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Abstract—This paper presents three distributed techniques to
find a sparse solution of the under-determined linear problem
g = Hu with a norm-1 regularization, based on the Alternating
Direction Method of Multipliers (ADMM). Each one of these tech-
niques divide the matrixH into submatrices by rows, columns, or
both rows and columns, leading to the so-called consensus-based
ADMM, sectioning-based ADMM, and consensus and sectioning-
based ADMM, respectively. They are validated for a particular
millimeter-wave imaging problem based on the use of a Com-
pressive Reflector Antenna (CRA). The CRA is a hardware de-
signed to increase the sensing capacity of an imaging system and
reduce the mutual information among measurements, allowing an
effective imaging of sparse targets with the use of Compressive
Sensing (CS) techniques. In previous works, the consensus-based
ADMM has been proved to accelerate the imaging process, and
the sectioning-based ADMM has shown the ability to potentially
reduce the amount of information to be exchanged among the com-
putational nodes, based on the system configuration. In this paper,
themathematical formulation and graphical interpretation of these
two techniques, together with the consensus and sectioning-based
ADMMapproach, are presented. The imaging quality, the imaging
time, the convergence, the communication efficiency among the
computational nodes, and the computational complexity are an-
alyzed and compared. The distributed capabilities of the ADMM-
based approaches, together with the high sensing capacity of the
CRA, allow the imaging of metallic targets in a 3D domain in
quasi-real time with a reduced amount of information exchanged
among the nodes.

Index Terms—Compressive Antenna, distributed ADMM, node
communications, norm-1 regularization, real-time imaging.

I. INTRODUCTION

S EVERAL numerical techniques have been developed in the
past decades for solving problems defined by a linearmatrix

equation [1]

g = Hu, (1)

Manuscript received January 26, 2021; revised June 27, 2021 and September
26, 2021; accepted October 12, 2021. Date of publication November 2, 2021;
date of current version November 18, 2021. This work was supported in part by
NSF CAREER Program Award No. 1653671 and in part by the Department of
EnergyAwardNo.DE-SC0017614. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. U. S. Kamilov.
(Corresponding author: Juan Heredia-Juesas.)
The authors are with the Departments of Electrical and Computer Engi-

neering, Northeastern University, Boston, MA 02115 USA, and also with
the Departments of Mechanical & Industrial Engineering, Northeastern Uni-
versity, Boston, MA 02115 USA (e-mail: j.herediajuesas@northeastern.edu;
jmartinez@coe.neu.edu).
Digital Object Identifier 10.1109/TCI.2021.3124360

where g ∈ Cm is the known data, H ∈ Cm×n is the known
forward model, and u ∈ Cn is the unknown vector to be
determined. These techniques can be classified in direct and
iterative methods. Direct methods are capable of finding an
exact solution of the equation (if existing) with a finite number
of operations; but they may require an impractical amount of
time. Iterative methods theoretically converge asymptotically
to a solution with an infinite number of iterations; but an
approximate solution, depending on the tolerance defined, can
be achieved in a reduced amount of time. In both cases, the
inversion of the matrix H or the matrix H∗H is a problem that
needs to be addressed too, and also direct and iterative methods
have been proposed to this end [1]–[3]. Direct methods not
only have to deal with a potentially large computational cost,
but also with the structure and condition of the matrix, which
may cause inversion errors and singularities. Despite the power
enhancement of computational units,which reduce the operation
times, the increase of data in recent years leads to a preference
for iterativemethods. Additionally, the presence of uncertainties
or noise in the data is better addressed with iterative methods
since they find an approximate solution, that is, a solution
within bounded limits. These uncertainties can be modeled by
adding a noise vector w ∈ Cm to Eqn. (1) as follows:

g = Hu+w. (2)

Distributed techniques [1], [4]–[10] allow to assign small
pieces of information among several computational nodes for
solving smaller problems in a parallel and fast fashion, exchang-
ing the results among the nodes for obtaining a final solution.
These distributed techniques may relief the computational load
and speed up the convergence, but introduce the problem of
communication among those computational nodes, which also
has to be addressed [11]–[18].
Regarding the properties of the unknown vector u, of interest

in the recent years are those under-determined problems (m �
n) in which the solution sought is sparse; that is ‖u‖0 � n,
where ‖ · ‖0 represents the number of non-zero elements of the
vector. These type of problems are generally solved via the use of
Compressive Sensing (CS) techniques by adding a norm-1 regu-
larization, such as Bayesian Compressive Sampling (BCS) [19],
K-means Singular Value Decomposition (K-SVD) [20], Fast
Iterative Shrinkage-ThresholdingAlgorithm (FISTA) [21], [22],
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Nesterov’s Algorithm (NESTA) [23], or the norm-1 regular-
ized form of the Alternating Direction Method of Multipliers
(ADMM) [4], [24]–[26]. The use of the norm-1 regularization
instead of the norm-0 allows to optimize a convex problem
instead of a non-convex one, providing the same solution under
certain conditions [27], [28].
This paper presents three iterative and distributive optimiza-

tion techniques based on ADMM, to find a sparse solution
of Eqn. (2), when the norm-1 regularization is applied. These
techniques exploit the distributed capabilities of ADMM by
dividing H and solving the problem in several computational
nodes, with the goal of reaching real or quasi-real time imaging.
This is of special importance in large-scale imaging problems,
where a non-distributed method in a single node might not have
enough computational capabilities. The division by rows has
shown in [5] a speed-up for finding a solution. In [29], [30]
it has been proved that the division of the matrix by columns
highly reduce the amount of information exchanged among
those computational units. This paper, as an extension of [31],
recalls in detail these two techniques and shows the mathemati-
cal formulation and graphical interpretation of the combination
of them, introducing more degrees of freedom for designing an
appropriate optimization architecture.
The performance of these techniques is validated in a

millimeter-wave imaging application through the use of a Com-
pressive Reflector Antenna (CRA). A CRA is a hardware de-
signed for increasing the sensing capacity of imaging systems,
allowing a reduced number of measurement collection for per-
forming imaging with the use of norm-1 regularized CS tech-
niques [32]–[34]. In this caseH ∈ CNm×Np is called the sensing
matrix, g ∈ CNm is the vector of measurements, and u ∈ CNp

is the unknown vector of reflectivity, where Nm represents the
number of measurements collected andNp the number of pixels
in the imaging domain.
This paper is organized as follows: Section II introduces the

algorithm, properties, and conditions of ADMM. Section III
develops themathematical formulation, the graphical interpreta-
tion, and the convergence process of the three presentedmethods
for solving Eqn. (2):
� Consensus-Based ADMM: Dividing the sensing matrix in
submatrices by rows.

� Sectioning-Based ADMM: Dividing the sensing matrix in
submatrices by columns.

� Consensus and Sectioning-Based ADMM: Dividing
the sensing matrix in submatrices by rows and
columns.

Section IV studies the communications among the computa-
tional nodes, comparing the amount of information exchanged
by one single node at one iteration for the three different tech-
niques. Section V analyzes the computational complexity of the
algorithms, as well as the integration of the communications
overhead per iteration on the global cost, providing an approach
for the selection of the division parameters. Section VI briefly
introduces the description and operation of a CRA. The partic-
ular configuration and numerical results are shown in Section
VII, where the imaging quality, imaging time, convergence, and
communication efficiency among the computational nodes are

compared and discussed for the three proposed techniques. The
paper concludes in Section VIII.

II. GENERAL FORMULATION OF ADMM

A. Variable Splitting

Variable splitting is a technique applicable to unconstrained
optimization problems whose objective function can be sepa-
rated as a sum of two functions. It consists of introducing a new
variable, making the unconstrained problem over u ∈ Cn

minimize
u

f1(u) + f2(g(u)) (3)

to be re-written as a constrained problem, as follows:

minimize
u,v

f1(u) + f2(v)

s.t. g(u) = v,
(4)

where g : Cn → Cq is the function that constrains the relation-
ship between the original and the new variable v ∈ Cq , [35].
Both problems (3) and (4) are equivalent, but the variable
splitting method allows to solve (4) in an easier manner than
its counterpart (3).

B. Augmented Lagrangian and Method of Multipliers

Consider the equality-constrained convex optimization prob-
lem

minimize
u

f(u)

s.t. Pu = c,
(5)

where P ∈ Cp×n and c ∈ Cp. The augmented Lagrangian of
this problem is

Lρ (u,d) = f(u) + dT (Pu− c) +
ρ

2
‖Pu− c‖22, (6)

where d ∈ Cp is the Lagrangian multiplier or dual variable,
and ρ > 0 is the augmented or penalty parameter. Notice that
L0 is the standard Lagrangian of the problem. The advantage
of considering this penalty term is that the Lagrangian function
can be shown to be differentiable under mild conditions on the
objective function, [4]. The Method of Multipliers solves the
problem (5) byminimizing over u and evaluating on the equality
constraint residual as follows:

u(k+1) := argmin
u

Lρ

(
u,d(k)

)
, (7a)

d(k+1) := d(k) + ρ
(
Pu(k+1) − c

)
. (7b)

C. ADMM Formulation

ADMMis an optimization algorithm for convex functions that
takes advantage of both the variable decomposition, splitting
the objective function into simpler objectives, and the conver-
gence properties of the method of multipliers, which relaxes
the conditions of the objective function [4], [24]. The general
representation ofADMMtakes the following optimization form:

minimize
u,v

f1(u) + f2(v)

s.t. Pu+Qv = c,
(8)
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where the knownmatricesP ∈ Cp×n andQ ∈ Cp×q, and vector
c ∈ Cp determine the constraint over the unknown variable
vectors u ∈ Cn and v ∈ Cq . The convex functions f1 and f2
have to be extended real valued functions, that is

f1 : Cn → R ∪ {+∞}, (9a)

f2 : Cq → R ∪ {+∞}, (9b)

and they have to be closed and proper, namely, their effective
domain (non-infinity values) has to be non-empty and they never
reach −∞, mathematically:

∃u ∈ Dom{f} | f(u) < +∞, and (10a)

f(u) > −∞, ∀u ∈ Dom{f}, (10b)

The optimal value of (8) may be denoted by t� as

t� = inf {f1(u) + f2(v) | Pu+Qv = c} . (11)

Taking advantage of the method of multipliers [36], the aug-
mented Lagrangian form of this problem is defined as follows:

Lρ (u,v,d) = f1(u) + f2(v)+

+dT (Pu+Qv − c) +
ρ

2
‖Pu+Qv − c‖22, (12)

where d ∈ Cp is the dual variable, and ρ is the augmented
parameter. A more convenient expression of the augmented
Lagrangian can be achieved by the following simple algebraic
transformation:

dT r+
ρ

2
‖r‖22 =

ρ

2
‖r+ s‖22 −

ρ

2
‖s‖22, (13)

for r = Pu+Qv − c, and s = 1
ρd being the scaled dual vari-

able. Based on this, the general iterative algorithm of ADMM is
described as

u(k+1) := argmin
u

Lρ

(
u,v(k), s(k)

)
, (14a)

v(k+1) := argmin
v

Lρ

(
u(k+1),v, s(k)

)
, (14b)

s(k+1) := s(k) +
(
Pu(k+1) +Qv(k+1) − c

)
. (14c)

The fact that f1 and f2 are defined over different variables allows
the optimization of u and v in an alternating direction fashion.
Two metrics are defined for evaluating the convergence of

the ADMM algorithm. The primal residual, which measures
the residual of the constraint; and the dual residual, which
measures the residual of the dual variable optimization between
two consecutive iterations; are defined, respectively at iteration
k, as follows [4]:

r(k)p = Pu(k) +Qv(k) − c, (15a)

r
(k)
d = ρPTQ

(
v(k) − v(k−1)

)
(15b)

III. ADMM DISTRIBUTED SOLVING METHODS

ADMM is a convenient method when applying CS for finding
a solution of Eqn. (2). Under the assumption that the sensing
matrix H satisfies the Restricted Isometry Property (RIP) [27],

[28], [37], [38], and that the unknown vector u is sparse—that
is, the number of non-zero elements Nnz is much smaller than
the total number of elements, Nnz � n—a sparse solution of
Eqn. (2) can be found by minimizing the sum of the convex
function f1(u) = 1

2‖Hu− g‖22 and the norm-1 regularization
f2(v) = λ‖v‖1. The particular ADMM formulation for solving
Eqn. (2), takes the lasso form:

minimize 1
2 ‖Hu− g‖22 + λ ‖v‖1

s.t. u− v = 0.
(16)

The constraint—defined with P = In, Q = −In, and c = 0—
enforces the variables u and v to be equal. This optimization
problem assumes w to be white gaussian noise, but other types
of noise could be handled by modifying the first term.
Since the dimensions of the sensing matrix H could be very

large—having many pixels in the imaging domain and/or many
collected measurements—, a direct resolution of the problem
(16) is not usually efficient. Some techniques have been pro-
posed for solving this problem in a distributed fashion using the
ADMM, such as [5], [29], for solving fast imaging problems;
or [7], [13], for solving a communications problem in the dual
space. In this paper, three different methods, focused on solving
imaging problems in the primal space, are presented. The aim is
to find a sparse solution of Eqn. (2), while reducing the amount
of information exchanged among the nodes, the computational
complexity, and the imaging time.

A. Consensus-Based ADMM: Row-Wise Division

Aspresented in [5], problem (16) can be solved in a distributed
fashion, by splitting the original matrix H intoM submatrices
Hi ∈ C

Nm
M ×Np in a row division, and the vector of measure-

ments g into M subvectors gi ∈ C
Nm
M , as shown in Fig. 1(a).

Then, M different under-determined problems Hiu = gi, for
i = 1, . . . ,M , need to be solved. In particular, the summation
of all of them may be optimized together with the norm-1
regularization as follows (Please, refer toAppx. A for the correct
interpretation of the notation throughout thewholemathematical
process):

minimize 1
2

M∑
i=1

‖Hiu− gi‖22 + λ ‖v‖1
s.t. u = v.

(17)

In order to make the optimizations independent,M replicas of
the unknown variable umay be defined as ui for i = 1, . . . ,M ,
turning the expression (17) into

minimize 1
2

M∑
i=1

∥∥Hiu
i − gi

∥∥2
2
+ λ ‖v‖1

s.t. ui = v, ∀i ∈ {1, . . .,M}.
(18)

The augmented Lagrangian function for this problem is as
follows:

Lρ

(
u1, . . . ,uM ,v, s1, . . . , sM

)
=

=
1

2

M∑
i=1

∥∥Hiu
i − gi

∥∥2
2
+ λ ‖v‖1 +
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Fig. 1. (a) Division of the matrix equation system by rows. (b) Architecture
of the consensus-based ADMM: a central node collects the updates ofM sub-
nodes, computes the soft-thresholding operator of the mean of them, and then
distributes the solution again to the sub-nodes. (c) Graphical interpretation of the
row-wise division:M independent images are optimizedwith few data allocated
to each node. The final imaging is a non-linear average of all of them.

+
ρ

2

M∑
i=1

∥∥ui − v + si
∥∥2
2
− ρ

2

M∑
i=1

∥∥si∥∥2
2
, (19)

where a dual variable si is introduced for each of the M con-
straints. The augmented parameter ρ enforces the convexity of
the Lagrangian function. By iterating the following scheme, an
optimal solution may be found:

ui,(k+1) =
(
H∗

iHi + ρINp

)−1
(
H∗

igi + ρ
(
v(k) − si,(k)

))
,

(20a)

v(k+1) = S λ
Mρ

(
ū(k+1) + s̄(k)

)
, (20b)

si,(k+1) = si,(k) + ui,(k+1) − v(k+1), (20c)

where ū and s̄ represent the mean of ui and si, respectively, for
all values of i; INp

indicate the identity matrix of size Np; and

Sκ(a) is the element-wise soft thresholding operator [39]:

Sκ(a) =

{
a− κ sign(a), |a| > κ

0 |a| ≤ κ.
(21)

The matrix inversion lemma [40] may be applied for the com-
putation of the term (H∗

iHi + ρINp
)−1, as shown in Eqn. (22).

Therefore, just invertingM matrices of reduced size Nm

M × Nm

M ,
instead ofM large matrices of sizeNp ×Np, is required, highly
accelerating the algorithm.

(
H∗

iHi + ρINp

)−1
=

INp

ρ
− H∗

i

ρ2

(
INm

M
+

HiH
∗
i

ρ

)−1

Hi,

(22)
In terms of convergence, the primal and dual residuals are

computed, respectively, as follows:

r(k)p =
(
u1,(k) − v(k), . . . ,uM,(k) − v(k)

)
, (23a)

r
(k)
d = −ρ

(
v(k) − v(k−1), . . . ,v(k) − v(k−1)

)
, (23b)

and their squared norms are

‖r(k)p ‖22 =

M∑
i=1

‖ui,(k) − v(k)‖22, (24a)

‖r(k)d ‖22 = ρ2M‖v(k) − v(k−1)‖22, (24b)

It can be noticed in expressions (18) and (20b) that the variable
v acts as a consensus, forcing that all variables ui converge to
the same solution. The primal residual in Eqn. (24a) can be
understood, therefore, as a measure of the lack of consensus.
The architecture of this algorithm can be interpreted as a hierar-
chical structure, having a central node that collects all individual
solution for each sub-node, performs the soft-thresholding aver-
aging, and then broadcasts the global solution to each sub-node,
as represented in Fig. 1(b). This technique performs, iteratively,
M independent imageswith fewamount of data allocated to each
node, and then creates the final imaging as a non-linear average
of those intermediate results, in the manner that Fig. 1(c) shows.
As shown in [5], this technique highly reduces the compu-

tational cost producing real-time imaging; however, it has the
problemof sharing the global solutionv(k) from the central node
to each sub-node, and the whole individual solution ui,(k+1),
together with the dual variable si,(k), from each sub-node to
the central node, for each iteration. These vectors are of the
size of the total number of pixels in the imaging domain and
may be very large, producing a slow communication among the
computational nodes.

B. Sectioning-Based ADMM: Column-Wise Division

A different approach for finding a solution of problem (16)
is by dividing the original matrix H into N submatrices Hj ∈
CNm×Np

N in a column basis and, accordingly, the vector of

unknowns u intoN subvectors uj ∈ C
Np
N , as done in [29]. This

segmentation makes the problem to be solved in the following
form:

∑N
j=1 Hjuj =

∑N
j=1 ĝj = g, which requires the intro-

duction of the so-called estimated data vectors ĝj , as represented
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Fig. 2. (a) Division of the matrix equation system by columns. The measure-
ments vector is decomposed into N estimated vectors. (b) Architecture of the
sectioning-based ADMM: the problem is split into N nodes that optimize a
region of the imaging. For each iteration, they share the small estimated data
vector with the remaining nodes. (c) Graphical interpretation of the column-wise
division: the image is sectioned into N regions. The final imaging is the
concatenation of all of them.

in Fig. 2(a). The problem is optimized, together with the norm-1
regularization, as follows:

minimize 1
2

∥∥∥∥∥
N∑
j=1

Hjuj − g

∥∥∥∥∥
2

2

+ λ
N∑
j=1

‖vj‖1
s.t. uj = vj , ∀j ∈ {1, . . ., N}.

(25)

The augmented Lagrangian for this problem is defined over 3N
variables as in the following expression:

Lρ (u1, . . . ,uN ,v1, . . . ,vN , s1, . . . , sN ) =

=
1

2

∥∥∥∥∥∥
N∑
j=1

Hjuj − g

∥∥∥∥∥∥
2

2

+ λ

N∑
j=1

‖vj‖1 +

+
ρ

2

N∑
j=1

‖uj − vj + sj‖22 −
ρ

2

N∑
j=1

‖sj‖22 , (26)

where, again, sj is the dual variable introduced for each con-
straint j, and ρ is the augmented parameter. This problem can
be solved by the following iterative scheme:

u
(k+1)
j =

(
H∗

jHj + ρINp
N

)−1 (
H∗

jg
(k)
j + ρ

(
v
(k)
j − s

(k)
j

))
,

(27a)

v
(k+1)
j = S λ

ρ

(
u
(k+1)
j + s

(k)
j

)
, (27b)

s
(k+1)
j = s

(k)
j + u

(k+1)
j − v

(k+1)
j , (27c)

where g(k)
j , required for computing Eqn. (27a), is obtained as

g
(k)
j = g −

N∑
q=1
q �=j

Hqu
(k)
q = g −

N∑
q=1
q �=j

ĝ(k)
q , (28)

and it corresponds with the fraction of data determined for the
update of the segment j of the vector u, making use of the
estimated data computed from the remaining segments from
the previous iteration. Sκ(a) is the soft thresholding operator as
defined in Eqn. (21). In case ofNm <

Np

N , the matrix inversion
lemma can be applied to the term (H∗

jHj + ρINp
N

)−1 as follows:

(
H∗

jHj + ρINp
N

)−1

=
INp

N

ρ
− H∗

j

ρ2

(
INm

+
HjH

∗
j

ρ

)−1

Hj .

(29)
In this case, only N matrices of sizes Nm ×Nm need to be
inverted. However, if Nm >

Np

N , the original inversion is com-
putationally more efficient.
In terms of convergence, the primal and dual residual vectors

for this technique are computed, respectively, as follows:

r(k)p =
(
u
(k)
1 − v

(k)
1 , . . . ,u

(k)
N − v

(k)
N

)
, (30a)

r
(k)
d = −ρ

(
v
(k)
1 − v

(k−1)
1 , . . . ,v

(k)
N − v

(k−1)
N

)
; (30b)

and their squared norms are

‖r(k)p ‖22 =

N∑
j=1

‖u(k)
j − v

(k)
j ‖22, (31a)

‖r(k)d ‖22 = ρ2
N∑
j=1

‖v(k)
j − v

(k−1)
j ‖22. (31b)

It is important to notice that the convergence is not guaranteed
for this method and depends on ρ, which experimentally should
be a large value.
It is deducted from the analysis of Eqns. (27a) and (28) that,

for performing the u
(k+1)
j optimizations, each computational

node j needs the submatrix Hj , the whole vector g, and the
estimated data coming from the remaining nodes ĝ(k)

q , for q �=
j. Therefore, this problem can be interpreted as an N fully-
connected net of nodes that individually optimize each fragment
u
(k+1)
j , introducing thereupon its update to the net in the format

of the estimated data ĝ
(k+1)
j = Hju

(k+1)
j ∈ CNm , creating a

non-hierarchical architecture, as the one represented in Fig. 2(b).
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This approach can be illustrated as a sectioning of the imaging
domain due to splitting the unknown vector u intoN subvectors,
corresponding each uj to a specific region of the image, as it is
schematized in Fig. 2(c). These regions may be predetermined
by the user by an appropriate division of the unknown vector u
and, consequently, the matrix H would be divided accordingly.
The final imaging solution is accomplished by connecting, after
convergence, the N optimizations u = [u1; . . . ;uN ].
This technique takes advantage of this image sectioning, since

the communication among the nodes requires sharing only small
vectors ĝ(k)

q ∈ CNm , for each iteration k. However, it lacks the
acceleration achieved in the row-wise division due to two main
reasons: (i) for small values of N , the inversion of the matrices
in Eqn. (29) might be expensive, and (ii) for large values of N ,
the known vector of measurements g is highly scattered into the
N estimations ĝj , causing slow computation at each iteration
because of the matrix-vector product in Eqns. (27a) and (28).

C. Consensus and Sectioning-Based ADMM: Row and
Column-Wise Division

A combination of the two previous approaches may be per-
formed when dividing the matrix H into M ·N submatrices

Hij ∈ C
Nm
M ×Np

N , the vector of measurements g intoM subvec-
tors gi ∈ C

Nm
M , and the unknown vector u into N subvectors

uj ∈ C
Np
N , as shown in Fig. 3. Now,M under-determined prob-

lems
∑N

j=1 Hijuj =
∑N

j=1 ĝij = gi, for i = 1, . . . ,M , need
to be solved. Applying the same technique as in the division
by rows, that is, minimizing the summation of all of them and
creating M replicas of each segment j of the unknown vector
u, namely ui

j , the problem may be optimized, together with the
norm-1 regularization, as follows:

minimize 1
2

M∑
i=1

∥∥∥∥∥
N∑
j=1

Hiju
i
j − gi

∥∥∥∥∥
2

2

+ λ
N∑
j=1

‖vj‖1
s.t. ui

j = vj , ∀i ∈ {1, . . .,M}, ∀j ∈ {1, . . ., N}.
(32)

Notice that this problem hasM ·N equality constraints.
The augmented Lagrangian function for this problem, with

(2M + 1)N variables, is expressed in the next equation:

Lρ

(
u1
1, . . . ,u

M
N ,v1, . . . ,vN , s11, . . . , s

M
N

)

=
1

2

M∑
i=1

∥∥∥∥∥∥
N∑
j=1

Hiju
i
j − gi

∥∥∥∥∥∥
2

2

+ λ

N∑
j=1

‖vj‖1

+
ρ

2

M∑
i=1

N∑
j=1

∥∥ui
j − vj + sij

∥∥2
2
− ρ

2

M∑
i=1

N∑
j=1

∥∥sij∥∥22 , (33)
where sij is the dual variable for the constraint with indices i and
j, and ρ is, as in previous cases, the augmented parameter. This
problem can be solved by the following iterative scheme:

u
i,(k+1)
j =

(
H∗

ijHij+ρINp
N

)−1(
H∗

ijg
(k)
ij +ρ

(
v
(k)
j −s

i,(k)
j

))
,

(34a)

Fig. 3. Division of thematrix equation system by rows and columns. Themea-
surements vector is divided intoM subvectors and each of them is decomposed
intoN estimated vectors.

v
(k+1)
j = S λ

Mρ

(
ū
(k+1)
j + s̄

(k)
j

)
, (34b)

s
i,(k+1)
j = s

i,(k)
j + u

i,(k+1)
j − v

(k+1)
j , (34c)

where

g
(k)
ij = gi −

N∑
q=1
q �=j

Hiqu
i,(k)
q = gi −

N∑
q=1
q �=j

ĝ
(k)
iq , (35)

corresponds with the fraction of data determined for the update
of the i− th replica of the segment j of the vector u, which re-
quires the estimated data computed for the remaining segments
of the same replica i. Sκ(a) is the soft thresholding operator as
defined in Eqn. (21), and ūj and s̄j are the mean of ui

j and s
i
j ,

respectively, for all replicas i of a given segment j. If Nm

M <
Np

N ,
the matrix inversion lemma should be applied for the inversion
of the term (H∗

ijHij + ρINp
N

)−1, as indicated in the Eqn. (36):

(
H∗

ijHij+ρINp
N

)−1

=
INp

N

ρ
−H∗

ij

ρ2

(
INm

M
+
HijH

∗
ij

ρ

)−1

Hij .

(36)
The primal and dual residuals, which are vectors of M ·N

components that measure the convergence of the algorithm, are
computed, respectively, as follows:

r(k)p =
(
u
1,(k)
1 − v

(k)
1 , . . . ,u

M,(k)
1 − v

(k)
1 ,

...

u
1,(k)
N − v

(k)
N , . . . ,u

M,(k)
N − v

(k)
N

)
, (37a)

r
(k)
d = −ρ

(
v
(k)
1 − v

(k−1)
1 , . . . ,v

(k)
1 − v

(k−1)
1

...

v
(k)
N − v

(k−1)
N , . . . ,v

(k)
N − v

(k−1)
N

)
, (37b)

and their squared norms are

‖r(k)p ‖22 =

M∑
i=1

N∑
j=1

‖ui,(k)
j − v

(k)
j ‖22, (38a)

‖r(k)d ‖22 = ρ2M

N∑
j=1

‖v(k)
j − v

(k−1)
j ‖22. (38b)
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Fig. 4. Schematic of the rows and columns-wise division resolution process.
The unknown vector u is divided intoN segments and replicatedM times. For

a fixed replica i, the optimization of each sub-variable ui,(k)
j for j = 1, . . . ,N

requires the knowledge of the subvectorgi and the estimated data ĝ
(k)
iq obtained

from the previous optimizations of the remaining sub-variables u
i,(k)
q for

q = 1, . . . ,N with q �= j. For a given segment j, the sub-variable v(k)
j acts

as the consensus of all the replicas ui,(k)
j , for i = 1. . . . ,M , of that segment.

As in the sectioning-based method, the convergence is not
guaranteed and depends on ρ, which experimentally should be
a large value.
Equations (32)-(36) combine the particularities of both pre-

vious approaches for solving the original problem introduced in
Eqn. (2). The matrix H is divided in submatrices by rows (i in-
dices) and by columns (j indices). For this reason, the unknown
vector u is divided into N segments [u1; . . . ;uN ] and each of
them is replicatedM times (u1

j , . . . ,u
M
j , for j = 1, . . . , N ).

For solving this problem, there are two steps in which some
information needs to be shared. On one hand, Eqns. (32) and
(34b) show that, for a given segment j, v(k+1)

j acts as a con-

sensus variable, imposing the agreement among all ui,(k+1)
j

for i = 1, . . . ,M , namely, among all replicas of the same seg-
ment. On the other hand, Eqns. (34a) and (35) show that, for
a given replica i, the optimization of the variables ui,(k+1)

j for
j = 1, . . . , N , that is, the optimization of all segments of the
same replica, require the knowledge of the subvector gi, as well
as the updates of the estimated data ĝ(k)

iq = Hiqu
i,(k)
q ∈ CNm

for q = 1, . . . , N with q �= j, from the previous iteration. This
explanation is depicted in Fig. 4.
Therefore, as Fig. 5(a) shows, this technique can be seen

as a net formed by N main nodes. Each of them acts as the
central node for optimizing a section of the image, collecting
the individual solution ofM sub-nodes that perform the imaging
of each replica, and computing the soft-thresholding averaging.
Then, they broadcast the global result to each sub-node. There
are a total of N ·M sub-nodes, each one containing a small
portion of information Hij of the general matrix H. For a
given replica i, all sub-nodes have to be in communication

Fig. 5. (a) Architecture of the consensus and sectioning-based ADMM: the
problem is split intoN nodes, each of them acting as a central node that collects
the updates of M sub-nodes, computes the soft-thresholding operator of the
mean of them, and then broadcast the solution again to the sub-nodes. Each sub-
node shares, for each iteration, the small estimateddatavectorwith the remaining
sub-nodes that correspond with the same replica. (b) Graphical interpretation of
the row and column-wise division: the image is sectioned into N regions, and
each of them is replicatedM times for performing the imaging with few data
allocated to each node. The solution for each region is a non-linear average of all
the replicas. The final imaging solution is the concatenation of all the regions.

to exchange their particular estimated data ĝ
(k)
ij = Hiju

i,(k)
j .

The final imaging solution is performed by connecting the N
different solutions from each central node, v = [v1; . . . ;vN ].
As graphically shown in Fig. 5(b), this technique sections

the imaging domain into N small regions. For each of them,
M independent images are performed with less data each one.
The final imaging for each region is computed as a non linear
average of these independent images. Finally, the global imaging
solution is the re-connection of all those regions.
In this sense, this technique combines the advantages of both

previous techniques: (i) by dividing by rows, the process is
accelerated since small optimizations are performed in a parallel
fashion; (ii) by dividing by columns, small vectors have to be
shared among the nodes of the same replica; and (iii) when
combining the division by rows and by columns, the size of the
vectors to be exchanged among the computational nodes of the
net could be reduced even more, alleviating the communication
overhead. A detailed analysis of the communication among the
nodes is explained in Section IV. These two degrees of freedom
enable performing the optimization in a fast and distributed
fashion, making the imaging of large domains feasible.
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Fig. 6. Schematic representation of the vectors and their lengths that are
received from and transmitted by one single node at iteration kwhen the sensing
matrix of the problem is divided into submatrices (a) by rows, (b) by columns,
and (c) by both rows and columns.

IV. COMMUNICATION AMONG THE NODES FOR THE ADMM
SOLUTION TECHNIQUES

A. Exchange of Information for One Single Node

The three techniques studied in Section III present three
distributed ways for finding an optimal solution of expression
(16), in which several computational nodes optimize indepen-
dent sub-problems with few information allocated to each one.
However, in all these three methodologies, there are concrete
steps in which some information needs to be exchanged. In
this section, the amount of data that is transmitted from and
received by one single node at iteration k is analyzed for the
three techniques:
� In the case of dividing the sensing matrix by rows
(Fig. 6(a)), each node i in the lower level has to receive the
last version of v(k) ∈ CNp , and then, after the optimiza-
tion, it has to send its whole new updated version ui,(k+1),
together with the dual variable si,(k), to the main node
(recall Eqns. in (20) and Fig. 1(b)) in the form bi,(k+1) =
ui,(k+1) + si,(k) ∈ CNp . The exchange of information is
performed in terms of the imaging and, therefore, a total
of 2Np elements need to be exchanged at each iteration.

� In the case of dividing the sensing matrix by columns
(Fig. 6(b)), each sub-node j of the lower level receives the
estimated data of the remainingN − 1 nodes ĝ(k)

q ∈ CNm

for q = 1, . . . , N , with q �= j, and also it broadcasts its own
estimated data ĝ(k+1)

j ∈ CNm to the remaining nodes (See
Eqns. (27a) and (28), and Fig. 2(b)). Since the exchange of
information is carried out in terms of the estimated data, a
total of N ·Nm elements are shared by one node at each
iteration.

� In the case of performing the division of the sensing matrix
in both rows and columns (Fig. 6(c)), as recalled, the
unknown vector u is divided into N segments and each
of them is replicated M times. The sub-node ij, which
optimizes the replica i of the segment j in the lower

level, receives the latest version of v(k)
j ∈ C

Np
N andN − 1

estimated data subvectors ĝ(k)
iq ∈ C

Nm
M for q = 1, . . . , N,

with q �= j. Once the variable ui,(k+1)
j is updated, it sends

TABLE I
NUMBER OF ELEMENTS EXCHANGED BY ONE SINGLE NODE AT ONE
ITERATION FOR THE THREE ADMM DISTRIBUTED TECHNIQUES

b
i,(k+1)
j = u

i,(k+1)
j + s

i,(k)
j ∈ C

Np
N to the central node of

the segment j, and also it broadcasts its own estimated data
subvector ĝ(k+1)

ij ∈ C
Nm
M to the remaining nodes (recall

Eqns. (34), (35), and Fig. 5(a)). Summarizing, at each iter-
ation, a total of N Nm

M + 2
Np

N elements are exchanged by
one single node. In this case, the exchange of information
is done as a combination of the imaging domain and the
estimated data.

Table I shows the amount of elements to be received by and
transmitted from one single node at iteration k for the three
analyzed cases.

B. Communication Efficiency of the Three Distributed ADMM
Techniques

In order to assess the efficiency of the communications among
the nodes for the three different techniques, the amount of
information received by and transmitted from one single node
at iteration k is compared. Since the number of pixels Np and
the number of measurements Nm are always known, the ratio
R =

Np

Nm
is considered as the reference for the analysis of the

three cases.
1) Column-Wise vs Row-Wise Division: The column-wise

division (Sectioning-based ADMM) is more efficient than the
row-wise division (Consensus-based ADMM) in terms of com-
munications among the nodes if the following inequality is
satisfied:

N ·Nm < 2Np. (39)

This implies that the number of divisions by columns of the
sensing matrix has to satisfy

1 < N < 2R. (40)

Fig. 7 graphically represents this inequality.
2) Row and Column-Wise vs Row-Wise Division: The

row and column-wise division (Consensus and sectioning-
based ADMM) is more efficient than the row-wise division
(Consensus-based ADMM) in terms of communications among
the nodes if the following inequality is satisfied:

N
Nm

M
+ 2

Np

N
< 2Np, (41)
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Fig. 7. Boundary line comparing the efficiency of the column-wise division
versus the row-wise division. Dividing the sensing matrix into submatrices by
columns is more efficient than dividing it by rows, in terms of communications
among the nodes, for the integer and positive values of N that fall in the area

indicated by the arrows, given R =
Np

Nm
.

Fig. 8. Boundary curves comparing the efficiency of the row and column-wise
division versus the row-wise division.Dividing the sensingmatrix in submatrices
by rows and columns is more efficient, in terms of communications among the
nodes, than dividing it by rows only, for the integer and positive values ofM

andN that fall in the area indicated by the arrows, for a given ratio R =
Np

Nm
.

which implies that

N2

2M(N − 1)
< R. (42)

For a given ratioR, the number of column divisionsN , in terms
of the number of row divisions M , must satisfy the following
inequality:

1 < N <
√

R2 M2 − 2RM +RM ∼ 2RM. (43)

Fig. 8 represents this inequality for some particular ratios R.
The division of the sensing matrix by rows and columns is more

Fig. 9. Boundary curves comparing the efficiency of the row and column-
wise division versus the column-wise division. Dividing the sensing matrix into
submatrices by rows and columns is more efficient, in terms of communications
among the nodes, than dividing it by columns only, for those integer values ofN

andM that fall in the area indicated by the arrows, for a given ratio R =
Np

Nm
.

efficient than the division by rows only, for those integer and
positive values ofM andN that fall in the region indicated by the
arrows. These results illustrate that, in general, for a given ratio
R, the division by rows and columns ismore efficient the division
by rows alone, unless the number of divisions by columns, N ,
is much larger than the number of divisions by rows,M .
3) Row and Column-Wise vs Column-Wise Division: The

row and column-wise division (Consensus and sectioning-
based ADMM) is more efficient than the column-wise division
(Sectioning-based ADMM) in terms of communications among
the nodes if the following inequality is satisfied:

N
Nm

M
+ 2

Np

N
< N ·Nm. (44)

This implies that

N2(M − 1)

2M
< R. (45)

Therefore, given a ratio R, the number of divisions by rowsM
in terms of the number of divisions by columns N must satisfy

M >
N2

N2 − 2R
. (46)

Fig. 9 represents this inequality for some specific ratios R. The
division of the sensing matrix by rows and columns is more
efficient than the division by columns only for those integer
values ofN andM that fall in the region indicated by the arrows.
Interestingly, the number of divisions by columns, N , has to be
large enough so that the division by rows and columns may have
a better efficiency than the division by columns only. In fact,
given a ratio R, for those values of N such that N2 − 2R ≤ 0,
the division by columns always will be more efficient than the
division by rows and columns.
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V. COMPUTATIONAL COMPLEXITY OF THE ALGORITHM

In order to assess and compare the complexity of the three
distributed algorithms, an evaluation of the computational cost
per iteration is carried out. In this process, the communications
overhead described in the previous section is added to this cost
to merge, under the same framework, the computational and
communication loads. The calculation is based on the optimiza-
tion scheme of the Consensus and Sectioning-based ADMM
from equations (34) to (36), since the Consensus-based and the
Sectioning-based algorithms can be particularized from here by
setting N = 1 and M = 1, respectively, although with some
particularities.
It can be noticed that Eqns. (34b) and (34c) are just additions

and subtractions of vectors, meaning that their computational
cost is negligible with respect to Eqn. (34a), which involves
matrix-vector multiplications, including the intermediate com-
putation of g(k)

ij in Eqn. (35), which also has matrix-vector
multiplication.
Equation (34a) implies a previous computation of the in-

version of a matrix that do not depend on the iteration step.
The matrix inversion lemma described in Eqn. (36) helps to
reduce the computational cost of this inversion but, in order to
promotematrix-vectormultiplications and reducematrix-matrix
multiplications, Eqn. (34a) is implemented as the sum of four
terms, as follows:(

INp
N

ρ
− H∗

ij

ρ2

(
INm

M
+

HijH
∗
ij

ρ

)−1

Hij

)

×
(
H∗

ijg
(k)
ij + ρ

(
v
(k)
j − s

i,(k)
j

))

=
1

ρ
H∗

ijg
(k)
ij +

(
v
(k)
j − s

i,(k)
j

)

− 1

ρ2
Fij

(
Hij

(
H∗

ijg
(k)
ij

))
− 1

ρ
FijHij

(
v
(k)
j − s

i,(k)
j

)
,

(47)

where

Fij = H∗
ij

(
INm

M
+

HijH
∗
ij

ρ

)−1

∈ C
Np
N ×Nm

M . (48)

The computation of the N ·M matrices Fij is done once as
the first stage of the algorithm, but its computational burden is
considerable. It is known that the computational complexity of
a matrix-matrix multiplication of sizes n×m and m× p is of
the orderO(nmp), the addition of two vectors of size n isO(n),
and the complexity of the inversion of a matrix of size n× n is
of the order O(n3). Based on this, and neglecting the low order
terms, the complexity of the computation of theN ·M matrices
Fij is

O

(
N

N3
m

M2

)
. (49)

On the other hand, the computation of g
(k)
ij is O((N −

1)(
Np

N
Nm

M + Nm

M ) + Nm

M ) and the complexities for each of the

four terms in Eqn. (47) areO(
Np

N
Nm

M ),O(
Np

N ),O(3
Np

N
Nm

M ), and

O(2
Np

N
Nm

M ), respectively. All together, plus the sum of the four

terms, for the computation of the N ·M instances of ui,(k+1)
j

for iteration k + 1, generates a computational complexity of the
order ofO(NNpNm +N2Nm +MNp), when simplifying the
constants.
The cost related to the communications among the compu-

tational nodes is added to the complexity per iteration, since it
is needed to continue the algorithm for the next iteration. Let
C(P ) be the cost of exchanging a vector of length P . This
cost depends on the particular architecture deployed for the
concrete scenario, andmayvary depending on the type and speed
of communications, but for sure it would be a monotonically
increasing function.As itwas determined in the previous section,
the communications overhead for theConsensus andSectioning-
based ADMM is N Nm

M + 2
Np

N , for N > 1 andM > 1. In this
way, the computational cost, together with the communications
overhead for one iteration is of the order of

O

(
NNpNm +N2Nm +MNp + C

(
N

Nm

M
+ 2

Np

N

))
.

(50)
Finally, the computational cost is the same for each iteration,

since there is no variation in the optimization scheme that de-
pends on the iteration step. Thus, the complexity grows linearly
with the number of iterations.

A. Complexity in Terms of Number of Divisions for the Three
Distributed Techniques

Let us consider from this point a fixed systemwith the freedom
of selecting the distributed architecture; to wit, Np and Nm

are given, and M and N are variable. Despite the concrete
values of Np and Nm would influence the complexity, when
considering constant, only the variations ofM andN are taken
into account for the computational part. The analysis could
be done as well if there is freedom on the determination of
the number of measurements or the degree of discretization of
the imaging domain for a constrained distributed architecture.
It looks clear that the complexity grows, in general, with the
number of divisions, but is better to separate this analysis for the
different distributed cases:
� Consensus-Based ADMM (N = 1): In this case, the com-
plexity of the matrix inversions reduces with the number
of divisions by rows, O( 1

M2 ). In terms of the per-iteration
complexity, it is of the order ofO(M + C(2Np)), meaning
that it grows linearly with the number of divisions by rows,
but is also burdened with a communications cost of a large,
constant vector.

� Sectioning-Based ADMM (M = 1): This case makes the
complexity of thematrix inversion to grow linearlywith the
number of divisionsO(N), and the per-iteration complex-
ity to grow quadratically O(N2 + C(N ·Nm)), weighted
by a low cost, but linearly growing, communications term.

� Consensus and Sectioning-Based ADMM: The complexity
of the matrix inversion for this case is O( N

M2 ), and the

iteration complexity is O(N2 +M + C(N Nm

M + 2
Np

N )).
On one hand, the number of divisions by columns, N ,
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TABLE II
ALGORITHM COMPLEXITY

increments the complexity but helps to reduce the commu-
nications cost, up to a point. On the other hand, the number
of divisions by rows,M , helps to reduce the complexity of
the matrix inversions and makes the iteration complexity
to grow only linearly; but it also plays a trade-off role in the
communications cost, reducing the term related to the data
estimation part, but also introducing a large term related to
consensus part, although this last one is alleviated by the
division by columns, N .

The previous results are summarized in Table II .

B. Complexity Discussion and Selection of Parameters

There is no a standard procedure to establish the optimal selec-
tion of the parametersN andM , since, as mentioned previously,
it depends on the particular scenario and distributed architecture.
However, there are several conclusions that can be taken from
the previous analysis. On one hand, it is desired to increase the
number of divisions by rows,M to reduce the complexity of the
matrix inversions, but not toomuch since thatmakes the iteration
part to grow. This creates a trade-off between the two stages of
the algorithm that should be balanced. On the other hand, the
division by columns, N , reduces the communications cost, but
increases both the matrix inversion and iteration computation
complexities. Therefore, it is required to have the smallest value
of N as possible, as long as the communications cost effect is
minimized.

VI. COMPRESSIVE REFLECTOR ANTENNA

The concept of a Compressive Reflector Antenna (CRA) has
been presented recently as a hardware capable of improving the
sensing capacity of imaging systems in passive [41], [42] and
active [43]–[46]mm-wave radar applications.Away of building
a CRA is by distorting the surface of a Traditional Reflector
Antenna (TRA) with some scatterers Ωi, characterized by their
dimension {Dx

i , D
y
i , D

z
i } and electromagnetic properties: per-

mittivity εi, permeability μi, and conductivity σi, as it is shown
inFig. 10, [33].Other parameters, such as the aperture sizeD, the
focal distance f , and the offset height ho are in common with
a TRA. This distortion modifies the well-known planar phase
front pattern of a TRA, creating pseudo-randompatterns that can
be considered as spatial and spectral codes in the near and far
field of the antenna [47]. This phenomenon reduces the mutual
information among the measurements, increases the sensing
capacity of the system, and allows the use of CS techniques for
performing the imaging of sparse 3D objects [32]–[34], [48].

TABLE III
PARAMETERS OF THE NUMERICAL SIMULATION

Based on the configuration depicted in Fig. 11, NTx trans-
mitting antennas and NRx receiving antennas are facing the
CRA1 and CRA2, respectively. The signal sent from each
transmitter is collected by each receiver after being scattered
by the targets. The total number of measurements collected
is Nm = NTx ·NRx ·Nf , where Nf is the total number of
equally-spaced frequencies used within a bandwidth of BW
around the central frequency fc. The imaging domain is dis-
cretized intoNp pixels. A linear relationship can be established
between the vector ofmeasurementsg ∈ CNm and the unknown
vector of reflectivity u ∈ CNp as follows:

g = Hu+w, (51)

where H ∈ CNm×Np is the sensing matrix computed as de-
scribed in [49] and w ∈ CNm is the noise collected for each
measurement.

VII. NUMERICAL RESULTS

The effectiveness of the three ADMM techniques is as-
sessed by the use of CRAs for mm-wave imaging applications.
Fig. 11(a) shows a schematic of the configuration for the imaging
problem. Two ho-offset CRAs are tilted θt and −θt degrees, as
shown in Fig. 11(b). The transmitting array is facing CRA1,
centered in its focal point and arranged along the x̂-axis; mean-
while the receiving array, linearly arranged in the YZ-plane,
is centered in the focal point of the CRA2 and facing it. The
surfaces of the two CRAs are discretized into triangular patches,

Fig. 10. 2D cross-section of a CRA in offset mode. The scatterers Ωi distort
the phase front creating a pseudo-random pattern.

Authorized licensed use limited to: Northeastern University. Downloaded on August 17,2022 at 17:26:46 UTC from IEEE Xplore.  Restrictions apply. 



1200 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

Fig. 11. (a) Geometry of the sensing system. A linear array of transmitters
feeds the CRA1, which illuminates the imaging domain. The field scattered by
the targets is reflected by the CRA2 and measured by another linear array of
receivers, orthogonal to the transmitting one. (b) Top view of the sensing system.
The faded CRAs and Tx and Rx arrays indicate their position before tilting. The
green CRA (CRA1) is tilted θt degrees in the+ŷ direction (counterclockwise),
and the orange CRA (CRA2) is tilted θt degrees in the−ŷ direction (clockwise). Fig. 12. Imaging reconstruction (top, front, and side views) using

(a) consensus-based ADMM, (b) Sectioning-based ADMM, (c) Consensus and
Sectioning-based ADMM. The targets are represented with transparent black
triangles and the reconstructed reflectivity is presented in the colored map with
the isosurface Matlab command for three levels of the normalized signal.
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TABLE IV
METRICS OF THE IMAGE RECONSTRUCTION

TABLE V
SUBMATRICES SIZES AND TIME FOR THE THREE ADMM TECHNIQUES

as it is described in [49]. A scatterer is constructed over each
patch, with averaged sizes of 〈Dx〉 and 〈Dy〉 in the x̂ and
ŷ dimensions, respectively. The size in the ẑ dimension Dz

i

is defined as the product 〈Dx〉 · tan(αti), with αti being the
tilt angle for each scatterer, selected from a uniform random
variable in the interval [0, αtmax], allowing a maximum tilt
angle of αtmax. The material of each scatterer is considered
as a perfect electric conductor (PEC), therefore σi = ∞. The
imaging domain, where the targets are contained, is located zT0
meters away from the focal plane of the CRAs before tilting.
It covers a parallelepiped-shaped volume defined by the ΔxT

0 ,
ΔyT0 , and ΔzT0 dimensions, and it is discretized into Np pixels
of dimensions lx, ly , and lz . The values for all these parameters
are shown in Table III.
Fig. 12 depicts the imaging results when applying the three

ADMM techniques for the following parameters: ρ = 105, λ =
10−2, and scaling factor scl = 10−4 (see Ref. [29]), for 50
iterations and no noise. The targets correspond to a metallic gun
and dagger structures located in different planes. Based on the
discussion on SectionV-B, small values ofM andN are selected
for the validation of the three techniques. For the consensus-
based ADMM, the sensing matrixH ∈ CNm×Np is divided into
M = 4 submatrices by rows; for the sectioning-based ADMM,
H is divided into N = 3 submatrices by columns; and for
the consensus and sectioning-based ADMM, H is divided into
M ·N = 4 · 3 = 12 submatrices by rows and columns.
Table IV indicates six metrics for comparing the imaging

reconstruction results for each of the three techniques. A pixel is
considered as a detection if its reconstructed normalized signal
is equal or above −7 dB. As expected, all values are very
similar for each metric. While the sectioning-based ADMM
presents a higher sensitivity, namely, it reconstructs the targets
better, the precision is lower because of the presence of some

artifacts. In terms of the balanced accuracy (mean between
sensitivity and specificity) and F1-score, the sectioning-based
ADMM performs slightly better than the other two methods,
but it drops when the F0.5-score is computed, which gives more
importance to the fact of lacking artifacts. Notice that, despite
the visualization presents a good reconstruction for the three
techniques, the sensitivity values are not very high due to the
fact that the targets are not flat and part of the signal may be
reflected out of the field of view of the CRA.
TableV shows the sizes of the submatrices for each technique,

the inversion time applying thematrix inversion lemma for those
submatrices, the iterative convergence lapse time, and the total
imaging time. The primal and dual residual convergences for
each case are shown in Fig. 13.
The times are computed by running anM code in aMATLAB

2017b Parallel Computer Toolbox (PCT); with a GPU Titan V,
5120 CUDA cores (1335 MHz), NVIDIA driver v390.25; in a
Ubuntu Linux 16.04.4, kernel 4.13.0-36, operative system. It can

Fig. 13. (a) Primal residual and (b) dual residual of the three ADMM
techniques for the imaging example of Fig. 12. The primal residual for the
Sectioning-based ADMM is almost zero since there is no consensus for this
technique.
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TABLE VI
AMOUNT OF INFORMATION EXCHANGED PER NODE AT ONE ITERATION

be considered that the three techniques perform the imaging in
real time, especially the consensus-based ADMM, since it finds
a solution in less than 1 s.
In terms of communication among the computational nodes,

Table VI shows the total amount of information that one single
node has to exchange at one iteration, for the parameters of this
example. It also shows the percentage of shared information
reduction for the three techniques, taking the consensus-based
ADMM as a reference. It is clear that the sectioning-based
ADMM (column-wise division) is the most efficient technique
in terms of communication, and the consensus-based ADMM
(row-wise division) is the least efficient.
Finally, in order to assess the performance of the imaging

in the presence of noise, the reconstructed image of the front
view for the Consensus-based ADMM and the F0.5-score are
represented in Fig. 14 for different levels of signal to noise
ratio, when adding white gaussian noise. The algorithm shows
robustness against the noise, as the imaging quality does not
degrade much until going below 0 dB.

A. Discussion

Comparing the results in terms of imaging quality, imaging
time, convergence, and amount of information shared among the
computational nodes for the exposed example, none of the three
ADMM techniques can be considered the best for all these fea-
tures. The selection of one or other would depend on the feature
of interest or on the physical restriction of the problem. In terms
of imaging quality, even though the three techniques perform
good imaging, the best option is either consensus- or consensus
and sectioning-based ADMM, since they have slightly better
performance when promoting the lack of artifacts. In terms of
time, consensus-based ADMM has the fastest imaging time;
but it is the worst when considering the amount of information
exchanged among the nodes. Finally, in terms of convergence
and communication efficiency, the sectioning-based ADMM is
the winner; however, this method gets slower as the number of
divisions gets larger, and the amount of information exchanged
increases linearly. Therefore, depending on the particular needs
of the problem—accuracy of the imaging, speed, computational
nodes architecture, etc.—the selection of one or another method
can be contemplated. As a general consideration, the consensus
and sectioning-basedADMMtechnique is always a good option,
since it has more degrees of freedom that allow to get close to
the best performance for the most of the features.

Fig. 14. (Top) Front view imaging reconstruction for the Consensus-based
ADMM for different levels of signal to noise ratio: (a) SNR = ∞ (No noise),
(b) SNR= 10 dB, (c) SNR= 0 dB, (d) SNR= −10 dB, (Bottom) (e) F 0.5−
score of the reconstructed imageswith respect to the SNR.The error bars indicate
±1 standard deviation.

It is important to note that larger scale imaging problems
would benefit better from these distributed techniques. Low-
scale problem might be solved fast enough by a non-distributed
method, but when the size of the problem starts to create mem-
ory and computational issues to process the imaging, then the
partition of the problem would be a necessity, making the use of
distributed methods a faster and a more efficient option.

VIII. CONCLUSION

Three ADMM-based techniques have been introduced to find
a sparse solution of a linear matrix equation in a distributed
fashion. These techniques are particularly adapted to a mm-
wave imaging application. In the consensus-based ADMM, the
sensing matrix is divided into submatrices by rows, creating
several replicas of the unknown imaging vector and solving
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Fig. 15. Explanation of the notation during the mathematical development.

them in parallel, reaching a consensus among different so-
lutions and highly accelerating the imaging process. In the
sectioning-based ADMM, the sensing matrix is divided into
submatrices by columns, sectioning the imaging in small regions
and optimizing them separately, highly reducing the amount of
information exchanged by one node at each iteration. Finally, in
the consensus and sectioning-based ADMM, the sensing matrix
is divided into both rows and columns, segmenting the imaging
and creating replicas of each region, combining the advantages
of imaging quality and reduced information exchanged among
the computational nodes.
A mm-wave imaging example through the use of two CRAs

has been presented. The imaging quality defined by several
metrics, the imaging time, the convergence, and the commu-
nication among the computational nodes have been analyzed
and compared. The distributed capabilities of the three proposed
techniques have demonstrated their ability of performing real-
time imaging of metallic targets with a reduced number of mea-
surements. The application of thesemethodologies to large-scale
imaging problems would allow different degrees of freedom
to perform a fast imaging while keeping the communications
overhead low.
Imaging structures, such as theCRA, that could further reduce

the mutual information among measurements, could diminish
the amount of data collected and accelerate the imaging pro-
cess even more. Besides, convergence analysis and accelera-
tion methods on the proposed techniques may lead to a faster
imaging. More decentralized computational architectures can
reduce further the amount of information exchanged among the
computational nodes. Future analysis will also allow to perform
non-regular divisions of the sensing matrix in both rows and
columns, in which those divisions may be specified by the
user depending on the particular conditions, requirements, and
constraints of the problem to be solved. Finally, different types
of regularization are also under investigation in order to apply
the properties of the distributed ADMM algorithms to more
generalized problems, exploring other types of solutions.

APPENDIX A NOTATION

As a reference, Fig. 15 explains the meaning of each element
in the notation of the variables during the mathematical devel-
opment.
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