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ARTICLE INFO ABSTRACT

Keywords: Understanding relationships between urban structure patterns and air pollutants is key to sustainable urban
Air pollution planning. In this study, we employ a mobile monitoring method to collect PMs 5 and BC data in the city of
STURLA

Philadelphia, PA during the summer of 2019 and apply the Structure of Urban Landscapes (STURLA) method-
ology to examine relationships between urban structure and atmospheric pollution. We find that PMy 5 and BC
vary by STURLA class, and some classes exhibit significant difference in pollution concentrations. We also find
that the proportions in which STURLA components are present throughout the urban landscape can be used to
predict the spatial distribution of urban air pollution. Among frequently sampled STURLA classes, gpl (grass,
pavement, and low-rise buildings) hosted the highest PMz 5 concentrations on average (16.60 + 4.29 pg/ms),
while tgbwp (trees, grass, bare soil, water, pavement) hosted the highest BC concentrations (2.31 + 1.94 ug/m>).
Furthermore, STURLA combined with machine learning modeling was able to correlate PM; 5 (R?= 0.68, RMSE
2.82 pg/m®) and BC (R? = 0.64, RMSE 0.75 pg/m®) concentrations with urban landscape composition and
interpolate concentrations throughout the city. These results demonstrate the efficacy of the STURLA method-

Urban structure
Mobile monitoring
Spatial prediction

ology in modeling relationships between air pollution and urban structure patterns.

1. Introduction

Population growth in urban areas is increasing rapidly; the United
Nations projects that 68% of the world’s population will live in urban
areas by 2050 (United Nations, Department of Economic and Social
Affairs, Population Division 2019). As urban areas expand, a larger
proportion of the global population will be exposed to increasingly high
and potentially harmful levels of air pollution; identifying and mapping
where these pollutants are is key to developing sustainable cities. At
present, approximately 3.7 million premature deaths worldwide can be
attributed to elevated air pollutant concentrations each year (Cohen
et al., 2017). Air pollutants disproportionately impact vulnerable pop-
ulations based on race, (Gray et al., 2013; Perlin, Sexton, & Wong, 1999;
Perlin, Wong, & Sexton, 2001, gender and sexual orientation (Collins
etal., 2017a, 2017b) and socioeconomic status (Gray et al., 2013; Perlin
et al., 1999; Zhou et al., 2011). It is crucial that we understand how air
pollutants interact with complex urban structures to identify how cities
can be designed with a human health focus.

Particulate matter (PM) has been linked to negative health outcomes,
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including asthma (Anenberg et al., 2018; Halonen et al., 2008; Rabi-
novitch et al., 2006) lung cancer (Hamra et al., 2014; Pope et al., 2002),
DNA alteration Baccarelli et al., 2009; Sgrensen et al., 2003; Shi et al.,
2019), and disrupted lung (Shakya et al., 2016) and immune functions
(Honda et al., 2017; Zelikoff et al., 2003). Polluted airs also host
potentially pathogenic bacteria for humans (Liu et al., 2018; Stewart
et al., 2020) and viruses ( Zhu et al., 2020) that could potentially alter
the human lung microbiome (Stewart & Kremer, 2021; Willis et al.,
2020). Fine particulate matter (PMy s) is of particular concern due to its
prevalence in urban atmospheres. A subset of PM5 s, black carbon (BC) is
formed through incomplete combustion of fossil fuels and is particularly
prevalent in urban areas. Almost all of BC originates from anthropogenic
sources, with biomass fires being the only natural source of BC (Hit-
zenberger & Tohno, 2001); as such, BC is commonly used as an indicator
of anthropogenic influence on ambient air pollution (Cyrys et al., 2003;
Targino et al., 2016).

Studies of urban air pollution have established relationships between
urban structure and ambient air pollution (Eeftens et al., 2012; Wu, Xie,
Li, & Li, 2015; Yuan et al., 2019). For example, in Philadelphia PM
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concentration variation across neighborhoods was attributed to differ-
ences in open space and land structure (Shakya et al., 2019). The or-
ganization and height of buildings, barriers and other structures in an
urban environment can influence air flow, which in turn impacts PM
dispersal locally (Baldauf et al., 2016; Gallagher et al., 2015; Ng &
Chau, 2012; Stewart, Kremer, Shakya, Conway, & Saad, 2021; Yang
et al., 2020. Though many urban areas are characterized by dense built
environments, different types of urban green space (e.g. urban forest,
parks, gardens, and private yards) are an integral part of the urban
landscape. Cities are increasingly adopting strategies such as urban
greening to counteract environmental degradation and enhance human
wellbeing; however, the efficacy of these strategies remains unclear
(Nemitz et al., 2020). Vegetation such as trees and grasses have been
shown to reduce air pollution by facilitating pollutant deposition and
uptake of particulate matter, butthey are also capable of causing an
increase in local pollutant concentrations through biogenic emissions
that facilitate secondary aerosol formation and the inhibition of air flow
(Brantley et al., 2014; Chen et al., 2016; Eisenman et al., 2019; Xing &
Brimblecombe, 2019).

It is clear that the individual components of urban environments,
such as presence of greenspace, influences air pollution distributions.
However, the complexity of urban topologies makes it difficult to un-
derstand how these individual components interact to influence air
pollution at more localized scales. In urban environments, urban struc-
tures often change drastically over short distances (Cadenasso et al.,
2007). While cities may contain common environmental features, dif-
ferences in their organization have varied impacts on air quality, further
complicating efforts to generalize the impact that urban environments
have on air pollution. Thus, defining a geographically meaningful units
that can be utilized in reproducible and scalable analyses is paramount
to effective urban planning and development.

The Structure of Urban Landscape (STURLA) composite classification
allows for modeling of diverse urban processes using the three-
dimensional shape of cities at fine spatial scales. STURLA does so by
using land cover and building height data to identify common compo-
sitions of urban environments that are meaningful for scientists and
urban planners (Hamstead et al., 2016). STURLA studies have linked
urban landscape structure and land surface temperature (Hamstead
et al., 2016; Kremer et al., 2018; Larondelle et al., 2014; Mitz et al.,
2020), as well as the phylogenetic diversity of the atmospheric micro-
biome (Stewart et al., 2021). STURLA allows for classifications of urban
structure, that have the potential to reshape our understanding of how
the composition and spatial organization of urban environments influ-
ence environmental parameters. There have also been efforts to improve
the accuracy of urban air pollution measurement, as variability in urban
landscape composition can influence pollutant dispersal and affect
concentrations at small scales (Abhijith & Gokhale, 2015; Gallagher
et al., 2015; Hagler et al., 2012). In recent years, mobile monitoring has
emerged as a novel method with which to study the spatiotemporal
distribution of air pollutants in urban environments (Apte et al., 2017;
deSouza et al., 2020; Deville Cavellin et al., 2016; Shakya et al., 2019;
Sm et al., 2019; Targino et al., 2016; Van Poppel et al., 2013), as it can
collect data at finer spatial scales than is feasible with stationary
monitoring (Shakya et al., 2019; Van den Bossche et al., 2015) and does
not rely on interpolation to characterize pollutants throughout a city.

In this study, we use data collected through mobile monitoring to
measure concentrations of particulate matter smaller than 2.5 pm
(PM3 5) and black carbon (BC) throughout the city of Philadelphia over
the course of 12 days during the summer of 2019 (Cummings et al.,
2021). We use STURLA (Hamstead et al., 2016) in conjunction with this
collected air pollution data to analyze the urban structure-air pollution
relationship across the city of Philadelphia. We then use STURLA to
predict air pollution patterns and identify drivers of heterogeneity in
pollutant concentrations.
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2. Methods
2.1. Site description

Philadelphia, Pennsylvania is the sixth-most populous city in the
United States of America and the largest city in the state of Pennsylva-
nia, with an estimated population of 1.58 million residents in 2018.
Philadelphia is a northeastern U.S. city defined by a dense urban core
surrounded by predominantly low-rise residential and commercial dis-
tricts, city parks, and industrial sectors. Two major rivers flow through
the city: the Delaware River, which flows southward into the Delaware
Bay and Atlantic Ocean, and the Schuylkill River, which flows south-
ward through the western neighborhoods of Philadelphia. The southern
and eastern parts of the city house heavy industry along both riverbanks,
while large park areas are found in the western and northern areas of the
city. For planning purposes, Philadelphia is divided into 18 different
planning districts (Fig. 1, Table Al).

2.2. Philadelphia STURLA

The STURLA profile for Philadelphia was made by joining land cover
raster data and building height data from 2017 as in Stewart et al., 2021
(Fig. 1). A fishnet with 120m? pixels was overlaid on the joined land
cover / building height raster. STURLA classifications for each cell were
determined based on the presence of each urban structure component
identified; each letter in the STURLA code represents a different
component of the urban environment. Each color within a given pixel
color within a STURLA cell indicates a specific combination of different
urban structure components: trees (t), grass (g), bare soil (b), water (w),
pavement (p), low-rise buildings (1 — 3 stories) (1), mid-rise buildings (4
-9 stories) (m), and/or high-rise buildings (9+ stories) (h). Philadelphia
contains 86 STURLA classes, although most of the city can be charac-
terized by just a few classes; tgpl is by far the most common class,
describing about 51.7% of Philadelphia. Other common classes include
tgplm, tgp, tgbpl, tgwp, and w (Fig. 1). Letters in the STURLA class code
denote the presence of specific features of the urban landscape (Fig. 2).

2.3. Sampling description

PM, 5 and BC data were collected using a mobile monitoring method.
A van, equipped with instrumentation measuring geolocation data
(Trimble Juno 3B with Trimble R1 GNSS receivers), PM, 5 concentra-
tions (Grimm Portable Laser Aerosol Spectrometer, Model 11-C), and BC
concentrations (MicroAeth MA200) was driven along two pre-
determined routes in Philadelphia. Sampling equipment was set up and
calibrated as described in Cummings et al. (2021). Data was captured at
different temporal resolutions; GPS data was recorded at every one
second interval, BC data was recorded at every five second interval, and
PM data was recorded at every six second interval (Table A2).

Driving routes were determined using a stratified random sample of
STURLA cells in order to ensure that a representative sample of Phila-
delphia’s STURLA class distribution was captured during the sampling
period. Specific points of interest such as United States Environmental
Protection Agency (U.S. EPA) Toxics Release Inventory (TRI) sites, EPA
air pollution monitoring station sites (Fig. A1), the Philadelphia Water
Department’s green infrastructure sites, and census tracts with high
rates of asthma were also considered in route development. An opti-
mized ~483 km (300 mile) driving route that took STURLA class dis-
tribution and points of interest into account was generated using
Network Analyst in ArcGIS 10.7.1. This optimized route was divided
into two ~241.5 km (150 mile) segments in order to make the routes
drivable within a day. Occasional road closures in Philadelphia created
slight variability in the routes traveled from day to day.

Sampling occurred over a period of 12 days between June 27 and
July 29, 2019; each route was sampled six times. Weather conditions
during the sampling days were similar (Weather Underground, 2019;
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Fig. 1. Map of STURLA classes in Philadelphia, Pennsylvania (left). Classes symbolized include the 14 most sampled classes, which make up 85.5% of Philadelphia; w
is also included for representation of major waterways. The “other” class consists of the other 72 classes found throughout Philadelphia which, with water, char-
acterize the remaining 14.5% of the city. Also included are Philadelphia’s planning zones (top-right) and a ranked abundance plot (bottom-right) showing relative
frequencies of the 14 most abundant STURLA classes throughout Philadelphia. We encourage the reader to download the figure to zoom into specific small text and

data they are interested in viewing.

Table A3), with winds throughout the sampling period ranging from 0 —
18 mph (Table A4). Sampling began between 6 — 7 AM on one of the two
routes and continued until the entirety of the route was traveled. The
daily average vehicle speed ranged from 23.3 — 29.9 km/hr.

2.4. Data analysis

Air pollution and geolocation data were joined by time. For each day
of data collection, air pollution data was spatially joined to Phila-
delphia’s STURLA profile in ArcGIS Pro 2.4; each pixel was assigned the
value of the average concentration of all points that fell within it. All
cells that contained at least one point were selected and summarized to
obtain the average concentration for each STURLA class. The mean
concentrations for each class on each day were averaged to determine an
average daily mean concentration for each STURLA class for which at
least 20 unique cells were sampled; classes that were sampled in fewer
than 20 unique cells were summarized into an “other” class for which
daily averages were calculated. Permutational t-tests (number of per-
mutations = 10,000) from the “RVAidememoire” package in R were
used to determine if differences in the daily mean air pollutant con-
centrations of STURLA classes were significant, as they take varying
sample sizes into account (Hervé, 2020). For each class sampled, the
composition of an average cell was determined by finding the mean
percentage of all urban structure components for each cell sampled
belonging to a specific class. Differences in average STURLA class
composition were evaluated using hierarchical clustering based on
Bray-Curtis dissimilarities between classes. The clustering dendrogram
(Fig. 3) demonstrates compositional similarities between classes; classes
with fewer branches separating them are more similar to each other than
those with more branches separating them. Likewise, we use hierar-
chical clustering to demonstrate similarities between daily concentra-
tions in order to better visualize differences in pollutant concentrations

by class.

A supervised machine learning model, Random Forest Regression,
was used to investigate the possible distribution of PM; 5 and BC in areas
not sampled based on measured concentrations and the STURLA land-
scape components in sampled areas. This method uses an ensemble of
weak models that draw a random sample from the original dataset and
splits them into a forest of decision trees, which helps to account for
spatial autocorrelation and non-linear relationships more effectively
than linear models (Oliveira et al., 2012). Using the “caret” package
(Kuhn, 2008) in R (3.3.6) (IThaka & Gentleman, 1996) data were split
into 60% training and 40% validation sets that underwent 10-fold
cross-validation. The model was trained using the average within-class
STURLA urban structure percentages for each class and the mean
pollutant concentration measured in that class (e.g. class tgpl is the su-
pervised label attached to the mean landscape percentages for tgpl across
Philadelphia). Root Mean Standard Error (RMSE) was used to assess
model error and the model parameters were automatically tuned in caret
(nTree=500, mtry selected based on best model fit of best mtry value
that can be found in provided code for each model). We define valida-
tion error as the ratio of predicted to measured concentrations and
project it across the city to areas that were not sampled by applying the
error for the measured classes to all unmeasured classes. For this the
mean air pollutant value per STURLA class was used to estimate the
actual concentration. Variable importance is measured as the percent
increase in RMSE by removing a variable from the model where once
completed for each variable is ranked. Reported correlation coefficients
and model error is reported using cross-validated values. Model pre-
dictions and results were joined by STURLA class and visualized using
ArcMap 10.7.1.
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Fig. 2. Examples of pixels of common STURLA classes symbolized on a land cover/building height data raster. Each color within a STURLA cell indicates the
presence of a different urban structure component: trees (t), grass (g), bare soil (b), water (w), pavement (p), low-rise buildings (1 — 3 stories) (), mid-rise buildings (4

— 9 stories) (m), and high-rise buildings (9+ stories) (h).
3. Results

3.1. Variation in landscape structure with PMy 5 and BC concentrations
among STURLA classes

Differences in both landscape composition and the measured
pollutant concentrations they host are evident among the most sampled
STURLA classes (Fig. 3). Although a slightly different subset of cells was
sampled for PM; 5 and BC due to differences in temporal resolutions of
sampling equipment (5 s for BC compared to 6 s for PMy 5), differences in
average STURLA class composition are minimal and did not influence
clustering between classes. Daily means for PMys among STURLA
classes range from 11.47 ; 1.89 pg/m® (tgbplm) to 16.60 ; 4.29 ug/m?
pg/m> (gpl), while daily means for BC range from 1.25 ;. 0.71 ug/m®
(tgbplm) to 2.31 . 1.94 pg/m> (tgbwp) (Fig. 3). Permutational t-tests
reveal that some of the differences in pollutant concentrations between
STURLA classes are statistically significant (p < 0.05) (Fig. 4). Class gpl
demonstrated the most unique PM; 5 signature, with daily mean PMy 5
concentrations differing significantly from six classes: tgp, tgplm, tgwp,
tgpm, tgbplm, and tgplmh. Class tgbplm presented the most distinct BC
signature with the daily average BC concentration being significantly
different from four other classes sampled: tgplmh, gpl, tgbwp, and gp.

However, other STURLA classes did not have pollutant concentrations
that were significantly different from other classes. More significant
differences between classes were found with PM; 5 concentrations (17)
than with BC concentrations (9) (Fig. 4).

3.2. Spatial modeling of PM2 5 and BC

PM 5 predictions by planning district ranged from 12.62 pg/m> —
13.74 ug/m>; the highest predicted PMy 5 concentrations are in the
Upper Far Northeast and Lower Far Northeast planning districts, while
the lowest predicted concentrations were found in the Central planning
district (Table 1). 17 of 18 planning districts underpredicted measured
PM; 5 concentrations (Predicted PMy5 / Measured PMy 5 ratio < 1),
which ranged from 12.74 pg/m® - 14.11 pg/m® (Table 1). PMys
modeling was the most accurate in the Lower South district, with a
difference of 0.02 pg/m> between predicted and measured concentra-
tions, but least accurate in the South district, with a 0.38 pg/m® differ-
ence between predicted and measured concentrations. Conversely, the
model overpredicted BC concentrations in all 18 planning districts, and
generally overpredicted BC concentrations by STURLA class (Table 1).
Predicted BC concentrations ranged from 1.54 pg/m® — 1.78 pg/m°,
while measured BC concentrations ranged from 1.49 pg/m°® — 1.66 pg/
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Fig. 3. Composition of the average cell sampled for each class (left), sample sizes, and daily/overall means and standard deviations of measured PM, s (middle) and
BC (right) concentrations. Overall means are represented in the top heatmaps, while standard deviations are represented in the bottom heatmaps; darker colors (blue,
purple) represent lower concentrations and lighter colors (yellow) represent higher concentrations. Dendrograms reflect similarities in pollutant concentrations
between days (top) and STURLA class composition (left). We encourage the reader to download the figure to zoom into specific small text and data they are interested

in viewing. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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Fig. 4. Results of pairwise permutational t-tests between STURLA classes comparing average daily pollutant concentrations for BC (left) and PM, s (right). Black cells
indicate significant differences in pollutant concentrations between classes. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article).

m®. BC predictions are highest in the Lower South district and lowest in
the Central district. BC modeling was most effective in the Central,
Lower Far Northeast, North, North Delaware, River Wards, and

University Southwest planning districts, all of which have 0.05 pg/m?
between predicted and measured values; in the Lower South district, the
difference between predicted and measured BC concentrations is at its
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Table 1

Summary of measured pollutant concentrations, predicted pollutant concentrations, differences between predicted and measured, and validation error by Philadelphia
planning district.

Planning District Mean Predicted Mean Measured P-M Validation Mean Predicted Mean Measured P-M Validation
PM, s PM, 5 (PMa.5) Error BC BC (BC) Error
Central 12.62 12.74 —0.12 0.994 1.54 1.49 0.05 1.040
Central Northeast 13.60 13.88 —0.28 0.981 1.65 1.57 0.08 1.062
Lower Far 13.74 14.11 —0.37 0.975 1.68 1.63 0.05 1.046
Northeast
Lower North 13.40 13.55 —0.15 0.991 1.62 1.56 0.06 1.040
Lower Northeast 13.71 14.03 —0.32 0.978 1.65 1.59 0.06 1.040
Lower Northwest 13.59 13.83 —0.24 0.984 1.64 1.55 0.09 1.078
Lower South 12.83 12.85 0.02 1.036 1.78 1.66 0.12 1.134
Lower Southwest 13.59 13.84 —0.25 0.988 1.72 1.65 0.07 1.069
North 13.54 13.75 —0.21 0.986 1.64 1.59 0.05 1.036
North Delaware 13.73 14.01 —0.28 0.983 1.70 1.65 0.05 1.038
River Wards 13.63 13.85 —0.22 0.988 1.71 1.66 0.05 1.052
South 13.56 13.94 —0.38 0.975 1.68 1.62 0.06 1.043
University 13.20 13.38 -0.18 0.989 1.61 1.56 0.05 1.037
Southwest
Upper Far 13.74 14.09 —0.35 0.976 1.66 1.60 0.06 1.047
Northeast
Upper North 13.62 13.95 —0.33 0.976 1.65 1.58 0.07 1.044
Upper Northwest 13.55 13.85 —0.30 0.979 1.64 1.57 0.07 1.049
West 13.58 13.88 —0.30 0.979 1.64 1.57 0.07 1.040
West Park 13.53 13.60 —0.07 0.997 1.67 1.59 0.08 1.057

highest (0.12 ug/m®).

The importance of each landscape element per STURLA class was
used to identify drivers in pollution heterogeneity. Pavement was the
most important variable in modeling PM s, followed by high-rise, grass,
trees, mid-rise, water, and low-rise (Fig. A2). In modeling BC, low-rise
was the most important variable, followed by pavement, trees, grass,
mid-rise, high-rise, and water (Fig. A2). In both models, bare soil did not
contribute to predictions of pollutant concentrations. Predictions varied

by STURLA class (Fig. 5A, B). Philadelphia’s most frequent class, tgpl,
has a mean prediction of 13.71 pug/m? modeling overpredicted the
average measured concentration of the class by 1.64 yg/m°. STURLA
classes gbp, tgp, and gpl are among the classes with the highest predicted
concentrations, while pm, tgwpl, gwp had the lowest (Supplemental
Table 1). Variation in PM; 5 concentrations across the city were largely
explained by differences in sampled STURLA classes (R? = 0.68, RMSE
1.10 ug/m%). PMy 5 predictions ranged from 8.77 — 15.29 pg/m?3; actual

A. B.
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Fig. 5. A. Predicted PM; 5 concentrations by quantile. B. Predicted BC concentrations by quantile. C. Barplot of PM; s model error separated by STURLA class, with
bar colors indicating underpredictions (blue) and overpredictions (red). D. Map of PM, s model validation error throughout Philadelphia. E. Barplot of BC model
error separated by STURLA class, with bar colors indicating underpredictions (blue) and overpredictions (red). F. Map of BC model validation error. We encourage

the reader to download the figure to zoom into specific small text and data they are interested in viewing. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article).
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PM, 5 concentrations by class ranged from 5.40 — 22.21 ug/m°>. Differ-
ences between STURLA class composition were slightly less effective in
explaining variation in BC concentrations (R? = 0.64, RMSE 0.91 ug/
m®). BC predictions by class were generally higher than measured con-
centrations (Fig. 5E, F), and ranged from 1.26 pg/m® to 3.76 pg/m5
actual concentrations by class ranged from 0.85 — 5.45 ug/m® BC pre-
dictions in tgpl hosted predicted BC values of 1.65 ug/m> and over-
predicted measured BC in tgpl pixels by 0.07 pg/m>. Classes with more
internal class elements generally have lower predicted air pollution
concentrations; tpl, tp, and twpm were the classes with the highest BC
predictions, while tgbph, tgplmh, and tgbplh had the lowest.

4. Discussion
4.1. Variation in PMg 5 and BC by STURLA class

PM, 5 and BC varied by STURLA class (Fig. 3); while some classes,
such as gpl, had pollutant concentrations that were distinct from mul-
tiple classes, no class had PMj 5 concentrations or BC concentrations that
were significantly different from all commonly sampled classes (Fig. 4).
Among the 14 most sampled STURLA classes, we find that the classes
containing mid-rise and high-rise buildings hosted lower concentrations
of PMy 5 and BC relative to other commonly sampled classes; the five
classes containing m or h (tgplm, tgpm, tgplh, tgplmh, and tgbplm) show the
lowest average concentrations of PMy 5 and BC (Fig. 3). Four of these
classes (tgpm, tgplh, tgplmh, and tgbplm) also host the lowest daily vari-
ation in PMgy 5 concentrations, while all five have the lowest daily
variation in BC concentrations (Fig. 3). These results are unique given
the presence of taller buildings and comparatively lower proportion of
greenspace. While trees and grass are found in these classes, these
landscape elements are partially diminished by adding in the elements
of the built environment. Air pollution tends to be higher in areas with
greater proportions of tall buildings (Aristodemou et al., 2018), while
areas with a greater proportion of vegetation tend to have lower con-
centrations of air pollutants (Leung et al., 2011; Li et al., 2016. The taller
buildings present in these classes can adversely impact wind flow and
pollutant dispersal, causing an increase in pollutant concentrations
closer to the peak of the building while decreasing concentrations at the
ground-level where sampling occurred (Aristodemou et al., 2018;
Zhang, Qi, Jiang, Zhou, & Wang, 2013. Likewise, potential sources of
PM, 5 and BC may simply be less abundant and/or smaller in magnitude
where these classes are found, despite PM concentrations typically being
higher in areas with denser built environment (Zhou & Lin, 2019). It is
worth noting that classes with m and h components were generally
sampled less frequently, woth the exception of tgplm, because they are
less prevalent in the city’s landscape. Some classes, such as tgplh and
tgplmh, were not sampled enough to be able to quantify variability in
pollutant concentrations on some days (Fig. 3). Smaller sample sizes
may have been less effective at capturing the full range of pollutant
concentrations for specific classes than larger sample sizes.

While classes such as tgbplm, tgplm, and tgplh, are compositionally
similar and have similar concentrations of PM; 5 and BC (Fig. 3), others
display pronounced differences in pollutant levels despite compositional
similarities with other STURLA classes. Among the most commonly
sampled STURLA classes, gpl hosted the highest PM; 5 concentrations
and the third-highest BC concentrations. Class gpl is largely dominated
by built environment, with roughly 89.9% of the gpl class characterized
by pavement and low-rise buildings. In class tgplmh, the class most
similar to gpl by STURLA elements, we observe the second-lowest daily
average PM, 5 and BC concentrations throughout the sampling period.
Conversely, class gp — also compositionally similar to gpl — hosted rela-
tively high concentrations of PMy 5 and BC just like gpl. in this class, we
observe the third-highest daily average PM 5 concentration and second-
highest daily average BC concentration. The differences in these classes
may be explained by the differences in variety of urban landscape
components present; gp and gpl classes lack the trees, mid-rise, and high-
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rise buildings that are present in the tgplmh class. Even though gp is
considerably more vegetated than tgplmh (43.2% grass in gp vs. 17.8%
trees/grass in tgplmh), class gp has pollutant concentrations that are
closer to gpl, a class with 89.8% built environment. The high pollutant
concentrations in gp and gpl suggest that grass does not facilitate a
meaningful decrease in PM in urban environments, or at least in areas of
the urban environment that consist mostly of built environment. Trees
may be more effective at attenuating air pollution than grass; most
classes containing trees, with the exception of tgbwpl, have lower con-
centrations of PMs 5 and BC than gp and gpl. However, given the prev-
alence of classes with trees in Philadelphia, it is unclear whether it is the
abundance of trees or the lack of built environment that contributes
more to lower pollutant concentrations in these classes.

4.2. Spatial prediction of air pollution

STURLA was able to accurately model two types of air pollution
across the city with low error. The proportion of STURLA components
present in a pixel, can be used to predict PM pollutant concentrations
despite heterogeneity in sources of PM and BC, sampling efforts (e.g. on
highways, near parks, stalled in traffic), and daily variation (Fig. 3).
Modeling was generally accurate for both PMy 5 and BC; the largest
difference between predicted and measured concentrations was 0.38 pg/
m? for PMj 5 and 0.12 pg/m? for BC. These results support the idea that
differences in three-dimensional urban structure alter the presence,
abundance, and distribution of air pollution. Likewise, they suggest that
STURLA can be used as an environmentally meaningful unit for urban
planning with regard to air pollution.

STURLA relied on the built environment to predict pollutant con-
centrations as seen in other modeling studies of urban air pollution
distributions (Ross et al., 2007; Weichenthal et al., 2016). Pavement and
high-rise were the most important STURLA components in modeling
PM, 5, while low-rise and pavement were the most important compo-
nents in modeling BC (Fig. A2). Pavement’s importance in modeling the
relationships between STURLA and PM is likely a function of the sam-
pling design, which requires driving on roads throughout the sampling
period, as well as the prevalence of pavement throughout Philadelphia.
Vehicle emissions are a major contributor to PM emissions on roads
(Cheng & Li, 2010), and developed areas in the urban environment are
often in close proximity to facilities that generate PM pollution. The
importance of low-rise buildings in BC modeling and of high-rise
buildings in PM; 5 underscore the potential for buildings to influence
pollutant concentrations. These buildings are not only associated with
PM, 5 and BC pollution, but their structure and organization throughout
the urban environment can also influence local pollutant concentra-
tions. This may be due to physically blocking the dispersal of particles in
the air. Trees and grass are also relatively important in predicting
pollutant concentrations, though not as important as the built compo-
nents of the environment. Similar to components of the built environ-
ment, this may be a result of the sampling design; in our predictions,
greenspace is likely less important in part because unable to directly
sample in areas without pavement. This also become apparent when
model error is mapped where greenspace, such as Fairmount Park, are
difficult to accurately predict. As measuring directly in greenspace
without pavement was not possible by car, we may underestimate the
contribution of trees and grass to air pollution attenuation (Nowak et al.,
2006).

Urban structure patterns contributed slightly less explanatory power
for BC predictions as they did for PM; 5 predictions; the relationship
between urban structure and PMs 5 has an R? = 0.68, while the rela-
tionship between urban structure and BC has an R? = 0.64. The weaker
correlation between BC and urban structure may be explained at least in
part by the fact that BC is only a subset of PMy 5; PM3 5 is inherently
more abundant in the environment, as it has a greater variety of sources
including vegetation, secondary aerosol formation from vehicular
emissions (e.g. NOy and SOy) (Juda-Rezler et al., 2020), and suspension
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of crustal materials such as dust and soil (Querol et al., 2001). BC, in
contrast, only comes from anthropogenic sources, and concentrations
are largely influenced by road transport (Diaz Resquin et al., 2018). As a
result, BC has a slightly weaker overall correlation to urban structure at
large.

4.3. Limitations

Though the sampling routes capture a sample of Philadelphia that is
representative of the urban structure patterns prevalent in the city, the
urban landscape can look quite different in other cities. As a result, some
STURLA classes that are present or even abundant in other urban en-
vironments are not considered in these analyses. One such example is
STURLA class w; though it is the sixth most common STURLA class in
Philadelphia, we are unable to sample this class as it is impossible to
drive through a cell containing only water. The accuracy of the pre-
diction cannot be compared to measured values, as there are none;
similar studies in the future should make appropriate adjustments to the
experimental design to capture common classes that are otherwise
inaccessible (i.e. classes without pavement). Though we include pre-
dictions and measurements for all classes with 2+ observations, we do
not test for significant differences between classes with fewer than 20
unique sampled cells, nor do we examine how the compositions of these
classes influence pollutant concentrations. Infrequently sampled classes
constitute a small fraction of the urban structure patterns present
throughout Philadelphia, and in the absence of further sampling, it is
difficult to accurately predict and characterize pollutant levels in these
areas.

Both our PMj 5 measurements and predicted values in the STURLA
cells where five US EPA PM, 5 monitoring sites are located were higher
than the US EPA’s 24-hour averages at these sites. All the mobile mea-
surements were taken on roads and mobile measurements averages were
computed from measurements while driving near EPA’s sites. EPA’s sites
are usually farther from the roads and the inlets of the measurements are
at higher level than the inlet during our mobile measurement. Despite
these differences and limitations of comparisons, we conclude that
mobile measurements may be higher than the US EPA’s PM; 5 mea-
surements but capture similar patterns.

While meteorological conditions such as wind speed and wind di-
rection can influence air pollutant concentrations, it is difficult to
quantify these variables due to the variable speed and direction of the
vehicle; as such, while we tried to sample on days with similar weather
conditions, we do not include these variables in our analysis. Variation
in weather conditions throughout the day, along with traffic, can in-
fluence pollutant concentrations as urban structure patterns do. How-
ever, a drawback in the mobile monitoring method is that it is difficult to
discern between variation caused by spatial and temporal phenomena.
Future studies can clarify the precise impacts of urban structure on air
pollutant concentrations by adjusting the experimental design to sample
at different times of day and focusing specifically on variables that are
particularly dependent on temporal changes. Additionally, the use of
STURLA is limited by the availability of up-to-date land cover and
building height data; as the STURLA profile is based on data from 2017,
it may not reflect changes in the Philadelphia’s urban landscape that
have occurred since then. Increased availability and accuracy of spatial
data would make STURLA more effective in real time and would enable
more accurate predictions.

5. Conclusions

In this study, we explore the potential of STURLA as a way to simplify
and meaningfully describe three-dimensional urban structure in the
context of air pollution. Specifically, we sought to determine how
variation of particulate matter concentrations could be characterized by
composite landcover units. The class tghpIm was found to host the lowest
PMys5 and BC concentrations, while gpl had the highest PMj 5
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concentrations (16.60 1 4.29 pg/m>). Class tgbwp had the highest BC
concentrations (2.31 4 1.94 pg/ms). We find that some classes, such as
gpl and tgbplm have average pollutant concentrations that stand out
relative to other classes, and we find that classes generally have more
significant differences in PMy 5 concentrations than in BC concentra-
tions. We also find that the components of STURLA and the proportions
in which they are present are useful in predicting PMy 5 and BC con-
centrations in different STURLA classes throughout the urban landscape.
Of the STURLA components, components of the built environment
(pavement, low-rise, high-rise) are the strongest predictors of urban
PMy5 and BC pollution; low-rise buildings are more important in
modeling BC than PM; 5, while the opposite is true for high-rise build-
ings. Vegetation components of the environment, such as trees and
grass, have a fair amount of predictive power regarding PM; 5 concen-
trations as well. The ability to approximate PMs 5 concentrations using
proportions of STURLA components suggests that careful consideration
of urban structure patterns in planning can help cities to plan future
development in a way that reduces potential exposure to air pollutants.
STURLA may also be helpful in modeling relationships between urban
structure and other prominent urban air pollutants of concern, such as
ozone (O3), nitrogen oxides (NOy) and sulfur oxides (SOy). Further
exploration of STURLA in the context of these other common urban air
pollutants may reveal distinct differences between pollutant concen-
trations among STURLA classes that are not evident when looking solely
at PM, 5 and BC.
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