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Early warning indicators based on critical slowing down have been

suggested as a model-independent and low-cost tool to anticipate the

(re)emergence of infectious diseases. We studied whether such indicators

could reliably have anticipated the second COVID-19 wave in European

countries. Contrary to theoretical predictions, we found that characteristic

early warning indicators generally decreased rather than increased prior to

the second wave. A model explains this unexpected finding as a result of

transient dynamics and the multiple timescales of relaxation during a non-

stationary epidemic. Particularly, if an epidemic that seems initially con-

tained after a first wave does not fully settle to its new quasi-equilibrium

prior to changing circumstances or conditions that force a second wave,

then indicators will show a decreasing rather than an increasing trend as a

result of the persistent transient trajectory of the first wave. Our simulations

show that this lack of timescale separation was to be expected during the

second European epidemic wave of COVID-19. Overall, our results empha-

size that the theory of critical slowing down applies only when the external

forcing of the system across a critical point is slow relative to the internal

system dynamics.

1. Introduction
Forecasting the (re)emergence of infectious diseases is of great importance to

public health [1–6]. In recent years, early warning indicators based on the

phenomenon of critical slowing down have been suggested as a way to anticipate

transitions in a wide range of dynamical systems (for overviews, see e.g. [7–12]).

Critical slowing down describes the phenomenon that many systems, as they

approach their critical point, return more slowly to their equilibrium after

small external perturbations, resulting in an increase in statistics such as the

local autocorrelation coefficient and variance [13,14]. In standard models of infec-

tious disease transmission, major outbreaks are possible when the effective

reproductive number, Rt, is greater than one. The threshold Rt = 1 corresponds

to a (dynamic) transcritical bifurcation, which is a type of bifurcation that is pre-

ceded by critical slowing down [15,16]. Early warning indicators based on critical

slowing down have been studied extensively and led to a promising research line

that aims to utilize them as a tool to forecast the (re)emergence as well as the

elimination of infectious diseases (e.g. [7,17–28]).

In light of this prior research, it seems natural to ask whether early warning

indicators based on critical slowing down could have allowed us to anticipate the

second COVID-19 wave (e.g. [29,30]) and if not, how this can be understood.

Here,wequestion theapplicabilityofearlywarning indicators in theCOVID-19con-

text, because the COVID-19 situation violates a key assumption of the theory of

critical slowing down: a separation of timescales such that the dynamics of the epi-

demic settle down to a quasi-equilibrium fromwhich there is a slow drift towards
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the critical point. The quasi-equilibrium corresponds to the

dynamics of the epidemic being subcritical (Rt< 1) but not

dying out due to the importation of cases, instead reaching a

quasi-stationary state. To our knowledge, there is presently no

theory that would indicate whether early warning signals,

under such commensurate timescales, can be expected to be

reliable. In this paper, we report on a combination of empirical

analysis andsimulation studies to investigate this issue. Focusing

on Europe, we find that a suite of early warning indicators did

not reliably rise prior to the second wave in any country as the

classical theory of critical slowing down would predict. Using

a simulation study that mimics the COVID-19 situation—a first

outbreak closely followed by a second one—we show that this

contradictory result can be fully explained by the fact that, in

the case of COVID-19, in almost all countries Rt already began

to creep up again before the number of case reports stabilized

at a low value after the firstwave. These results indicate that cau-

tion is warranted in applying early warning indicators to highly

non-stationary settings, such as multi-wave epidemics.

2. Early warning signals for COVID-19 in Europe
In this section, we quantify the extent to which early warning

indicators increased prior to the second wave in a number of

European countries.1 We outline our methodology aided by

figure 1 in §2(a), and report our results in §2(b).

(a) Methods
(i) Estimation of Rt
To identify the time at which the COVID-19 epidemic became

supercritical for the second time in each country, we followed

Gostic et al. [31] to estimate the instantaneous Rt using the

method of Abbott et al. [32], which improves upon Cori et al.

[33]. The method simultaneously estimates the incidence of infec-

tions and Rt using Bayesian latent variable modelling. The method

proceeds in two steps. First, the incidence at each time step is esti-

mated by convolving the previous number of infections with a

probability distribution for the generation interval. This incidence

is then convolved over an uncertain incubation period and report-

ing delay distribution to yield the reported cases (for details, see

Abbott et al. [32]). We applied this method to a broad range of

European countries using daily case report data from the WHO,

spanning the period from March to October 2020. We used the

R package covidregionaldata to load the raw data [34]; no further

preprocessing was necessary.

(ii) Selecting the time period between waves
Next, we selected a time period in which to search for evidence of

critical slowing down. Early warning indicators are sensitive to

changes in the effective reproductive number, and should rise

prior to the critical point Rt = 1 [7,17]. Using our country-specific

estimate for Rt, we defined the start and end date of the time

series on which we computed the early warning indicators as
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Figure 1. Illustration of our methodology on simulated data. Panel (a) shows reported cases (grey) and Rt (black). Vertical blue lines indicate the minimum and
maximum Rt after the first wave receded. Panel (b) shows reported cases (grey) during the selected time period and an estimate of the mean (black) using a rolling
window of size δ1 = 4. Panel (c) shows detrended cases (grey) and an estimate of the (scaled) variance (black) using a rolling window of size δ2 = 15. (Online
version in colour.)
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follows. We chose as start date the date at which Rt was at its

lowest point before reaching Rt = 1 prior to the second wave.

Similarly, we chose as end date the date at which Rt was at its

maximum (before going down again) after it crossed Rt > 1.

Figure 1a illustrates this selection procedure on a simulated

example, with the black line showing Rt and the vertical blue

lines indicating its respective minimum and maximum after the

first wave receded. We chose this criterion for two reasons.

First, after Rt drops below 1, it continues to decrease in all Euro-

pean countries, and we would thus expect early warning

indicators to fall, rather than rise. Figure 1a shows a characteristic

bifurcation delay (see also §3(a)) that describes that cases lag

behind the equilibrium value consistent with Rt < 1. Choosing

for the starting date the time of the minimum value of Rt

before Rt rises again allows the system to come closer to its

new equilibrium value. Similarly, we chose to end the interval

with the maximum of Rt after it crosses the threshold as a prin-

cipled approach that could be systematically applied to all data

yielding the longest time series.

Figure 2 shows the reported (grey) and estimated true

number of cases (black) across European countries, with vertical

blue lines indicating the segment of the time series for which we

calculated early warning indicators. Figures S1–S5 in the elec-

tronic supplementary material, provide a more detailed picture,

showing European countries together with their estimated

effective reproduction numbers.

(iii) Detrending and estimation of early warning indicators
As illustrated in figure 1b,c, we detrended the time segment of

interest and then estimated early warning indicators using back-

wards rolling windows with a uniform kernel (i.e. equally

weighted past observations) and window sizes δ1 and δ2, respect-

ively. A backward rolling window only uses data from the past

to estimate the current value of a particular statistic. For example,

to estimate the mean at time point t, we calculate:

�yt ¼
1

d1

Xt

j¼t�d1

yj,

where yj is the number of reported cases at a particular time

point j (see black line in figure 1b, for an example). Other early

warning indicators we studied were variance, coefficient of vari-

ation, index of dispersion, autocovariance, autocorrelation, decay

time, skewness, kurtosis and first differenced variance (for math-

ematical definitions, see [25], table 3).2 All of these indicators

require an estimate of the mean, and so we first estimated the

mean and then estimated the particular early warning indicator

using a rolling window size of δ2 (except for the mean, for

which we use a window of size δ1). For example, the variance

at time point t, which is shown in figure 1c, is calculated as

st ¼
1

d2

Xt

j¼t�d2

ðyj � �yjÞ
2:

We conducted sensitivity analyses with rolling windows of size

δ1∈ [2, 4,…, 18, 20] for detrending (estimating the mean) and roll-

ing windows of size δ2∈ [5, 6,…, 30] for indicator estimation (with

the mean being the exception) using the R package spaero [35]. A

window size of 10, for example, means that the previous 10 data

points are being used to compute the statistic at the current time

point. To create a sampling distribution under the null hypothesis

of no increase in the early warning indicators that respects the

temporal ordering of the data, we fitted a series of ARMA(p, q)

models with (p, q)∈ [1, 2,…5] to the country-specific data. We

selected the best-fitting model using AIC and subsequently gener-

ated 500 surrogate time series from it, computed the early warning

indicators as outlined above, and estimated the rank correlation of

the indicator values st with time t, known as Kendall’s τ. This

resulted in the sampling distribution under the null assumption

of stationarity, which allowed us to test the actually observed Ken-

dall’s τ against a significance level α. This approach is the most

widely used approach when estimating and testing early warning

indicators using rolling windows [36].

(b) Results
Figure 3 reports results for European countries for δ1 = 4 and δ2 = 15.

It shows the value of Kendall’s τ across all early warning indi-

cators, colouring in red the countries for which τ was either

significantly smaller or significantly larger than values generated

from the best-fitting country-specific ARMA( p, q) at α = 0.05.

Notably, many countries displayed a significant decrease in a

number of early warning indicators such as the mean, variance,

coefficient of variation (σ/μ), index of dispersion (σ2/μ) and

autocorrelation. Some countries exhibited a significant increase

in the skewness and the first differences in the variance. Overall,

however, early warning indicators that were found to display

notable signal across a number of countries are the mean,

variance or combinations thereof. Figures S6–S15 in the elec-

tronic supplementary material, show sensitivity analyses for

the 10 early warning indicators across different rolling window

sizes for detrending and estimation, indicating that the pattern

shown in figure 3 is robust to different choices of these

hyperparameters.

Table 1 shows the number of significantly rising or falling

early warning indicators, the length of the selected time series,

the start of the second wave and the respective posterior mean

for Rt. From theory, we expect all early warning indicators to

rise except the coefficient of variation [25], yet we find that

most of the indicators show a tendency to fall instead. In the

next section, we turn to a simulation study to investigate the

possible reasons for this poor performance.

3. Early warning signals for COVID-19 in
simulation

We conducted simulations to investigate possible reasons that

could underlie the poor performance of early warning indi-

cators to anticipate the second COVID-19 wave. In what

follows, we first describe the model set-up we use and illus-

trate how early warning indicators perform under ideal

conditions in §3(a). In §3(b), we describe our general

simulation set-up, relaxing the separation of timescales to

quantify the erosion in performance. We report the

simulation results in §3(c).

(a) Model
We illustrate early warning indicators in the context of a first

outbreak that is closely followed by a second one by simulat-

ing from a stochastic SEIR model calibrated to COVID-19

using the pomp R package [37]. In particular, let S(t), E(t),

I(t), R(t) denote the number of individuals in the susceptible,

exposed, infectious and recovered compartment at time point

t, respectively, and let ΔNS→E, ΔNE→I and ΔNI→R denote the

number of individuals that have transitioned from one com-

partment to another during the time interval [t, t + Δt]. The

model is updated according to

DNS!E ≏ Binomial (SðtÞ, 1� e�lSðtÞDt), ð3:1Þ

DNE!I ≏ Binomial (EðtÞ, 1� e�sEðtÞDt) ð3:2Þ

DNI!R ≏ Binomial (IðtÞ, 1� e�gIðtÞDt), ð3:3Þ
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where we assume an average incubation and infectious

period of 1=s ¼ 5:2 days [38] and 1=g ¼ 10 days [39]. The

force of infection is given by

l ¼ bðtÞ
IðtÞ

N
þ hðtÞ, ð3:4Þ

where η(t) is the sparking rate, which we assume to be zero

until day 50, from which point onward cases are imported

with a rate of η = 1/50 000. Our goal here is not to produce

a simulation model that accurately tracks the COVID-19 out-

break, but instead to investigate critical slowing down in a

standardized system that we understand well. To do so, we
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wish to force Rt to create a multi-wave epidemic. We achieve

this by changing β(t) accordingly, compensating for the

depletion of the susceptible population by multiplying with

S0/S(t) at time point t. This mathematical trick avoids a

decrease in Rt over time as the pool of susceptibles gets

depleted, and hence allows us to directly manipulate Rt.

Lastly, we assume that each infected person is reported with-

out delay.

To illustrate the phenomenon of critical slowing down

under ideal conditions, we start with 10 000 infected persons

out of N = 1 000 000 and R0 = 3. This results in a first out-

break, which is rapidly brought down through control

measures that we model as bringing Rt down to 0.50 within

25 days. We then force Rt to remain at this low value for

200 days, and then allow it to rise linearly to Rt = 1, forcing

a second wave. This simulation mimics the situation at the

start of the pandemic where the first outbreak caught

countries by surprise and lockdown was the key mitigation

measure that substantially reduced the effective reproductive

number. In the illustration, mitigation measures are main-

tained for a long period of time. However, in reality

mitigation measures were slowly relaxed towards the

summer, and with no vaccination in place together with

imported infections and increased mixing, the system could

not reach a disease-free equilibrium and the reproductive

number increased again. This led to a second outbreak in

the fall of 2020 in virtually all European countries. Our

simple model adequately describes this general pattern as

shown in figure 4a. In particular, the left column in

figure 4a shows the two waves of transmission and their

associated early warning indicators, while the right panels

in figure 4a show a similar situation except that no second out-

break occurs (Rt is maintained at low levels). In contrast to the

situation with a second wave, the variance and autocorrelation

do not rise in this case. This illustration demonstrates that

under these conditions a second epidemic wave can be

anticipated using non-parametric early warning indicators.

It is known that epidemiological systems can experience a

bifurcation delay, which describes the transient trajectory of an

epidemic as its attracting equilibrium changes. One conse-

quence of bifurcation delays is that the time for a large

outbreak to settle to its equilibrium even after crossing Rt > 1
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can be considerable. Dibble et al. [18] studied bifurcation

delays for disease emergence, and figure 4 indeed shows

that it takes a while for the system to show a significant rise

in cases even after Rt > 1 (see Hungary in figure 2, for a poss-

ible example with regards to COVID-19). As can be seen in

figure 4, a bifurcation delay also occurs for disease elimination.

In particular, for Rt < 1 the disease is not endemic and the

stable equilibrium consists of a number of new cases that

depends on the rate of at which cases are imported. There is,

however, a substantial delay between the point at which

Rt < 1 for the first time and a low number of newly reported

cases. This means that early warning indicators computed

immediately from the period after Rt first declines to less

than 1 would track a transient far from equilibrium and thus

would not provide information about the return rate to equili-

brium from small perturbations, i.e. the phenomenon of

critical slowing down.

To understand the extent to which this bifurcation delay

may influence the performance of early warning indicators,

we decreased the time interval for which Rt= 0.50 from 200

days (figure 4a) to 50 days (figure 4b). We find that both the

variance and autocorrelation first decrease in the case of both

a second outbreak (left panels) and in the case of no second

outbreak (right panels). The variance then rises slightly prior

to the second wave, a pattern that does not occur for the auto-

correlation, nor for the indicators in case of no second wave.

This pattern hints at the fact that the bifurcation delay at elim-

ination will interfere with the detection of critical slowing down

if the system is not allowed to settle to its new equilibrium

because the magnitude of the transient is commensurate with

(or larger than) the magnitude of the fluctuations.

(b) Simulation set-up
We conducted additional simulations to systematically assess

the extent to which these patterns impact the performance of

early warning indicators. The forcing of Rt in the previous illus-

trations depends on five parameters: the value of R0; the value

of the lowest point Rt reaches; the time it takes Rt to reach it; the

time for which Rt stays at the lowest point and the time it takes

Rt to reach criticality again. We again assume that R0 = 3 and

that it takes the system 25 days to reach its lowest point of

Rt = 0.50, but we vary the number of days for which Rt is held

constant to be t1∈ [25, 50, 100, 200] and the time it takes the

system to reachRt = 1 to be t2∈ [25, 30,…, 95, 200]. For compari-

son, we also simulate from a system that stays at Rt = 0.50 and

Table 1. The number of significantly rising or falling early warning indicators, out of a total possible of 10, for European countries together with the length of
the selected time series and the respective posterior mean of Rt. D denotes the (country-specific) data, see figure 2.

country no. significant ↑ no. significant ↓ duration E½Rmin j D� E½Rmax j D�

Latvia 3 2 34 0.77 1.23

UK 3 1 43 0.86 1.10

Slovenia 2 2 48 0.63 1.48

Estonia 2 0 43 0.61 1.45

Germany 1 6 52 0.77 1.22

Belgium 1 5 59 0.83 1.38

Slovakia 1 5 50 0.66 1.33

Luxembourg 1 4 75 0.67 1.48

The Netherlands 1 4 28 0.77 1.32

Hungary 1 3 35 0.79 1.18

Ireland 1 3 61 0.72 1.28

Cyprus 1 2 98 0.72 1.42

Italy 1 2 87 0.80 1.31

Portugal 1 2 40 0.82 1.07

Bulgaria 1 1 25 0.84 1.31

Romania 1 0 29 0.87 1.14

Austria 0 3 77 0.63 1.25

Czechia 0 3 59 0.79 1.38

Sweden 0 3 29 0.68 1.17

France 0 2 110 0.77 1.27

Greece 0 2 54 0.81 1.19

Lithuania 0 2 26 0.83 1.19

Malta 0 2 28 0.52 2.38

Poland 0 2 35 0.91 1.16

Croatia 0 0 27 0.38 2.85

Denmark 0 0 14 0.66 1.39

Finland 0 0 54 0.80 1.22
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does not exhibit a second outbreak. We match the length of the

time series on which we compute early warning indicators (t2)

in case of no outbreak to when an outbreak does occur. As

before, backwards rolling windows with a uniform kernel

were used for detrending and non-parametric estimation of

the mean, variance, coefficient of variation, index of dispersion,

skewness, kurtosis, autocovariance, autocorrelation, decay time

and first differences in variance. We used rolling windows a

10th the size of the duration for which Rt stays constant; that

is, for t1∈ [25, 50, 100, 200] we used rolling windows of sizes

δ1 = [3, 5, 10, 20], respectively. For indicator estimation, we

used rolling window sizes of δ2 = 25 (except for the mean),

using the R package spaero [35]. We simulated 500 trajectories

for each setting and calculated the area under the curve

(AUC), a measure of classification performance, for all indi-

cators. For each indicator, we calculated its rank correlation

with time (Kendall’s τ), which indicateswhether the earlywarn-

ing indicators rise or fall prior to reaching the critical point. The

AUC can then be estimated as the probability that τtest is larger

than τnull [25,40]. A value of |AUC− 1/2|= 0 indicates chance

performance, with AUC< 1/2 and AUC> 1/2 indicating a fall

or rise in indicators prior to criticality, respectively. Theory pre-

dicts a pre-critical increase of all earlywarning indicators except

the coefficient of variation [19,25]. In addition to AUC, which

requires comparing the indicator trend in the case of a second

outbreak to the case of no second outbreak, we also use the

method proposed by Dakos et al. [36] based on ARMA null

models and outlined in §2(a) to ascertain whether an indicator

rises significantly. This more closely mimics the real-world situ-

ationwherewe do not have access to the counterfactual situation

in which no outbreak occurred. We report the true positive rate,

that is, the proportion of times we find p< α for each indicator

and condition, using α= 0.05.

(c) Simulation results
Figure 5a shows that the performance of early warning indi-

cators improves with the time it takes the epidemic to reach a

second critical wave. For the case for which the system stays

for 200 days at Rt = 0.50 (top panel of figure 5a), we find that

all indicators except the kurtosis and the coefficient of vari-

ation performed well, with the mean and the variance

performing best. The coefficient of variation, given by the

ratio of the standard deviation to the mean, decreases prior

to criticality, indicating that the mean rises more quickly

than the standard deviation. Most early warning indicators

perform worse when Rt = 0.50 for 100 days, yet the mean

and variance still perform well overall. Interestingly, the

slight decrease in performance in the variance implies a

stronger decrease of the coefficient of variation. The index

of dispersion begins to show a decrease as well when the

system is forced more quickly (i.e. t2 < 50).

For a period during which Rt = 0.50 of 50 days, the per-

formance of the variance decreases, leading to an
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Figure 4. Signatures of critical slowing down in a simulated second-wave epidemic. (a) Reported cases of a first outbreak followed by a second (top left) or no
outbreak (top right) together with the forcing of Rt (below). Vertical blue lines indicate the period on which we compute the early warning indicators autocorrela-
tion and variance, shown in the two bottom panels. The increase in variance and autocorrelation in the left panels is the manifestation of critical slowing down.
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increasingly strong decrease in the coefficient of variation.

When forcing is rapid (i.e. t2 < 75), the index of dispersion,

autocovariance, autocorrelation, and decay time also begin

to show a stronger downward trend (AUC < 1/2) prior to

reaching the critical point. These trends are exacerbated

when the system stays at Rt = 0.50 for only 25 days. One

may think that the simulation shows the reverse pattern

than the empirical analysis, summarized in figure 3, because

the mean and variance show a positive AUC (hence they

increase compared to the null simulation) while the mean

and variance show a decrease in the empirical analysis.

There is no contradiction, however, because the mean and

variance do in fact decrease in case of a second wave, it is

just that they decrease less compared to when there is no

second wave, as can be seen in figure 4b.

In the data, the median time for countries to go from their

minimum Rt value after the first crossing to their maximum Rt

value after the crossing was 42 days. Figures S1–S5 in the

electronic supplementary materials further show that Rt basi-

cally never stays at a low constant value for a sustained period

of time, but is forced immediately towards the critical point.

Under the most realistic scenario in our simulation study

(t1 = 25 and t2 < 50), many indicators perform poorly, yet we

still find excellent performance of a rising mean and excellent

performance of a falling coefficient of variation and index of

dispersion. This does not imply, however, that they will lead

to reliable warnings in practice. While we can quantify discri-

minatory power using AUC in simulations, in practice early

warning indicators have to be calibrated. Figure 5b shows that

testing for an indicator increase at α = 0.05 based on a station-

ary null distribution created by using the best-fitting

ARMA( p, q) model to the time series under consideration is

poorly calibrated, leading to an extremely poor true positive

rate which mirrors the empirical results in §2(b). This is

because the distribution of Kendall’s τ under the stationary

model is centred around zero, while the actually observed

Kendall’s τ is negative. As a result, hypothesis tests for an

increase in indicator values are expected to suffer from extre-

mely low statistical power in realistic situations. This

problem may be exacerbated by a potentially poor fit of the

model used to create the null distribution.

4. Discussion
Early warning signals based on the phenomenon of critical

slowing have been suggested as a way to anticipate transitions

in a wide range of dynamical systems, including the (re)emer-

gence of infectious diseases. We analysed whether a suite of

indicators could have given early warning of the second

COVID-19 wave in European countries. We found that the

majority of indicators did not rise reliably, instead showing a
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pronounced decrease, a finding inconsistent with previous

applications of the theory of critical slowing down. To under-

stand this pattern, we conducted a simulation study in which

we varied the time that is available for the system to settle at its

new equilibrium after a first outbreak, as well as the speed

with which a second wave is forced. We analysed the perform-

ance of early warning indicators using the AUC to quantify

classification performance and—using the same methodology

with which we analysed the empirical data—the true positive

rate. We found that classification performance suffered when

the system had too little time to settle to its new (quasi-)equili-

brium and the second wave is forced quickly (due to changing

conditions in the population, such as reduced adherence to

control measures), as we saw in the empirical data. Yet we

also found that some indicators, such as the mean, continued

to perform well (in terms of AUC) in contrast to what we

observed in the empirical analysis. Using the same method-

ology as in the empirical analysis, however, we found a true

positive rate of close to zero when testing for an increase in

indicators, which is in line with our empirical results.

Our analyses suggest the following conclusions. First, vio-

lating a key assumption of early warning indicators based on

critical slowing down—namely that the driver (Rt) changes

slowly compared with the time it takes the system to return

to its equilibrium after small external perturbations—dramati-

cally reduces their performance. While this may be expected

from theory, our analyses underscore this point and show

that early warning indicators cannot be used to anticipate

future outbreaks that are quickly forced after an initial wave.

Second, as a consequence of the fact that the system is not

allowed enough time to settle at its new stable equilibrium

after an initial outbreak, the first part of the data used for

early warning indicator estimation constitutes a transient.

Hence there is a bifurcation delay not only after Rt crosses

one from below, as previously observed and studied (e.g.

[18]), but also after Rt crosses one from above. If this transient

is incorporated into the indicator estimation, then indicators

will show a pronounced decrease rather than an increase. This

does not imply, however, that we can use a decrease in indi-

cators as a signal for a future outbreak that quickly follows

an initial one, because such a decrease also occurs in case of

no outbreak. The poor performance of early warning indi-

cators in our empirical analysis is likely due to a

combination of this transient phenomenon and the quick for-

cing of Rt. Third, our simulation study demonstrated that

while early warning indicators can yield high discrimination

(i.e. a high AUC), in practice they need to be calibrated. We

found that the widely used methodology proposed by

Dakos et al. [36] with decision criterion p < 0.05 is poorly cali-

brated. This leads to poor performance consistent with our

empirical results. The key issue is that the sampling distri-

bution created under this methodology is not centred

around a negative Kendall’s τ (implying a decreasing trend)

but a Kendall’s τ of around zero (implying no trend). Thus

the statistical power to reject the null hypothesis of no increase

when actually observing a strong decrease in indicators is too

low for these tests to be of practical value in realistic situations.

Previous research also suggested that indicators can fail in the

COVID-19 context [29].

Some limitations of this study should be kept in mind. Our

empirical analysis takes the reported number of cases across

European countries at face value.Whilewe accounted for report-

ing delays, we disregarded any issues related to changes in

reporting or testing that may affect the estimation of Rt. While

the flexible method proposed by Abbott et al. [32] renders any

bias induced by a change of testing transient, any bias may

have indeed changed the true value at which Rt crosses one.

Amore extensive analysiswould look at all countries that experi-

enced a second wave. However, we chose to limit ourselves to

European countries because of the comparatively good reporting

standards and the fact that there is sufficiently large heterogen-

eity in epidemic trajectories across European countries for the

purposes of this study. On a similar note, because the time

period between the end of the first and the beginning of the

second wave was shorter than the time period it takes the

system to settle at its new stable equilibrium after the first wave

recedes in virtually all countries, we expect our findings to gen-

eralize well to non-European countries. We used an admittedly

conservative criterion for date stamping the end of the first

wave and the start of the second one to reduce the extent of the

transient period we incorporate for indicator estimation. In par-

ticular, we chose the day at which Rt reaches its lowest value as

starting point for the computation of early warning indicators.

If anything, based on our finding that incorporating the transient

decreases performance, our choice may be too charitable. We

chose the end date for the indicator computation as the day at

whichRt reaches itsmaximumafter crossing one so as to increase

the number of time points. If anything, this may again have been

too generous. At the same time, while the epidemic unfolded

quite distinctly in different European countries, Rt never stabil-

ized at a low value and rose quickly after the first outbreak.

These are far from the conditions underwhich to expect a reliable

signal in early warning indicators, and our results should not be

interpreted as a rejection of their potential in other applications,

including other epidemics.

We used backwards rollingwindows to avoid the use of data

from the ‘future’, and our results can thus translate to a situation

in which indicators are computed in real-time. A critical issue

when using non-parametric estimation concerns the choice of

the size of the rolling windows [20,36,41]. There is a trade-off

between awindow size that is too small, where estimation accu-

racy suffers, and a window size that is too large, where

stationarity is (more severely) violated [19]. If a model is avail-

able, Dessavre et al. [20] find that detrending based on model

simulation works well, but this route is unavailable as an epi-

demic unfolds for which accurate models do not yet exist.

Similarly,whileMiller et al. [21] found that indicator performance

was robust to seasonal forcing, the timescale of such seasonal for-

cing is much longer compared with the movements of Rt that

were observed in some European countries, and which hence

may have further reduced performance. We have addressed

the issue of window size selection by reporting extensive sensi-

tivity analyses. Our finding that indicators poorly anticipate the

second COVID-19 wave is robust to different choices.

Critical slowing down is a phenomenon that has primar-

ily been studied in low-dimensional systems. It is prominent

in the study of ferromagnetism and the Lenz–Ising model

[42], and has been known to proponents of catastrophe

theory since at least the 1970s [43]. Wissel [13] suggested criti-

cal slowing down as a way to forecast the extinction of a

population of rotifers (see also [14,44]). Scheffer et al. [8]

brought significant attention to the idea of using critical slow-

ing down as an early warning signal which led to a surge of

interest across many fields. Yet there is the obvious question

of whether we should expect a phenomenon that pertains pri-

marily to low dimensional systems to occur in the high

royalsocietypublishing.org/journal/rspb
Proc.

R.
Soc.

B
289:

20211809

9

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 1

7
 A

u
g
u
st

 2
0
2
2
 



dimensional real world. Infectious diseases do not spread in

homogeneously mixed populations with people being dis-

tinct only in terms of whether they are susceptible,

exposed, infected or recovered, as our simulation model

assumes. Instead, infectious diseases spread between

unique individuals on a network that is itself continuously

changing. Studying the effect of test sensitivity and frequency

on COVID-19 transmission, Larremore et al. [45] find essen-

tially no difference between a homogeneous compartment

model and an agent-based model that is calibrated to

New York City micro-census data. More relevant to our

investigation, Brett et al. [22] found that early warning indi-

cators based on critical slowing down do indeed rise prior

to an outbreak in high-dimensional network and agent-

based models.

A related issue with early warning indicators based on

critical slowing down concerns the decision criterion. When

do we decide that a rise in indicators is ‘significant’ and con-

stitutes an early warning? In our empirical analysis, we chose

a rise in trend to be significant at the α = 0.05 level, but this

may well require adaption to the specific case at hand.

There is a difference between making a statistical inference

(e.g. estimating Kendall’s τ) and making a decision (e.g.

restricting mitigation measures; [46]). The latter requires cali-

bration, which is understudied in the context of early

warning indicators based on critical slowing down but essen-

tial to use in applications. One can also question the

adequacy of the best-fitting ARMA(p, q) model as a null

model more broadly. Boettiger & Hastings [46] have shown

that statistically comparing two models, one that includes

the bifurcation and one that does not, can outperform non-

parametric testing using null models (see also [47]). We

have used the ARMA null models because they are the

most widely used methodology for assessing early warning

signals [36] and allow straightforward significance testing

for a wide range of indicators. Importantly, some indicators,

such as the mean and variance, continue to rise even after

Rt crosses one, as predicted by theory [23,48]. Others are

expected to peak at the point at which Rt = 1, although the

exact maximum may not be clear [24]. This means that it is

hard to assess whether, say, a rise in the autocorrelation

from 0.50 to 0.70 is already problematic, or whether one

should wait until it reaches, say, 0.90 (if it ever will). The

extent to which indicators such as autocorrelation rise also

depends on a number of reporting details such as the fre-

quency of reporting. It is therefore impossible to provide

general guidelines for use in applications. Simulation studies

that incorporate reporting issues and focus on specific dis-

eases may provide further insight [25,49].

Early warning indicators based on critical slowing down

promise to be a quite general and low-cost tool to monitor the

emergence and elimination of infectious diseases (e.g.

[27,49,50]). It is understudied how well these indicators

perform compared to other tools that may be used as early

warning signals. In the context of COVID-19, it seems plaus-

ible that by making stronger assumptions about the

dynamics of the system or using system-external information

such as mobility would lead to much better early warning

systems. Simply estimating Rt and forecasting whether and

when Rt > 1 may be a similarly low-cost but potentially

more reliable approach. Conceptually, however, it is not so

clear that one would like to have an early warning indicator

signalling that Rt is about to cross one. This is due to two

related reasons. First, because of the bifurcation delay, it

may take weeks or months for the actual outbreak to occur.

A method that is able to incorporate this bifurcation delay

and produce an early warning of an actual exponential

increase in cases may therefore be preferable. Ideally, such a

method produces a probabilistic assessment of an outbreak,

which can then feed into further decision-making. Second,

the simple fact that Rt crosses one does not imply that a

second wave is incumbent. Instead, it may stay there for a

while or fall again, as it did in several European countries

during the current pandemic. One cannot impose strong miti-

gation measures to curb virus spread whenever Rt > 1. All

this points to a more continuous approach in which multiple,

system-external factors are taken into account to assess the

risk of future outbreaks. Early warning indicators may be a

part of this risk assessment toolbox for (re)emerging diseases

when an outbreak is slowly forced—but not, as we have

shown, when one outbreak follows closely after another.
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Endnotes
1We analysed countries in the EU, excluding Spain because of a
strong weekend reporting effect that presented difficulties for
model convergence, as well as the UK.
2We use a broad range of indicators to assess the robustness of our
conclusions, noting that from a theoretical perspective the variance
and autocorrelation are preferred, as they are necessary features of
critical slowing down. The variance is especially useful because the
divergence should make it highly detectable, whereas incremental
changes in the autocorrelation coefficient, which is bounded, will
be harder to pick up.
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