0.46 —0.05
Sentinel-2 —0.05 0.79 0.27
Landsat 8 —0.42 0.89 0.42
MODIS 0.06 0.89 0.43
250 m NAIP —0.37 0.46 —0.02
Sentinel-2 —0.03 0.77 0.29
Landsat 8 0.08 0.87 0.44
MODIS 0.10 0.89 0.43
500 m NAIP —0.35 0.46 —0.02
Sentinel-2 0.01 0.76 0.29
Landsat 8 0.08 0.87 0.43
MODIS 0.1 0.88 0.44
1000 m NAIP —0.28 0.43 —0.01
Sentinel-2 0.03 0.75 0.31
Landsat 8 0.11 0.86 0.45
MODIS 0.14 0.86 0.44

high resolution NAIP data decrease with reduced differences in
spatial resolution of NDVI data. The greatest discrepancies were
observed at 50 m buffers, with differences in k decreasing with
greater buffer size, especially between Landsat 8 and Sentinel-2.
Exposure estimates from MODIS data present the lowest
agreement in relation to NAIP estimates for 50 m buffers, with
K values ranging from minimal (k = 0.28, five quantiles) to weak
(k =0.48, two quantiles).

The plot series in Fig. 6 shows the proportion of participants
assigned to a different greenness quantile using Sentinel-2,
MODIS, and Landsat 8 NDVI compared to NAIP NDVI across buffer
sizes and number of quantiles in categorical variables. The
proportion of the study population who changed at least one
position in their greenness category ranged between 11% and

Journal of Exposure Science & Environmental Epidemiology

Mean SD Variance Skewness Kurtosis
—0.04 0.12 0.015 0.30 3.27
0.28 0.13 0.017 0.42 3.14
0.43 0.14 0.019 0.26 3.05
0.45 0.13 0.016 0.60 3.24
—0.02 0.12 0.014 0.45 3.41
0.30 0.12 0.015 0.67 3.47
0.45 0.13 0.015 0.58 3.32
0.45 0.12 0.014 0.64 3.27
—0.01 0.12 0.014 0.41 3.17
0.31 0.12 0.015 0.62 3.24
0.45 0.13 0.016 0.56 3.16
0.45 0.12 0.014 0.61 3.19
0.00 0.12 0.015 0.24 2.73
0.31 0.13 0.017 0.37 2.78
0.45 0.14 0.017 0.31 2.74
0.46 0.12 0.015 0.42 2.89

60% for MODIS, between 6% and 44% for Landsat 8, and between
5% and 33% for Sentinel-2 for the combinations of 50 m buffer
and five quantiles, and 1000m buffer and two quantiles,
respectively. The proportion of participants who changed green-
ness quantiles and the magnitude of change (i.e.,, the number of
positions of the shift) increased with greater number of quantiles
in categorical variables and smaller buffer size. Larger differences
in spatial resolution of data led to greater movement in greenness
categories for any given buffer size and quantiles. For example,
when variables structured using quintiles are applied to 50 m
buffers (top right plot in Fig. 6), 60%, 44%, and 33% of participants
changed at least one position; 22%, 7%, and 2% change at least
two positions; 6%, 0.7%, and 0.07% change at least three positions
in the categorical distribution of MODIS, Landsat 8, and Sentinel-2,
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respectively. In that same combination of 50 m buffer and
quintiles, changes of four positions in the exposure categories
relative to NAIP data were observed for Landsat 8 (0.04%) and
MODIS (0.8%), but not in Sentinel-2. While misclassification for
exposure quantiles where negative NDVI were set to zero was
higher, the results followed similar trends across buffer size and
number of exposure quantiles (Supplementary Fig. 4).

DISCUSSION

In this study, we quantified greenness exposure for a large urban
cohort of children using NDVI data at varying spatial resolutions
following exposure assessment methods used in epidemiological
analysis, and compare them across multiple buffer sizes and
quantile classifications to illustrate how the spatial scale of data
might lead to greenness exposure misclassification. The use of
coarser NDVI data led to substantial differences in categorical
greenness exposure, and the severity of exposure misclassification
depended on the spatial scale of analysis in relation to the
quantile classification. The proportion of individuals who shifted
exposure categories increased with coarser data, greater number
of quantiles, and smaller buffers. These results indicate that
exposure misclassification related to differences in NDVI spatial
resolution is sensitive to buffer size and number of classes in
categorical variables, adding to a limited body of literature
analyzing the impact of NDVI data resolution and aggregation

Table 3. Intra-class correlation coefficients (ICC) for continuous NDVI
exposure variables.

Absolute agreement Consistency

Buffer ICC (A,1)? 95% ClI ICC(C,1)*  95% CI
size (m)

50 0.181° 0.025-0.356  0.799° 0.796-0.802
250 0.206° 0.029-0.401 0.942° 0.941-0.942
500 0.214° 0.031-0414  0.964° 0.964-0.965
1000 0.235° 0.035-0.443 0.978° 0.977-0.978

ICC < 0.5 poor, 0.5-0.75 fair, 0.75-0.9 good, >0.9 excellent. Criteria from Koo
and Li (2016).

®Model specifications by McGraw and Wong (1996) [57].

PSignificant at p < 0.001.

“Significant at p <0.01.
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area in the context of environmental health studies. Our results
are in line with previous studies which have, to varying extents,
found that spatial resolution influences the magnitude or
statistical significance of observed greenness-health associations
[45-471.

The decision on which scale and resolution of NDVI to use when
analyzing associations between greenness and health is not
straightforward. First, researchers should identify the ecosystems
services at play for the hypothesized exposure pathways in relation
to the outcome of interest, in order to define the relevant area of
exposure. For example, if greenness is thought to influence mental
health through direct views of greenery from windows [60], or
acting as a psychological or physical buffer from ambient noise at
night [7, 8], then small buffers should be used to represent
residential exposure. If greenness is thought to influence mental
health through increased physical activity [61], then larger buffers
should be used to account for neighborhood-level exposure, as the
assumption would be that greener neighborhoods are more inviting
to perform physical activity. Once the aggregation area or buffer size
is defined, the decision on spatial resolution of NDVI data should be
driven primarily by the characteristics and spatial structure of
vegetated spaces in the area of interest in relation to the relevant
exposure pathways. In urban areas, a large share of greenness
exposure comes from vegetation in backyards, pocket parks, large
planters on sidewalks, and street trees. Given the small extent of
vegetated features in urban settings, high resolution NDVI should be
used to estimate exposure, as coarser resolution data might not be
able to adequately characterize the distribution of greenness. This is
particularly relevant for smaller buffers, as using MODIS or even
Landsat 8 NDVI in a 50m buffer might substantially increase
exposure misclassification. However, coarser NDVI can be used for
larger aggregation areas (buffers of 500 m, 100 m) if high-resolution
data is not available, as the differences in the magnitude of
misclassification between NDVI at coarser resolution is attenuated at
larger buffers. In general, researchers should avoid using buffers that
are smaller than pixels of the greenness data.

It is worth to note, however, that exposure pathways are
complex, intertwined, and often unknown for various health
outcomes, and that exposure areas will likely capture multiple
pathways that might occur simultaneously. Furthermore, the
decisions on aggregation area and spatial resolution of data have
practical implications for statistical inference in epidemiological
analyses. For example, it has been shown that the variance of
greenness estimates declines with larger aggregation areas
[48, 62, 63], which can negatively affect the ability of

e
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@® Median
@ Tertiles
Quartiles
Quintiles
500 1000

Fig. 4 Agreement between greenness exposure quantiles from NAIP, Sentinel-2, Landsat 8, and MODIS. The plot shows values of Light's
k for multi rater agreement in categorical greenness exposure estimates across buffer sizes and number of quantile cutoffs.
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Fig. 5 Agreement in greenness exposure quantiles from Sentinel 2, Landsat 8 and MODIS relative to NAIP NDVI. Panels show values of
Cohen’s k for pairwise agreement in categorical exposure estimates across buffer sizes and greenness quantiles.

epidemiological models to detect statistical associations between
greenness and health. Furthermore, several studies have illu-
strated the impacts of the Modifiable Areal Unit Problem when
working with remote sensing data on greenness estimates and
the observed associations between greenness and health
[26, 45, 46, 62]. These challenges add to the complexity of
selecting the appropriate scale for aggregation and resolution of
greenness data and highlight the need of evaluating the
sensitivity of analytical results towards methodological decisions
regarding the units of analyses in greenness exposure assessment.
The most common approach found in the epidemiological
literature is performing sensitivity analysis using exposure
estimates derived for multiple aggregation areas and data at
different spatial resolutions to assess changes in the observed
green space-health associations derived from statistical models
[45, 46, 64, 65]. Alternatively, researchers should consider
evaluating the sensitivity of buffer limits based on NDVI data
resolution to better understand the implications of data decisions
on exposure variance (see Labib et al. in [48]). Analyses where the
effect of zoning and spatial resolution decisions on the variability
of greenness exposure estimates are evaluated jointly can help
researchers identify the appropriate buffer size for a given
research question and analysis plan.

In addition to theoretical considerations, researchers should bear
in mind the tradeoffs between ease of access and use, temporal and
spatial availability, and accuracy of greenness data. High resolution
NAIP data provides a more accurate appraisal of greenness,
however, processing 1 m? data even for relatively small geographic
extents is computationally intensive and thus processing require-
ments might constitute a practical constraint for researchers.
Additionally, it is available only in the United States for the summer
season, precluding its use to assess seasonal exposure or other parts
of the world. Sentinel-2 and Landsat data are collected periodically,
have global coverage, and are available starting 2015 and 1972,
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respectively; however, both require some degree of preprocessing
to estimate NDVI. Precalculated MODIS NDVI data products have
global coverage, are easily accessible for download, and are
available since the year 2000, nevertheless, its coarse resolution
increases the potential for exposure misclassification. Future studies
should explicitly state the rationale for the selection of greenness
data, provide complete references for NDVI data, and detailed
methods used for NDVI data treatment in preparation to assess
exposure (e.g.: cloud masking, compositing, treatment of missing
and negative NDVI values) in order to improve comparability
between studies, evaluate generalizability of findings, and enable
replicability of methods.

The use of NDVI for greenness exposure assessment presents
multiple advantages for environmental health research, such as
broad spatial and temporal coverage across the globe, increasing
availability at higher temporal and spatial resolutions, numerous
NDVI data products being publicly accessible, and it being a
standardized, validated measure of greenness exposure [31, 66].
However, NDVI does not provide information on vegetation species,
green space structure, or green space use, and therefore is limited in
its ability to characterize the personal contact or experience of
greenness. Some studies have used other exposure metrics such as
additional spectral indices and spectral unmixing [67], composite
indices that incorporate multiple dimensions of natural spaces
[68, 69], or harmonize multiple green space metrics [48] to
acknowledge the multiple scales and pathways by which vegetation
impacts health. Studies have measured participants’ perceived
greenness exposure using surveys to characterize the subjective
experience of greenness, observing significant associations with
health outcomes and healthy behaviors and differences between
perceived and objectively measured greenness using NDVI [70-72].
Finally, there is a growing body of studies that used street-level
imagery to characterize ground vegetation and views of greenery in
public health studies [73]. In general, these studies apply machine-
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Fig. 6 Greenness exposure misclassification relative to NAIP NDVI across buffer size and exposure quantiles. This plot series shows the
proportion of participants that change positions in the categorical distribution of greenness exposure derived from Sentinel-2, Landsat 8, and
MODIS data in relation to NAIP data. Plots are organized by buffer size in rows and number of classes of categorical variables in columns. The
color legend indicates the magnitude of change in quantile positions relative to NAIP NDVI.

learning methods to street view images to classify eye-level features
of the built environment, including vegetation [33]. Interestingly,
studies have observed low correlations between exposure estimates
derived from NDVI and street view data [74-78]. Together, these
findings suggest that the different measures of greenness might
be capturing different attributes of the urban greenscape, and that
the use of multiple metrics is necessary to comprehensively assess
the relationship between urban greenness and health.

Our analyses are limited by our inability to control for factors
that influence spectral measurements from different sensors when
comparing NDVI exposure estimates, beyond differences in spatial
resolution of the data. There is a set of factors that influence the
reflectance measurements used to estimate NDVI, including
differences in the technical specifications of instruments related
to spectral resolution of bands, the platform in which sensors are
mounted (aircraft versus satellites), and variations in overpass
time, which might lead to differential influence of shadows from
trees and tall buildings by sensor. Additionally, there are
differences in data manipulation when calculating NDVI for the
study area and period: a greenest pixel approach was used to
composite overlapping images from satellites captured repeatedly
over the study period, compared to a mosaic approach used for
the aircraft data, where a single image captured on specific dates
within the study period is available for each segment of the study
area. However, selecting data for the same time window and
masking cloudy pixels from our calculations addressed these
limitations and renders the data comparable. Furthermore, we
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replicated methods for processing NDVI used to assess greenness
exposure in epidemiologic and environmental health studies,
framing our results in the context of current applications of NDVI
data. Finally, as greenness exposure estimates were not linked to a
health outcome, we were not able to appraise the effects of
exposure misclassification on the observed effect estimates or to
assess whether misclassification due to resolution and scale is
differential or non-differential. Nevertheless, we hypothesize that
exposure misclassification is non-differential, as nothing indicates
that the measurement error stemming from technical specifica-
tions of a sensor that determine spatial resolution of NDVI
data would be associated with a health outcome. Additional
research is needed in other populations, geographic settings, and
health studies to evaluate the generalizability of our results and
better understand the impact of NDVI data on greenness
misclassification.

CONCLUSION

Our results demonstrate the impact of NDVI spatial resolution,
aggregation area, and quantile classification on estimates of
greenness exposure in an urban cohort. We recommend using
fine spatial resolution NDVI data to estimate greenness exposure
in small aggregation areas in order to minimize exposure error,
especially in urban areas where land cover is highly hetero-
geneous at small scale. NDVI product selection and processing
decisions in future work should take into account hypothesized
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exposure pathways, physiological mechanisms, the spatial struc-
ture of vegetated areas driving the exposure in the area of study,
as well as operational constrains, such as data processing
demands.

DATA AVAILABILITY
Greenness data generated in this study are available from the corresponding author
upon reasonable request.
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