
Fine-Grained Complexity and Algorithms for the Schulze
Voting Method

KRZYSZTOF SORNAT,Massachusetts Institute of Technology, USA

VIRGINIA VASSILEVSKA WILLIAMS,Massachusetts Institute of Technology, USA

YINZHAN XU,Massachusetts Institute of Technology, USA

We study computational aspects of a well-known single-winner voting rule called the Schulze method [Schulze,

2003] which is used broadly in practice. In this method the voters give (weak) ordinal preference ballots which

are used to define the weighted majority graph of direct comparisons between pairs of candidates. The choice

of the winner comes from indirect comparisons in the graph, and more specifically from considering directed

paths instead of direct comparisons between candidates.

When the input is the weighted majority graph, to our knowledge, the fastest algorithm for computing all

winners in the Schulze method uses a folklore reduction to the All-Pairs Bottleneck Paths (APBP) problem

and runs in O(m2.69) time, wherem is the number of candidates. It is an interesting open question whether

this can be improved. Our first result is a combinatorial algorithm with a nearly quadratic running time for

computing all winners. This running time is essentially optimal as it is nearly linear in the size of the weighted

majority graph.

If the input to the Schulze winners problem is not the weighted majority graph but the preference profile,

then constructing the weighted majority graph is a bottleneck that increases the running time significantly; in

the special case when there arem candidates and n = O(m) voters, the running time is O(m2.69), or O(m2.5)

if there is a nearly-linear time algorithm for multiplying dense square matrices.

To address this bottleneck, we prove a formal equivalence between the well-studied Dominance Product

problem and the problem of computing the weighted majority graph. As the Dominance Product problem

is believed to require at least time r2.5−o(1) on r × r matrices, our equivalence implies that constructing the

weighted majority graph in O(m2.499) time form candidates and n = O(m) voters would imply a breakthrough

in the study of “intermediate” problems [Lincoln et al., 2020] in fine-grained complexity. We prove a similar

connection between the so called Dominating Pairs problem and the problem of verifying whether a given

candidate is a winner.

Our paper is the first to bring fine-grained complexity into the field of computational social choice. Previous

approaches say nothing about lower bounds for problems that already have polynomial time algorithms. By

bringing fine-grained complexity into the picture we can identify voting protocols that are unlikely to be

practical for large numbers of candidates and/or voters, as their complexity is likely, say at least cubic.
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1 INTRODUCTION
We study computational aspects of the Schulze method1, a single-winner voting rule defined on

(weak) ordinal preference ballots. The method was introduced by Markus Schulze [39, 40] and has

been extensively researched over the years—see, e.g., a survey by Schulze [41].

The Schulze voting method definition uses a representation of the votes called the weighted
majority graph, a graph whose vertices are the candidates and whose directed weighted edges

roughly capture all pairwise comparisons between candidates (see a formal definition in Section 2).

The Schulze method computes, in the weighted majority graph, for every pair of candidates u andv
the smallest weight B(u,v) of an edge on a widest path between u andv . Here a widest path is a u-v
path whose minimum edge weight is maximized over all u-v paths. Then, a Schulze winner is any
candidate u s.t. for all other candidates v , B(u,v) ≥ B(v,u). A Schulze winner always exists [40],

though it may not be unique. The method can be used to provide a (weak) order over alternatives,

and hence can be seen as a preference aggregation method or multi-winner voting rule (taking the

top candidates in the ranking as winners).

Schulze defined this method by modifying the Minimax Condorcet method2 to address several

criticisms of the Minimax Condorcet method [38, 44, 46]. Schulze’s modified method is Condorcet
consistent, i.e., a candidate who is preferred by a majority over every other candidate in pairwise

comparisons (a Condorcet winner) is a winner in the Schulze method. Schulze’s modification results

in satisfying a desired set of axiomatic properties not satisfied by Minimax Condorcet:

• clone independence: This criterion proposed by Tideman [46] requires that a single-winner

voting rule should be independent of introducing similar candidates (see also, e.g., [5, 11, 18]).

• reversal symmetry: This criterion proposed by Saari [38] means that if candidate v is the

unique winner, then v must not be a winner in an election with all the preference orders

inverted.

• Smith criterion: The Smith set is the smallest non-empty subset of candidates who (strictly)

win pairwise comparison with every candidate not in the subset. The Smith criterion is

satisfied when the set of winners is a subset of the Smith set [44].

The Schulze method is a voting rule used broadly in many organizations, e.g., the Wikimedia

Foundation
3
, Debian Project

4
and, e.g, in the software LiquidFeedback [5] (see also a comprehensive

list of users in [41, Section 1]).

In this paper we focus on computational aspects of the Schulze method. In particular: 1) con-

structing a weighted majority graph; 2) checking whether a particular candidate is a winner; 3)

finding a winner; 4) listing all winners.

Indicating a winner or a set of all winners is the main goal of a voting rule (tasks 3 and 4 above).

The definition of the Schulze method consists of two steps that can be studied separately—task 1

above is the first of the two steps; it is useful for other voting rules as well. The decision version of

the problem (task 2) is useful when considering the computational complexity of the problem [12],

or when considering bribery, manipulation and control issues [24, 25, 34, 35] where one needs to

verify whether a particular candidate would become a winner or non-winner.

Given a weighted majority graph, the most general task is to create a (weak) order over the

alternatives (as a preference aggregation method). The best known algorithm for this task, and also

1
The method appears under different names such as Beatpath Method/Winner, Path Voting, (Cloneproof) Schwartz Sequential
Dropping—see discussion in [39].

2
Also referred to as the Minimax method and the Simpson-Kramer method [40].

3TheWikimedia Foundation elections to the Board of Trustees (2011), https://meta.wikimedia.org/wiki/Wikimedia_Foundation_

elections/Board_elections/2011/en, [Online; accessed 26-May-2021].

4Constitution for the Debian Project (v1.7), https://www.debian.org/devel/constitution.en.html, [Online; accessed 26-May-

2021].
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for tasks 3 and 4 above, has a running time of O(m2.69) in terms of the number of candidatesm (see,

e.g., [50]). This algorithm relies on fast matrix multiplication techniques that can be impractical.

The fastest algorithm without fast matrix multiplication (i.e. combinatorial) has cubic running

time [39]. While the running time is polynomial, for large-scale data this running time can be too

slow. To overcome this issue, parallel algorithms for the Schulze method were proposed, and it

turns out that some tasks of the method have efficient parallel solutions (e.g. checking if a candidate

is a winner subject to the Schulze method is in NL [12]).

It is an interesting open question whether one can beat the known running time in the sequential

setting, in particular without using fast matrix multiplication techniques. It is interesting how fast

one can find all winners when the weighted majority graph is given, and whether the majority

graph itself can be computed efficiently.

1.1 Our Contribution
Letm be the number of candidates, n the number of voters. Schulze [40] showed that the weighted

majority graph can be constructed in O(nm2) time and that a set of all winners can be found in

O(m3) time.

Observations. We first make several warm-up observations, connecting the Schulze method to

problems in graph algorithms.

The first observation (Proposition 3.1) is that the problem of constructing the weighted majority

graph can be reduced to the so called Dominance Product problem studied by Matoušek [32]. This

gives a new running time for the weighted majority graph construction problem of
˜O(nm(1+ω)/2 +

n(2ω−4)/(ω−1)m2) ≤ O(nm1.69 +n0.55m2), where ω < 2.373 is the exponent of square matrix multipli-

cation [1, 28, 48] and the
˜O notation hides subpolynomial factors. This running time always beats

the previously published running time of O(nm2) when the number of voters and candidates is

super-constant.

The second observation (Proposition 3.2) is folklore (see, e.g., the Wikipedia article [50]): comput-

ing the set of all winners (when the weighted majority graph is given) can easily be reduced to the

so called All-Pairs Bottleneck Paths (APBP) problem: given a graphG , for every pair of vertices u,v ,
compute the maximum over all u-v paths of the minimum edge weight on the path (the so-called

bottleneck). Using the fastest known algorithm for APBP [16], one can compute all winners in

˜O(m(3+ω)/2) ≤ O(m2.69) time, easily beating the cubic running time. Actually, after solving APBP

we obtain indirect comparisons between all pairs of candidates which can be used to construct

a weak order over all candidates. This is useful in providing a fixed number of winners or as a

preference aggregation method.

New improved algorithms. Although the above observations are of mostly theoretical interest,

they do suggest that further algorithmic improvements can be possible. We turn our attention to

obtaining even faster algorithms.

Our first main contribution is an almost quadratic time algorithm for finding all winners. This

running time is substantially faster than all previously known algorithms. Furthermore, as the

running time is almost linear in the size of the weighted majority graph, it is essentially optimal.
The algorithm is combinatorial (it does not use heavy techniques that have large overheads like

matrix multiplication), and is potentially of practical interest.

Theorem 1.1. Given a weighted majority graph onm candidates, one can compute the set of all
winners of the Schulze method in expected O(m2

log
4(m)) time.

The theorem above appears as Theorem 5.3 in the body of the paper. As a warm-up to Theorem 5.3

we first present, in Theorem 4.1, a combinatorial algorithm for finding a single winner and then
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generalize the approach to finding all winners. (Note that the problem of verifying that a particular

candidate is a winner can easily be solved in O(m2) time using known algorithms, when given a

weighted majority graph (see Proposition 3.3). However, computing the winners is a more difficult

problem.)

Fine-grained lower bounds. While we were able to achieve an essentially optimal
˜O(m2) time

algorithm for finding all winners when given a weighted majority graph, computing the weighted

majority graph itself seems more expensive. The fastest algorithm comes from our simple reduction

to Dominance Product, resulting in a running time of
˜O(nm(1+ω)/2+n(2ω−4)/(ω−1)m2), or very slightly

faster if ω > 2 and one uses fast rectangular matrix multiplication.
5

Typically, the number of voters n is no smaller than the number of candidatesm. In this case, the

running time for computing the majority graph using our reduction to Dominance Product is at

least Ω(m2.5), regardless of the value of ω. Thus, if the input to the Schulze winner problem is not

the weighted majority graph, but the preference profile, then the Ω(m2.5) ≫m2
running time for

computing the weighted majority graph is a significant bottleneck.

This leads to the following questions:

(1) Can one compute the weighted majority graph in
˜O(m2) time, or at least in O(m2.5−ε ) time

for some ε > 0?

(2) If not, can a winner be found in O(m2.5−ε ) time for some ε > 0, given the preference profile,

potentially without computing the weighted majority graph explicitly?

We address the above questions through the lens of fine-grained complexity (see the surveys [37,

49]). The main goal of fine-grained complexity is to relate seemingly different problems via fine-

grained reductions, hopefully proving equivalences. In recent years there has been an explosion

of results in fine-grained complexity, showing that a large variety of problems are fine-grained

reducible to each other. Sometimes fine-grained results can be viewed as hardness results, in the

sense that a running time improvement for a problem can be considered unlikely. Fine-grained

equivalences are especially valuable, as they often establish strong connections between seemingly

unrelated problems.

For running time functions a(n) and b(n) for inputs of size (or measure
6
) n, we say that there is

an (a,b)-fine-grained reduction from a problem A and to a problem B if for every ε > 0 there is a

δ > 0 and an algorithm that runs in O(a(n)1−δ ) time and solves a size n instance of problemA using

oracle calls to problem B of sizes n1, . . . ,nk so that

∑k
j=1 b(nj )

1−ε ≤ a(n)1−δ . In other words, any

improvement in the exponent over the O(b(n)) runtime for B on inputs of size n can be translated

to an improvement in the exponent over the O(a(n)) runtime for A.
We relate questions (1) and (2) above to the complexity of the aforementioned Dominance

Product problem and its relative Dominating Pairs. These problems have been studied within both

algorithms (e.g. [32, 51]) and fine-grained complexity (e.g. [27, 30]).

In the Dominance Product problem we are given two r × r matrices A and B and we want to

compute for every pair i, j ∈ [r ] the number of k ∈ [r ] for whichA[i,k] ≤ B[k, j]. In the Dominating

Pairs problem we are also given two r × r matrices A and B, but we now want to decide whether

there exists a pair i, j ∈ [r ] such that for all k ∈ [r ], A[i,k] ≤ B[k, j]. In other words, we want to

decide whether the Dominance Product of A and B contains an entry of value r .

5
If ω = 2, using rectangular matrix multiplication gives no improvement.

6
In fact, in fine-grained complexity the running time is sometimes measured in terms of a different measure than the input

size. For instance, the running time of graph problems is often measured in terms of the number of vertices instead of the

true size of the graph which is in terms of the number of vertices and edges.
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Both problems can be solved using the aforementioned
˜O(r (3+ω)/2) time algorithm by Ma-

toušek [32]. If ω > 2, a slightly faster algorithm is possible using fast rectangular matrix multiplica-

tion [29], as shown by Yuster [51]. These running times are minimized at
˜O(r 2.5) (in the case that

ω = 2).

We prove an equivalence between Dominance Product and the problem of computing the

weighted majority graph, given a preference profile for the special case of n voters andm = O(n)
candidates. Note that evenm = n is a natural case—when a group of voters chooses a winner among

themselves.

Theorem 1.2. If there exists a T (n) time algorithm for computing the weighted majority graph
when there are n voters and O(n) candidates, then there is an O(T (r ) + r 2 log r ) time algorithm for
computing the Dominance Product of two r ×r matrices. If there is aT (r ) time algorithm for computing
the Dominance Product of two r × r matrices, then one can compute the weighted majority graph for n
voters and O(n) candidates in O(T (n)) time.

First notice that since the matrices in the Dominance Product themselves have sizes O(r 2), the
O(r 2 log r ) running time in the first part of the theorem is necessary, up to the log r factor. The
first part of the theorem is proven in Theorem 6.1 and the second part follows from our simple

observation described in Proposition 3.1.

As the r 2.5−o(1) time bottleneck for solving Dominance Product and even Dominating Pairs has

remained unchallenged for 30 years, it is believed that the two problems require r 2.5−o(1) time (see,

e.g., [30]). Due to Theorem 6.1 (in whichm = 2n), we get that it would likely be very challenging

to obtain an O(m2.5−ε ) time algorithm for ε > 0 for computing the weighted majority graph, even

if ω = 2.

We have shown that constructing the weighted majority graph is likely an expensive task. It

could still be, however, that one can find a winner without explicitly constructing the weighted

majority graph, as per our question (2) above. Our final result relates question (2) to the Dominating

Pairs problem:

Theorem 1.3. Suppose that there is an O(T (n)) time algorithm that, given n voters with preferences
over O(n) candidates, can test whether a given candidate is a winner of the Schulze method. Then
there is an O(T (r ) + r 2 log r ) time algorithm for the Dominating Pairs problem for two r × r matrices.

The theorem above appears as Theorem 6.2 in the body of the paper. Because in the proof we

havem = Θ(n), our result shows that even testing whether a candidate is a winner in O(m2.5−ε )

time for ε > 0 would be a challenge under the plausible hypothesis that Dominating Pairs has no

improved algorithms even in the case that ω = 2. Under this hypothesis, we might as well compute

the weighted majority graph and find all winners using Theorem 5.3, as it would take roughly the

same time.

Our paper is the first to bring fine-grained complexity into the field of computational social

choice (see [2, 9, 19] for a description of computational social choice topics). Related areas such as

Fixed Parameter Tractability (FPT)
7
and hardness of approximation

8
have already gained significant

traction in computational social choice. See, e.g., the following surveys on FPT results and further

challenges in computational social choice [10, 14, 22], and, e.g., the following papers on hardness

of approximation in bribery problems [21], multiwinner elections [3, 4, 17, 43] and a survey on

fair-division with indivisible goods [31].

7
Where some standard assumptions are: FPT ,W[1] and the Exponential Time Hypothesis. For more about parameterized

complexity see, e.g., [13, 15].

8
Here some standard assumptions are P , NP , the Unique Games Conjecture [26], and a recent Gap-Exponential Time

Hypothesis [23].
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While these related areas do discuss running time, they do not focus on the exact running time

complexity, and in particular, say nothing about lower bounds for problems that already have fixed

polynomial time algorithms. By bringing fine-grained complexity into the picture we can identify

which voting protocols have potentially practical algorithms, and those whose complexity is, say

at least cubic, and hence are likely impractical for large numbers of candidates and/or voters.

Our results provide reductions and equivalences that are even tighter than typical fine-grained

reductions, in that the running times are preserved up to small additive terms and constant

multiplicative factors.

1.2 Related Work
Below we present a few selected computational topics considered in the context of the Schulze

method. For a detailed survey of related work and historical notes, we refer the reader to a technical

report by Schulze [41]. In particular, we will not discuss the axiomatic properties of the Schulze

method; a comprehensive study of this appears in [40, Section 4] and its extended version [41,

Section 4].

Parallel computing. Csar et al. [12] considered large-scale data sets and claimed that a straight-

forward implementation of the Schulze method does not scale well for large elections. Because of

this, they developed an algorithm in the massively parallel computation model. They showed that

the Schulze winner determination problem is NL-complete. The containment in NL implies that

the method is well-suited for parallel computation. Csar et al. [12] also conducted experiments to

show that their algorithm scales well with additional computational resources.

Strategic behavior. There are 3 basic types of strategic behaviors: manipulation, control and

bribery.

Manipulation is defined as the casting of non-truthful preference ballots by a voter or a coalition

of voters in order to change the outcome of an election (to make a preferred candidate a winner is

called “constructive manipulation”, and to make a particular candidate a loser is called “destructive

manipulation”).

Control has eight basic variants, each defined by picking a choice from each of the following

three pairs of groups: {constructive, destructive}, {adding, deleting}, {votes, alternatives}.; e.g.

“constructive control by deleting votes”.

Bribery allows one to completely change votes, however, there is a cost of changing each vote,

so that the number of affected votes is to be minimized. There is a constructive and a destructive

version of bribery.

Parkes and Xia [35] showed that the Schulze method is vulnerable (polynomial-time solvable) to

constructive manipulation by a single voter and destructive manipulation by a coalition. From the

other side, the Schulze method is resistant (NP-hard to compute a solution) to, e.g., constructive

control by adding alternatives (i.e., it is NP-hard to find a subset of additional alternatives such

that a preferred candidate becomes a winner); control by adding/deleting votes; and both cases of

bribery. For more specific results on computational issues of strategic behaviors under the Schulze

method see [24, 34]. Furthermore, FPT algorithms for NP-hard types of strategic behaviors were

studied by Hemaspaandra et al. [25].

Margin of victory. The Schulze method was studied in terms of the margin of victory, which is

the minimum number of modified votes resulting in a change to the set of winners. This is a similar

concept to bribery, but here we only care about the stability of a solution, not about making a

candidate a winner/loser. This concept is used to measure the robustness of voting systems due

to errors or frauds. The higher the margin of victory is, the more robust the election is. Reisch
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et al. [36] showed, e.g., that computing the margin of victory for the Schulze method is NP-hard

(using the NP-hardness proof for destructive bribery due to Parkes and Xia [35]), so that evaluating

the robustness of the election might be difficult.

2 PRELIMINARIES
To define the method formally we need to introduce some notations first.

A weak order (or total preorder) ⪰ is a binary relation on a set S that is transitive and connex

(complete), i.e., (1) if x ⪰ y and y ⪰ z then x ⪰ z; (2) for all x ,y ∈ S we have x ⪰ y or y ⪰ x . We

define a strict part ≻ of a weak order ⪰ by: x ≻ y iff x ⪰ y and y ⪰̸ x . Then ≻ is a strict weak order,
and the Schulze method was originally defined using it [40].

We denote the set of voters by N , and the set of alternatives (candidates) by A, where |N | = n
and |A| =m. A preference profile P (or a multiset of votes) is a list (⪰a)a∈N of weak orders over a set

of alternatives A. u ≻a v (u ⪰a v) means that a voter a ∈ N strictly (weakly respectively) prefers

alternative u ∈ A to alternative v ∈ A \ {u}.
We define M(u,v), where u,v ∈ A, as the number of voters that strictly prefer u over v , i.e.,

M(u,v) = |{a ∈ N : u ≻a v}|.
For a given preference profile P , the weighted majority graphG is defined as follows: the vertices

of G is the set of alternatives A, and for every u,v ∈ A we have directed edges (u,v) and (v,u)
with associated weightsw(u,v) = M(u,v) −M(v,u) andw(v,u) = M(v,u) −M(u,v). We also call

w(u,v) the strength of the link (u,v). We note that Schulze [40] defined the strength of the link

in a more general way, but he proposed to use w(u,v) defined above, as it is the most intuitive

notion of strength. Indeed, this is the most popular strength of the link definition used in the

literature [12, 24, 25, 34–36].

We define the strength of indirect comparison of alternative u ∈ A versus alternative v ∈ A \ {u},
denoted by BG (u,v) ∈ {0, 1, . . . ,n}, as the weight of the maximum bottleneck path (also called

widest path) from u to v . BG (u,v) is the maximum width or bottleneck of any path from u to v ,
where the width/bottleneck of a path is equal to its minimum edge weight. Formally BG (u,v) =
max(x1=u,x2, ...,xk−1,xk=v):x j ∈Amini ∈{2,3, ...,k }{w(xi−1,xi )}. (The maximum is well-defined because

widest paths are simple without loss of generality, similar to shortest paths.) If G is clear from

context, we sometimes use B(u,v) as well.
A set of winnersW in the Schulze method consists of all u ∈ A such that for every v ∈ A we

have BG (u,v) ≥ BG (v,u). It is known that there always exists a winner, i.e.,W , ∅ [40]. We call

the elements ofW the Schulze winners. ByW(G) we denote a set of winners for a given weighted

majority graph G.
Schulze-AllWinners is the problem of finding all winners (i.e., the setW), and Schulze-

Winner is that of finding a winner (i.e., an element fromW). The decision version of the problem,

Schulze-WinnerDetermination [12], asks whether a given candidate is a winner.

The Schulze method was designed as a single winner election rule, but using it we can construct

a weak order over the set of all alternatives. Hence the Schulze method may be seen as a preference

aggregation method. For this we define the relation R such that (u,v) ∈ R if and only if BG (u,v) >
BG (v,u). Note that the Schulze winners are top-ranked alternatives in the order derived from R.
Also note that a proof ofW , ∅ follows from transitivity of R [40, Section 4.1].

We use ω to denote the smallest real number such that one can multiply two r × r matrices

in O(rω+ϵ ) time for every ϵ > 0. Currently we know that 2 ≤ ω < 2.373 [1, 28, 48]. We also use

M(a,b, c) to denote the fastest running time for multiplying an a × b matrix and a b × c matrix.

For a graphG and a subset of verticesU ⊆ V (G), we useG[U ] to denote the subgraph induced

by the vertex setU . We use strongly-connected-component (SCC) of a vertex v to denote the set of

vertices that can both reach and be reached from v .
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3 WARM-UP
Proposition 3.1. For a preference profile withm candidates and n voters, we can compute the

weighted majority graph in mins ˜O(M(m, sn,m) + nm2/s) time.

Proof. We will compute the weighted majority graph using the algorithm for Dominance

Product [51], which runs in time mins ˜O(M(m, sn,m) + nm2/s).
Given m candidates and n voters, we will create the matrices A and B as follows. Since the

preference list of each voter a is a weak order, we can associate an integer value fa,u with each

voter a and each candidate u such that u ≻a v if and only if fa,u < fa,v for any two candidates u,v
(these values can be the ranks in the sorted order of a’s preference list). We then set Au,a = fa,u for

any pair consisting of a voter a and a candidate u; we set Ba,v = fa,v −
1

2
for any pair consisting of

a voter a and a candidate v . Then the Dominance Product C between A and B is such that

Cu,v =

����{a ∈ N : fa,u ≤ fa,v −
1

2

}���� ,
which equals exactlyM(u,v) by the definition of the integer values f . UsingM , we can compute

the weighted majority graph in O(m2) time.

Therefore, the bottleneck of the algorithm is the Dominance Product problem, which has running

time mins ˜O(M(m, sn,m) + nm2/s). □

Suppose that n ≥ m(ω−1)/2. Then we set s to a value such that sn ≥ m. In this case we can

compute the product between anm×(sn)matrix and an (sn)×m matrix by first splitting the second

dimension of the first matrix to roughly
sn
m pieces, and then using fast square matrix multiplication

to compute the product between each pair of corresponding pieces. Thus, we can upper bound

M(m, sn,m) by ˜O((sn/m)·mω ). By setting s =m(3−ω)/2, the running time of Proposition 3.1 becomes

˜O(nm(1+ω)/2) ≤ O(nm1.69).

If n ≤ m(ω−1)/2, then we set s so that sn ≤ m. We can similarly boundM(m, sn,m) by ˜O((m/sn)2 ·

(sn)ω ). By setting s = n(3−ω)/(ω−1), the running time of Proposition 3.1 becomes
˜O(n(2ω−4)/(ω−1) ·

m2) ≤ O(n0.55m2).

Overall, the running time of Proposition 3.1 is always upper bounded by O(nm1.69 + n0.55m2). If

ω > 2 the running time can be improved slightly by using the best known bounds on rectangular

matrix multiplication [29] to computeM(m, sn,m) in both cases. We will not go into detail here

because the setting of s here would depend on how n andm are related, and the current best bounds

on rectangular matrix multiplication are obtained by using numerical solvers for each setting of

the matrix dimensions. As mentioned in the Our Contribution subsection, if n ≥ m, the running

time is always greater thanm2.5−o(1)
, regardless of the value of ω and the use of rectangular matrix

multiplication.

The next two propositions are folklore [50]. We include their proofs here for completeness.

Proposition 3.2. Given a weighted majority graph onm candidates, Schulze-AllWinners can
be solved in ˜O(m(3+ω)/2) time.

Proof. Given a weighted majority graph, all values BG (u,v) can be obtained via a single All-

Pairs Bottleneck Paths (APBP) computation. APBP has been well-studied by the graph algorithms

community [16, 42, 47] and its current best running time is
˜O(m

3+ω
2 ) for anm-vertex graph [16].

After we compute BG (u,v), it only takesO(m
2) additional time to determine all Schulze winners. □

Proposition 3.3. Given a weighted majority graph onm candidates and a particular candidate v ,
we can solve Schulze-WinnerDetermination in O(m2) time.
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Proof. Since we only need to verify if some candidate v is a winner, it suffices to compute

BG (v,u) and BG (u,v) for all u ∈ V . Computing BG (v,u) is exactly the problem of computing

Single-Source Bottleneck Paths (SSBP). In a dense graph with Θ(m2) edges, the best algorithm for

SSBP runs in O(m2) time by using Dijkstra’s algorithm augmented with Fibonacci heap. To compute

BG (u,v), we can reverse the directions of all edges in the graph and compute another SSBP. Using

BG (v,u) and BG (u,v) for all u ∈ V , it only takes O(m) time to determine if v is a winner. □

4 FINDING AWINNER
In this section we show that given a weighted majority graph, we can find a Schulze winner in

almost quadratic time.

Theorem 4.1. Given a weighted majority graph onm candidates, Schulze-Winner can be solved
in expected O(m2

log
4(m)) time.

We will use the following decremental SCC algorithm of Bernstein et al. [6].

Theorem 4.2. (Bernstein et al. [6]) Given a graph G = (V ,E), we can maintain a data structure
that supports the following operations:
• DELETE-EDGE(u,v): Deletes the edge (u,v) from the graph.
• SAME-SCC(u,v): Returns whether u and v are in the same SCC.

The data structure runs in total expected O(|E | log4 |V |) time for all deletions and worst-case O(1)
time for each query. The bound holds against an oblivious adaptive adversary.

Since the answer for each SAME-SCC query is unique, an oblivious adaptive adversary is equivalent
to a non-adaptive adversary in this setting.

Our algorithm is simple and can be described in ten lines as shown in Algorithm 1.

ALGORITHM 1: Schulze-Winner (G = (V ,E))

Data: G = (V ,E)
Result: One winner of graph G.
1 Sort E by weights in increasing order;

2 x ← an arbitrary vertex in V ;

3 for (u,v) ∈ E do
4 flag← SAME-SCC(u,x) ∧ SAME-SCC(v,x);

5 DELETE-EDGE(u,v);

6 if SAME-SCC(u,v) = False and flag then
7 x ← v ;

8 end
9 end

10 return x ;

Lemma 4.3. Any time Algorithm 1 finishes Line 2 or Line 8, any winner of the subgraph induced by
the SCC of x is a winner of the original graph G.

Proof. Even though Algorithm 1 seems to operate directly on graph G, in the proof we assume

it operates on a copy of the graph and thus the original graph still has all its edges. Thus, we always

use G to denote the original graph with no edges removed in this proof.

When the algorithm finishes Line 2, all edges in the graph still exist. Since the graph is complete,

the SCC of x is exactly V . Therefore, any winner of the subgraph induced by the SCC of x is a

winner of the whole graph.
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In the remainder of this proof, we will useU to denote the set of vertices in the same SCC as x
in the graph where we remove all the edges in sorted list E before (u,v) (i.e., before we execute
Line 5). We also useU ′ to denote the set of vertices in the same SCC as x in the graph where we

remove all the edges up to (u,v) and we considered updating x in Line 7 under certain conditions

(i.e., after we execute Line 8).

We prove the second part of the lemma by induction. SupposeW(G[U ]) ⊆ W(G), and we need

to proveW(G[U ′]) ⊆ W(G). To achieve this, it suffices to showW(G[U ′]) ⊆ W(G[U ]).
First of all, if flag is set to False, then either u or v is not in U , so the edge (u,v) does not lie

entirely in the setU . Thus, deleting the edge (u,v) does not change the SCC of x . Also, since flag is

set to False, the algorithm will not execute Line 7, so the value of x also stays the same. Thus, since

both x and the SCC of x stays unchanged,U = U ′ and clearlyW(G[U ′]) ⊆ W(G[U ]).
Secondly, suppose the SAME-SCC(u,v) check at Line 6 is True. This means u and v are still in

the same SCC after deleting (u,v), so in particular, u can still reach v . Thus, even though we just

deleted the edge (u,v), the connectivity of the graph is unaffected. Thus, the SCC of x is unchanged.

Also, the SAME-SCC(u,v) check is True, so we will not execute Line 7 in this iteration. Therefore,

similar to the previous case,W(G[U ′]) ⊆ W(G[U ]).
The only case remaining is when flag is set to True and the SAME-SCC(u,v) check at Line 6 is

False. Let y be any winner of the graphG[U ′]. We will show that y is a winner ofG[U ] as well, and
by the induction hypothesisW(G[U ]) ⊆ W(G), y will be a winner of G.

We have to show that BG[U ](y, z) ≥ BG[U ](z,y) for every z ∈ U . There are two cases depending

on where z is included.

(1) z ∈ U ′. Since y is a winner of G[U ′], we have BG[U ′](y, z) ≥ BG[U ′](z,y). Now consider any

path fromy to z inG[U ]. If this path ever touches any vertex z ′ outside ofU ′, then it must use

an edge that is already deleted, since otherwise, y ∈ U ′ can reach z ′ and z ′ can reach z ∈ U ′

so z ′ must also be in the SCC U , which leads to a contradiction. Thus, this path must use an

edge of weight at mostw(u,v), so this path has a bottleneck at mostw(u,v).9 However, since
U ′ is strongly connected, and all edges that are still present have weights at least w(u,v),
so BG[U ′](y, z) ≥ w(u,v). Thus, BG[U ](y, z) = BG[U ′](y, z) since if a path leaves U ′ then its

bottleneck is at most w(u,v) ≤ BG[U ′](y, z). Similarly, BG[U ](z,y) = BG[U ′](z,y). Therefore,
BG[U ](y, z) ≥ BG[U ](z,y).

(2) z ∈ U \U ′. We first show that y can reach z using only edges that are not yet deleted right

after we delete (u,v). First, since y ∈ U ′, y can reach v . Since U is an SCC before we delete

(u,v),v can reach all vertices inU before we delete (u,v). However, any simple path fromv to

some other vertex inU does not use the edge (u,v), so v can still reach all other vertices inU
even after deleting (u,v). Therefore, y can reach z through v , and thus BG[U ](y, z) ≥ w(u,v).
On the other hand, z cannot reach y using not yet deleted edges since otherwise z will be in
the same SCC as y. Therefore, BG[U ](z,y) ≤ w(u,v) ≤ BG[U ](y, z).

□

Lemma 4.4. Algorithm 1 always returns a winner of G.

Proof. By Lemma 4.3, at Line 10 of Algorithm 1, any winner of the graph induced by the SCC

of x is a winner of G. Furthermore, at Line 10, we already deleted all edges in the graph, so the

SCC of x just contains x itself. Thus, x is a winner of the graph induced by the SCC of x and, by

Lemma 4.3, x is a winner of G. □

Lemma 4.5. Algorithm 1 runs in expected O(m2
log

4(m)) time.
9
Recall that G[U ] is an induced subgraph of G in which all the edges are present—also these removed before removing

(u, v)—hence a bottleneck of the considered path can be strictly smaller than w (u, v).
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Proof. Sorting the edge list E takes O(m2
logm) time. Calling DELETE-EDGE(u,v) for all (u,v) ∈

E takes expected O(m2
log

4(m)) time by Theorem 4.2 since we fix the order to delete the edges in

advance and thus our algorithm behaves like a non-adaptive adversary. Also, each call of SAME-SCC
takes O(1) time by Theorem 4.2. All remaining components of Algorithm 1 takes O(m2) time.

Therefore, Algorithm 1 runs in expected O(m2
log

4(m)) time. □

Proof of Theorem 4.1. The theorem follows immediately from Lemma 4.4 and Lemma 4.5. □

5 FINDING ALL WINNERS
In order to compute all winners, we need to augment the decremental SCC algorithm with more

information. This could be done in a black-box way.

In this section, we define the in-degree of an SCCU as |{(v,u) ∈ E : v < U ,u ∈ U }|.

Corollary 5.1. Given a graph G = (V ,E), we can maintain a data structure that keeps the
following:
• A set S containing all IDs of SCCs of the graph.
• A map D from the IDs of SCCs of the graph to the in-degrees of the SCCs.
• A map SCC from vertices of the graph to the ID of the SCCs they are in.

The data structure also supports the following operations:
• DELETE-EDGE(u,v): Deletes the edge (u,v) from the graph. Additionally, the data structure
needs to return a list of new SCCs being created.
• SAME-SCC(u,v): Returns whether u and v are in the same SCC.

The data structure runs in total expected O(|E | log4 |V |) time for all deletions and worst-case O(1)
query time. The bound holds against a non-adaptive adversary.

Proof. The high-level strategy of the algorithm is to first use the data structure from [6], and

then use the “removing small from large” strategy used in, e.g., [6, 20, 45] to explicitly maintain all

the SCCs.

Initially, it is easy to set up the set S and the maps D and SCC. We also initialize the data

structure of Bernstein et al. [6]. For each vertex v , we create a list of vertices N(v) that contain all

the neighbors of v considering edges in both directions.

For each DELETE-EDGE(u,v) operation, if u and v are not in the same SCC, it suffices to update

the map D. If u and v are in the same SCC both before and after deleting the edge, we do not need

to update S,D or SCC.

The trickiest case is when u and v are in the same SCCU before deleting (u,v), but not in the

same SCC after deleting (u,v). In this case, we use the “removing small from large” method to find

all new SCCs. We will explicitly enumerate all the vertices in every new SCC except one SCC with

the largest total degree of the vertices in it.

We first delete edge (u,v) in the data structure of Bernstein et al. [6]. Then we create a list of

vertices L, which initially only contains u and v . Each time, we repeatedly take a vertex out of L
until we find one vertex x whose new SCC has not been found. Then we repeatedly take another

vertex out of L until we find one vertex y which is not in the same new SCC as x and whose new

SCC has not been found. If we could not find such a vertex y before L becomes empty, then we end

the process. We interleave two breadth-first-searches (BFSes) from vertex x and vertex y by using

neighbors stored in N , but exploring only those vertices which are in the same new SCC as x or

y respectively by calling SAME-SCC. Note that these BFSes use all edges in the original graph and

ignore the edge directions. As soon as one of the BFSes finishes (the SCC with the smaller total

degree will finish sooner), we stop the other BFS as well. Without loss of generality, we assume
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the BFS from x finishes sooner. In this case we have a list of all vertices in the same SCC with x .
For every vertexw in this list, we enumerate all vertices z in N(w), and add z to L if z belonged to

the SCCU (we could call the map SCC for checking this, since it is not updated after (u,v) gets
deleted). Finally we put y back to L and repeat the above process.

We show that the process above will find all new SCCs except the one SCCU ′ with the largest

total degree. To show this, it suffices to show that all vertices in the induced subgraphG[U \U ′]
are either weakly connected to v or weakly connected to u via a path inside G[U \U ′]. Let z be
any vertex inU \U ′. Since before we delete (u,v),U is an SCC, so there is a simple path p1 inside
U from v to z that only uses edges still in the graph including (u,v). However, since p1 starts from
v , and it is simple, it will not use (u,v), so p1 still exists even after deleting (u,v). Similarly, there is

a path from z to u that still exists after deleting (u,v). If one of p1 or p2 does not enter U
′
, then we

are done. Otherwise, both p1 and p2 touchU
′
, so z can both reach and be reached fromU ′. Hence,

z also belongs to the SCCU ′, a contradiction. Therefore, our algorithm will find all but one new

SCCs.

Since we can list all vertices in all but one new SCCs, it is then easy to update S,D and SCC.

However, we should note that the SCCU ′ with the largest total degrees will have the same ID as

the old SCC U , since we cannot afford to update the map SCC for every vertex in U ′. It is also
easy to return a list of new SCCs being created.

Now we analyze the running time of the BFSes, which is quite standard. Each time we find an

SCC with total degree D, we will pay O(D) in the BFS and O(D log |V |) for updating S,D and

SCC. We also know that we are taking it from an old SCC of total degree at least 2D. Therefore,
each edge that contributes to D can be taken out at most O(log |V |) times, since each time the SCC

that contains one endpoint of the edge must halve in total degree. Therefore, the total cost of BFSes

is O(|E | log |V |), and there is another O(log |V |) factor for updating the necessary data structures.

Thus, it is clear that the running time is dominated by the O(|E | log4 |V |) factor from [6]. □

Using Corollary 5.1, the algorithm for finding all winners is described in Algorithm 2.

We also describe the algorithm in text for more intuition. The algorithm maintains a set C

that contains all candidate SCCs that could contain winners. In increasing order of weightw , the

algorithm deletes all edges of weightw in a batch. If a candidate SCC splits into multiple smaller

SCCs, we remove this candidate SCC from C and add those small SCCs whose in-degrees are 0s

back to C. Eventually, all SCCs contain single vertices, and we return the single vertices in those

candidate SCCs. Now we prove the correctness of the algorithm via the following lemma.

Lemma 5.2. Before and after each iteration in the “for” loop in Line 3 of Algorithm 2, we have

W(G) =
⋃
scc∈C

W(G[scc]),

where G denotes the original graph with no edge removed.

Proof. Before running any iteration of the “for” loop, C only contains the whole graph, so the

equality is clearly true.

Now we prove the equality by induction. Suppose that the equality is true before we run the “for”

loop for valuew . For each vertex set U ∈ C that was an SCC before deleting all edges of weight

w , we will split it into multiple SCCs after deleting those edges, and put thoseU ′
1
, . . . ,U ′t whose

in-degrees are 0s back to C. Thus, it suffices to show that

W(G[U ]) =
t⋃
i=1

W(G[U ′i ]).
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ALGORITHM 2: Schulze-AllWinners (G = (V ,E))

Data: G = (V ,E)
Result: All winners in graph G.
1 LetW be a sorted list of all distinct weights of E;

2 Let C be a set containing a single SCC, the whole graph;

3 forw ∈W do
4 Let L be an empty list;

5 for every edge (u,v) of weightw do
6 scc← SCC(u);
7 flag← SAME-SCC(u,v);

8 l ← DELETE-EDGE(u,v);

9 if SAME-SCC(u,v) = False and flag and scc ∈ C then
10 Remove scc from C;

11 Add every SCC in l to C;

12 Add every SCC in l to L;

13 end
14 end
15 for scc ∈ L do
16 if D(scc) > 0 then
17 Remove scc from C;
18 end
19 end
20 end
21 return {v ∈ V : SCC(v) ∈ C};

Let x ∈ U be an arbitrary winner ofG[U ]. First, suppose the in-degree of SCC(x) after deleting
the weightw edges are nonzero. In this case, there exists another vertex y ∈ U \ SCC(x) that can
reach x . Therefore, BG[U ](y,x) > w . However, x cannot reachy since otherwisey is in the same SCC

as x , so BG[U ](x ,y) ≤ w , and thus x cannot be a winner ofG[U ], a contradiction. Therefore, we can
assume x ∈ U ′i for some 1 ≤ i ≤ t . For anyy ∈ U ′i , consider the widest path between x andy. Since x
and y belong to the same SCC after removing weightw edges, BG[U ](x ,y) > w and BG[U ](y,x) > w .

Also, if any path leavesU ′i and comes back, the bottleneck of that path is upper bounded byw , so an

optimal path will not leaveU ′i . Therefore, BG[U ′i ](x ,y) = BG[U ](x ,y) and BG[U ′i ](y,x) = BG[U ](y,x).
Since x is a winner of G[U ], BG[U ](x ,y) ≥ BG[U ](y,x). Therefore, BG[U ′i ](x ,y) ≥ BG[U ′i ](y,x). We

conclude that x is a winner of G[U ′i ]. Hence,W(G[U ]) ⊆
⋃t

i=1W(G[U
′
i ]).

Now we show the other direction. For any 1 ≤ i ≤ t , let x be an arbitrary winner of G[U ′i ].
For any y ∈ U , we want to show that BG[U ](x ,y) ≥ BG[U ](y,x). First, if y < U ′i , then there is

no path from y to x using only edges of weight greater than w , because the in-degree of U ′i is 0.
Therefore, BG[U ](y,x) ≤ w . On the other hand, since x ,y ∈ U andU is strongly connected using

edges of weight up to w , we have BG[U ](x ,y) ≥ w . Thus, BG[U ](x ,y) ≥ BG[U ](y,x). Secondly, if
y ∈ U ′i , then the widest paths from x to y and from y to x are completely insideU ′i by a previous

argument, so BG[U ′i ](x ,y) = BG[U ](x ,y) and BG[U ′i ](y,x) = BG[U ](y,x). Since x is a winner ofG[U ′i ],
BG[U ′i ](x ,y) ≥ BG[U ′i ](y,x). Therefore, BG[U ](x ,y) ≥ BG[U ](y,x). We conclude that x is a winner of

G[U ] and henceW(G[U ]) ⊇
⋃t

i=1W(G[U
′
i ]).

In conclusion, we showed thatW(G[U ]) =
⋃t

i=1W(G[U
′
i ]), which is sufficient for the induction

to complete. □
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Theorem 5.3. Given a weighted majority graph onm candidates, Schulze-AllWinners can be
solved in expected O(m2

log
4(m)) time.

Proof. The algorithm is shown in Algorithm 2. By Lemma 5.2, at Line 21, we haveW(G) =⋃
scc∈CW(G[scc]). Furthermore, since all edges are deleted in the graph and thus all SCCs contain

single vertices at Line 21,W(G[scc]) = V (scc). Therefore,W(G) = {v ∈ V : SCC(v) ∈ C} and
thus the returned result is correct.

Algorithm 2 clearly runs in expected O(m2
log

4(m)) time. □

6 LOWER BOUNDS
Theorem 6.1. If there exists a T (n) time algorithm for computing all the edge weights of the

weighted majority graph when there are n voters and 2n candidates, then there is an O(T (r )+ r 2 log r )
time algorithm for computing the Dominance Product of two r × r matrices.

Proof. Given two r × r matrices A and B, we will compute their Dominance Product C , where
Ci, j =

��k ∈ [r ] : Ai,k ≤ Bk, j
��
, using the assumed T (n) time algorithm for computing the weighted

majority graph.

We first pre-process the two matrices so that all entries are distinct. We could achieve this by first

putting all the entries to a list, and then sorting the list. If there is a tie between several elements,

we always sort an element corresponding to an entry ofA earlier than an element corresponding to

an entry of B. Then we can replace all entries with their position in the sorted list. The Dominance

Product of A and B clearly does not change. This pre-processing only takes O(r 2 log r ) time.

In our construction, there arem = 2r candidates labeled as u1, . . . ,ur and v1, . . . ,vr . We will

create one voter for each k ∈ [r ], so there are a total of n = r voters. The k-th voter associates a

number Ai,k with candidate ui for every i ∈ [r ] and a number Bk, j with candidate vj for every
j ∈ [r ]. Then the k-th voter prefers a candidate x over a candidate y if and only if the associated

number of candidate x is smaller than that of candidate y. Since all entries of these two matrices

are distinct, the preference order of each voter is linear (i.e., for every voter i and any distinct

candidates x and y we have either x ≻i y or x ≺i y).
We show that the valueM(ui ,vj ) corresponding to preference profile above equals Ci, j . In fact,

if the k-th voter prefers ui to vj , then its associated number with ui is smaller than its associated

number with vj , i.e., Ai,k < Bk, j . Therefore,M(ui ,vj ) equals the number of k such that Ai,k < Bk, j .
Since all entries of the two matrices are distinct, Ai,k < Bk, j if and only if Ai,k ≤ Bk, j . Thus,
M(ui ,vj ) = Ci, j .

In the weighted majority graph built on linear orders only, the edge weight w(ui ,vj ) equals
to M(ui ,vj ) −M(vj ,ui ) = 2M(ui ,vj ) − r = 2Ci, j − r , so we could compute Ci, j from w(ui ,vj ) via
Ci, j = (w(ui ,vj ) + r )/2. Therefore, we can call the T (n) = T (r ) time algorithm for computing the

weighted majority graph and get the Dominance Product C from the edge weights of the graph

easily. □

Next, we will show the conditional hardness for Schulze-WinnerDetermination by reducing

from the Dominating Pairs problem. Note that in the Dominating Pairs problem, we essentially

want to test if the Dominance Product of two r × r matrices contains an entry of value r .

Theorem 6.2. Suppose that there is an O(T (n)) time algorithm that, given n voters with preferences
over Θ(n) candidates, can solve Schulze-WinnerDetermination. Then there is an O(T (r )+r 2 log r )
time algorithm for the Dominating Pairs problem for two r × r matrices.

Proof. Given two r × r matrices A and B, we will create a preference profile onm = 2r + 2

candidates u1, . . . ,ur ,v1, . . . ,vr ,W ,W
′
and n = 10r − 2 voters. For technical reasons, we assume
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all entries in the Dominance Product C between A and B are positive. This can easily be addressed

by padding an additional column with 0s to matrix A and a corresponding row with 1s to matrix B.
We can perform additional padding to make A and B square again: add a row to A that contains

entries strictly greater than any entry in B (except the last one entry in this row which equals to 0);

add a column to B that contains entries strictly smaller than any entry in A (except the last one

entry in this column which equals to 1). With an O(r 2 log r ) time pre-processing, we can assume

all the entries of the matrices A and B are distinct (similarly as in the proof of Theorem 6.1).

The first r voters will look like the voters in the proof of Theorem 6.1. Specifically, the k-th voter

associates a number Ai,k with candidate ui for every i ∈ [r ], and a number Bk, j with candidate vj
for every j ∈ [r ]. Then the k-th voter prefers a candidate x over a candidate y if and only if the

associated number of candidate x is smaller than that of candidate y. Moreover, the first r voters
always preferW the least and preferW ′

the second least.

The next r voters will be similar to the first r voters. For any k ∈ [r ], the preference list of the
(k + r )-th voter is the same as the preference list of the k-th voter, except that (k + r )-th voter

always prefersW the most and preferW ′
the second most.

Let us consider how the first 2r voters will affect the values ofM . From the first 2r voters, we
add 2Ci, j to M(ui ,vj ) for all i, j ∈ [r ], add 2r − 2Ci, j to M(vj ,ui ) for all i, j ∈ [r ] and add r to all

edges with one endpoint beingW orW ′
. We call these edges important as other edge weights will

not be important in our analysis.

The preference lists between the (2r + 1)-th voter and the (3r − 1)-th voter are all the following:

u1 ≺ u2 ≺ · · · ≺ ur ≺W ≺ v1 ≺ · · · ≺ vr ≺W
′.

The preference lists between the (3r )-th voter and the (4r − 2)-th voter are all the following:

W ′ ≺ vr ≺ · · · ≺ v1 ≺ ur ≺ ur−1 ≺ · · · ≺ u1 ≺W .

Note that from these two types of voters, we add 2r − 2 to M(W ,ui ) for all i ∈ [r ], add 0 to

M(ui ,W ) for all i ∈ [r ], and add r − 1 to all other important edges. We can apply the same idea for

other voters and manipulate the edge weights as follows.

• We can add 2r voters whose preference lists will add 2r to M(W ,W ′), add 0 to M(W ′,W ),
and add r to all other edges. For this case, our construction is the same as the McGarvey’s

method [33].

• We can add 2r voters whose preference lists will add 2r toM(W ′,vj ) for every j ∈ [r ], add 0

toM(vj ,W
′) for every j ∈ [r ], and add r to all other edges.

• We can add 2r voters whose preference lists will add 2r toM(vj ,W ) for every j ∈ [r ], add 0

toM(W ,vj ) for every j ∈ [r ], and add r to all other edges.

Overall, the values M(u,v) are summarized in Table 1, and the edge weights of the weighted

majority graph are summarized in Table 2.

u
v

W W ′ ui vj

W ⋆ 6r − 1 6r − 2 4r − 1
W ′

4r − 1 ⋆ 5r − 1 6r − 1
ui 4r 5r − 1 ⋆ 2Ci, j + 4r − 1
vj 6r − 1 4r − 1 6r − 1 − 2Ci, j ⋆

Table 1. The valuesM(u,v). The entries marked as ⋆ are not important in our analysis.
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u
v

W W ′ ui vj

W ⋆ 2r 2r − 2 −2r
W ′ −2r ⋆ 0 2r
ui −2r + 2 0 ⋆ 4Ci, j − 2r
vj 2r −2r 2r − 4Ci, j ⋆

Table 2. The weightsw(u,v) in the weighted majority graph. The entries marked as ⋆ are not important in
our analysis.

Claim 6.3. The Dominance Product C between A and B contains an entry of value r if and only if
W is not a Schulze winner in the preference profile described above.

Proof. SupposeC contains an entryCi, j whereCi, j = r for some i, j ∈ [r ]. In this case,w(ui ,vj ) =
2r andw(vj ,W ) = 2r , so BG (ui ,W ) ≥ 2r . From the ui column in Table 2 we have that all weights

of edges that enter the set {u1, . . . ,ur } are at most 2r − 2 (recall our assumption that all entries

in C are positive). Therefore, any path going fromW to ui must use such an entering edge, so

BG (W ,ui ) ≤ 2r − 2 < BG (ui ,W ). Thus,W is not a winner.

Now we prove the reverse direction. SupposeC has no entry of value r . First of all, BG (W ,W
′) ≥

2r sincew(W ,W ′) = 2r . To travel fromW ′
toW , the last edge will have a value corresponding to

the columnW in Table 2, so the last edge has weight at most 2r . Therefore, BG (W
′,W ) ≤ 2r ≤

BG (W ,W
′).

Secondly, for any j ∈ [r ], BG (W ,vj ) ≥ 2r since the pathW → W ′ → vj has bottleneck 2r .
Same as the previous case, in order to travel from vj toW , the last edge has weight at most 2r , so
BG (vj ,W ) ≤ 2r ≤ BG (W ,vj ).
Finally, for any i ∈ [r ], BG (W ,ui ) ≥ 2r − 2 sincew(W ,ui ) = 2r − 2. To travel from ui toW , we

need to leave the set {u1, . . . ,ur } at some point. When we do it, we use an important edge weight

from the row ui of Table 2. SinceC has no weight r entry, all important weights in row ui of Table 2
are at most 2r − 4. Therefore, BG (ui ,W ) ≤ 2r − 4 < BG (W ,ui ).
Thus,W is a winner when C has no entry of value r . □

Hence, if we run the assumed O(T (n)) = O(T (10r − 2)) time algorithm on the preference profile

described above to check whether candidateW is a Schulze winner, we could use Claim 6.3 to

decide if C has an entry of value r , and thus solve the Dominating Pairs problem. If T (n) is super
polynomial, then the theorem trivially holds as the Dominating Pairs problem is polynomial-time

solvable; otherwise we have O(T (10r − 2)) = O(T (r )). □

7 CONCLUSIONS
This paper considered the Schulze voting method and gave new algorithms and fine-grained

conditional lower bounds for central problems such as computing the weighted majority graph

(useful for other voting rules as well), computing all winners and verifying whether a candidate is

a winner.

It is worth mentioning that while we focused on weighted majority graphs similarly to previous

works
10

[12, 24, 25, 34–36] our algorithms work for arbitrary weighted directed graphs; let us

call these comparison graphs. This means that we cover all possible weak orders ⪰D on N0 × N0

that compare the strength of the link (M(u,v),M(v,u)) ∈ N0 × N0 [40]. For a given instance with

n voters and m candidates there are exactly m(m − 1) direct ordered comparisons between the

10
These assumed additionally that votes are linear orders—in contrast, we allow weak preference orders.

 
Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

856



candidates. Even if ⪰D is defined on (n + 1)2 different pairs, only at mostm(m − 1) pairs appear in
the instance. Therefore, for a given instance, we can encode the present pairs as numbers from

the set {1, 2, . . . ,m(m − 1)} and use a standard comparison relation instead of ⪰D . Then we simply

use these numbers as weights in the comparison graph. In such a way, our algorithms work for all

comparison relations mentioned by Schulze [40], i.e., margin, ratio, winning votes, and losing votes.
Note that a weighted majority graph is defined as a comparison graph for the relation ⪰margin s.t.

(a,b) ⪰margin (c,d) if and only if a − b ≥ c − d .
Despite the fact that we have a lower bound on constructing the weighted majority graph it does

not mean we have a lower bound on any voting rule which is defined using the weighted majority

graph (e.g. tournament solutions [8]). Indeed, this does not exclude an other way of finding a

winner under a voting rule without construction of the weighted majority graph. In the Schulze

method it happens that the lower bound for a winner determination (Theorem 6.2) is almost the

same (up to technical details) as the lower bound for constructing the weighted majority graph

(Theorem 6.1). It is interesting to investigate for which voting rules (originally defined using the

weighted majority graph) we can find winners in time faster than O(m2.5−ε ) for some ε > 0. It

would require to use different techniques than these presented in the paper.

On the other side, it is worth applying a fine-grained complexity approach on voting rules similar

to the Schulze method, in particular, these satisfying the axioms listed in the Section 1. Despite

those similarities, they might require different techniques than used in this paper. More generally, it

is interesting to research on fine-grained complexity for other computational social choice problems

(not necessarily related to graph problems) that already have polynomial time algorithms (e.g.,

dynamic programming approach used for singled-peaked elections [7]).
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