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A B S T R A C T   

Understanding relationships between urban structure patterns and air pollutants is key to sustainable urban 
planning. In this study, we employ a mobile monitoring method to collect PM2.5 and BC data in the city of 
Philadelphia, PA during the summer of 2019 and apply the Structure of Urban Landscapes (STURLA) method
ology to examine relationships between urban structure and atmospheric pollution. We find that PM2.5 and BC 
vary by STURLA class, and some classes exhibit significant difference in pollution concentrations. We also find 
that the proportions in which STURLA components are present throughout the urban landscape can be used to 
predict the spatial distribution of urban air pollution. Among frequently sampled STURLA classes, gpl (grass, 
pavement, and low-rise buildings) hosted the highest PM2.5 concentrations on average (16.60 ± 4.29 µg/m3), 
while tgbwp (trees, grass, bare soil, water, pavement) hosted the highest BC concentrations (2.31 ± 1.94 µg/m3). 
Furthermore, STURLA combined with machine learning modeling was able to correlate PM2.5 (R2= 0.68, RMSE 
2.82 µg/m3) and BC (R2 = 0.64, RMSE 0.75 µg/m3) concentrations with urban landscape composition and 
interpolate concentrations throughout the city. These results demonstrate the efficacy of the STURLA method
ology in modeling relationships between air pollution and urban structure patterns.   

1. Introduction 

Population growth in urban areas is increasing rapidly; the United 
Nations projects that 68% of the world’s population will live in urban 
areas by 2050 (United Nations, Department of Economic and Social 
Affairs, Population Division 2019). As urban areas expand, a larger 
proportion of the global population will be exposed to increasingly high 
and potentially harmful levels of air pollution; identifying and mapping 
where these pollutants are is key to developing sustainable cities. At 
present, approximately 3.7 million premature deaths worldwide can be 
attributed to elevated air pollutant concentrations each year (Cohen 
et al., 2017). Air pollutants disproportionately impact vulnerable pop
ulations based on race, (Gray et al., 2013; Perlin, Sexton, & Wong, 1999; 
Perlin, Wong, & Sexton, 2001, gender and sexual orientation (Collins 
et al., 2017a, 2017b) and socioeconomic status (Gray et al., 2013; Perlin 
et al., 1999; Zhou et al., 2011). It is crucial that we understand how air 
pollutants interact with complex urban structures to identify how cities 
can be designed with a human health focus. 

Particulate matter (PM) has been linked to negative health outcomes, 

including asthma (Anenberg et al., 2018; Halonen et al., 2008; Rabi
novitch et al., 2006) lung cancer (Hamra et al., 2014; Pope et al., 2002), 
DNA alteration Baccarelli et al., 2009; Sørensen et al., 2003; Shi et al., 
2019), and disrupted lung (Shakya et al., 2016) and immune functions 
(Honda et al., 2017; Zelikoff et al., 2003). Polluted airs also host 
potentially pathogenic bacteria for humans (Liu et al., 2018; Stewart 
et al., 2020) and viruses ( Zhu et al., 2020) that could potentially alter 
the human lung microbiome (Stewart & Kremer, 2021; Willis et al., 
2020). Fine particulate matter (PM2.5) is of particular concern due to its 
prevalence in urban atmospheres. A subset of PM2.5, black carbon (BC) is 
formed through incomplete combustion of fossil fuels and is particularly 
prevalent in urban areas. Almost all of BC originates from anthropogenic 
sources, with biomass fires being the only natural source of BC (Hit
zenberger & Tohno, 2001); as such, BC is commonly used as an indicator 
of anthropogenic influence on ambient air pollution (Cyrys et al., 2003; 
Targino et al., 2016). 

Studies of urban air pollution have established relationships between 
urban structure and ambient air pollution (Eeftens et al., 2012; Wu, Xie, 
Li, & Li, 2015; Yuan et al., 2019). For example, in Philadelphia PM 
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concentration variation across neighborhoods was attributed to differ
ences in open space and land structure (Shakya et al., 2019). The or
ganization and height of buildings, barriers and other structures in an 
urban environment can influence air flow, which in turn impacts PM 
dispersal locally (Baldauf et al., 2016; Gallagher et al., 2015; Ng & 
Chau, 2012; Stewart, Kremer, Shakya, Conway, & Saad, 2021; Yang 
et al., 2020. Though many urban areas are characterized by dense built 
environments, different types of urban green space (e.g. urban forest, 
parks, gardens, and private yards) are an integral part of the urban 
landscape. Cities are increasingly adopting strategies such as urban 
greening to counteract environmental degradation and enhance human 
wellbeing; however, the efficacy of these strategies remains unclear 
(Nemitz et al., 2020). Vegetation such as trees and grasses have been 
shown to reduce air pollution by facilitating pollutant deposition and 
uptake of particulate matter, butthey are also capable of causing an 
increase in local pollutant concentrations through biogenic emissions 
that facilitate secondary aerosol formation and the inhibition of air flow 
(Brantley et al., 2014; Chen et al., 2016; Eisenman et al., 2019; Xing & 
Brimblecombe, 2019). 

It is clear that the individual components of urban environments, 
such as presence of greenspace, influences air pollution distributions. 
However, the complexity of urban topologies makes it difficult to un
derstand how these individual components interact to influence air 
pollution at more localized scales. In urban environments, urban struc
tures often change drastically over short distances (Cadenasso et al., 
2007). While cities may contain common environmental features, dif
ferences in their organization have varied impacts on air quality, further 
complicating efforts to generalize the impact that urban environments 
have on air pollution. Thus, defining a geographically meaningful units 
that can be utilized in reproducible and scalable analyses is paramount 
to effective urban planning and development. 

The Structure of Urban Landscape (STURLA) composite classification 
allows for modeling of diverse urban processes using the three- 
dimensional shape of cities at fine spatial scales. STURLA does so by 
using land cover and building height data to identify common compo
sitions of urban environments that are meaningful for scientists and 
urban planners (Hamstead et al., 2016). STURLA studies have linked 
urban landscape structure and land surface temperature (Hamstead 
et al., 2016; Kremer et al., 2018; Larondelle et al., 2014; Mitz et al., 
2020), as well as the phylogenetic diversity of the atmospheric micro
biome (Stewart et al., 2021). STURLA allows for classifications of urban 
structure, that have the potential to reshape our understanding of how 
the composition and spatial organization of urban environments influ
ence environmental parameters. There have also been efforts to improve 
the accuracy of urban air pollution measurement, as variability in urban 
landscape composition can influence pollutant dispersal and affect 
concentrations at small scales (Abhijith & Gokhale, 2015; Gallagher 
et al., 2015; Hagler et al., 2012). In recent years, mobile monitoring has 
emerged as a novel method with which to study the spatiotemporal 
distribution of air pollutants in urban environments (Apte et al., 2017; 
deSouza et al., 2020; Deville Cavellin et al., 2016; Shakya et al., 2019; 
Sm et al., 2019; Targino et al., 2016; Van Poppel et al., 2013), as it can 
collect data at finer spatial scales than is feasible with stationary 
monitoring (Shakya et al., 2019; Van den Bossche et al., 2015) and does 
not rely on interpolation to characterize pollutants throughout a city. 

In this study, we use data collected through mobile monitoring to 
measure concentrations of particulate matter smaller than 2.5 µm 
(PM2.5) and black carbon (BC) throughout the city of Philadelphia over 
the course of 12 days during the summer of 2019 (Cummings et al., 
2021). We use STURLA (Hamstead et al., 2016) in conjunction with this 
collected air pollution data to analyze the urban structure-air pollution 
relationship across the city of Philadelphia. We then use STURLA to 
predict air pollution patterns and identify drivers of heterogeneity in 
pollutant concentrations. 

2. Methods 

2.1. Site description 

Philadelphia, Pennsylvania is the sixth-most populous city in the 
United States of America and the largest city in the state of Pennsylva
nia, with an estimated population of 1.58 million residents in 2018. 
Philadelphia is a northeastern U.S. city defined by a dense urban core 
surrounded by predominantly low-rise residential and commercial dis
tricts, city parks, and industrial sectors. Two major rivers flow through 
the city: the Delaware River, which flows southward into the Delaware 
Bay and Atlantic Ocean, and the Schuylkill River, which flows south
ward through the western neighborhoods of Philadelphia. The southern 
and eastern parts of the city house heavy industry along both riverbanks, 
while large park areas are found in the western and northern areas of the 
city. For planning purposes, Philadelphia is divided into 18 different 
planning districts (Fig. 1, Table A1). 

2.2. Philadelphia STURLA 

The STURLA profile for Philadelphia was made by joining land cover 
raster data and building height data from 2017 as in Stewart et al., 2021 
(Fig. 1). A fishnet with 120m2 pixels was overlaid on the joined land 
cover / building height raster. STURLA classifications for each cell were 
determined based on the presence of each urban structure component 
identified; each letter in the STURLA code represents a different 
component of the urban environment. Each color within a given pixel 
color within a STURLA cell indicates a specific combination of different 
urban structure components: trees (t), grass (g), bare soil (b), water (w), 
pavement (p), low-rise buildings (1 – 3 stories) (l), mid-rise buildings (4 
– 9 stories) (m), and/or high-rise buildings (9+ stories) (h). Philadelphia 
contains 86 STURLA classes, although most of the city can be charac
terized by just a few classes; tgpl is by far the most common class, 
describing about 51.7% of Philadelphia. Other common classes include 
tgplm, tgp, tgbpl, tgwp, and w (Fig. 1). Letters in the STURLA class code 
denote the presence of specific features of the urban landscape (Fig. 2). 

2.3. Sampling description 

PM2.5 and BC data were collected using a mobile monitoring method. 
A van, equipped with instrumentation measuring geolocation data 
(Trimble Juno 3B with Trimble R1 GNSS receivers), PM2.5 concentra
tions (Grimm Portable Laser Aerosol Spectrometer, Model 11-C), and BC 
concentrations (MicroAeth MA200) was driven along two pre
determined routes in Philadelphia. Sampling equipment was set up and 
calibrated as described in Cummings et al. (2021). Data was captured at 
different temporal resolutions; GPS data was recorded at every one 
second interval, BC data was recorded at every five second interval, and 
PM data was recorded at every six second interval (Table A2). 

Driving routes were determined using a stratified random sample of 
STURLA cells in order to ensure that a representative sample of Phila
delphia’s STURLA class distribution was captured during the sampling 
period. Specific points of interest such as United States Environmental 
Protection Agency (U.S. EPA) Toxics Release Inventory (TRI) sites, EPA 
air pollution monitoring station sites (Fig. A1), the Philadelphia Water 
Department’s green infrastructure sites, and census tracts with high 
rates of asthma were also considered in route development. An opti
mized ~483 km (300 mile) driving route that took STURLA class dis
tribution and points of interest into account was generated using 
Network Analyst in ArcGIS 10.7.1. This optimized route was divided 
into two ~241.5 km (150 mile) segments in order to make the routes 
drivable within a day. Occasional road closures in Philadelphia created 
slight variability in the routes traveled from day to day. 

Sampling occurred over a period of 12 days between June 27 and 
July 29, 2019; each route was sampled six times. Weather conditions 
during the sampling days were similar (Weather Underground, 2019; 
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Table A3), with winds throughout the sampling period ranging from 0 – 
18 mph (Table A4). Sampling began between 6 – 7 AM on one of the two 
routes and continued until the entirety of the route was traveled. The 
daily average vehicle speed ranged from 23.3 – 29.9 km/hr. 

2.4. Data analysis 

Air pollution and geolocation data were joined by time. For each day 
of data collection, air pollution data was spatially joined to Phila
delphia’s STURLA profile in ArcGIS Pro 2.4; each pixel was assigned the 
value of the average concentration of all points that fell within it. All 
cells that contained at least one point were selected and summarized to 
obtain the average concentration for each STURLA class. The mean 
concentrations for each class on each day were averaged to determine an 
average daily mean concentration for each STURLA class for which at 
least 20 unique cells were sampled; classes that were sampled in fewer 
than 20 unique cells were summarized into an “other” class for which 
daily averages were calculated. Permutational t-tests (number of per
mutations = 10,000) from the “RVAidememoire” package in R were 
used to determine if differences in the daily mean air pollutant con
centrations of STURLA classes were significant, as they take varying 
sample sizes into account (Hervé, 2020). For each class sampled, the 
composition of an average cell was determined by finding the mean 
percentage of all urban structure components for each cell sampled 
belonging to a specific class. Differences in average STURLA class 
composition were evaluated using hierarchical clustering based on 
Bray-Curtis dissimilarities between classes. The clustering dendrogram 
(Fig. 3) demonstrates compositional similarities between classes; classes 
with fewer branches separating them are more similar to each other than 
those with more branches separating them. Likewise, we use hierar
chical clustering to demonstrate similarities between daily concentra
tions in order to better visualize differences in pollutant concentrations 

by class. 
A supervised machine learning model, Random Forest Regression, 

was used to investigate the possible distribution of PM2.5 and BC in areas 
not sampled based on measured concentrations and the STURLA land
scape components in sampled areas. This method uses an ensemble of 
weak models that draw a random sample from the original dataset and 
splits them into a forest of decision trees, which helps to account for 
spatial autocorrelation and non-linear relationships more effectively 
than linear models (Oliveira et al., 2012). Using the “caret” package 
(Kuhn, 2008) in R (3.3.6) (Ihaka & Gentleman, 1996) data were split 
into 60% training and 40% validation sets that underwent 10-fold 
cross-validation. The model was trained using the average within-class 
STURLA urban structure percentages for each class and the mean 
pollutant concentration measured in that class (e.g. class tgpl is the su
pervised label attached to the mean landscape percentages for tgpl across 
Philadelphia). Root Mean Standard Error (RMSE) was used to assess 
model error and the model parameters were automatically tuned in caret 
(nTree=500, mtry selected based on best model fit of best mtry value 
that can be found in provided code for each model). We define valida
tion error as the ratio of predicted to measured concentrations and 
project it across the city to areas that were not sampled by applying the 
error for the measured classes to all unmeasured classes. For this the 
mean air pollutant value per STURLA class was used to estimate the 
actual concentration. Variable importance is measured as the percent 
increase in RMSE by removing a variable from the model where once 
completed for each variable is ranked. Reported correlation coefficients 
and model error is reported using cross-validated values. Model pre
dictions and results were joined by STURLA class and visualized using 
ArcMap 10.7.1. 

Fig. 1. Map of STURLA classes in Philadelphia, Pennsylvania (left). Classes symbolized include the 14 most sampled classes, which make up 85.5% of Philadelphia; w 
is also included for representation of major waterways. The “other” class consists of the other 72 classes found throughout Philadelphia which, with water, char
acterize the remaining 14.5% of the city. Also included are Philadelphia’s planning zones (top-right) and a ranked abundance plot (bottom-right) showing relative 
frequencies of the 14 most abundant STURLA classes throughout Philadelphia. We encourage the reader to download the figure to zoom into specific small text and 
data they are interested in viewing. 
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3. Results 

3.1. Variation in landscape structure with PM2.5 and BC concentrations 
among STURLA classes 

Differences in both landscape composition and the measured 
pollutant concentrations they host are evident among the most sampled 
STURLA classes (Fig. 3). Although a slightly different subset of cells was 
sampled for PM2.5 and BC due to differences in temporal resolutions of 
sampling equipment (5 s for BC compared to 6 s for PM2.5), differences in 
average STURLA class composition are minimal and did not influence 
clustering between classes. Daily means for PM2.5 among STURLA 
classes range from 11.47 ± 1.89 µg/m3 (tgbplm) to 16.60 ± 4.29 µg/m3 

µg/m3 (gpl), while daily means for BC range from 1.25 ± 0.71 µg/m3 

(tgbplm) to 2.31 ± 1.94 µg/m3 (tgbwp) (Fig. 3). Permutational t-tests 
reveal that some of the differences in pollutant concentrations between 
STURLA classes are statistically significant (p < 0.05) (Fig. 4). Class gpl 
demonstrated the most unique PM2.5 signature, with daily mean PM2.5 
concentrations differing significantly from six classes: tgp, tgplm, tgwp, 
tgpm, tgbplm, and tgplmh. Class tgbplm presented the most distinct BC 
signature with the daily average BC concentration being significantly 
different from four other classes sampled: tgplmh, gpl, tgbwp, and gp. 

However, other STURLA classes did not have pollutant concentrations 
that were significantly different from other classes. More significant 
differences between classes were found with PM2.5 concentrations (17) 
than with BC concentrations (9) (Fig. 4). 

3.2. Spatial modeling of PM2.5 and BC 

PM2.5 predictions by planning district ranged from 12.62 µg/m3 – 
13.74 µg/m3; the highest predicted PM2.5 concentrations are in the 
Upper Far Northeast and Lower Far Northeast planning districts, while 
the lowest predicted concentrations were found in the Central planning 
district (Table 1). 17 of 18 planning districts underpredicted measured 
PM2.5 concentrations (Predicted PM2.5 / Measured PM2.5 ratio < 1), 
which ranged from 12.74 µg/m3 – 14.11 µg/m3 (Table 1). PM2.5 
modeling was the most accurate in the Lower South district, with a 
difference of 0.02 µg/m3 between predicted and measured concentra
tions, but least accurate in the South district, with a 0.38 µg/m3 differ
ence between predicted and measured concentrations. Conversely, the 
model overpredicted BC concentrations in all 18 planning districts, and 
generally overpredicted BC concentrations by STURLA class (Table 1). 
Predicted BC concentrations ranged from 1.54 µg/m3 – 1.78 µg/m3, 
while measured BC concentrations ranged from 1.49 µg/m3 – 1.66 µg/ 

Fig. 2. Examples of pixels of common STURLA classes symbolized on a land cover/building height data raster. Each color within a STURLA cell indicates the 
presence of a different urban structure component: trees (t), grass (g), bare soil (b), water (w), pavement (p), low-rise buildings (1 – 3 stories) (l), mid-rise buildings (4 
– 9 stories) (m), and high-rise buildings (9+ stories) (h). 
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m3. BC predictions are highest in the Lower South district and lowest in 
the Central district. BC modeling was most effective in the Central, 
Lower Far Northeast, North, North Delaware, River Wards, and 

University Southwest planning districts, all of which have 0.05 µg/m3 

between predicted and measured values; in the Lower South district, the 
difference between predicted and measured BC concentrations is at its 

Fig. 3. Composition of the average cell sampled for each class (left), sample sizes, and daily/overall means and standard deviations of measured PM2.5 (middle) and 
BC (right) concentrations. Overall means are represented in the top heatmaps, while standard deviations are represented in the bottom heatmaps; darker colors (blue, 
purple) represent lower concentrations and lighter colors (yellow) represent higher concentrations. Dendrograms reflect similarities in pollutant concentrations 
between days (top) and STURLA class composition (left). We encourage the reader to download the figure to zoom into specific small text and data they are interested 
in viewing. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

Fig. 4. Results of pairwise permutational t-tests between STURLA classes comparing average daily pollutant concentrations for BC (left) and PM2.5 (right). Black cells 
indicate significant differences in pollutant concentrations between classes. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article). 

L.E. Cummings et al.                                                                                                                                                                                                                           



Sustainable Cities and Society 76 (2022) 103510

6

highest (0.12 µg/m3). 
The importance of each landscape element per STURLA class was 

used to identify drivers in pollution heterogeneity. Pavement was the 
most important variable in modeling PM2.5, followed by high-rise, grass, 
trees, mid-rise, water, and low-rise (Fig. A2). In modeling BC, low-rise 
was the most important variable, followed by pavement, trees, grass, 
mid-rise, high-rise, and water (Fig. A2). In both models, bare soil did not 
contribute to predictions of pollutant concentrations. Predictions varied 

by STURLA class (Fig. 5A, B). Philadelphia’s most frequent class, tgpl, 
has a mean prediction of 13.71 µg/m3; modeling overpredicted the 
average measured concentration of the class by 1.64 µg/m3. STURLA 
classes gbp, tgp, and gpl are among the classes with the highest predicted 
concentrations, while pm, tgwpl, gwp had the lowest (Supplemental 
Table 1). Variation in PM2.5 concentrations across the city were largely 
explained by differences in sampled STURLA classes (R2 = 0.68, RMSE 
1.10 µg/m3). PM2.5 predictions ranged from 8.77 – 15.29 µg/m3; actual 

Table 1 
Summary of measured pollutant concentrations, predicted pollutant concentrations, differences between predicted and measured, and validation error by Philadelphia 
planning district.  

Planning District Mean Predicted 
PM2.5 

Mean Measured 
PM2.5 

P – M 
(PM2.5) 

Validation 
Error 

Mean Predicted 
BC 

Mean Measured 
BC 

P – M 
(BC) 

Validation 
Error 

Central 12.62 12.74 −0.12 0.994 1.54 1.49 0.05 1.040 
Central Northeast 13.60 13.88 −0.28 0.981 1.65 1.57 0.08 1.062 
Lower Far 

Northeast 
13.74 14.11 −0.37 0.975 1.68 1.63 0.05 1.046 

Lower North 13.40 13.55 −0.15 0.991 1.62 1.56 0.06 1.040 
Lower Northeast 13.71 14.03 −0.32 0.978 1.65 1.59 0.06 1.040 
Lower Northwest 13.59 13.83 −0.24 0.984 1.64 1.55 0.09 1.078 
Lower South 12.83 12.85 0.02 1.036 1.78 1.66 0.12 1.134 
Lower Southwest 13.59 13.84 −0.25 0.988 1.72 1.65 0.07 1.069 
North 13.54 13.75 −0.21 0.986 1.64 1.59 0.05 1.036 
North Delaware 13.73 14.01 −0.28 0.983 1.70 1.65 0.05 1.038 
River Wards 13.63 13.85 −0.22 0.988 1.71 1.66 0.05 1.052 
South 13.56 13.94 −0.38 0.975 1.68 1.62 0.06 1.043 
University 

Southwest 
13.20 13.38 −0.18 0.989 1.61 1.56 0.05 1.037 

Upper Far 
Northeast 

13.74 14.09 −0.35 0.976 1.66 1.60 0.06 1.047 

Upper North 13.62 13.95 −0.33 0.976 1.65 1.58 0.07 1.044 
Upper Northwest 13.55 13.85 −0.30 0.979 1.64 1.57 0.07 1.049 
West 13.58 13.88 −0.30 0.979 1.64 1.57 0.07 1.040 
West Park 13.53 13.60 −0.07 0.997 1.67 1.59 0.08 1.057  

Fig. 5. A. Predicted PM2.5 concentrations by quantile. B. Predicted BC concentrations by quantile. C. Barplot of PM2.5 model error separated by STURLA class, with 
bar colors indicating underpredictions (blue) and overpredictions (red). D. Map of PM2.5 model validation error throughout Philadelphia. E. Barplot of BC model 
error separated by STURLA class, with bar colors indicating underpredictions (blue) and overpredictions (red). F. Map of BC model validation error. We encourage 
the reader to download the figure to zoom into specific small text and data they are interested in viewing. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article). 
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PM2.5 concentrations by class ranged from 5.40 – 22.21 µg/m3. Differ
ences between STURLA class composition were slightly less effective in 
explaining variation in BC concentrations (R2 = 0.64, RMSE 0.91 µg/ 
m3). BC predictions by class were generally higher than measured con
centrations (Fig. 5E, F), and ranged from 1.26 µg/m3 to 3.76 µg/m3; 
actual concentrations by class ranged from 0.85 – 5.45 µg/m3

. BC pre
dictions in tgpl hosted predicted BC values of 1.65 µg/m3 and over
predicted measured BC in tgpl pixels by 0.07 µg/m3. Classes with more 
internal class elements generally have lower predicted air pollution 
concentrations; tpl, tp, and twpm were the classes with the highest BC 
predictions, while tgbph, tgplmh, and tgbplh had the lowest. 

4. Discussion 

4.1. Variation in PM2.5 and BC by STURLA class 

PM2.5 and BC varied by STURLA class (Fig. 3); while some classes, 
such as gpl, had pollutant concentrations that were distinct from mul
tiple classes, no class had PM2.5 concentrations or BC concentrations that 
were significantly different from all commonly sampled classes (Fig. 4). 
Among the 14 most sampled STURLA classes, we find that the classes 
containing mid-rise and high-rise buildings hosted lower concentrations 
of PM2.5 and BC relative to other commonly sampled classes; the five 
classes containing m or h (tgplm, tgpm, tgplh, tgplmh, and tgbplm) show the 
lowest average concentrations of PM2.5 and BC (Fig. 3). Four of these 
classes (tgpm, tgplh, tgplmh, and tgbplm) also host the lowest daily vari
ation in PM2.5 concentrations, while all five have the lowest daily 
variation in BC concentrations (Fig. 3). These results are unique given 
the presence of taller buildings and comparatively lower proportion of 
greenspace. While trees and grass are found in these classes, these 
landscape elements are partially diminished by adding in the elements 
of the built environment. Air pollution tends to be higher in areas with 
greater proportions of tall buildings (Aristodemou et al., 2018), while 
areas with a greater proportion of vegetation tend to have lower con
centrations of air pollutants (Leung et al., 2011; Li et al., 2016. The taller 
buildings present in these classes can adversely impact wind flow and 
pollutant dispersal, causing an increase in pollutant concentrations 
closer to the peak of the building while decreasing concentrations at the 
ground-level where sampling occurred (Aristodemou et al., 2018; 
Zhang, Qi, Jiang, Zhou, & Wang, 2013. Likewise, potential sources of 
PM2.5 and BC may simply be less abundant and/or smaller in magnitude 
where these classes are found, despite PM concentrations typically being 
higher in areas with denser built environment (Zhou & Lin, 2019). It is 
worth noting that classes with m and h components were generally 
sampled less frequently, woth the exception of tgplm, because they are 
less prevalent in the city’s landscape. Some classes, such as tgplh and 
tgplmh, were not sampled enough to be able to quantify variability in 
pollutant concentrations on some days (Fig. 3). Smaller sample sizes 
may have been less effective at capturing the full range of pollutant 
concentrations for specific classes than larger sample sizes. 

While classes such as tgbplm, tgplm, and tgplh, are compositionally 
similar and have similar concentrations of PM2.5 and BC (Fig. 3), others 
display pronounced differences in pollutant levels despite compositional 
similarities with other STURLA classes. Among the most commonly 
sampled STURLA classes, gpl hosted the highest PM2.5 concentrations 
and the third-highest BC concentrations. Class gpl is largely dominated 
by built environment, with roughly 89.9% of the gpl class characterized 
by pavement and low-rise buildings. In class tgplmh, the class most 
similar to gpl by STURLA elements, we observe the second-lowest daily 
average PM2.5 and BC concentrations throughout the sampling period. 
Conversely, class gp – also compositionally similar to gpl – hosted rela
tively high concentrations of PM2.5 and BC just like gpl. in this class, we 
observe the third-highest daily average PM2.5 concentration and second- 
highest daily average BC concentration. The differences in these classes 
may be explained by the differences in variety of urban landscape 
components present; gp and gpl classes lack the trees, mid-rise, and high- 

rise buildings that are present in the tgplmh class. Even though gp is 
considerably more vegetated than tgplmh (43.2% grass in gp vs. 17.8% 
trees/grass in tgplmh), class gp has pollutant concentrations that are 
closer to gpl, a class with 89.8% built environment. The high pollutant 
concentrations in gp and gpl suggest that grass does not facilitate a 
meaningful decrease in PM in urban environments, or at least in areas of 
the urban environment that consist mostly of built environment. Trees 
may be more effective at attenuating air pollution than grass; most 
classes containing trees, with the exception of tgbwpl, have lower con
centrations of PM2.5 and BC than gp and gpl. However, given the prev
alence of classes with trees in Philadelphia, it is unclear whether it is the 
abundance of trees or the lack of built environment that contributes 
more to lower pollutant concentrations in these classes. 

4.2. Spatial prediction of air pollution 

STURLA was able to accurately model two types of air pollution 
across the city with low error. The proportion of STURLA components 
present in a pixel, can be used to predict PM pollutant concentrations 
despite heterogeneity in sources of PM and BC, sampling efforts (e.g. on 
highways, near parks, stalled in traffic), and daily variation (Fig. 3). 
Modeling was generally accurate for both PM2.5 and BC; the largest 
difference between predicted and measured concentrations was 0.38 µg/ 
m3 for PM2.5 and 0.12 µg/m3 for BC. These results support the idea that 
differences in three-dimensional urban structure alter the presence, 
abundance, and distribution of air pollution. Likewise, they suggest that 
STURLA can be used as an environmentally meaningful unit for urban 
planning with regard to air pollution. 

STURLA relied on the built environment to predict pollutant con
centrations as seen in other modeling studies of urban air pollution 
distributions (Ross et al., 2007; Weichenthal et al., 2016). Pavement and 
high-rise were the most important STURLA components in modeling 
PM2.5, while low-rise and pavement were the most important compo
nents in modeling BC (Fig. A2). Pavement’s importance in modeling the 
relationships between STURLA and PM is likely a function of the sam
pling design, which requires driving on roads throughout the sampling 
period, as well as the prevalence of pavement throughout Philadelphia. 
Vehicle emissions are a major contributor to PM emissions on roads 
(Cheng & Li, 2010), and developed areas in the urban environment are 
often in close proximity to facilities that generate PM pollution. The 
importance of low-rise buildings in BC modeling and of high-rise 
buildings in PM2.5 underscore the potential for buildings to influence 
pollutant concentrations. These buildings are not only associated with 
PM2.5 and BC pollution, but their structure and organization throughout 
the urban environment can also influence local pollutant concentra
tions. This may be due to physically blocking the dispersal of particles in 
the air. Trees and grass are also relatively important in predicting 
pollutant concentrations, though not as important as the built compo
nents of the environment. Similar to components of the built environ
ment, this may be a result of the sampling design; in our predictions, 
greenspace is likely less important in part because unable to directly 
sample in areas without pavement. This also become apparent when 
model error is mapped where greenspace, such as Fairmount Park, are 
difficult to accurately predict. As measuring directly in greenspace 
without pavement was not possible by car, we may underestimate the 
contribution of trees and grass to air pollution attenuation (Nowak et al., 
2006). 

Urban structure patterns contributed slightly less explanatory power 
for BC predictions as they did for PM2.5 predictions; the relationship 
between urban structure and PM2.5 has an R2 = 0.68, while the rela
tionship between urban structure and BC has an R2 = 0.64. The weaker 
correlation between BC and urban structure may be explained at least in 
part by the fact that BC is only a subset of PM2.5; PM2.5 is inherently 
more abundant in the environment, as it has a greater variety of sources 
including vegetation, secondary aerosol formation from vehicular 
emissions (e.g. NOx and SOx) (Juda-Rezler et al., 2020), and suspension 
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of crustal materials such as dust and soil (Querol et al., 2001). BC, in 
contrast, only comes from anthropogenic sources, and concentrations 
are largely influenced by road transport (Diaz Resquin et al., 2018). As a 
result, BC has a slightly weaker overall correlation to urban structure at 
large. 

4.3. Limitations 

Though the sampling routes capture a sample of Philadelphia that is 
representative of the urban structure patterns prevalent in the city, the 
urban landscape can look quite different in other cities. As a result, some 
STURLA classes that are present or even abundant in other urban en
vironments are not considered in these analyses. One such example is 
STURLA class w; though it is the sixth most common STURLA class in 
Philadelphia, we are unable to sample this class as it is impossible to 
drive through a cell containing only water. The accuracy of the pre
diction cannot be compared to measured values, as there are none; 
similar studies in the future should make appropriate adjustments to the 
experimental design to capture common classes that are otherwise 
inaccessible (i.e. classes without pavement). Though we include pre
dictions and measurements for all classes with 2+ observations, we do 
not test for significant differences between classes with fewer than 20 
unique sampled cells, nor do we examine how the compositions of these 
classes influence pollutant concentrations. Infrequently sampled classes 
constitute a small fraction of the urban structure patterns present 
throughout Philadelphia, and in the absence of further sampling, it is 
difficult to accurately predict and characterize pollutant levels in these 
areas. 

Both our PM2.5 measurements and predicted values in the STURLA 
cells where five US EPA PM2.5 monitoring sites are located were higher 
than the US EPA’s 24-hour averages at these sites. All the mobile mea
surements were taken on roads and mobile measurements averages were 
computed from measurements while driving near EPA’s sites. EPA’s sites 
are usually farther from the roads and the inlets of the measurements are 
at higher level than the inlet during our mobile measurement. Despite 
these differences and limitations of comparisons, we conclude that 
mobile measurements may be higher than the US EPA’s PM2.5 mea
surements but capture similar patterns. 

While meteorological conditions such as wind speed and wind di
rection can influence air pollutant concentrations, it is difficult to 
quantify these variables due to the variable speed and direction of the 
vehicle; as such, while we tried to sample on days with similar weather 
conditions, we do not include these variables in our analysis. Variation 
in weather conditions throughout the day, along with traffic, can in
fluence pollutant concentrations as urban structure patterns do. How
ever, a drawback in the mobile monitoring method is that it is difficult to 
discern between variation caused by spatial and temporal phenomena. 
Future studies can clarify the precise impacts of urban structure on air 
pollutant concentrations by adjusting the experimental design to sample 
at different times of day and focusing specifically on variables that are 
particularly dependent on temporal changes. Additionally, the use of 
STURLA is limited by the availability of up-to-date land cover and 
building height data; as the STURLA profile is based on data from 2017, 
it may not reflect changes in the Philadelphia’s urban landscape that 
have occurred since then. Increased availability and accuracy of spatial 
data would make STURLA more effective in real time and would enable 
more accurate predictions. 

5. Conclusions 

In this study, we explore the potential of STURLA as a way to simplify 
and meaningfully describe three-dimensional urban structure in the 
context of air pollution. Specifically, we sought to determine how 
variation of particulate matter concentrations could be characterized by 
composite landcover units. The class tgbplm was found to host the lowest 
PM2.5 and BC concentrations, while gpl had the highest PM2.5 

concentrations (16.60 ± 4.29 µg/m3). Class tgbwp had the highest BC 
concentrations (2.31 ± 1.94 µg/m3). We find that some classes, such as 
gpl and tgbplm have average pollutant concentrations that stand out 
relative to other classes, and we find that classes generally have more 
significant differences in PM2.5 concentrations than in BC concentra
tions. We also find that the components of STURLA and the proportions 
in which they are present are useful in predicting PM2.5 and BC con
centrations in different STURLA classes throughout the urban landscape. 
Of the STURLA components, components of the built environment 
(pavement, low-rise, high-rise) are the strongest predictors of urban 
PM2.5 and BC pollution; low-rise buildings are more important in 
modeling BC than PM2.5, while the opposite is true for high-rise build
ings. Vegetation components of the environment, such as trees and 
grass, have a fair amount of predictive power regarding PM2.5 concen
trations as well. The ability to approximate PM2.5 concentrations using 
proportions of STURLA components suggests that careful consideration 
of urban structure patterns in planning can help cities to plan future 
development in a way that reduces potential exposure to air pollutants. 
STURLA may also be helpful in modeling relationships between urban 
structure and other prominent urban air pollutants of concern, such as 
ozone (O3), nitrogen oxides (NOx) and sulfur oxides (SOx). Further 
exploration of STURLA in the context of these other common urban air 
pollutants may reveal distinct differences between pollutant concen
trations among STURLA classes that are not evident when looking solely 
at PM2.5 and BC. 

CRediT authorship contribution statement 

Lucas E. Cummings: Formal analysis, Writing – original draft. 
Justin D. Stewart: Data curation, Formal analysis, Writing – original 
draft. Peleg Kremer: Conceptualization, Data curation, Writing – orig
inal draft, Supervision, Funding acquisition. Kabindra.M. Shakya: 
Conceptualization, Data curation, Writing – original draft, Supervision, 
Funding acquisition. 

Declaration of Competing Interest 

None. 

Acknowledgments 

We would like to thank Meghan Conway, Radley Reist, and Alex
ander Saad for their assistance in data collection. We would also like to 
thank Stephen Strader for his help in reviewing this manuscript. 
Financial support for this study was provided through National Science 
Foundation (NSF) grant #1832407. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.scs.2021.103510. 

References 

Abhijith, K. V., & Gokhale, S. (2015). Passive control potentials of trees and on-street 
parked cars in reduction of air pollution exposure in urban street canyons. 
Environmental Pollution, 204, 99–108. https://doi.org/10.1016/j. 
envpol.2015.04.013 

Anenberg, S. C., Henze, D. K., Tinney, V., Kinney, P. L., Raich, W., Fann, N., et al. (2018). 
Estimates of the global burden of ambient PM2.5, ozone, and NO2 on asthma 
incidence and emergency room visits. Environmental Health Perspectives, 126(10), 
Article 107004. https://doi.org/10.1289/EHP3766 

Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., et al. 
(2017). High-resolution air pollution mapping with google street view cars: 
Exploiting big data. Environmental Science & Technology, 51(12), 6999–7008. https:// 
doi.org/10.1021/acs.est.7b00891 

Aristodemou, E., Boganegra, L. M., Mottet, L., Pavlidis, D., Constantinou, A., Pain, C., 
et al. (2018). How tall buildings affect turbulent air flows and dispersion of pollution 

L.E. Cummings et al.                                                                                                                                                                                                                           

https://doi.org/10.1016/j.scs.2021.103510
https://doi.org/10.1016/j.envpol.2015.04.013
https://doi.org/10.1016/j.envpol.2015.04.013
https://doi.org/10.1289/EHP3766
https://doi.org/10.1021/acs.est.7b00891
https://doi.org/10.1021/acs.est.7b00891


Sustainable Cities and Society 76 (2022) 103510

9

within a neighbourhood. Environmental Pollution, 233, 782–796. https://doi.org/ 
10.1016/j.envpol.2017.10.041 

Baccarelli, A., Wright, R. O., Bollati, V., Tarantini, L., Litonjua, A. A., Suh, H. H., et al. 
(2009). Rapid DNA methylation changes after exposure to traffic particles. American 
Journal of Respiratory and Critical Care Medicine, 179(7), 572–578. https://doi.org/ 
10.1164/rccm.200807-1097OC 

Baldauf, R. W., Isakov, V., Deshmukh, P., Venkatram, A., Yang, B., & Zhang, K. M. 
(2016). Influence of solid noise barriers on near-road and on-road air quality. 
Atmospheric Environment, 129, 265–276. https://doi.org/10.1016/j. 
atmosenv.2016.01.025 

Brantley, H. L., Hagler, G. S. W., Kimbrough, E. S., Williams, R. W., Mukerjee, S., & 
Neas, L. M. (2014). Mobile air monitoring data-processing strategies and effects on 
spatial air pollution trends. Atmospheric Measurement Techniques, 7(7), 2169–2183. 
https://doi.org/10.5194/amt-7-2169-2014 

Cadenasso, M. L., Pickett, S. T. A., & Schwarz, K. (2007). Spatial heterogeneity in urban 
ecosystems: Reconceptualizing land cover and a framework for classification. 
Frontiers in Ecology and the Environment, 5(2), 80–88. https://doi.org/10.1890/1540- 
9295(2007)5[80:SHIUER]2.0.CO;2 

Chen, L., Liu, C., Zou, R., Yang, M., & Zhang, Z. (2016). Experimental examination of 
effectiveness of vegetation as bio-filter of particulate matters in the urban 
environment. Environmental Pollution, 208, 198–208. https://doi.org/10.1016/j. 
envpol.2015.09.006 

Cheng, Y. H., & Li, Y. S. (2010). Influences of traffic emissions and meteorological 
conditions on ambient PM10 and PM2.5 levels at a highway toll station. Aerosol and 
Air Quality Research, 10(5), 456–462. https://doi.org/10.4209/aaqr.2010.04.0025 

Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., et al. (2017). 
Estimates and 25-year trends of the global burden of disease attributable to ambient 
air pollution: An analysis of data from the Global burden of diseases study 2015. The 
Lancet, 389(10082), 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6 

Collins, T. W., Grineski, S. E., & Morales, D. X. (2017a). Sexual orientation, gender, and 
environmental injustice: Unequal carcinogenic air pollution risks in greater Houston. 
Annals of the American Association of Geographers, 107(1), 72–92. https://doi.org/ 
10.1080/24694452.2016.1218270 

Collins, T. W., Grineski, S. E., & Morales, D. X. (2017b). Environmental injustice and 
sexual minority health disparities: A national study of inequitable health risks from 
air pollution among same-sex partners. Social Science & Medicine, 191, 38–47. 
https://doi.org/10.1016/j.socscimed.2017.08.040 

Cummings, L. E., Stewart, J. D., Reist, R., Shakya, K. M., & Kremer, P. (2021). Mobile 
monitoring of air pollution reveals spatial and temporal variation in an urban 
landscape. Frontiers in Built Environment, 7. https://doi.org/10.3389/ 
fbuil.2021.648620 

Cyrys, J., Heinrich, J., Hoek, G., Meliefste, K., Lewné, M., Gehring, U., et al. (2003). 
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