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a b s t r a c t 

In closed-loop or online scheduling the realization of uncertainty in plant operations is addressed in real- 

time though consistent and frequent reoptimization and rescheduling. Although some simulation studies 

have explored the robustness of closed-loop scheduling for specific case studies, there are no theoretical 

results addressing the robustness of closed-loop scheduling. In this paper, we present and justify an ap- 

propriate definition of robustness for closed-loop scheduling subject to large and infrequent disturbances 

such as breakdowns and delays. Assuming that a reasonable reference trajectory for the nominal system is 

available, we construct a novel terminal constraint and corresponding terminal cost for a general produc- 

tion scheduling problem. Through appropriate assumptions we establish that the proposed closed-loop 

scheduling algorithm is inherently robust to large, infrequent disturbances. We conclude with an exam- 

ple to illustrate the implications of this analysis. For this example, the proposed algorithm outperforms a 

typical online scheduling algorithm. 

© 2022 Elsevier Ltd. All rights reserved. 

1. Introduction 

Generation and execution of high-quality schedules is a cru- 

cial activity for a competitive manufacturing facility ( Maravelias, 

2012; Harjunkoski et al., 2014 ). Over the past few decades, op- 

timization, specifically mixed-integer linear programming (MILP), 

has found a significant role in generating these high-quality sched- 

ules ( Harjunkoski et al., 2014 ). Through representations such as 

the state-task network (STN) or resource-task network (RTN), a 

scheduling problem is formulated as an optimization of some per- 

formance metric of a manufacturing facility (e.g., profit) subject to 

the production constraints of the facility (e.g., processing times) 

( Kondili et al., 1993; Pantelides, 1994 ). 

Improved modeling and optimization capabilities have received 

considerable attention, but generating a single schedule is not suf- 

ficient in practice. Demand variations, delays, and breakdowns en- 

sure that the optimal schedule at one time is suboptimal or infea- 

sible a short time later. Robust and stochastic optimization meth- 

ods attempt to address this issue by generating a single schedule 

that accounts for uncertainty a priori ( Balasubramanian and Gross- 

mann, 2004; Bonfill et al., 2004; Lappas and Gounaris, 2016; Lap- 

pas et al., 2019; Li and Ierapetritou, 2008c; Lin et al., 2004; Sand 

and Engell, 2004; Shi and You, 2016; Vin and Ierapetritou, 2001 ). 

Lappas and Gounaris (2016) , in particular, address the problem of 
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uncertainty in processing times, in addition to demand variations. 

While accounting for uncertainty a priori is a valid approach, char- 

acterizing this uncertainty is difficult and often robust schedules 

are overly conservative leading to loss of nominal performance 

( Harjunkoski et al., 2014; Li and Ierapetritou, 2008a ). Furthermore, 

sufficiently large endogenous disturbances, e.g., processing delays 

and unit breakdowns, may render even robust schedules infeasi- 

ble. 

An alternative approach to handling uncertainty is to react in 

real time to the realization of uncertainty, i.e., a feedback method. 

Often referred to as reactive or online (re)scheduling, this approach 

includes heuristic, optimization-based, and hybrid methods that 

generate a new, feasible, and, if optimization is employed, superior 

schedule whenever disturbances occur ( Cott and Macchietto, 1989; 

Huercio et al., 1995; Elkamel and Mohindra, 1999; Ferrer-Nadal 

et al., 2007; Janak et al., 2006; Vin and Ierapetritou, 20 0 0; Mendez 

and Cerdá, 2004; Chu and You, 2014; Novas and Henning, 2010; 

Lappas and Gounaris, 2016; Cui and Engell, 2010; Kopanos and Pis- 

tikopoulos, 2014; Li and Ierapetritou, 2008b ). A natural extension 

of these reactive methods is to reschedule at fixed sampling in- 

tervals, regardless of whether a disturbance occurs ( Subramanian 

et al., 2012; Gupta and Maravelias, 2016; Gupta et al., 2016 ). While 

this extension is often labeled online or rolling horizon scheduling, 

we employ the title closed-loop scheduling in this work to empha- 

size the parallels between closed-loop scheduling and feedback, or 

closed-loop, control. By reoptimizing at every time step, we gain 

the desirable features of feedback methods, but we also inherit 
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their complexity. Methods to avoid scheduling nervousness asso- 

ciated with closed-loop scheduling have been proposed ( McAllister 

et al., 2020; Dalle Ave et al., 2019; Lee et al., 2020 ). However, naive 

reoptimization at every sample time can lead to myopic behav- 

ior and poor performance even in the nominal case, i.e., no dis- 

turbances and the system model is accurate ( Subramanian et al., 

2012; Gupta and Maravelias, 2016; Risbeck et al., 2019 ). 

To analyze the dynamic behavior of closed-loop scheduling, 

Subramanian et al. (2012) demonstrate that typical scheduling 

problems can be converted to dynamic state-space models. This 

state-space formulation fits within the framework of model pre- 

dictive control (MPC). MPC uses this state-space model to predict 

the future states of the system and solves for the optimal trajec- 

tory of control actions (i.e., a schedule). By casting the closed-loop 

scheduling problem in the MPC framework, we can utilize the the- 

oretical results associated with this control technique. These the- 

oretical results address systems with discrete-valued constraints 

on inputs and economic cost functions, both essential to closed- 

loop scheduling ( Rawlings and Risbeck, 2017; Risbeck and Rawl- 

ings, 2019; Amrit et al., 2011; Angeli et al., 2012; Ellis et al., 2014; 

Risbeck et al., 2019 ). A particularly useful theoretical result from 

economic MPC literature is the nominal performance guarantee af- 

forded by terminal equality constraints. By constraining the indi- 

vidual open-loop optimizations to terminate along a reference tra- 

jectory, we can guarantee that the nominal closed-loop cost is no 

worse than that of the reference trajectory ( Subramanian et al., 

2012; Risbeck et al., 2019; McAllister et al., 2020 ). 

While nominal guarantees are essential to guard against partic- 

ularly poor closed-loop performance, the main purpose of closed- 

loop scheduling, and feedback methods in general, is to quickly re- 

spond to disturbances. Thus, the impact of uncertainty on the per- 

formance, i.e., robustness, of closed-loop scheduling is of particular 

importance. Gupta and Maravelias (2020) provide a detailed frame- 

work to study the impacts of uncertainty on production scheduling 

for individual facilities. Using this framework, the authors are able 

to draw useful insights for the design of closed-loop scheduling al- 

gorithms for specific case studies. 

In contrast to quantitative and empirical robustness results for 

specific case studies, this work focuses on defining and establishing 

robustness properties for general closed-loop scheduling problems. 

The goal is to guarantee, under a set of reasonable assumptions, 

that a general closed-loop scheduling algorithm is inherently ro- 

bust to some nonzero amount of uncertainty/disturbances. A sys- 

tem is deemed robust if arbitrarily “small” disturbances cannot 

cause large decreases in performance. The term inherent robustness 

refers to the robustness afforded by feedback and without consid- 

ering uncertainty a priori through robust or stochastic optimization 

techniques. 

For tracking MPC, inherent robustness is characterized by ro- 

bust asymptotic stability of the closed-loop system subject to 

small, persistent disturbances ( Grimm et al., 2004; Pannocchia 

et al., 2011; Allan et al., 2017 ). For closed-loop scheduling, however, 

the metric of interest is economic performance instead of stability. 

Furthermore, the class of disturbances most relevant to production 

scheduling are large and infrequent, such as breakdowns and de- 

lays, instead of small and persistent, like measurement noise. Thus, 

we use the results in Mcallister and Rawlings (2021) that establish, 

under suitable assumptions, the inherent robustness of economic 

MPC subject to large, infrequent disturbances. 

We summarize the subsequent sections as follows. In Section 2 , 

we define a general scheduling problem, establish that this prob- 

lem can be cast as an economic MPC problem, and review the 

nominal properties of economic MPC subject to specific assump- 

tions. In Section 3 , we provide a motivating example, define eco- 

nomic robustness to large, infrequent disturbances, and establish 

that, under a few additional assumptions, economic MPC satisfies 

this definition of robustness. In Section 4 , we construct a termi- 

nal constraint and cost for our general closed-loop scheduling for- 

mulation using a suitable reference trajectory and establish, under 

reasonable assumptions, that the closed-loop system is econom- 

ically robust to large, infrequent disturbances. We conclude with 

an example in Section 5 that demonstrates the implications of this 

analysis and compares the performance of the proposed algorithm 

with that of a typical online scheduling algorithm. 

Notation 

Let I denote integers and R denote reals. Let superscripts on 

these sets denote dimension and subscripts on these sets denote 

restrictions (e.g. R n 
≥0 for nonnegative reals of dimension n ). The set 

T ⊆ I ≥0 denotes discrete time points. The function α : R ≥0 → R ≥0 

is of class K if it is continuous, strictly increasing, and α(0) = 0 . 

We use | · | to denote absolute value when applied to a scalar, the 

Euclidean norm when applied to a vector, and the induced 2-norm 

when applied to a matrix. Therefore, we have | Ax | ≤ | A || x | in which 

A is a matrix and x is a vector. We use A " to denote the transpose 

of the matrix/vector A . Sequences are denoted in bold face. We use 

Pr (A ) to denote the probability of event A and E [ ·] to denote ex- 

pected value of a random variable (or function of a random vari- 

able). 

2. Closed-loop scheduling and MPC 

2.1. The general scheduling problem 

We define the chemical production scheduling problem for a 

discrete-time grid and batch processes as follows. Given (i) produc- 

tion facility data, (ii) production costs, (iii) material and resource 

availability, and (iv) production targets or orders, determine the 

optimal assignment of tasks and batch sizes to units at each time, 

i.e., a schedule. In this work, we define the minimum cost (max 

profit) as optimal. To represent the manufacturing facility we use 

the state task network (STN) representation ( Kondili et al., 1993 ). 

In the STN representation, the facility consists of tasks i ∈ I , 

units j ∈ J , and materials k ∈ K . The subset of tasks i that can 

be carried out on unit j are denoted by I j . We denote the sub- 

set of materials that are considered products for the facility as 

K P ⊆ K , i.e., the materials for which we have demand or that can 

be sold for profit. Similarly, we denote the subset of intermediate 

and feedstock materials as K I = K \ K P . The parameters ρik / ̄ρik de- 

fine the mass fraction of material k produced ( > 0 for produced, 

< 0 for consumed) by starting/completing, respectively, task i rel- 

ative to the batch size of the task. The parameters τi j , β
min 
i j , and 

βmax 
i j 

denote the processing time, minimum batch size, and max- 

imum batch size for task i carried out on unit j. We also require 

that inventory of each material not exceed a maximum inventory 

capacity denoted by ˜ ψ k for each k ∈ K I and ψ k for each k ∈ K P . 

The fixed and proportional production costs of carrying out task 

i on unit j are αF 
i j and α

P 
i j , respectively. We consider both incom- 

ing deliveries, ζk (t) , for each intermediate and feedstock k ∈ K I and 

outgoing demand, ξk (t) , for each product k ∈ K P at certain times 

t . The sales price of material k ∈ K is πk . The inventory cost and 

backlog cost for product material k ∈ K P are π S 
k 

and πU 
k 
, respec- 

tively. We assume that there are no inventory costs for intermedi- 

ate and feedstock materials. 

We use this STN representation to construct a state-space 

scheduling model similar to Subramanian et al. (2012) and 

Gupta and Maravelias (2016) . We define the binary decision vari- 

able W i j (t) to be unity if task i is to start on unit j at the current 

time t . We also define the continuous decision variable B i j (t) to 

denote the batch size of task i on unit j at time t . To track these 
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decisions in the state of the system we “lift” W and B with the 

state variable W̄ n 
i j 
(t) and B̄ n 

i j 
(t) for all n ∈ { 0 , . . . , τi j } . The index 

n is the progress status of the task (e.g. if W̄ n 
i j 
(t) = 1 , task i on 

unit j is n/τi j complete at time t). The state variables ˜ S k (t) are the 

inventory levels of intermediate and feedstock materials k ∈ K I at 

time t . The state variables S k (t) , U k (t) are the inventory and back- 

log (unmet demand) levels, respectively, of product material k ∈ K P 

at time t . The decision variable H k (t) is the amount of material k 

shipped to meet demand. We assume that there is a large, but fi- 

nite, upper bound on amount of material k that can be shipped to 

meet demand, i.e., we define ηk ∈ R ≥0 and require H k (t) ≤ ηk . 

We also add an option for the scheduler to “hold” materials in 

a processing unit after a task is complete. Specifically, for each task 

i ∈ I j , we may define a new task i " ∈ I j that holds material in the 

processing unit after task i is complete. We denote the subset of 

hold tasks as I h 
j 
⊆ I j and we denote the mapping of each hold task 

i " ∈ I h 
j 
to its corresponding production task i ∈ I j \ I 

h 
j 
as h (i " ) = i . In 

the scheduling model, the hold task i " consumes and produces the 

same set of materials produced by task i = h (i " ) , has a processing 

time of 1 time step, and can only be run after task i is completed 

or after a previous hold task i " is completed. While this option was 

originally proposed decades ago by Kondili et al. (1993) , the impor- 

tance of this action in terms of online scheduling seems underap- 

preciated. In fact, including the option to hold materials (or some 

similar action) is often necessary to ensure that the closed-loop 

scheduling algorithm (or any scheduling algorithm for that matter) 

can satisfy maximum inventory constraints for intermediates when 

subject to disturbances such as delays and demand variations. Sim- 

ilarly, Avadiappan and Maravelias (2021) propose adding delays as 

optimization variables to ensure feasibility. 

The decision variable V k (t) is the amount of material pur- 

chased/sold in excess of demand ( > 0 for purchased, < 0 for sold). 

The parameters νP 
k 
/νS 

k 
are the maximum amount of each mate- 

rial that can be purchased or sold in excess of demand, respec- 

tively. Note that in some facilities, all materials have νP 
k 

= νS 
k 

= 0 

and therefore, V k = 0 and is ignored. We use νS 
k 
to distinguish be- 

tween cost minimization and profit maximization problems. In the 

former, νS 
k 

= 0 for all k ∈ K and we seek only to meet demand at 

minimum cost. In the latter, νS 
k 

> 0 for some k ∈ K and the mini- 

mum cost optimization problem is sometimes referred to as profit 

maximization. Either way, the scheduling problem may be written 

using the general structure presented in this section. 

In addition to these standard decision variables, we also allow 

inventory (material) disposal at each time step for product materi- 

als. We define the nonnegative input variable D k to be the amount 

of inventory disposed for each material k ∈ K P . We also specify up- 

per bounds for inventory disposal for each material k ∈ K P as μk . 

We apply significant cost for this action ( πD 
k 
) to discourage the op- 

timizer from using this action. However, the additional flexibility 

provided by these variables, as discussed in subsequent sections, 

is essential to construct a closed-loop scheduling algorithm that is 

inherently robust for a general class of scheduling problems. 

Remark 1. In practice, inventory “disposal” can be treated in many 

ways aside from the usual interpretation (e.g., waste). For example, 

we can ship the material to a long-term storage facility or move 

the material to a separate storage unit on-site. The only require- 

ment is that this disposal action removes the material from the 

inventory state and therefore removes it from the cost function. 

We consider disturbances in this scheduling model. We define 

the binary variable Y j (t) to be unity if unit j experiences a de- 

lay of one sample time during [ t, t + 1) . We also define the binary 

variable Z j (t) to be unity if unit j experiences a breakdown during 

[ t, t + 1) and remains down until t + 1 . Next, we define a fractional 

yield loss of material on unit j at time t as L j (t) which takes val- 

ues in [0,1] (e.g. L j = 0 . 25 is a 25% loss of material on unit j). Since 

individual units are not permitted to run more than one task at a 

time, we can specify our disturbance variables by only the unit af- 

fected. 

With these variable and parameter definitions we construct the 

following discrete-time dynamic model. To streamline notation, we 

note that all variables on the right-hand side of the equality state- 

ments are at time t and the left-hand side at time t + 1 denoted 

by + . For all i ∈ I j , j ∈ J such that τi j ≥ 2 we have 

( W̄ 
0 
i j ) 

+ = ( W̄ 
0 
i j + W i j ) Y j (1 − Z j ) 

( W̄ 
1 
i j ) 

+ = 
"

( W̄ 
0 
i j + W i j )(1 − Y j ) + W̄ 

1 
i j Y j 

"

(1 − Z j ) 

( W̄ 
τi j 
i j 

) + = W̄ 
τi j −1 

i j 
(1 − Y j )(1 − Z j ) 

( ̄B 0 i j ) 
+ = ( ̄B 0 i j + B i j ) Y j (1 − Z j )(1 − L j ) 

( ̄B 1 i j ) 
+ = 

"

( ̄B 0 i j + B i j )(1 − Y j ) + B̄ 1 i j Y j 
"

(1 − Z j )(1 − L j ) 

( ̄B 
τi j 
i j 

) + = B̄ 
τi j −1 

i j 
(1 − Y j )(1 − Z j )(1 − L j ) 

and 

( W̄ 
n 
i j ) 

+ = (W 
n −1 
i j (1 − Y j ) + W 

n 
i j Y j )(1 − Z j ) 

( ̄B n i j ) 
+ = (B n −1 

i j (1 − Y j ) + B n i j Y j )(1 − Z j )(1 − L j ) 

for all n ∈ { 1 , . . . , τi j − 1 } . 1 

We note that the “variables” Y j , Z j , L j enter the model as bi- 

linear terms. These variables, however, are actually parameters (if 

they are considered at all) in the deterministic optimization prob- 

lem solved to generate a schedule. With this formulation, we need 

to specify only the unit that is delayed/broken and the model rep- 

resentation enforces realistic behavior of all the lifted variables. 

For intermediate and feedstock materials ( k ∈ K I ), we model the 

discrete-time evolution of inventory as 

˜ S + 
k 

= ˜ S k + 

" 

j∈ J 

" 

i ∈ I j 

"

ρ̄ik ̄B 
τi j 
i j 

+ ρik B i j 
"

+ V k + ζk 

For products ( k ∈ K P ), we model the discrete-time evolution of 

inventory and backlog as follows. 

S + 
k 

= S k + 

" 

j∈ J 

" 

i ∈ I j 

"

ρ̄ik ̄B 
τi j 
i j 

+ ρik B i j 
"

+ V k − H k − D k 

U 
+ 
k 

= U k − H k + ξk 

Subsequently, we employ the methods discussed in 

Subramanian et al. (2012) (and further refined in Gupta and 

Maravelias (2020) ), to represent this scheduling model as a 

discrete-time state-space model with associated constraints. To 

streamline notation, we begin by defining each variable without 

subscripts to indicate a column vector containing the variable at 

each subscript, e.g., 

W̄ := 
"

( W̄ 
n 
i j ∀ j ∈ J , i ∈ I j , n ∈ I [0 ,τi j ] ) 

"" 

S := 
"

(S k ∀ k ∈ K 
P ) 

"" 

We define the state, input (decisions), and disturbance for the sys- 

tem, respectively, as 

x = 

£ 

¤ 
¤ 
¤ 
¥ 

W̄ 

B̄ 
˜ S 
S 
U 

¦ 

§ 
§ 
§ 
¨ 

u = 

£ 

¤ 
¤ 
¥ 

W 

B 
V 
H 

D 

¦ 

§ 
§ 
¨ 

w = 

� 
Y 
Z 
L 

� 

1 If instead τi j = 1 , we must slightly modify these equations. 
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Using these variables we can represent the dynamic evolution of 

the system as 

x + = f (x, u, w, t) (1) 

with x ∈ R n , u ∈ R m , w ∈ R p , and t ∈ T . Note that for w = 0 , we 

have an linear affine description of the system, 

f (x, u, 0 , t) = Ax + Bu + c(t) 

in which A ∈ R n ×n , B ∈ R n ×m , and c(t) ∈ R n . 

In addition to dynamic equations, we impose the following con- 

straints on the state and decision variables at each time step to 

enforce one-task-per-unit and batch size requirements. 

" 

i ∈ I j 

τi j 
" 

n =0 

W̄ 
n 
i j ≤ 1 ∀ j ∈ J (2) 

βmin 
i j W i j ≤ B i j ≤ βmax 

i j W i j ∀ i ∈ I j , j ∈ J (3) 

We also require that the hold tasks are only available after the ap- 

propriate production task is complete. 

W i j ≤ W̄ 
τh (i ) j 
h (i ) j 

+ W̄ 
1 
i j ∀ i ∈ I h j (4) 

We enforce the appropriate variable ranges as follows. 

W i j , W̄ 
n 
i j , X j ∈ { 0 , 1 } B i j , B̄ 

n 
i j ∈ [0 , βmax 

i j ] ∀ i ∈ I j , j ∈ J 

˜ S k ∈ [0 , ˜ ψ k ] ∀ k ∈ K 
I 

S k ∈ [0 , ψ k ] , U k ≥ 0 ∀ k ∈ K 
P 

−νS 
k ≤ V k ≤ νP 

k 0 ≤ H k ≤ ηk ∀ k ∈ K 

0 ≤ D k ≤ μk ∀ k ∈ K (5) 

We denote the state and inputs constraints in (2), (3) , and (5) us- 

ing the sets X and U and require that x ∈ X and u ∈ U . For the 

constraint in (4) , we require a more general mixed constraint on 

the state and input. We combine all these constraints into the set 

Z ⊆ X × U and require that (x, u ) ∈ Z . 

Note that Z is closed and U is compact, i.e., closed and bounded. 

The disturbances may only take values in the compact set, 

W := { w ∈ R 
p 
[0 , 1] 

| Y j , Z j ∈ { 0 , 1 } ∀ j ∈ J } 

Next, we define the stage cost as 

� (x, u, t) := q " x + r " u (6) 

for q ∈ R n and r ∈ R m . Specifically, 

q " = 
"

0 0 0 (π S ) " (πU ) " 
"

r " = 
"

(αF ) " (αP ) " π " 0 (πD ) " 
"

With this notation, we may write the schedule optimization prob- 

lem starting from state x at time t as follows. 

min 
x , u 

t+ N−1 
" 

k = t 

� (x (k ) , u (k ) , k ) (7) 

s.t. x (k + 1) = f (x (k ) , u (k ) , 0 , k ) ∀ k ∈ I [ t ,t + N−1] 

(x (k ) , u (k )) ∈ Z ∀ k ∈ I [ t ,t + N−1] 

x (t) = x, x (t + N) ∈ X 

We note that this optimization problem is typical of any online 

scheduling problem, i.e., find the minimum cost subject to con- 

straints on the facility and nominal operation. 

2.2. Model predictive control 

Next, we introduce the framework of MPC. We consider dis- 

crete, time-varying systems of the form 

x + = f (x, u, w, t) 

defined for the state x ∈ X ⊆ R n , input u ∈ U ⊆ R m , and disturbance 

w ∈ W ⊆ R p at the discrete time index t ∈ T . The successor state at 

time t + 1 is denoted x + . Note that the constraints X , U , and Z may 

enforce integer-valued constraints on the state and input. 

The nominal system is described by 

x + = f (x, u, 0 , t) (8) 

For the current state x and input sequence u at time t , the func- 

tion ˆ φ(k ; x, u , t) denotes the open-loop state solution to the nom- 

inal system (8) at time k ∈ I ≥t . We consider an MPC problem with 

a horizon N ∈ I ≥0 , initial condition x at time t , stage cost � (·, k ) : 

X × U → R , time-varying terminal constraints X f (k ) ⊆ X , and ter- 

minal cost V f (·, k ) : X f (k ) → R for all k ∈ I ≥t . We define the set of 

admissible inputs (9) , admissible initial conditions (10) , and objec- 

tive function (11) by 

U N (x ) := { u | (x (k ) , u (k )) ∈ Z ∀ k ∈ I [ t ,t + N−1] } 

U N (x, t) := { u ∈ U N (x ) | x (t + N) ∈ X f (t + N) } (9) 

X N (t) := { x ∈ X | ∃ u ∈ U N (x, t) } (10) 

V N (x, u , t) := 

t+ N−1 
" 

k = t 

� (x (k ) , u (k ) , k ) + V f (x (t + N) , t + N) (11) 

in which x (k ) := ˆ φ(k ; x, u , t) . 

In some scheduling problem formulations, predictions of future 

disturbances are considered in the model used for schedule opti- 

mization, i.e., we have some prediction of w at time k > t available 

at time t denoted ˆ w (k | t) . Although these predictions may improve 

the performance of the closed-loop scheduling problem, we omit 

these disturbance predictions to simplify the presentation of the 

subsequent analysis. 

The optimal control problem for x ∈ X N (t) at time t ∈ T is de- 

fined as 

V 0 N (x, t) := min 
u ∈U N (x,t) 

V N (x, u , t) (12) 

and u 0 (x, t) is the optimal input sequence for the initial condition 

x ∈ X N (t) at time t . Note that the optimization problem in (12) is 

equivalent to (7) if X f (t) := X and V f (·) = 0 . Thus, the MPC version 

of the optimal scheduling problem differs slightly from the stan- 

dard online scheduling problem. These terminal constraints and 

costs, however, are essential to provide performance and robust- 

ness guarantees. 

The MPC control law κN (x, t) := u 0 (t; x, t) is defined as the first 

input in u 0 (x, t) . 2 For the controlled system, the state evolves ac- 

cording to 

x + = f c (x, w, t) := f (x, κN (x, t) , w, t) (13) 

Note that, even if f (·) is continuous, f c (·) may be discontinuous 

in x since κN (·) may be discontinuous. We define the solution to 

(13) at time k ≥ t given the initial condition x at time t and the dis- 

turbance sequence w k := (w (t) , . . . , w (k − 1)) as φ(k ; x, w k , t) . In 

the context of production scheduling problems, φ(·; x, w k , t) (and 

the corresponding input trajectory) represents the closed-loop (im- 

plemented) schedule for the facility subject to disturbances. 

2.3. Nominal performance 

Before addressing the behavior of the closed-loop trajectory 

subject to disturbances, we begin with the nominal closed-loop 

2 If multiple solutions exist for the optimization problem, we assume that some 

selection rule is applied to ensure that κN (·) is a single-valued, measurable function. 

All subsequent results then apply for any such selection rule. 
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trajectory. In this case, we assume w = 0 , i.e., there are no dis- 

turbances and the model of the facility is accurate. To establish a 

performance guarantee, we require a reference trajectory for the 

system (8) to properly formulate the MPC problem and to bench- 

mark the closed-loop performance of the scheduling algorithm. Let 

the sequence (x r , u r ) denote this reference trajectory and satisfy 

the following assumption. 

Assumption 1 (Reference trajectory) . The reference trajectory 

(x r , u r ) satisfies 

x r (t + 1) = f (x r (t) , u r (t) , 0 , t) 

with (x r (t) , u r (t)) ∈ Z for all t ∈ T . 

Note that, for systems with regular demand, an offline optimal 

periodic scheduling problem generates such a trajectory. Heuristic 

methods may also be used to construct such a trajectory. Indeed, 

even an idle facility, i.e., u r = 0 and its associated state trajectory, 

satisfies this assumption. While any trajectory that satisfies this as- 

sumption is permitted, the economic performance of this reference 

trajectory is also important as it forms the benchmark for all sub- 

sequent results. Any improvement in the performance of the ref- 

erence trajectory translates to a direct improvement in the perfor- 

mance guarantees. 

Using this reference trajectory, we define the shifted stage and 

optimal cost functions as follows. By shifting these values we can 

discuss all subsequent results in terms of their deviation from the 

reference trajectory. 

�̄ (x, u, t) := � (x, u, t) − � (x r (t) , u r (t ) , t ) 

V̄ 0 N (x, t) := V 0 N (x, t) −
t+ N−1 
" 

k = t 

� (x r (k ) , u r (k ) , k ) 

We also require a mild regularity assumption. 

Assumption 2 (Regularity conditions) . The functions f (·) , � (·) are 

continuous and � (x, u, t) is uniformly bounded below for (x, u ) ∈ Z 

and t ∈ T . The set Z is closed and U is compact. 

Thus far, these assumptions are mild and satisfied by al- 

most any online scheduling formulation. These assumptions 

alone, however, do not guarantee anything about the perfor- 

mance of the closed-loop scheduling problem. As demonstrated in 

Risbeck et al. (2019) , closed-loop scheduling problems formulated 

without appropriate terminal costs and constraints can produce ar- 

bitrarily poor closed-loop performance even in the nominal case. 

Therefore, we require terminal constraints and costs that satisfy 

the following assumption. 

Assumption 3 (Terminal conditions) . The set X f (t) is closed for all 

t ∈ T . The function V f (x, t) is continuous and uniformly bounded 

from below for all x ∈ X f (t) and t ∈ T . For each t ∈ T and x ∈ X f (t) , 

the set 

U f (x, t) : = { u ∈ U | (x, u ) ∈ Z , 

x + : = f (x, u, 0 , t) ∈ X f (t + 1) , 

V f (x 
+ , t + 1) ≤ V f (x, t) − �̄ (x, u, t) } 

is nonempty and V f (x r (t ) , t ) = 0 . 

We also provide a definition of sequential positive invariance. 

Definition 1 (Sequential positive invariance) . A sequence of sets 

(X (t)) t∈ T is sequentially positive invariant for the nominal system 

x + = f c (x, 0 , t) , if x ∈ X (t) implies x + ∈ X (t + 1) for all t ∈ T . 

If the sequence (X N (t)) t∈ T is sequentially positive invariant for 

the nominal system x + = f c (x, 0 , t) , the optimal control problem 

remains feasible along the nominal closed-loop trajectory. With 

these assumptions, we can establish the following nominal per- 

formance guarantee for closed-loop scheduling ( Risbeck and Rawl- 

ings, 2019 , Thm. 1). 

Theorem 1. Let Assumptions 1 –3 hold. For every initial state x ∈ 

X N (t) and t ∈ T , the sequence of sets (X N (k )) k ≥t is sequentially pos- 

itive invariant for the system x + = f c (x, 0 , k ) and 

lim sup 
T →∞ 

1 

T 

t+ T −1 
" 

k = t 

�̄ (x (k ) , u (k ) , k ) ≤ 0 

in which x (k ) := φ(k ; x, 0 , t) and u (k ) := κN (x (k ) , k ) denote the 

nominal closed-loop trajectory. 

Theorem 1 ensures that, after an initial transient, the average 

cost of the closed-loop trajectory is better than (no worse than) 

the reference trajectory used to construct the terminal conditions 

in Assumption 3 . 

3. Disturbances and inherent robustness 

3.1. Motivating examples 

We begin with a motivating example to illustrate the impli- 

cations and importance of robustness for production scheduling. 

Consider a simple scheduling problem involving a single unit and 

two tasks, T1 and T2, that produce the product M1 from an abun- 

dant source of raw material. Each task requires 2 hours to com- 

plete and there is a demand of 1 kg of M1 every 2 hours. T1 pro- 

duces up to 1 kg of M1 and cost $60 to run. T2 produces up to 

1.2 kg of M1, but T2 costs $90 to run. The cost for maintaining 

inventory or backlog is $1/hr/kg or $10/hr/kg, respectively. We also 

allow up to 1 kg/hr of disposal for M1 at a cost of $10/kg. We note, 

however, that none of the subsequent simulations use this action. 

Thus, the obvious and optimal periodic schedule is to run T1 at 

maximum capacity and in phase with demand. 

If we use trivial terminal constraints/costs, i.e., X f = X and 

V f (x, t) = � (x, 0 , t) , and initialize the system in phase with the ref- 

erence trajectory, we observe that the online scheduling algorithm 

produces a closed-loop trajectory identical to the optimal periodic 

schedule. Thus, the nominal performance of the closed-loop trajec- 

tory appears to be satisfactory without terminal conditions. Nomi- 

nal performance however does not imply robustness. 

To probe the robustness of this scheduling algorithm, we con- 

sider the possibility of a one hour delay in the completion of T1 or 

T2. In Fig. 1 , we plot the closed-loop schedule for the single unit 

facility without terminal constraints. We observe that after the task 

delay at t = 2 , the scheduling algorithm never chooses to run T2 

in order to produce extra M1. The consequences of this choice are 

severe; the total cost continues to increase relative to the refer- 

ence trajectory regardless of how long we continue to run the fa- 

cility. Thus, the scheduling algorithm never recovers from the dis- 

turbance even though we have a clear method to do so. Note that 

the lack of robustness in this example is a property of the schedul- 

ing algorithm , not the underlying system. 

Informally, robustness implies that arbitrarily small distur- 

bances to the system do not produce arbitrarily large losses in per- 

formance. In this example, we have subjected the system to a sin- 

gle disturbance, i.e., “small” disturbance, and the resulting closed- 

loop performance degrades significantly and permanently. Thus, 

the algorithm and resulting closed-loop system are not robust de- 

spite acceptable performance in the nominal case. 

We now address the reason for this myopic behavior. Since the 

cost to address the backlog by running T2 is larger than the cost 

to retain the backlog for 24 hours of operation, the optimal choice 

for this horizon is to never deal with the backlog. Without termi- 

nal costs/constraints, the open-loop optimization is unaware of the 
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Fig. 1. Closed-loop schedule for the single unit facility with a horizon length of 

24 hours, no terminal conditions, and subject to a 1 h task delay at t = 2 . The top 

plot is a Gantt chart of the facility with gray blocks indicating a task delay. The 

middle and bottom plots show the closed-loop inventory ( S), backlog ( U), shipments 

to meet demand ( H), inventory disposal ( D ), and demand ( ξ ) trajectories. 

costs/consequences of any actions taken after its 24 hour horizon. 

In other words, the open-loop optimization problem does not ac- 

curately approximate the infinite horizon cost of the system and 

therefore selects a myopic control action. 

One potential solution to this problem is to use a longer hori- 

zon to better approximate the infinite horizon problem. Indeed, for 

industrial implementations of tracking MPC this approach is often 

employed. However, the horizon length necessary to accurately ap- 

proximate the infinite horizon cost and avoid myopic behavior is 

often unclear and may be prohibitively large. For the example in 

Fig. 1 , we selected a 24 h horizon for this simple problem and still 

failed to properly approximate the infinite horizon cost. If we scale 

this to a larger facility, the horizon required to produce a robust 

closed-loop scheduling algorithm may be intractable for online op- 

timization. And even with this excessive horizon length, we still 

cannot guarantee that the algorithm is robust. 

We emphasize that this behavior can occur with any online or 

rolling horizon scheduling algorithm that reoptimizes the sched- 

ule based on feedback from the manufacturing facility, even if 

these algorithms are not explicitly written in state-space form. Un- 

less properly designed, these feedback algorithms are not guaran- 

teed to be inherently robust to disturbances. Furthermore, veri- 

fying the robustness of a scheduling algorithm for a specific ap- 

plication through simulation studies requires exhaustive testing of 

every possible combination of states and disturbances the facility 

may encounter. 

In contrast, we propose a more direct and universal solution: 

use appropriate terminal constraints and costs that guarantee in- 

herent robustness of the closed-loop scheduling algorithm. By se- 

lecting appropriate terminal constraints and costs, we guarantee 

that the open-loop optimization problem adequately approximates 

the infinite horizon cost. With these terminal conditions, we no 

longer require excessively long horizons to ensure nominal perfor- 

mance and robustness of the facility. 

For the single unit example, we construct such a terminal cost 

and constraint based on the approaches detailed in Section 4 . We 

select a horizon length of only 8 hours and plot the closed-loop 

schedule in Fig. 2 . The resulting closed-loop schedule chooses to 

run T2 and recovers from the disturbance. Thus, after a single dis- 

turbance the performance degrades, but eventually recovers. This 

behavior is an example of robustness. If we continue to run the 

simulations forward in time, the closed-loop schedule with termi- 

Fig. 2. Closed-loop schedule for the single unit facility with a horizon length of 

8 hours, with terminal conditions, and subject to a 1 h task delay at t = 2 . The 

top plot is a Gantt chart of the facility with gray blocks indicating a task delay. The 

middle and bottom plots show the closed-loop inventory ( S), backlog ( U), shipments 

to meet demand ( H), inventory disposal ( D ), and demand ( ξ ) trajectories. 

nal conditions outperforms the closed-loop schedule without ter- 

minal conditions and the gap between their performance contin- 

ues to grow. We note that the implemented schedule in Fig. 2 is 

identical to the schedule generate by using a 26 h horizon without 

terminal constraints. Thus, proper terminal costs and constraints 

with a 8 h horizon achieve the same nominal performance and ro- 

bustness that requires a 26 h horizon without terminal conditions. 

3.2. Robustness to large, infrequent disturbances 

We now rigorously define the term robustness for closed- 

loop scheduling. We begin by characterizing the types of distur- 

bances that occur in closed-loop scheduling. In typical control 

problems, disturbances are small and persistent (e.g., measurement 

errors, small perturbations, and model inaccuracies). In production 

scheduling problems however, disturbances are large, often binary 

valued, and infrequent (e.g., task delays, breakdowns). 

Even though task delays may be small and continuous-valued 

if modeled exactly, the discrete modeling of time maps the exact 

delay to an inherently binary disturbance. For example, if we as- 

sume the exact time delay is modeled as a uniform distribution on 

[ −1 , 1] (with positive values indicating delay and negative values 

indicating early completion), then 50% of the time we experience a 

delay that requires rescheduling, i.e., any exact delay in (0,1] must 

be treated as Y = 1 in the scheduling model. In summary, any con- 

tinuous distribution of exact time delay for a task is mapped to a 

binomial distribution by the discrete-time grid used in this closed- 

loop scheduling model. 

Although production losses L are not necessarily large in terms 

of | L | , arbitrarily small losses in intermediate material produc- 

tion may render the remainder of the incumbent schedule infea- 

sible (e.g., inventory of an intermediate drops below the mini- 

mum batch size for the subsequent operation). Consequently, we 

are unable to treat these disturbances using results from control 

theory for small persistent disturbances. We note that Gupta and 

Maravelias (2020) also treat production losses as infrequent distur- 

bances. 

Hence, we treat task delays, breakdowns, and production losses 

as large and infrequent disturbances. We characterize the “size”

of these disturbances by the probability that they occur. Specifi- 

cally, we consider that the probability a disturbance occurs, i.e., 

Pr ( | w | > 0 ) , is equal to some constant ε ∈ (0 , 1) . The stochastic na- 
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ture of these disturbances suggests a stochastic definition of ro- 

bustness is appropriate. 

Definition 2 (Economically robust to large, infrequent distur- 

bances) . The closed-loop system x + = f c (x, w, t) , w ∈ W in which 

ε = Pr ( | w | > 0 ) is said to be economically robust to large, infre- 

quent disturbances relative to the reference trajectory (x r , u r ) if 

there exists δ ∈ (0 , 1] and γ (·) ∈ K such that the closed-loop sys- 

tem satisfies 

lim sup 
T →∞ 

E 

� 

1 

T 

t+ T −1 
" 

k = t 

�̄ (x (k ) , u (k ) , k ) 

� 

≤ γ (ε) (14) 

in which x (k ) := φ(k ; x, w k , t) and u (k ) = κN (x (k ) , k ) , for all ε ∈ 

[0 , δ] , x ∈ X N (t) , and t ∈ T . 

Consider the motivating example again without terminal con- 

straints/costs. We assume that this breakdown has an arbitrarily 

small probability of occurring that we denote ε. But, as T → ∞ , 

this disturbance occurs at least once with probability one. Conse- 

quently, if we use a horizon N ≤ 24 without terminal conditions, 

the behavior in Fig. 1 eventually occurs and 

lim sup 
T →∞ 

E 

� 

1 

T 

t+ T −1 
" 

k = t 

�̄ (x (k ) , u (k ) , k ) 

� 

≥ $5 /hr 

even as ε → 0 . In other words, no matter how reliable you make 

the unit ( ε → 0 ), the performance of the system never returns to 

the nominal performance of the system. The guarantee provided 

by (14) , in contrast, ensures that as the reliability of a plant in- 

creases, i.e., ε → 0 , we approach the nominal performance of the 

system. While γ (·) ∈ K is often too conservative to be a useful 

quantitative bound, the fact that such a bound exists prevents the 

particularly poor performance observed in the motivating exam- 

ple. For closed-loop scheduling applications, robustness means that 

infrequent disturbances do not cause arbitrarily large and perma- 

nent losses in the expected value of performance. The behavior in 

Fig. 2 is an example of robustness. 

Next, we provide conditions that guarantee the closed-loop sys- 

tem is robust in this context. Since the optimal control law κN (·) is 

defined by an optimization problem, we must first ensure that the 

optimization problem remains feasible for the perturbed system. 

We define this property precisely using robust sequential positive 

invariance and the following assumption. 

Definition 3. The sequence of sets (X (t)) t∈ T is robustly sequen- 

tially positive invariant for the perturbed system x + = f c (x, w, t) , 

w ∈ W , if x (t) ∈ X (t) implies x + ∈ X (t + 1) for all w ∈ W and t ∈ T . 

Assumption 4 (Robust recursive feasibility) . The sequence 

(X N (t)) t∈ T is robustly sequentially positive invariant for the 

system x + = f c (x, w, t) , w ∈ W , i.e., the optimal control problem is 

robustly recursively feasible. 

We note that assuming robust recursive feasibility for MPC is 

sometimes inappropriate, particularly if state constraints are in- 

cluded in the optimization problem. However, as we subsequently 

discuss in Section 4.1, Assumption 4 does indeed hold for most 

production scheduling applications with properly formulated ter- 

minal constraints. 

We also require a bound on the optimal cost increase for the 

system subject to any disturbance w ∈ W . 

Assumption 5 (Max cost increase) . For the perturbed system x + = 

f c (x, w, t) , w ∈ W , there exists finite b 1 , b 2 ∈ R ≥0 such that 

V̄ 0 N ( f c (x, w, t) , t + 1) ≤ V̄ 0 N (x, t) + b 1 | � (x, κN (x, t ) , t ) | + b 2 

for all x ∈ X N (t) , w ∈ W , and t ∈ T . 

Although verifying Assumption 5 is nontrivial for a general non- 

linear system, we establish in the subsequent section that closed- 

loop scheduling problems, with the terminal costs and constraints 

proposed in this work, satisfy this assumption. With these assump- 

tions we have the following result ( Mcallister and Rawlings, 2021 , 

Thm. 6). 

Theorem 2. Let Assumptions 1 –5 hold. Then the closed-loop system 

x + = f c (x, w, t) , w ∈ W is economically robust to large, infrequent dis- 

turbances relative to the reference trajectory (x r , u r ) . 

Remark 2. The value of δ in Theorem 2 is defined as δ < 1 / (1 + 

b 1 ) in which b 1 is defined in Assumption 5 . Thus, as b 1 → ∞ , 

δ → 0 , and the system is no longer robust to large disturbances 

with nonzero probability of occurring. In contrast, as b 1 → 0 , δ → 1 

and the system is robust to disturbances that occur with any prob- 

ability. 

4. Robustness of closed-loop scheduling 

In this section, we establish that the proposed closed-loop 

scheduling algorithm is economically robust to large, infrequent 

disturbances, e.g., delays, breakdowns, and yield losses. As noted in 

the previous section, Assumptions 1 and 2 are easily satisfied for 

production scheduling applications. A reference trajectory that sat- 

isfies Assumption 1 may be generated by a periodic optimization 

problem for the nominal system ( w = 0 ) or any heuristic schedul- 

ing method employed by a production facility. Furthermore, the 

model f (·) and stage cost � (·) defined in this work are continu- 

ous, the set Z is closed, U is compact, and � (x, u, t) is bounded 

from below because π S , πU ≥ 0 . In the following subsections, we 

construct a terminal constraint, a corresponding terminal cost, and 

establish that Assumptions 3 –5 also hold for the proposed closed- 

loop scheduling algorithm. 

4.1. Robust recursive feasibility 

To ensure that any optimization-based controller is robust, we 

must first ensure that the optimal control problem remains fea- 

sible for any state x that we may reach due to disturbances, i.e., 

the closed-loop scheduling algorithm is robustly recursively feasi- 

ble. Specifically, we need to satisfy Assumption 4 . 

We note that Assumption 4 implicitly requires that the se- 

quence (X ) t∈ T is robustly sequentially positive invariant for the 

system x + = f c (x, w, t) , w ∈ W as well. This assumption is reason- 

able for scheduling problems, but requires that state constraints 

are used only to enforce physical constraints on the system (e.g. 

nonnegative inventory, one-task-per-unit) and not desired goals 

(e.g. maintain a safety stock of material k ∈ K ). Desired goals of 

a scheduling problem should be addressed in the objective func- 

tion, not state constraints. In general, closed-loop scheduling for- 

mulations, including the one presented in this work, ensure that 

(X ) t∈ T is robustly sequentially positive invariant as this require- 

ment is synonymous with a well-posed online scheduling problem. 

However, we also require terminal costs/constraints that satisfy 

Assumption 3 to establish both nominal and robust performance 

guarantees for closed-loop scheduling. These terminal constraints, 

if overly restrictive, can render Assumption 4 invalid. 

One proposed formulation to satisfy Assumption 3 is to set 

X f (t) := { x r (t) } and V f (·, t) = 0 for all t ∈ T . The benefits of this 

approach are its simplicity; we guarantee that u r (t) ∈ U f (x r (t ) , t ) 

through Assumption 1 . The drawbacks are its restrictiveness; we 

significantly reduce the size of the feasible set X N (t) compared to 

X . Thus, this terminal equality constraint may render the optimiza- 

tion problem infeasible for relevant disturbances. By constructing 

an appropriate terminal cost, however, we can expand this termi- 

nal equality constraint to a terminal region and thereby ensure ro- 
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bust recursive feasibility of the optimization problem for relevant 

disturbances. 

We begin by identifying the states for which the terminal 

equality constraint is too restrictive. For the subsequent discuss, 

the reference trajectory has the form 

x r (t) := 
"

W̄ r (t ) 
" , B̄ r (t ) 

" , ̃  S r (t ) 
" , S r (t ) 

" , U r (t ) 
" 
"" 

We postulate that, for sufficiently long horizons, requiring W̄ n 
i j 

and 

B̄ n 
i j 
to terminate exactly in phase with the reference trajectory does 

not affect the feasibility of the optimization problem. Similarly, we 

presume that, for sufficiently long horizons, requiring inventories 
˜ S k and S k to meet or exceed the inventories used in the reference 

trajectory does not affect the feasibility of the optimization prob- 

lem. However, allowing any amount of inventory that exceeds the 

reference trajectory creates a problem when constructing a termi- 

nal cost for the system. Thus, we define the parameters 

˜ ω k = min 
t∈ T 

˜ ψ k − ˜ S r,k (t) 

ω k = min 
t∈ T 

ψ k − S r,k (t) 

for all k ∈ K I and k ∈ K P , respectively. The parameters ˜ ω k and ω k 

represent the maximum amount of inventory in excess of the ref- 

erence trajectory that the system can support (without violating 

maximum inventory constraints) for all points in the reference tra- 

jectory. For the terminal constraint, we allow any amount of inven- 

tory that exceeds the reference trajectory, but does not exceed the 

reference trajectory by more than ˜ ω k or ω k (as appropriate). 

For backlog U k , the reference trajectory often requires U k = 0 . 

Thus, for any horizon length, there exists a sufficiently large initial 

backlog such that the terminal state cannot reach the reference tra- 

jectory. We therefore must expand the terminal region to include 

all values of backlog exceeding the backlog of the reference trajec- 

tory. 

Based on these observations, we define our expanded terminal 

region as 

X f (t) := { x ∈ X | W̄ = W̄ r (t) , B̄ = B̄ r (t) 

0 ≤ ˜ S − ˜ S r (t) ≤ ˜ ω 

0 ≤ S − S r (t) ≤ ω, U ≥ U r (t) } (15) 

in which ‘ ≥’ denotes an element-wise comparison. Compared to 

the exact terminal constraints discussed previously, the termi- 

nal region in (15) ensures that Assumption 4 is satisfied for a 

much larger class of scheduling problems. In practice, verifying 

Assumption 4 is difficult. However, the expanded terminal con- 

straint presented here and a reasonable horizon length are suffi- 

cient to satisfy Assumption 4 for most scheduling problems. 

Remark 3. If we remove maximum inventory constraints, we can 

verify that Assumption 4 holds through a testable condition. If we 

do not include any intermediate or feedstock materials in the prob- 

lem formulation (e.g., because we have no intermediates and the 

feedstock is assumed to be in abundant supply), we can also verify 

that Assumption 4 holds through a testable condition. 

4.2. Constructing a terminal cost 

Next, we must construct a terminal cost that satisfies 

Assumption 3 for this terminal constraint. For a tracking MPC for- 

mulation, approaches to expand the terminal region require us to 

determine a (suboptimal) control law that is stabilizing near the 

origin (or reference trajectory) for the nominal system. This con- 

trol law is then used to construct an infinite horizon trajectory ex- 

tending from any x ∈ X f (t) . The terminal cost is defined as the cost 

for this infinite horizon trajectory. Furthermore, we require an an- 

alytic function to evaluate the infinite horizon cost in an optimiza- 

tion problem. Often, these requirements restrict the terminal con- 

trol law to a linear controller near the origin (reference trajectory), 

in regions for which the input constraints are not active. 

For closed-loop scheduling problems, there are many discrete 

decisions, state constraints, and active input constraints along the 

reference trajectory. All of these features render the construction 

of a terminal control law difficult, if not intractable, for many 

scheduling formulations. To overcome this issue, we use the ad- 

ditional flexibility afforded by the inventory disposal action and 

place an additional restriction on the reference trajectory used to 

construct a terminal cost. This additional flexibility and modified 

reference trajectory allows us to construct an analytic terminal 

control law and terminal cost. Specifically, we use the following 

assumption. 

Assumption 6 (Disposal and robust reference trajectory) . We can 

dispose of inventory for all products, i.e., μk > 0 for all k ∈ K P . For 

each product, there exists 0 < σk ≤ μk / 2 such that σk ≤ D r,k (t) ≤

μk / 2 for all t ∈ T and k ∈ K P , i.e., the reference trajectory overpro- 

duces and disposes some of each product at every time step. Also, 

H r,k (t) + σk ≤ ηk for all k ∈ K P . 

By requiring the reference trajectory to include disposal ac- 

tions at every time step for all final products, the reference tra- 

jectory must overproduce all of the final products by some mar- 

gin σ > 0 . This overproduction ensures that the reference trajec- 

tory has some recourse available, i.e., we can use the excess pro- 

duction to pay down backlog. We also note that most previously 

proposed robust optimization approaches to scheduling (employed 

in an open-loop fashion) lead to final product overproduction (sim- 

ilar to Assumption 6 ) and, to our knowledge, do not discuss how 

the excess inventory is handled. In that respect, our approach is 

distinct in that we require overproduction only in the reference 

trajectory and (as we show in subsequent examples) do not neces- 

sarily overproduce or dispose of these products in the closed-loop 

schedule. 

One method to construct a trajectory that satisfies 

Assumption 6 is to solve a finite horizon, periodic optimiza- 

tion problem with the lower bound D k ≥ σk for all time steps and 

products k ∈ K P . Clearly, this reference trajectory is suboptimal 

for the nominal system compared to a periodic optimal solu- 

tion that allows any D k ≥ 0 . Nonetheless, σk > 0 may be chosen 

small so that the cost difference between the reference trajectory 

with and without overproduction is also small. 3 We note that 

the performance guarantee in Theorem 1 is now relative to this 

overproduction reference trajectory. However, this trajectory only 

serves as the reference for the scheduling algorithm and does 

not necessarily restrict the closed-loop performance. Indeed, the 

scheduling algorithm can, and often does, outperform the bounds 

in Theorems 1 and 2 . 

The intuition behind this overproduction is that we require 

some margin of robustness in the reference trajectory to construct 

a robust closed-loop scheduling algorithm. We note that in typ- 

ical robustness analysis of tracking MPC, we require similar (if 

not stronger) assumptions about the reference trajectory to guar- 

antee that the algorithm is inherently robust. Specifically, track- 

ing MPC often requires the terminal region to be robustly positive 

invariant for the disturbance of interest, a stronger requirement 

than we impose for closed-loop scheduling ( Allan et al., 2017 ). 

Assumption 6 is therefore well-motivated and less restrictive than 

the assumptions typically required to produce a inherently robust 

MPC algorithm. 

3 For example, we selected σ = 0 . 01 for the motivating example. 
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In addition to these restrictions on the reference trajectory, we 

require an assumption for the dynamics of the system. Note that 

the structure of A , B for production scheduling ensure that the fol- 

lowing assumption holds. 

Assumption 7 (Integrating dynamics) . If x − x r (t) = 

[0 , 0 , � ˜ S " , �S " , �U " ] " and u − u r (t) = [0 , 0 , 0 , �H " , �D " ] " , then 

x + = f (x, u, 0 , t) satisfies 

x + − x r (t + 1) = [0 , 0 , � ˜ S " , (�S − �H − �D ) " , (�U − �H) " ] " 

We also require an additional assumption for inventory and 

backlog costs. 

Assumption 8 (Inventory and backlog penalty) . All final products 

incur positive inventory and backlog cost, i.e., there exists c 1 > 0 

such that πU 
k 

, π S 
k 

≥ c 1 for all k ∈ K P . All intermediate and feedstock 

materials do not incur inventory cost. Inventories for feedstock and 

intermediate materials are bounded, i.e., ˜ ψ k < ∞ for all k ∈ K I . 

With this reference trajectory, we may define the terminal con- 

trol law as 

κ f (x, t) := 

£ 

¤ 
¤ 
¤ 
¤ 
¥ 

W r (t) 

B r (t) 

V r (t) 

H r (t) + min { �U, σ } 

D r (t) + min { �S, μ2 } − min { �U, σ } 

¦ 

§ 
§ 
§ 
§ 
¨ 

(16) 

in which �S := S − S r (t) and �U := U −U r (t) . With these assump- 

tions, we can guarantee that κ f (x, t) is a feasible input for all 

x ∈ X f (t) and ensure that x 
+ ∈ X f (t + 1) . 

Lemma 3. Let Assumptions 1 , 6 , and 7 hold. If x ∈ X f (t) , then 

κ f (x, t) ∈ U and f (x, κ f (x, t) , 0 , t) ∈ X f (t + 1) . 

Proof. By Assumption 1 , κ f (x, t) satisfies the required input (and 

mixed) constraints for W , B , and V for all x ∈ X f (t) . For x ∈ X f (t) , 

we know that H = H r (t) + min { U −U r (t) , σ } ≤ H r (t) + σ ≤ η. Fur- 
thermore, we have 

D = D r (t) + min { S − S r (t) , μ/ 2 } − min { U −U r (t) , σ } ≤ μ

and since D r (t) ≥ σ , we know that D ≥ 0 as well. Thus, 

(x, κ f (x, t)) ∈ Z for all x ∈ X f and t ∈ T . 

Next, we consider x + = f (x, κ f (x, t ) , 0 , t ) . From Assumption 7 , 

we have that if x ∈ X f (t) , 

x + − x r (t + 1) = [0 , 0 , � ˜ S " , (�S − �H − �D ) " , (�U − �H) " ] " 

in which �S ≥ 0 and �U ≥ 0 . We have that �H = min { �U, σ } 
and therefore, �U − �H ≥ 0 . We also have that �S − �H − �D = 

�S − min { �S, μ/ 2 } and therefore, �S − �H − �D ≥ 0 . Thus, the 

values of inventory and backlog for the successor state are no 

less than the reference trajectory. We also have that �S ≥ �S −

�H − �D because min { �S, μ/ 2 } ≥ 0 . Since x ∈ X f (t) , we know 

that 0 ≤ �S ≤ ω and 0 ≤ � ˜ S ≤ ˜ ω . Therefore, the values of inven- 

tory satisfy the subsequent terminal constraint and we have that 

x + ∈ X f (t + 1) . �

Using this terminal control law we construct an analytic ter- 

minal cost from the infinite horizon cost relative to the reference 

trajectory. 

V 
κ f 
∞ (x, t) := 

∞ 
" 

k = t 

�̄ (x (k ) , κ f (x (k ) , k ) , k ) (17) 

in which x (k + 1) = f (x (k ) , κ f (x (k ) , k ) , 0 , k ) and x (t) = x . Note that 

V 
κ f 
∞ (·) satisfies Assumption 3 . 

We begin by redefining the system of interest on the terminal 

set X f (t) and subject to the terminal control law κ f (x, t) . Since 

W̄ = W̄ r (t) , B̄ = B̄ r (t) , W = W r (t) , B = B r (t) , and V = V r (t) for all 

x ∈ X f (t) , t ∈ T , and u = κ f (x, t) , we can reduce the system to 

a lower dimension without loss of information. Furthermore, we 

note that by Assumption 8 the inventory of intermediate and feed- 

stock materials does not affect the stage cost or terminal control 

action. We define the reduced variables 

z := R x ( x − x r (t) ) = [(S − S r (t)) 
" , (U −U r (t)) 

" ] " 

v := R x B ( u − u r (t) ) 

for all x ∈ X f (t) and t ∈ T using an appropriate transformation ma- 

trix R x . Using Assumption 7 and letting u = κ f (x, t) , we also define 

the reduced system dynamics, 

z + = z − min { z, m } 

in which m = [(μ/ 2) " , σ " ] " and stage cost, 

�̄ (x, u, t) = q̄ " z + ̄r " min { z, m } 

in which q̄ " = [(π S ) " , (πU ) " ] and r̄ " = [(πD ) " , −(πD ) " ] . The states 

and inputs are nonnegative, z, v ≥ 0 . The state variable z i at future 

time k ≥ t is therefore 

z i (k ) = min { z i (t) − (t − k ) m i , 0 } 

Next, we calculate the infinite horizon cost generated by a sin- 

gle element i of z and v , i.e., V 
κ f 
∞ ,i 

(z i (t ) , t ) . 

V 
κ f 
∞ ,i 

(z i (t ) , t ) = 

∞ 
" 

k = t 

q̄ i z i (k ) + ̄r i v i (k ) 

= 

N(z i (t)) 
" 

k =0 

q̄ i (z i (t) − km i ) + ̄r i z i (t) 

= q̄ i (N(z i (t)) + 1)(z i (t) − m i N(z i (t)) / 2) + ̄r i z i (t) 

in which N(z i (t)) = � z i (t) /m i � and �·� denotes rounding down to 

the nearest integer. Therefore, the infinite horizon cost may be rep- 

resented as a sum of this element-wise infinite horizon cost and is 

an analytic equation, 

V 
κ f 
∞ (x, t) = 

n̄ 
" 

i =1 

V 
κ f 
∞ ,i 

(z i , t) 

in which n̄ is the number of elements in z. 

The resulting cost function however is unwieldy to use for op- 

timization. If we use the approximation N(z i (t)) = z i /m i , then we 

have 

V 
κ f 
∞ ,i 

(z i , t) = 
q̄ i 
2 m i 

z 2 i + 

�

q̄ i 
2 

+ ̄r i 

�

z i 

Note the linear-quadratic form of this terminal cost. This ap- 

proximate infinite horizon cost, unfortunately, does not satisfy 

Assumption 3 . 4 However, this analysis provides us significant in- 

sight. We require only a minor modification to the parameters elu- 

cidated by this analysis to construct the following valid terminal 

cost. 

V f (x, t) := 

n̄ 
" 

i =1 

�

q̄ i 
2 m i 

z 2 i + ( ̄q i + ̄r i ) z i 

�

(18) 

Proposition 4. Let Assumptions 1 , 6 , 7 , and 8 hold. Then Assumption 

3 is satisfied for the terminal constraint (15) and terminal cost 

(18) defined for production scheduling. 

Proof. The sets X f (t) are closed and V f (·) is continuous. By the 

structure of V f (·) , we know that V f (x r (t ) , t ) = 0 for all t ∈ T . We 

proceed by establishing that for all x ∈ X f (t) and t ∈ T , the ter- 

minal control law defined in (16) satisfies κ f (x, t) ∈ U f (x, t) and 

4 For values of z i < m i , the infinite horizon cost is strictly linear and the approxi- 

mation fails to satisfy Assumption 3 in this region. 
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therefore the set U f (x, t) is nonempty. From Lemma 3 , we know 

that if x ∈ X f (t) , then κ f (x, t) ∈ U and x + := f (x, κ f (x, t ) , 0 , t ) ∈ 

X f (t + 1) . We also know from Assumption 8 that q̄ i / (2 m i ) is 

strictly positive and therefore V f (x, t) is uniformly bounded from 

below for all x ∈ X f and t ∈ T . 

Next, we establish that κ f (x, t) satisfies the cost descent condi- 

tion required to be in the set U f (x, t) , i.e., 

V f (x 
+ , t + 1) −V f (x, t) + �̄ (x, κ f (x, t) , t) ≤ 0 (19) 

for all x ∈ X f (t) and t ∈ T . We note (from the previous discussion) 

that we may equivalently write (19) as a sum of scalar terms. 

n̄ 
" 

i =1 

"

V f,i (z 
+ 
i , t + 1) −V f,i (z i , t) + q̄ i z i + ̄r v i 

"

≤ 0 (20) 

We now establish that each term in the summation is nonpositive. 

We begin with the terminal cost at z + 
i 

= z i (t + 1) . 

V f,i (z 
+ 
i , t + 1) = 

q̄ i 
2 m i 

(z i − v i ) 
2 + ( ̄q i + ̄r i ) (z i − v i ) 

= 
q̄ i 
2 m i 

z 2 i −
q̄ i 
m i 

z i v i + 
q̄ i 
2 m i 

v 
2 
i + ( ̄q i + ̄r i ) z i − ( ̄q i + ̄r i ) v i 

= V f,i (z i , t) −
q̄ i 
m i 

z i v i + 
q̄ i 
2 m i 

v 
2 
i − ( ̄q i + ̄r i ) v i 

We rearrange this equation as follows and note from 

Assumption 8 that q̄ i ≥ 0 . 

V f,i (z 
+ 
i , t + 1) −V f,i (z i , t) + q̄ i z i + ̄r i v i 

≤ q̄ i 

�

1 

2 m i 
v 
2 
i −

1 

m i 
z i v i + z i − v i 

�

Now we use the terminal control law, v i = min { z i , m i } . If z i ≤ m i , 

we know that v i = z i and 

1 

2 m i 
v 
2 
i −

1 

m i 
z i v i + z i − v i = −

1 

2 m i 
z 2 i ≤ 0 

If instead z i > m i , we know that v i = m i and 

1 

2 m i 
v 
2 
i −

1 

m i 
z i v i + z i − v i = −

1 

2 
m i ≤ 0 

Thus, each term of the summation is nonpositive and κ f (x, t) sat- 

isfies (19) . The set U f (x, t) is therefore nonempty for all x ∈ X f (t) 

and t ∈ T and Assumption 3 is satisfied. �

Thus, we define the linear-quadratic terminal cost for produc- 

tion scheduling as 

V f (x, t) := (x − x r (t)) 
" P (x − x r (t)) + p " (x − x r (t)) (21) 

in which P ∈ R n ×n and p ∈ R n . By defining 

P := diag ([0 , 0 , 0 , (π S /μ) " , (πU / (2 σ )) " ]) 

p := [0 , 0 , 0 , (π S + πD ) " , (πU − πD ) " ] " 

in which ’ / ’ is element-wise division, we observe that (21) is 

equivalent to (18) and therefore satisfies Assumption 3 by 

Proposition 4 . 5 

Remark 4. The terminal cost requires quadratic terms and we 

therefore must solve a mixed-integer quadratic program (MIQP). 

Although such an increase in complexity may appear undesirable, 

we note that (1) most mixed integer solvers can handle MIQPs as 

well and (2) the increase is computational complexity is minimal 

since the majority of the problem is linear and the terminal cost 

5 If πD 
k > πU 

k for some k ∈ K P , we can set the last term in p as max { πU − πD , 0 } 

and Proposition 4 still holds. 

is convex ( P is positive semi-definite). If, despite all these features, 

quadratic terms are still a nonstarter, we note that P = 0 and 

p := [0 , 0 , 0 , (bπ S / (μ/ 2) + πD ) " , (bπU / (σ ) − πD ) " ] 

in which b ≥ 0 , is a valid terminal cost if z i ≤ b for all i ∈ 

I [1 , ̄n ] . Thus, a large linear penalty may be sufficient in practice. 

Risbeck et al. (2019) also achieve satisfactory results by applying 

a large linear penalty. 

Remark 5. For final products k ∈ K P that we can sell for profit but 

do not have demand (i.e., νS 
k 

> 0 and ξk (t) = 0 for all t ∈ T ), we 

can set σk = 0 in the reference trajectory. The terminal cost for 

exceeding the backlog of the reference trajectory is therefore in- 

finite and is equivalent to a hard constraint, i.e., we require that 

U k (t + N) = U r,k (t + N) in the terminal constraint. However, since 

we have no demand for this product, U k (t + N) = U r,k (t + N) = 0 

for all t ∈ T and N ∈ I ≥0 , this cost/constraint is irrelevant to the 

optimization problem and does not affect feasibility. Similarly, if 

we set μk = 0 for this same product, we effectively have a termi- 

nal equality constraint for inventory of product k . For products that 

can always be sold in excess of demand, this terminal equality con- 

straint may not affect the feasibility of the optimization problem. 

4.3. Verifying Assumption 5 

Thus far, we have constructed a terminal constraint and cost to 

satisfy both Assumptions 3 and 4 . To establish robust performance 

for the closed-loop scheduling formulation, we also must ensure 

that Assumption 5 is satisfied. We note the following properties of 

the system and stage cost. The proofs of these lemmata are avail- 

able in the appendix. 

Lemma 5. Let Assumption 2 hold. For the nominal system x + = Ax + 

Bu + c(t) and fixed N ∈ I ≥0 , there exists e 1 , e 2 > 0 satisfying 

| ̂  φ(k ; x 1 , u 1 , t) − ˆ φ(k ; x 2 , u 2 , t) | ≤ e 1 | x 1 − x 2 | + e 2 (22) 

for all x 1 , x 2 ∈ X N (t) , u 1 , u 2 ∈ U N (x, t) , t ∈ T , and k ∈ I [ t ,t + N] . 

Lemma 6. Let Assumptions 2 and 8 hold. For the stage cost 

� (x, u, t) = q " x + r " u , there exists c 1 , c 2 > 0 and d 1 , d 2 ≥ 0 satisfying 

c 1 | x 1 − x 2 | − d 1 ≤ | � (x 1 , u 1 , t) − � (x 2 , u 2 , t) | ≤ c 2 | x 1 − x 2 | + d 2 

(23) 

for all x 1 , x 2 ∈ X , u 1 , u 2 ∈ U , and t ∈ T . 

In addition, we require an assumption concerning the perturbed 

system evolution. 

Assumption 9 (Bounded perturbation) . There exists e 3 ≥ 0 such 

that 

| f (x, u, w, t) − f (x, u, 0 , t) | ≤ e 3 

for all x ∈ X , u ∈ U , t ∈ T , and w ∈ W . 

We note that Assumption 9 is satisfied for the production 

scheduling model and disturbances considered. Now we use these 

properties to prove that the production scheduling model satisfies 

Assumption 5 . 

Proposition 7. Consider the system (1) , constraints X , U , Z , W , and 

stage cost (6) defined for production scheduling. Let the terminal con- 

straint and terminal cost be defined by (15) and (21) . Let Assumptions 

1 –4 , 8 , and 9 hold. Then Assumption 5 holds. 

Proof. We choose x ∈ X N (t − 1) , t − 1 ∈ T and define the per- 

turbed and nominal evolution from x as x 1 := f c (x, w, t − 1) , x 2 := 

f c (x, 0 , t − 1) for some w ∈ W . From these initial conditions, we de- 

fine the optimal control trajectories u 1 := u 0 (x 1 , t) , u 2 := u 0 (x 2 , t) 

10 
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and t ∈ T . Furthermore, we denote x 1 (k ) := ˆ φ(k ; x 1 , u 1 , t) , x 2 (k ) := 

ˆ φ(k ; x 2 , u 2 , t) , and x 1 , f := x 1 (t + N) , x 2 , f := x 2 (t + N) . Note that 

Lemma 5 and 6 hold. We combine the bound in Assumption 9 with 

(22) to give 

| x 1 (k ) − x 2 (k ) | ≤ e 1 e 3 + e 2 =: e 4 (24) 

We write the optimal cost difference as follows. 

V̄ 0 N (x 1 , t) − V̄ 0 N (x 2 , t) 

= 

t+ N−1 
" 

k = t 

( � (x 1 (k ) , u 1 (k ) , k ) − � (x 2 (k ) , u 2 (k ) , k ) ) 

+ V f (x 1 , f , t + N) −V f (x 2 , f , t + N) 

≤

t+ N−1 
" 

k = t 

( c 2 | x 1 (k ) − x 2 (k ) | + d 2 ) 

+ V f (x 1 , f , t + N) −V f (x 2 , f , t + N) 

≤ ˜ b 1 + V f (x 1 , f , t + N) −V f (x 2 , f , t + N) 

in which ˜ b 1 := N ( c 2 e 4 + d 2 ) . Next, we bound the terminal cost dif- 

ference. 

V f (x 1 , f , t + N) 

= | x 1 , f − x r (t + N) | 2 P + p " (x 1 , f − x r (t + N)) 

≤ | x 2 , f − x r (t + N) | 2 P + p " (x 2 , f − x r (t + N)) 

+ 2(x 1 , f − x 2 , f ) 
" P (x 2 , f − x r (t + N)) 

+ | x 1 , f − x 2 , f | 
2 
P + p " (x 1 , f − x 2 , f ) 

≤ V f (x 2 , f , t + N) + 2 e 4 | P || x 2 , f − x r (t + N) | + ̃  b 2 

in which ˜ b 2 := | P | e 2 4 + | p| e 4 . Now we use (22) with x 1 = x r (t) to 

bound the distance of x 2 , f from the trajectory. 

| x 2 , f − x r (t + N) | ≤ e 1 | x 2 − x r (t) | + e 2 

Next, we consider x , x r (t − 1) , and k = t in (22) and (23) to give 

| x 2 − x r (t) | ≤ e 1 | x − x r (t − 1) | + e 2 

≤
e 1 
c 1 

| ̄� (x, u, t − 1) | + 
e 1 d 1 
c 1 

+ e 2 

and thus 

2 e 4 | P || x 2 , f − x r (t + N) | ≤ b 1 | ̄� (x, u, t − 1) | + ̃  b 3 

in which b 1 := 2 e 4 | P | e 
2 
1 /c 1 and ˜ b 3 := 2 e 4 | P | (b 1 d 1 + e 1 e 2 + e 2 ) . 

Therefore, the optimal cost difference has the following upper 

bound. 

V̄ 0 N (x 1 , t) − V̄ 0 N (x 2 , t) ≤ b 1 | ̄� (x, u, t − 1) | + ̃  b 1 + ̃  b 2 + ̃  b 3 (25) 

From Assumption 2 , there exists m ∈ R such that �̄ (x, u, t) ≥ m 

for all (x, u, t) ∈ Z × T . We now use the nominal cost decrease en- 

sured by Assumption 3 to write 

V̄ 0 N (x 2 , t) − V̄ 0 N (x, t − 1) ≤ −�̄ (x, u, t − 1) ≤ −m 

We combine this equation with (25) to give 

V̄ 0 N (x 1 , t) − V̄ 0 N (x, t − 1) ≤ b 1 | ̄� (x, u, t − 1) | + b 2 (26) 

in which b 2 ≥ ˜ b 1 + ̃  b 2 + ̃  b 3 − m . Finally, we note that x 1 = 

f c (x, w, t − 1) , redefine t − 1 := t , and the proof is complete. �

With Proposition 7 , we have verified that Assumption 5 holds 

for the production scheduling algorithm proposed. 

Remark 6. The parameter b 1 , as noted in Remark 2 , is particularly 

significant for the robustness to large, infrequent disturbances. In 

the proof of Proposition 7 , we define b 1 as proportional to | P | . In 
addition, the terminal cost is defined such that | P | is inversely re- 
lated to the minimum element of σ . Thus, as the minimum value 

of σ approaches zero, | P | → ∞ , b 1 → ∞ , and δ → 0 . Conversely, if 

we allow all elements of σ and μ to approach infinity, then P → 0 

and δ → 1 . This observation indicates a potential design consider- 

ation: if we increase the “robustness” of the reference trajectory 

by increasing the value of σ , i.e., overproduction, we may thereby 

increase the robustness of the closed-loop scheduling algorithm as 

well (at the expense of the nominal performance guarantee). In the 

future, we may be able to leverage results in robust and stochas- 

tic optimization to produce superior reference trajectories (offline) 

and thereby improve the robustness of the deterministic closed- 

loop scheduling algorithm (online). 

4.4. Summary 

Through specific terminal constraints, terminal costs, and rea- 

sonable assumptions, we have established that the defined closed- 

loop scheduling formulation satisfies Assumptions 1 –5 . We sum- 

marize these results through the following theorem. 

Theorem 8. Consider the system (1) , constraints X , U , Z , W , and 

stage cost (6) defined for production scheduling. Let the terminal con- 

straint and terminal cost be defined by (15) and (21) . Let Assumptions 

1 , 2 , 4 , and 6 –9 hold. Then the closed-loop system x + = f c (x, w, t) , 

w ∈ W is economically robust to large, infrequent disturbances, i.e., 

the closed-loop scheduling algorithm is inherently robust. 

Assumptions 7 and 8 hold due to the structure of the 

nominal production scheduling problem and appropriate costs. 

Assumption 6 requires a suitable overproduction margin σ is used 

in the reference trajectory and there is the option to dispose of 

inventory for products. We note that Assumptions 4 and 9 are 

the only assumptions that address the behavior of the perturbed 

system. If we want to add any additional disturbances that may 

be relevant to closed-loop scheduling problems, we need to check 

only that Assumptions 4 and 9 hold as the remaining assumptions 

are unaffected. 

In practice, the proposed methods to construct a terminal con- 

straint and cost may be inconvenient. We therefore suggest a more 

practical approximation of this algorithm as follows. First, find a 

suitable reference trajectory for the nominal system. Use this ref- 

erence trajectory as a terminal equality constraint for all state vari- 

ables aside from inventory and backlog. Allow the terminal region 

to include any values of inventory and backlog that exceed the ref- 

erence trajectory and apply a large linear penalty to these devia- 

tions. While this algorithm does not exactly satisfy all the assump- 

tions required of Theorem 8 , it is a well-motivated approximation. 

5. Example 

To demonstrate the implications of this analysis, we study the 

following example problem. We consider a manufacturing facility 

with two units. The first unit (U1) may run task 1 (T1) to consume 

raw material (assumed to be in abundant supply) and produce the 

intermediate material M1. Either task 2 or 3 (T2 or T3) may be 

run on unit 2 (U2) that consumes the intermediate material M1 to 

produce either M2 or M3, respectively. The min/max batch sizes 

for units 1 and 2 are 5/20 kg and 10/20 kg, respectively. The pro- 

cessing times required to complete tasks 1 and 2 are 2 hours. The 

processing time to complete task 3 is 3 hours. 

Next, we describe the economics of the facility. There is de- 

mand for 45 kg of M2 every 6 hours of operation. If we are unable 

to meet this demand, we incur backlog. The penalty for maintain- 

ing backlog of M2 is $10/kg/hr. There is no explicit demand for 

M3, but we may sell up to 5 kg of M3 each hour at a sales price 

of $10/kg. The penalty for maintaining inventory of M2 or M3 is 

$1/kg. Each hour we may dispose of up to 1 kg of M2 or M3 at 

a cost of $12/kg. We can store up to 40 kg of M1, 100 kg of M2, 
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Fig. 3. Optimal periodic schedule for an horizon length of 48 hours with σ2 = 0 . 05 . The top plot is a Gantt chart for both units. The middle plot shows the inventory ( S) for 

each material and the backlog for M2 ( U 2 ). The bottom plot shows the shipments of M2 to meet demand ( H 2 ), sale of excess M3 ( V 3 ), and demand for M2 ( ξ2 ). 

and 20 kg of M3. Thus, an optimal schedule is one that meets de- 

mand for M2 while maximizing the production and sale of M3 in 

the remaining time. 

In Fig. 3 , we plot the optimal periodic schedule for a 48 hour 

horizon assuming we overproduce M2 by 0.05 kg/hr, i.e., σ2 = 0 . 05 . 

For all subsequent simulations and analysis, we use this periodic 

schedule as the reference trajectory. Note that the periodic solution 

and therefore the reference trajectory includes nonzero backlog at 

t = 24 . We intentionally consider a problem with this feature to 

emphasize that (1) the schedule for even simple scheduling prob- 

lems may be nonobvious and (2) we may include nonzero backlog 

in the reference trajectory without disrupting any of the results in 

this work. Note that the reference trajectory disposes of 0.05 kg of 

M2 every hour, but we omit D 2 from the plot since the trajectories 

of D 2 are impossible to distinguish from zero on the y-axis scales 

used. 

5.1. Case 1: Unit 1 breakdown 

For the first case study, we consider a single disturbance type. 

We assume that Unit 1 experiences a breakdown (for one hour) 

with probability ε. We also assume that there are no other dis- 

turbances affecting the system and therefore Pr ( | w | > 0 ) = ε. The 
open-loop scheduling algorithm has a horizon of 12 hours, and we 

use terminal constraints and costs constructed from the reference 

trajectory as detailed in Section 4 . The initial state of the facility is 

in phase with the reference trajectory. We observe the disturbance 

every hour and update the schedule accordingly. 

In Fig. 4 , we plot an example trajectory for this system with ε = 

0 . 2 . The closed-loop (executed) schedule is drawn in solid colors 

and the open-loop (current) schedule is drawn in faded colors. The 

black boxes shown in the Gantt chart represent breakdowns. 

We note a few important features in this example. First, the ter- 

minal constraint used in the open-loop optimization requires the 

open-loop schedule to include a run of T3 at the end of the open- 

loop horizon ( t = 30 ) despite the fact that a run of T2 may be 

more economically favorable. However, the backlog is not required 

to terminate along the reference trajectory (i.e., U 2 (t + N) ≥ 0 ) and 

therefore the optimization problem remains feasible despite previ- 

ous breakdowns that disrupted production of M2. 

We also note that there is no inventory disposal at any point in 

the closed-loop schedule, despite including this option in the ref- 

erence trajectory. The inventory disposal option is assessed a large 

cost per kg and is therefore avoided whenever possible. The point 

of the inventory disposal option is to provide a worst-case recourse 

option if we overproduce a product and thereby allows us to con- 

struct a periodic reference trajectory with overproduction. Allow- 

ing this recourse is essential to guarantee robustness for a general 

scheduling problem, but this recourse is not necessarily used for a 

given example. 

To characterize the economic performance of the closed-loop 

schedule, we define �(t) as follows. 

�(t) := 
1 

t + 1 

T 
" 

k =0 

�̄ (x (k ) , u (k ) , k ) 

If �(t) > 0 the average cost of the closed-loop schedule is worse 

than the reference trajectory. We simulate the closed-loop sched- 

ule over 2 weeks for 30 different realizations of the disturbance 

trajectory. In Fig. 5 , we plot the value of �(t) for each of theses 

simulations as a function of time t . The sample average (expected 

value) of these trajectories is plotted in black. Note that the ex- 

pected value of �(t) increases from zero as breakdowns cause the 

closed-loop facility to perform worse than the nominal reference 

trajectory. However, the expected value holds steady around $40/hr 

after 2 weeks. Thus, the perturbed system is, on average, costing 

$40/hr more than the nominal reference trajectory due to the dis- 

turbance. 

12 
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Fig. 4. An example trajectory with ε = 0 . 2 . The closed-loop (executed) schedule is drawn in solid colors and the open-loop (current) schedule is drawn in faded colors. The 

top plot is a Gantt chart for both units with black boxes used to represent breakdowns. The middle plot shows the inventory ( S) for each material and the backlog for M2 

( U 2 ). The bottom plot shows the shipments of M2 to meet demand ( H 2 ), sale of excess M3 ( V 3 ), and demand for M2 ( ξ2 ). 

Fig. 5. The trajectory of �(t) for 30 simulations of the closed-loop system with a 

0.2 chance of a breakdown for U1. The sample average is plotted in black. 

In Fig. 6 , we plot the value of ˆ E [ �(t) ] (the sample average of 

�(t) ) for multiple values of ε. For ε ≤ 0 . 12 , as t increases, ˆ E [ �(t) ] 
decays towards some nonnegative constant specific to each value 

of ε. As ε is increased, this constant increases and, conversely, 

as ε → 0 , ˆ E [ �(t) ] → 0 . Note that for the nominal system ( ε = 0 ), 

�(t) ≤ 0 . For ε ≤ 0 . 12 , the breakdowns increase the cost of opera- 

tion, but on average the closed-loop system can recover. However, 

if ε exceeds 0.12, the sample average diverges with increasing t . In 

this region, the breakdowns occur too frequently and on average 

the system is unable to keep up with demand. These results are 

consistent with Theorem 2 and we presume for this system and 

disturbance 0 . 12 ≤ δ < 0 . 15 . 

We treat the value of ˆ E [ �(t) ] for t = 336 as an approximation 

of the infinite limit in (14) and denote this value as ˆ γ (ε) for each 

ε ≤ 0 . 12 . We plot the value of ˆ γ (ε) in Fig. 7 . In addition to the ter- 

Fig. 6. The samples average of �(t) for 30 simulations for multiple values of ε. 

minal constraints and costs proposed in this work (denoted the LQ 

algorithm), we consider the performance of other algorithms with 

different terminal costs and constraints. We compare with the on- 

line scheduling algorithm detailed in Gupta and Maravelias (2019) , 

which omits the terminal constraint ( X f (t) = X ) and sets the ter- 

minal cost based on the stage cost ( V f = � (x, 0 , t) ). We refer to this 

algorithm as the NTC (no terminal constraints) algorithm. The lin- 

ear algorithm uses the terminal constraint proposed in this work, 

but approximates the linear-quadratic cost with a large linear cost 

(detailed in Remark 4 ) for computational convenience. We note 

that for values of ε > 0 . 12 , the trajectories of ˆ E [�(t)] diverge for 

all algorithms. Since this divergence is primarily the result of in- 

herent limitations of the facility and not the algorithm of choice, 

this result is reasonable. 

For each algorithm, the most obvious trend in Fig. 7 is consis- 

tent: The value of ˆ γ (ε) increases with increasing ε. This trend is 

13 
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Fig. 7. The value of ˆ γ (ε) for multiple values of ε and three production scheduling 

algorithms with different terminal costs and constraints. 

Table 1 

The values of ˆ γ (ε) ($/hr) for closed-loop scheduling algorithms that use the LQ, 

standard, or linear terminal conditions for Case 1 (Unit 1 Breakdown) and Case 2 

(All Disturbances). 

Case Alg. ε

0 0.05 0.1 0.12 0.15 0.18 

LQ –0.9 10.2 40.8 77.8 - - 

1 NTC 2.8 16.2 51.6 91.9 - - 

Linear –0.9 7.9 39.5 70.2 - - 

LQ –0.9 4.4 13.5 14.9 28.7 59.2 

2 NTC 2.8 11.5 23.3 27.3 41.1 73.8 

Linear –0.9 5.1 15.6 20.1 38.5 71.7 

consistent with the conclusions in Gupta and Maravelias (2020) . 

But, we also note key differences in performance. The NTC algo- 

rithm does not ensure that Theorems 1 and 2 hold. Consequently, 

as ε → 0 and indeed for ε = 0 , the performance of the NTC algo- 

rithm is worse than the LQ algorithm and the reference trajectory. 

In addition, this performance gap persists for all values of ε. We 

note that the performance of the linear algorithm is similar to the 

LQ algorithm and both achieve equivalent nominal performance. 

We also observe that the nominal performance of the LQ and 

linear approximation algorithms are superior to the reference tra- 

jectory used to construct their terminal constraint. In fact, their 

nominal performance is nearly identical to 48-hr periodic optimal 

solution with σ = 0 . 6 Thus, using a overproduction reference tra- 

jectory ( σ > 0 ), as opposed to a standard optimal periodic refer- 

ence trajectory ( σ = 0 ), does not impair the nominal closed-loop 

performance for this example. Numerical values are provided in 

Table 1 . 

5.2. Case 2: All disturbances 

In the second case study, we consider all potential disturbance 

types for all units. We consider the potential for breakdowns, 1 h 

delays, and 20% yield losses for both units at each hour. We denote 

the probability that any disturbance occurs as ε, i.e., Pr ( | w | > 0 ) = 

ε, and split the probability of a disturbance occurring equally be- 
tween each disturbance type. Thus, we define e := 1 − (1 − ε) 1 / 6 

and consider Pr 
"

Y j = 1 
"

= Pr 
"

Z j = 1 
"

= Pr 
"

L j = 0 . 2 
"

= e for both 

6 The difference between the optimal 48hr periodic reference trajectory with and 

without overproduction is -$0.9/hr. 

j = 1 , 2 . We run 30 simulations of the facility for each value of ε
and perform the same analysis used in the previous case study. 

The values of ˆ γ (ε) are shown in Table 1 . Note that all observed 

trends are consistent with those discussed for Case 1. In particu- 

lar, the LQ and linear terminal conditions proposed in this work 

outperform the standard scheduling algorithm at all values of ε. In 
fact, the LQ algorithm also performs better than linear algorithm. 

The values of ˆ γ (ε) , however, are lower in Case 2 for all algorithms. 

In addition, the value of δ is larger for Case 2 ( 0 . 18 ≤ δ < 0 . 2 ) than 

Case 1 ( 0 . 12 ≤ δ < 0 . 15 ). 

6. Conclusions 

We defined the term robustness for closed-loop scheduling and 

illustrated the implications of this property through a simple ex- 

ample. By leveraging the inventory disposal decision included in 

our production scheduling formulation, we constructed a terminal 

constraint and cost from a suitable reference trajectory that sat- 

isfy Assumption 3 while ensuring the optimization problem is ro- 

bustly recursively feasible ( Assumption 4 ). Furthermore, we estab- 

lished under reasonable assumptions that the proposed formula- 

tion is inherently robust to large and infrequent disturbances such 

as breakdowns, delays, and yield losses. 

We note that these robustness properties extend to any addi- 

tional disturbances that may be relevant to closed-loop scheduling 

applications provided they satisfy Assumptions 4 and 9 . The spe- 

cific disturbances considered in this paper (e.g. breakdowns, de- 

lays, and yield losses) were chosen to illustrate the range of dis- 

turbances covered by this analysis and do not represent the full 

extent of these results. In addition, we also expect that these re- 

sults can be extended to more complex scheduling models (see 

Gupta and Maravelias (2017) ). In most cases, we can use terminal 

equality constraints for additional state variables without affecting 

Assumption 4 . Thus, the remaining assumptions hold if the stage 

cost and nominal model remain linear. 

We emphasize that the proposed LQ algorithm may not al- 

ways outperform the closed-loop scheduling algorithm without 

terminal conditions. The proposed algorithm, however, offers nom- 

inal and robust performance guarantees that prevent poor perfor- 

mance of the closed-loop trajectory. Without these terminal con- 

ditions, there are no guarantees. We construct these algorithms 

and establish these theoretical results to guide the modification 

and development of current and future closed-loop scheduling 

algorithms. 

We also note that the analysis herein establishes an interest- 

ing, previously not recognized, connection between methods and 

results in the areas of scheduling and control. Scheduling problems 

are often classified as short-term or cyclic/period problems. The 

former arise in systems with high demand variability, where one 

has to continuously generate different solutions to react to chang- 

ing demand, whereas the latter, which appear in systems with reg- 

ular demand, aim to generate a single schedule that can be repeat- 

edly implemented. However, in the presence of disturbances, a pe- 

riodic schedule can (almost) never be implemented. In fact, in this 

paper we showed that one should always be solving an open-loop 

short-term problem (even in the presence of regular demand), but, 

importantly, subject to terminal constraints and costs that are ob- 

tained by solving a period scheduling problem. In other words, pe- 

riodic schedules become necessary as terminal constraints rather 

than directly implementable schedules. 

There are multiple avenues for future research. To implement 

optimization algorithms online for industrial scale problems, solv- 

ing until the optimality gap reaches zero is typically unrealistic. 

Thus, algorithms that provide performance guarantees with subop- 

timal solutions are desirable. If there is significant uncertainty in 

the predicted demand pattern, the scheduling algorithm may ben- 
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efit from incorporating stochastic information in the optimization 

problem (e.g., stochastic MPC) or in the design of the reference tra- 

jectory and terminal conditions. 
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Appendix A. Additional Proofs 

Proof of Lemma 5. We denote x 1 (k ) := ˆ φ(k ; x 1 , u 1 , t) , x 2 (k ) := 

ˆ φ(k ; x 2 , u 2 , t) and write 

| x 1 (t + k ) − x 2 (t + k ) | 

= 

�

�A k (x 1 − x 2 ) + 

k −1 
" 

i =0 

A k −1 −i B (u 1 (i + t) − u 2 (i + t)) 
�

�

≤ | A | k | x 1 − x 2 | + 

k −1 
" 

i =0 

| A | k −1 −i | B || u 1 (i + t) − u 2 (i + t) | 

Since U is compact, there exits c ≥ 0 such that | u 1 (i + t) − u 2 (i + 

t) | ≤ c. Thus, we define e 1 := max k ∈{ 0 , 1 , ... ,N} | A | 
k , and have 

| x 1 (t + k ) − x 2 (t + k ) | ≤ e 1 | x 1 − x 2 | + N(e 1 | B | c) (A.1) 

We define e 2 := N(e 1 | B | c) and the proof is complete. �

Proof of Lemma 6. We note that U is compact and therefore | u 1 −
u 2 | ≤ c for some c > 0 . Thus, 

| � (x 1 , u 1 , t) − � (x 2 , u 2 , t) | ≤ | q || x 1 − x 2 | + | r| c 

and c 2 = | q | , d 2 = | r| c. We also have 

| � (x 1 , u 1 , t) − � (x 2 , u 2 , t) | ≥ | q " (x 1 − x 2 ) | − | r| c 

We note that the variables W̄ , B̄ , ˜ S , are bounded ( Assumption 8 

ensures bounded ˜ S ). Thus, there exists d ≥ 0 such that c 1 | x 1 − x 2 | ≤
d for all x 1 , x 2 ∈ X in which [ U " , S " ] 1 = [ U " , S " ] 2 = 0 . Therefore, 

| q " (x 1 − x 2 ) | ≥ | πU || [ U 
" , S " ] " 1 − [ U 

" , S " ] " 2 | 

≥ c 1 | [ U 
" , S " ] " 1 − [ U 

" , S " ] " 2 | 

≥ c 1 | x 1 − x 2 | − d 

We define d 1 := d + | r| c and the proof is complete. �

Supplementary material 

Supplementary material associated with this article can be 

found, in the online version, at doi: 10.1016/j.compchemeng.2022. 

107678 . 
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