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Abstract
Surface temperature influences human health directly and alters the biodiversity and productivity of
the environment. While previous research has identified that the composition of urban landscapes
influences the physical properties of the environment such as surface temperature, a generalizable
and flexible framework is needed that can be used to compare cities across time and space. This
study employs the Structure of Urban Landscapes (STURLA) classification combined with remote
sensing of New York City’s land surface temperature (LST). These are then linked using machine
learning and statistical modeling to identify how greenspace and the built environment influence
urban surface temperature. Further, changes in urban structure are then connected to changes in
LST over time. It was observed that areas with urban units composed of largely the built envi-
ronment hosted the hottest temperatures while those with vegetation and water were coolest.
Likewise, this is reinforced by borough-level spatial differences in both urban structure and heat.
Comparison of these relationships over the period between 2008 and 2017 identified changes in
surface temperature that are likely due to the changes in the presence of water, low-rise buildings,
and pavement across the city. This research reinforces how human alteration of the environment
changes LST and offers units of analysis that can be used for research and urban planning.
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Introduction

By 2030, it is projected that the majority of humanity will live in urban areas (DeSA, 2015), which
are globally the fastest growing biome (Grimm et al., 2008). The analysis of the urban landscape and
ecosystem services provided over time can be used to inform management practices to encourage
urban resilience (McPhearson et al., 2014; Walker et al., 2004) under global change scenarios. It is
critical to identify patterns and processes of urban structure-function relationships over time using a
reproducible and scalable framework to meet and exceed the UN Sustainable Development Goals
by 2030 (Lu et al., 2015). One of the key challenges that still persist in creating sustainable cities is
that landscape topology is highly heterogeneous, and thus small spatial scale analyses are rapidly
needed.

Quantifying land surface temperature (LST), a physical property of the environment, is of
particular interest. In general, urban areas act as hotspots for elevated LST that are higher than
surrounding rural areas (Streutker, 2003). However, much of the variation in LSTalso occurs within
cities (Azhdari et al., 2018; Guo et al., 2020; Hamstead et al., 2016; Kremer et al., 2018). The spatial
variation of LSTwithin the urban landscape is measured at a point in time and thus will also change
over time.

Numerous ecosystem aspects are subject to selective pressures of LSTacross functional (Morales
et al., 2019) and taxonomic (Albright et al., 2011) scales of biodiversity (Garcı́a et al., 2018;
Jenerette et al., 2007). Social and economic variables are also correlated with urban heat, including
race (Huang and Cadenasso, 2016; Sanchez and Reames, 2019), income (Huang and Cadenasso,
2016; Wong et al., 2016), and education (Wong et al., 2016). Understanding how LST is structured
across the urban landscape can help enhance sustainability, such as reducing residential water use
(Guhathakurta and Gober, 2007; Zhou et al., 2017), and even social inequalities. Likewise,
landscape changes related to urbanization processes from vegetation to the built environment have
been linked to urban LST (Oke, 1995; Zhou et al., 2011). Within the context of these covariates,
remote sensing of LST is often used as a proxy for the spatial distribution of multiple ecological
variables and human well-being.

Urban classification systems are used to identify important spatial and temporal processes such as
LST in cities and overcome the challenge of urban heterogeneity. Local Climate Zones (LCZs) are
offered in the literature as a method for identifying spatial and temporal patterns (Stewart and Oke,
2012; Yang et al., 2020). However, in many applications of the LCZ system, the three-dimensional
aspect (building height) is inferred from the amount of sky visible instead of being directly measured
as was done for many cities in Europe (Demuzere et al., 2019). Furthermore, LCZs also use a
relatively coarse (30 m2) resolution that may obstruct the impact of smaller or densely grouped
infrastructures in cities on urban processes. Given building height has been shown to greatly
influence urban processes such as albedo (Yang and Li, 2015) and LST (Chen et al., 2020), an
explicit classification system that uses actual building heights at smaller spatial scales could be
useful and compliment the commonly used LCZ system for more nuanced analyses.

STructure of URban LAndscape (STURLA) classification studies have demonstrated that urban
structure can be explained by a discrete number of heterogeneously distributed three-dimensional
120 m2 pixels composed of differing landscape elements (e.g., trees or high-rise buildings)
(Hamstead et al., 2016). Previously, STURLA has been used to investigate LST (Hamstead et al.,
2016; Kremer et al., 2018; Larondelle et al., 2014; Mitz et al., 2021), microbial diversity (Stewart
et al., 2021), and air pollution (Cummings et al., 2022). STructure of URban LAndscape explicitly
uses the height of buildings in cities from publicly available records and thus may be more
meaningful for urban planners and designers when planning infrastructure. Likewise, STURLA has
a relatively large number of potential classes (>200), and thus could potentially pick up patterns and
processes that would otherwise be missed by smaller class sized systems such as LCZs (<20
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classes). Land surface temperature variation is amplified and modified by vertical structures. For
example, a high-rise building casting a shadow and thus cooling an adjacent parcel of land (Kremer
et al., 2018) may be unaccounted for in classification systems that are not (1) compositional and (2)
directly integrative of building height. As STURLA has both these attributes, it may offer a more
flexible and dynamic framework that can take interactions between these landscape elements into
account. Such interactions, which may influence ecological and environmental parameters, such as
LST, are unaccounted for in other models where individual pixels represent a single quantity such as
pavement or grass.

STructure of URban LAndscape offers a simple way to understand units of urban structure that
can be applied to planning efforts for sustainable development across cities and over years. The goal
of this study is to demonstrate that STURLA is a useful alternative and an additional classification
system to understand urban processes over time. In this paper, we apply STURLA to a spatial-
temporal process for the first time and link changes in urban structure to changes in LST in New
York City (NYC) through remote sensing and machine learning.

Material and methods

Site description

New York City is the largest city in the United States of America with a 2019 estimated population
of over an estimated 8,336,800 residents (United States Census Burough, 2016) covering an area of
∼740 km2. Located in the eastern part of the continental United States, NYC is split into five
boroughs (Brooklyn, The Bronx, Queens, Staten Island, and Manhattan) of varying size, pop-
ulations, and socio-economic class.

Urban structure

The STURLA classification for NYC for the years 2008 and 2017 was constructed following
previous studies (Cummings et al., 2022; Hamstead et al., 2016; Mitz et al., 2021) by joining land
cover raster data (United States Geological Survey (USGS) National land cover database 3.0 foot
resolution) and parcel level building height data. Building height was accessed from the NYC
MapPluto database (NYC Department of City Planning, 2021) for each year. A fishnet grid with
120 m2 pixels was overlaid on the combined land cover and building height dataset. STructure of
URban LAndscape classifications for each cell were determined based on the presence of each urban
structure component identified. Each letter in the STURLA code represents a different component of
the urban environment. Each classification of a STURLA cell indicates a specific combination of
different urban structure components: trees (t), grass (g), bare soil (b), water (w), pavement (p), low-
rise buildings (1–3 stories) (l), mid-rise buildings (4–9 stories) (m), and/or high-rise buildings (9+
stories) (h). For example, if any percentage greater than 0.0% of trees, grass, pavement, and low-rise
buildings is present, that pixel will be coded with tgpl. Using the zonal statistics tabulate area
operation, we computed the area of a combined land cover and building height dataset within each
cell. Examples of coded STURLA pixels can be found in Figure 1(a) and Table 1. Maps of example
parks (Supplementary Figure 1) and boroughs (Supplementary Figure 2) can be found in the
supplementary materials for reference.

Land surface temperature acquisition and processing

Land surface temperature data were accessed from the USGS Earth Explorer using Landsat 7
Analysis Ready Data (ARD). Analysis Ready Data are corrected, pre-processed, and converted to
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Figure 1. (a). Examples of the most frequent STURLA classes in NYC 2008 colored by landscape component
(trees: dark green, grass: light green, bare soil: beige, pavement: gray, bright red: low-rise buildings, medium red:
mid-rise buildings, and dark red: high-rise buildings). (b). Map of the spatial distribution of STURLA classes for
NYC 2008. (c). Map of the spatial distribution of STURLA classes for NYC 2017. (d). Ranked frequency plot of
STURLA classes in NYC 2008. (e). Ranked frequency plot of STURLA classes in NYC 2017. Note: STURLA:
structure of urban landscapes; NYC: New York City.
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LST (in degrees Celsius) by the USGS. It is worth noting that some Landsat striping is present in the
data that may influence the results. All LST values are representative of areas where the satellite
could sample such as building roofs or pavement and not air temperature. It is worth nothing that
LST is being measured and not temperatures inside buildings or their walls, which are meaningful
for heat-human health studies; however, remotely sensed LST is a commonly used proxy and may
be meaningful for other ecosystem processes. After downloading, the mean zonal statistics were
calculated per STURLA pixel for each raster. All available LST rasters for the defined time period
that contained less than 30% cloud cover over the NYC boundaries were used. The time period was
chosen as between June 21st and September 22nd for each year as it would allow us to look at both
the mean across days and the variance between them (Hamstead et al., 2016; Mitz et al., 2021).
These provide a wide representation of summer temperatures to validate that STURLA identifies
patterns between urban structure and LST and thus can be used in future urban planning practices.
All remote sensing images were taken during the daytime with similar solar geometries. Tem-
perature anomalies were found on 07/22/08 and 08/24/17 (see Figure 2(c) and (d)) and were left in
the analyses as they may represent a normal variation in summer temperatures rather than an
instrument error. To validate that LST trends observed between the 2 years were not heavily subject
to climatic/weather anomalies, a permutation Pearson correlation model was constructed (see
Supplementary Figure 3). A high degree of correlation between the years suggests that the years
have similar heat signatures, where a larger deviance would suggest the presence of an anomaly.
This model revealed significant and strong relationships between the 2 years and suggests that direct
comparisons of the 2 years are acceptable; however, it does not fully remove the possibility that an
anomaly may be present.

Data analysis and visualization

All datasets were projected to NAD 1983 State Plane New York Long Island FIPS 3104 Meters.
Quantile classification (5 groups) is used in all maps for visualization as this allows for comparison
of the distribution of data across the years. It is worth noting that other visualization methods such as
natural breaks may produce different visualizations but do not influence the statistical results.
Statistical analysis was done in R. 4.0.1. The similarity of LST hosted in STURLA classes was
determined using hierarchical clustering with Bray-Curtis dissimilarity. This method was chosen as
it is qualitative and allows for compositional comparison between LST by STURLA class (Figure
2(c) and (d)). Land surface temperature values were visualized with a heatmap using scaled and

Table 1. STURLA landscape element magnitude and direction estimation. This table contains the correlation
coefficients (Rho) from permutational Spearman correlations. Bold values indicate p < 0.05 for the correlation
model. All other correlations were insignificant.

Landscape element LST 2008 Rho LST 2017 Rho Δ LST Rho

Trees (t) �0.30 �0.38 �0.07
Grass (g) �0.23 �0.52 �0.05
Bare soil (b) �0.12 �0.30 �0.22
Water (w) �0.09 �0.55 �0.25
Paved (p) 0.34 0.65 �0.07
Low-rise (l) 0.19 0.52 0.38
Mid-rise (m) 0.33 0.33 0.21
High-rise (h) �0.13 0.31 0.03

Note: STURLA: STructure of Urban LAndscapes; LST: land surface temperature.
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centered data to allow comparability between the years. Landscape heterogeneity (# internal
landscape elements per pixel) was calculated as the sum of landscape elements within a pixel
(comprising 1 STURLA class) for all years, and change was calculated as the heterogeneity in a
pixel of 2008 minus that of 2017. For example, STURLA class bpl has a heterogeneity value of 3.
This calculation could miss changes in classes that have retained the same number of landscape
elements, such as a transition from tpg to bpw and is worth noting. Change in surface temperature
likewise was calculated as 2008 LST minus 2017 LST.

Supervised machine learning, random forest regression, models using the caret package (Kuhn,
2008) were used to estimate the strength of the relationship between STURLA classes and mean
LST per class. This model was chosen because it was previously shown to better handle non-
parametric spatial data when compared to linear models (Chen et al., 2017; Oliveira et al., 2012).
Classes with less than 100 pixels were removed as these more infrequent classes likely have less of a
role in overall patterns of surface temperature. Models were built as: Mean LST per STURLA class
∼ Trees % + Grass % + Bare Soil % + Water % + Pavement % + Low-rise % + Mid-rise % + High-
rise %. For this, the data were partitioned into 60% training and 40% validation sets that underwent
10-fold repeated cross validation. Trained models were then used to predict mean LSTwhen given a
STURLA class, which were then projected to each pixel in the STURLA grid. The root mean

Figure 2. ((a): 2008, (b): 2017) Map of LST in NYC where colors closer to blue indicate lower values and
closer to red being higher. ((c): 2008, (d): 2017) Hierarchically clustered heatmap of LST values showing the
LST for each day the mean value as the final column on the right. Between the heatmap and the dendrogram, a
stacked barplot of the mean internal landscape compositions for each STURLA class is shown. The reader is
encouraged to download and zoom into this figure if interested in specific STURLA classes. Note: STURLA:
Structure of Urban Landscapes; LST: land surface temperature; NYC: New York City.
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squared error (RMSE) was used to quantify average model error. Variable importance was measured
using the varImp function and then scaled from 0 to 100 where values closer to 100 are more
important for model accuracy and error reduction. The same process was applied to identify the
mean change in LST per STURLA class and the mean change in landscape component percentages.
To better represent model results, the top and bottom 1.0% of model predictions and subsequent
errors were excluded from mapping.

To account for spatial and temporal autocorrelation, permutational methods were used to es-
timate a distribution from which to generate a p-value. This means that the distribution is not
structured through a spatial process, as the randomization breaks this down by resampling the
parameter values. It is worth noting that even with models that destroy autocorrelative structure,
some autocorrelation may be present. Permutational Spearman correlations using wPerm (Weiss,
n.d.) were used to identify relationships between individual STURLA landscape elements (e.g., h)
with LST for each year as well as change in LST. Permutation also allows for comparison of LST as
the values for each year are drawn from a similar urban landscape and thus a similar underlying
distribution. Differences in changes in STURLA heterogeneity and LST by borough were tested
using permutational T-tests using the package RVAideMemoire (Hervé, 2020). Data and code for
these analyses can be found at: https://github.com/thecrobe/STURLA_NYCChange.

Results

New York City STURLA structure

The 10 most frequent STURLA classes (Figure 1(a)) explained 60.84% and 80.01% of NYC’s
structure in 2008 and 2017, respectively (Figure 1(d) and (e)). For 2008 and 2017, only 15 STURLA
classes contained exclusively the natural environment (classes composed of combinations of t, g, b,
and w) that cover a mean between the years of 5.69% of NYC’s landscape. In 2008, the most
common STURLA class per borough was tgpl in Brooklyn (9.85%), Staten Island (26.32%), and
Queens (24.36%). Class tgp dominated The Bronx (13.04%) and tph in Manhattan (19.94%).

In 2017, class tgpl was still the most frequent (and became more abundant) in Staten Island
(36.46%) and Queens (34.37%). Relatively large changes in urban structure occurred in Brooklyn,
The Bronx, and Manhattan. Class tgplmh dominated Brooklyn (34.79%) and demonstrated gains
and transitions from the 2008 most abundant class, tgpl. Class tgph (21.58%) replaces tph as the
most common in Manhattan. The Bronx grew vertically with class tgplmh becoming the most
frequent (20.51%). The spatial distribution of STURLA classes was heterogenous; however,
specific classes are clustered throughout the city (e.g., tgp in Highland Park and Floyd Bennet Field
in Brooklyn). Likewise, classes with h were largely found in Manhattan (tgph) and Brooklyn
(tgplmh).

New York City surface temperature

New York City 2008 LST ranged from 21.30°C to 46.57°C across the urban landscape with a mean
of 32.24°C. Each borough hosted unique LST values that significantly differed from each other (all
p < 0.002) with the exception of The Bronx and Staten Island (p = 0.48) and Staten Island with
Queens (p = 0.992). The hottest borough on average was Queens (34.19°C) followed by Brooklyn
(33.83°C), The Bronx (32.62°C), Staten Island (32.59°C), andManhattan (32.23°C). In 2017, NYC
had a narrower range in LSTcompared to 2008 with from 18.23°C to 43.87°C with a higher mean of
32.77°C. For 2017 the hottest borough on average was still Queens (33.46°C) followed by Brooklyn
(32.75°C), The Bronx (32.51°C), Manhattan (32.19°C), and Staten Island (31.97°C). Similar to
2008, in 2017 each borough hosted unique LST values that significantly differed (p < 0.002) from
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each other still excluding The Bronx and Staten Island (p = 0.48). In contrast, Manhattan and Staten
Island differed (p = 0.778) in LST signatures in 2008. While the LST signatures of each year’s
summer were highly correlated (R2, slope = 0.9, Supplementary Figure 3), a slope of less than 1.0
may also suggest subtle changes in climate between the years; however, this is difficult to separate
from the change in urban structure.

Distinct patterns of LST within the city were consistent across the years. Greenspaces such as
Central Park in Manhattan hosted lower surface temperatures than the surrounding STURLA
classes that have greater proportions of the built environment (Figures 1(b) and (c) and 2(a) and (b)).
Similar patterns can be found in other parks/greenspaces across the city (e.g., Pelham Bay Park,
Staten Island Greenbelt, and Prospect Park in Brooklyn). Land surface temperature was highest in
STURLA classes where the built environment dominated (Figure 2(c) and (d), e.g., gpl, tpl, p, pl,
and pm). Likewise, LST was lowest in STURLA classes where there was no built environment
(Figure 2(c) and (d), e.g., tgbw, tgw, gbw, gw, and w). These patterns are intensified in 2017 as the
built environment (classes with p, l, m, and h) clusters more than in 2008 and host the highest LST
across the landscape. Conversely, STURLA classes with water cluster more readily and host the
lowest LST.

Change in urban structure and surface temperature

New York City’s urban structure became more homogenous as the number of STURLA classes
decreased from 139 classes in 2008 to 118 classes in 2017; however, individual STURLA pixels
generally became more heterogenous and gained landscape elements (Figure 3(b), e.g., t or p).
Water was the least common feature, and STURLA classes with water did not change greatly, with
the exception of areas largely located in Staten Island and Jamaica Bay. Changes in STURLA
classes were not uniform as some STURLA pixels changed greatly, for example, the addition of a
green roof in Figure 3(a), while others remained relatively the same. An average of +1.344
landscape elements were gained (Figure 3(b), e.g., a tpl pixel in 2008 gaining g and becoming tgpl).
On average, Manhattan (+1.768) gained the most internal landscape elements, followed by
Brooklyn (+1.626), The Bronx (+1.544), Queens (+1.123), and Staten Island (+1.097). Each
borough gained STURLA class elements differently (all p < 0.002). STructure of URban
LAndscape classes composed of a mixture of the built and natural environment (e.g., Midtown
Manhattan and Brooklyn) experienced greater gains in the number of STURLA elements across the
city as compared to greenspaces (e.g., parks) which became more homogenous despite additions of
different landscape elements.

Across NYC as a whole, LST per pixel increased from 2008 to 2017 by a mean of +0.47°C
(Figure 3(c)). Changes in LST also varied by borough (p > 0.002), with the exception of The Bronx
withManhattan (p = 0.454), Manhattan with Queens (p = 0.084), and Queens with Staten Island (p =
0.966). Decreases in LSTwere largely found in Brooklyn, South Queens, Central Staten Island, and
the South Bronx. LST increased in North Queens, Manhattan, and South Staten Island. Land surface
temperature change for the 10 most frequent classes were tgpl (�3.57°C), tgplmh (�2.88°C), tgplm
(�3.49°C), tgp (+0.212°C), tgplh (�3.30°C), tgph (�2.29°C), tgwp (+1.24°C), tgbp (+0.24°C),
tgbwp (+0.92°C), and tgpmh (�2.76°C).

The change in LST modeled as a function of changes in internal STURLA components (e.g.,
mean percentage of t decreasing 0.03% in class tgpl) revealed a moderate relationship (Figure 3(e),
R2= 0.433, RMSE: 2.72°C). This association was driven by changes in water (Supplementary
Figure 5), low-rise buildings, and pavement (all variable importance >25%). Likewise, modeling at
the STURLA class level outperforms correlations between individual STURLA elements (e.g.,
change in LST ∼ change in percentage t) (Table 1). Univariate correlations between change in LST
demonstrated significant (p > 0.05) relationships with bare soil, water, low-rise, and mid-rise within
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STURLA class percentages (Table 1). Land surface temperature decreased with increasing amounts
of bare soil and water while the opposite relationships were observed for the built environment. A
permutational model testing the relationship between LST in 2008 to LST in 2017 per STURLA
pixel revealed a strong positive correlation (Supplementary Figure 1, R2: 0.815, p < 0.0001) and
suggests that the majority of variation in LST is due to urban structure; however, climatic trends may
also influence this study’s results but to a relatively small degree. Likewise, moderate to strong
significant positive correlations were found between LST for each year when separated by STURLA
class; however, the strength of the relationship varied by class (Supplementary Figure 4).

Land surface temperature prediction by STURLA class

STructure of URban LAndscape classes were able to explain and predict LST across NYC for both
2008 (R2:0.788, RMSE:0.34°C) and 2017 (R2:0.788, RMSE: 1.90°C) better than any individual
within class landscape element (Table 1). Despite strong correlations between urban structure and
LST, the relative role of STURLA internal class elements differed. 2008 models relied on paved,
trees, high-rise, grass, and bare soil to predict LST (Figure 4(a), all variable importance >25%). In
contrast, 2017 LSTwas largely predicted by the presence and distribution of STURLA classes with
pavement and water (Figure 4(d), all variable importance >25%). Both models predicted higher LST
in classes hosting the built environment (e.g., tgplm, Figures 4(b) and (e)) and lower temperatures in
those that are partially vegetated (e.g., tgp and tg). Predicted values were greater in 2017 than 2008.
Models overpredicted LST in areas with greenspace (e.g., parks) and STURLA classes dominated
by bare soil for both years (Figures 4(c) and (f)). In contrast, they underpredicted where classes tgpl
and tgplmh dominated.

Figure 3. (a). Example of STURLA pixels that underwent different degrees of change in structure. (b). Map of
change in STURLA class heterogeneity. (c). Map of change in mean surface temperature. (d). Random forest
regression variable importance for Δ LST as a function of Δ in landscape element percentages. Note: STURLA:
Structure of Urban Landscapes; LST: land surface temperature.
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Univariate correlations estimate the direction of each variable on STURLA class LSTas it cannot
be inferred from random forests. In 2008, percentage paved had significant positive relationships
with LST. For 2017, all within class elements had significant relationships (p > 0.05) with LST. As
percentages of trees, grass, bare soil, and water increase, mean LST per STURLA class decreased.
The opposite relationship was found where LST increased as the percentages of the built envi-
ronment (paved, low-rise, mid-rise, and high-rise) also increased.

Discussion

New York City urban structure

The urban landscape for both years was unsurprisingly dominated by STURLA classes in the
built environment with the exception of established parks and greenspaces. The top 10 classes
found in each year varied greatly with both transitions from the most prevalent STURLA classes
to new urban forms as well as differences in their distribution. 2017 became more homogenous as
demonstrated by the top 10 classes explaining a greater proportion of NYC’s landscape as
compared to 2008. However, the small spatial scale nature of STURLA allowed for identification
of change in urban heterogeneity, that is, the reduction of 21 classes, which may be overlooked
with classification systems at larger spatial scales. Likewise, the city as a whole grew vertically as
l, m, and h STURLA elements were commonly added. Brooklyn experienced the greatest change
in the vertical dimension as classes tgpl and tgp transitioned to tgplmh. With the growth in these
vertical landscape elements, a relative shift in the internal landscape proportions of the classes in
Brooklyn and The Bronx occurs as a function of STURLA’s compositional (elements sum to 1)
nature.

Figure 4. ((a): 2008, (d): 2017) Random forest regression variable importance for LST prediction with
coefficient and error at the top left. ((b): 2008, (e): 2017) Map of predicted LST per STURLA class where
darker colors indicate lower LST and lighter colors being higher LST. ((c): 2008, (f): 2017) Model error from
random forest regression shown as a ratio of predicted/measured LST. Note: STURLA: Structure of Urban
Landscapes; LST: land surface temperature.
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3D urban structure influences surface temperature over time

STructure of URban LAndscape captured the urban structure-heat relationship as demonstrated by
STURLA classes hosting unique LST values and robust correlations with relatively low error across
the urban landscape across time and space. Changes in urban structure were able to partially explain
changes in LSTacross the years. Variation in LSTwas largely attributed to compositional changes in
the proportions of water and the built environment (low-rise, mid-rise buildings, and pavement).
This is logical given the large heat capacity of water; thus, a small amount would have a con-
siderable influence on a STURLA pixel’s heat signature as was seen with the water added largely in
Staten Island and Jamaica Bay. Likewise, low-rise and mid-rise buildings are prevalent in NYC and
are cheaper to build/demolish in a short period of time. This contrasts with the addition/removal of
high-rise buildings, which logistically should take longer and be less frequent. These results further
support that urban heat can be influenced by building height and shape (Palme et al., 2018; Stewart
and Oke, 2012).

Furthermore, STURLA models displayed better associations and more robust predictions than
other 2-dimensional models of urban structure (Connors et al., 2013). This is due to each STURLA
class being able to contain differing percentages of each landscape element, thus offering a more
realistic representation of urban structure. Despite this, limitations do exist, for example, two pixels
of STURLA class gwp may contain vastly differing percentages of grass, water, and pavement.
These compositional variations may be sources of error in models as a function of uncertainty
propagation. Likewise, the within class variation and neighborhood effects of nearby pixels of same
or different STURLA classes may be influencing local LST signatures as demonstrated in Berlin
(Kremer et al., 2018). This could be seen where a pixel coded as STURLA class p neighbors a tgph
pixel that may cast a shadow on the p pixel and thus cool the first pixel’s relative LST compared to
other p pixels across the city. It is worth noting that neighborhood effects would be present in other
urban classification-function studies as well.

Our findings that STURLA classes composed largely of the built environment host higher LST
values in both years complement studies in cities of varying sizes across the globe with different
climates and biomes: Beijing (Kuang et al., 2015), Berlin (Kottmeier et al., 2007; Kremer et al., 2018),
Lagos (OS and AA, 2016), Kunming (Chen and Zhang, 2017), Melbourne (Jamei et al., 2019), NYC
(Hamstead et al., 2016; Susca et al., 2011), Phoenix (Buyantuyev andWu, 2010; Connors et al., 2013),
Tehran (Bokaie et al., 2016), and Vancouver (Voogt and Oke, 1998). Unsurprisingly, pixels and
STURLA classes with greater proportions of greenspace (containing t and or g) hosted lower LST
signatures. What is interesting here is that it further supports the notion that urban management can
benefit from thinking of urban structure compositionally, as the greenspace in these classes likely
confers lower heat signatures to the other landscape components (e.g., p).

STructure of URban LAndscape as an alternative and complementary to identifying
urban heat patterns

STructure of URban LAndscape provides a way of understanding changes in urban heat as an
addition to other popular methods such as LCZs. In fact, in this study, the STURLAmodel displayed
higher correlations with LST over time than a study that employed LCZs in Hamburg, Germany
(Bechtel, 2011). This supports the idea that the benefits of small spatial scale and explicit vertical
height are important for urban structure modeling.

STructure of URban LAndscape allows the urban structure of a city to define the classification
without a-priori binning of infrastructures into classes. With 255 potential combinations of urban
structure that may or may not all be present in a city, it allows for high flexibility in explanatory
power. This fidelity may complement the more generalized LCZ system that offers a smaller number
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of classes, that is, 17, to describe urban structure. In most cities tested, STURLA only needs 15–25
classes to explain urban structure (Cummings et al., 2022; Hamstead et al., 2016; Mitz et al., 2021;
Stewart et al., 2021), and thus, it is quite similar to LCZs but still provides room for novel urban
structures to emerge and be classified. However, future studies of STURLA are needed to determine
if these relationships are seen in other cities with differing climates and histories.

Another point of distinction in the STURLA method is that it incorporates the 3D shape of cities
by using measured building height instead of estimating this from variables such as percentage sky
view available (Demuzere et al., 2019). Lastly, STURLA works at small spatial scales that are
meaningful for urban planners (120 m2) as opposed to the 100s–1000s of meter scale of LCZs.
While it has been well established that LST is largely dependent on building height, pavement, and
greenspace (Stewart et al., 2014) (as is also demonstrated in this study), STURLA pixels are
geographically meaningful for neighborhood development projects. Urban planners could evaluate
different configurations and proportions of the built and natural environment using STURLA-based
prediction and error models to best identify how to mitigate high LST in neighborhoods.

These properties of STURLA could be leveraged statistically as well to explain more nuanced
microclimates by allowing the city itself to define its classification system. Likewise, STURLA
classes could be updated in patches (per pixel or groups of pixels) that have changed urban form,
such as a building being constructed, as this information becomes available, instead of relying on
remotely sensed information that could be generated less frequently and subject to local weather
conditions such as clouds. Further, STURLA provides meaningful and simple units of urban
structure that could identify trends in urban processes, such as this study demonstrates with surface
temperature, that could be applied to any city globally.

Conclusion

In this paper, we used remote sensing of urban heat with the STURLA method, which was linked
together by machine learning and statistical modeling, to identify the urban spatial-temporal structure-
surface temperature relationship in NYC over a decade. Understanding these dynamics is crucial to
future sustainable and egalitarian urban planning, given how urban surface temperature influences
human well-being and urban biodiversity. We conclude that NYC as a whole is becoming more
homogenous by growing taller, largely in Brooklyn and Manhattan, and, on average, showed higher
LST in 2018 compared to 2008. Likewise, these changes are linked to specific three-dimensional
urban units where change in heat signatures is the prevalence and distribution of water, low-rise, and
paved buildings. This study reinforces that STURLA is a computationally inexpensivemodel and aids
in understanding LST effects and offers context for sustainable development and urban planning at
small spatial scales. Limitations of this study include an analysis of only two timepoints, that
STURLA is agnostic to the physical composition of building materials, and the influence of species
and functional traits in the vegetative elements of a STURLA class. Future studies should incorporate
other measures of urban ecosystems such as plant biodiversity.
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