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defined for the state x ∈ X ⊆ R
n, input u ∈ U ⊆ R

m, and
disturbance w ∈ W ⊆ R

p. The successor state is denoted
by x+. The system is subject to state and input constraints
of the form (x, u) ∈ Z ⊆ X× U and a terminal constraint
Xf ⊆ X. The nominal system is described by

x+ = f(x, u, 0) (2)

For the current state x and input sequence u, the function

φ̂(k;x,u) denotes the open-loop state solution to the
nominal system (2) after k ∈ I≥0 steps.

For a horizon of length N , we define the set of feasible
(x,u) pairs ZN , the set of feasible u for a given state
UN (x), and the set of admissible initial states XN as

ZN = {(x,u) : (φ̂(k;x,u), u(k)) ∈ Z ∀k ∈ I0:N−1

φ̂(N ;x,u) ∈ Xf}

UN (x) = {u : (x,u) ∈ ZN}

XN = {x : UN (x) �= ∅}

We define the stage cost � : Rn × R
m → R, terminal cost

Vf : Rn → R≥0, and the controller’s objective function

VN (x,u) =

N−1
∑

k=0

�(φ̂(k;x,u), u(k)) + Vf (φ̂(N ;x,u))

The optimal control problem for x ∈ XN is defined as

PN (x) : V 0
N (x) = min

u∈UN (x)
VN (x,u)

and we denote the optimal solution(s) to PN (x) as u0(x).
The MPC control law κN (x) := u0(0;x) is defined as
the first input in u

0(x). 1 Note that this control law is
based solely on the nominal system model, i.e., f(x, u, 0),
and does not consider uncertainty within the optimization
problem.

For the controlled system, the state evolves according to

x+ = fcl(x,w) = f(x, κN (x), w) (3)

We define the closed-loop state solution to (3) at time
k ∈ I≥0 as φ(k;x,wk) given the initial condition x at k = 0
and the disturbance sequence wk = (w0, . . . , wk−1).

Let (Ω,F , P ) be a probability space for the random
sequence w : Ω → W

∞ of independent, identically
distributed random variables, i.e, w = {wi}

∞
i=0 for wi :

Ω → W. In particular, we have the probability measure
Pr(wi ∈ F ) = P ({ω ∈ Ω : wi(ω) ∈ F}), i.e., the
probability that wi is in the Borel measurable set F .
From the i.i.d. property, each random variable has the
same probability measure µ : 2W → [0, 1] defined as
µ(F ) = P ({ω ∈ Ω : wi(ω) ∈ F}). Since we are interested
in discrete disturbances, we assume that W is a countable
set and therefore Ω is a countable set as well. Thus, we
may define expected value as

E [g(φ(k;x,wk))] =
∑

ω∈Ω

g(φ(k;x,wk(ω)))P (ω)

in which g : X → R is a lower-bounded function. 2 We also
define conditional expected value given x(k) as

1 If there are multiple solutions to PN (x), we assume some selection
rule is applied such that κN (x) is a single-valued mapping. We note
that subsequent results hold for any such selection rule.
2 By restricting our attention to countable Ω, we ensure that
expected value is well-defined without verifying that φ̂(k;x,w) is
a measurable function.

E|x(k) [g(fcl(x(k), wk))] =
∑

ω∈Ω

g(f(x(k), wk(ω)))P (ω)

=
∑

w∈W

g(f(x(k), wk))µ(wk)

in which g : X → R is a lower-bounded function and
x(k) = φ(k;x,wk).

We consider the following typical assumptions for nominal
MPC (Rawlings et al., 2020, sec. 2.2, 2.4).

Assumption 1. (Continuity of system and cost). The
model f : Rn ×R

m ×R
p → R

n, stage cost � : Rn ×R
m →

R, and terminal cost Vf : R
n → R≥0 are continuous.

The function �(x, u) is lower bounded for all (x, u) ∈ Z.
Furthermore, we have that f(0, 0, 0) = 0, �(0, 0) = 0, and
Vf (0) = 0.

Assumption 2. (Properties of constraint set). The sets Z

and Xf ⊆ X are closed and contain the origin. The set
U is compact and contains the origin.

Assumption 3. (Terminal control law). There exists a ter-
minal control law κf : Xf → U such that for all x ∈ Xf ,
(x, κf (x)) ∈ Z, f(x, κf (x), 0) ∈ Xf , and

Vf (f(x, κf (x), 0)) ≤ Vf (x)− �(x, κf (x))

Assumption 4. (Exponential cost bounds). There exist
constants a ≥ 1, c1, c2 > 0 such that

�(x, u) ≥ c1|x|
a (4)

V 0
N (x) ≤ c2|x|

a (5)

for all (x, u) ∈ Z and x ∈ XN .

Assumptions 1 and 2 are sufficient to establish that the op-
timization problem PN (x) is well-defined (Rawlings et al.,
2020, Proposition 2.4). We note compact U admits in-
tegrality constraints, e.g., u ∈ U := {0, 1} is allowed.
Thus, discrete-valued inputs can be considered without
additional modifications. The addition of Assumption 3
ensures that the nominal closed-loop system (i.e., w = 0)
satisfies the typical optimal cost decrease condition (Rawl-
ings et al., 2020, pp. 116-117).

Lemma 5. If Assumptions 1-3 hold, then

V 0
N (fcl(x, 0)) ≤ V 0

N (x)− �(x, κN (x)) (6)

and fcl(x, 0) ∈ XN for all x ∈ XN .

For economic MPC, in which economic performance (de-
termined by the stage cost �(·)) is paramount relative to
stability, Assumption 3 is sufficient to achieve an asymp-
totic average performance guarantee (Amrit et al., 2011,
Theorem 18). The addition of Assumption 4 ensures that
the origin is exponentially stable for the nominal closed-
loop system (Rawlings et al., 2020, pp. 114-119).

The exponential upper bound for the optimal cost function
can be difficult to directly verify for nonlinear systems.
For compact XN , we can verify this upper bound using
properties of the terminal set and terminal cost (Rawlings
et al., 2020, p. 141). The exponential upper bound for
V 0
N (x), however, may also hold for unbounded XN (e.g.,

stable linear systems) so we include the more general
version in Assumption 4.

3. ROBUSTNESS TO DISCRETE DISTURBANCES

Before we derive properties for the closed-loop trajectory,
we must first ensure that the MPC optimization problem
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and therefore the closed-loop trajectory is well-defined for
all potential realizations of the disturbance. For sufficiently
small disturbances, we can establish that MPC is robustly
recursively feasible, i.e, the optimization problem remains
feasible along the closed-loop trajectory for all w ∈ W

(Allan et al., 2017). For discrete disturbances that have a
large effect on the state of the system, we cannot apply this
approach. Instead, we are required to make the following
assumption.

Assumption 6. (Recursive feasibility). The set XN is ro-
bustly positive invariant for the system x+ = fcl(x,w);
w ∈ W, i.e., if x ∈ XN then fcl(x,w) ∈ XN for all w ∈ W.

Clearly, Assumption 6 does not apply to all systems and
disturbances. We therefore focus on a class of systems and
disturbances that do not render the optimization prob-
lem infeasible, but cannot be assumed to be arbitrarily
small. In general, we must ensure the MPC problem is
robustly recursively feasible by design to consider discrete
disturbances. Nonetheless, there exist many applications
of MPC that admit this assumption. Many higher-level
applications of MPC that may encounter discrete distur-
bances, such as production scheduling, are robustly recur-
sively feasible if sufficiently long horizons and reasonable
state constraints are used. We present such an example
in Section 4. In addition to robust recursive feasibility,
we also require a cost increase bound for the closed-loop
system.

Assumption 7. (Maximum cost increase). There exist con-
stants b1, b2 ∈ R≥0 such that

V 0
N (fcl(x,w)) ≤ V 0

N (x) + b1�(x, κN (x)) + b2 (7)

for all x ∈ XN and w ∈ W.

This bound is notably weaker than the bound required
for an ISS-Lyapunov function and the optimal cost may
increase proportional to the current stage cost. Indeed,
the increase in optimal cost may even grow as x increases
for an equivalent disturbance. While Assumption 7 is
difficult to verify for an arbitrary system, we can apply
the following lemma.

Lemma 8. Let Assumptions 1-6 hold. If there exists
e1, e2 ≥ 0 such that

|f(x, u, w)− f(x, u, 0)| ≤ e1|x|+ e2 (8)

for all (x, u) ∈ Z and w ∈ W, then Assumption 7 holds.

Proof. Choose x ∈ XN and w ∈ W. From (5) and (8), we
have

V 0
N (fcl(x,w)) ≤ c2|fcl(x,w)|

a

≤ c2 (|fcl(x, 0)|+ |fcl(x,w)− fcl(x, 0)|)
a

≤ c2 (|fcl(x, 0)|+ e1|x|+ e2)
a

≤ 2ac2|fcl(x, 0)|
a + 2ac2e

2
1|x|

a + c2(2e2)
a

(9)

From (4) and Vf (·) ≥ 0, we have c1|x|
a ≤ V 0

N (x) for all
x ∈ XN . We use this bound with (5) and (6) to give

|fcl(x, 0)|
a ≤

1

c1
V 0
N (fcl(x, 0))

≤
1

c1
V 0
N (x)− |x|a ≤

c2 − c1
c1

|x|a (10)

We substitute (10) into (9) to get the bound

V (fcl(x,w)) ≤ b̃1|x|
a + b2 = c1|x|

a + (b̃1 − c1)|x|
a + b2

in which b̃1 = 2ac2((c2 − c1)/c1 + e21) and b2 = c2(2e2)
2.

We use (4) and c1|x|
a ≤ V 0

N (x) to give

V (fcl(x,w)) ≤ V 0
N (x) + b1�(x, κN (x)) + b2

for all x ∈ XN and w ∈ W in which b1 = b̃1/c1 − 1. �

In many applications of MPC with discrete actuators,
economic performance, defined by the stage cost, is more
important than stabilizing a specific setpoint and Assump-
tion 4 does not necessarily hold. We can establish, how-
ever, that the closed-loop trajectory satisfies the following
robust performance guarantee.

Theorem 9. Let Assumptions 1-3, 6, and 7 hold. Then
there exists δ ∈ (0, 1] and γ̄(·) ∈ K such that for
disturbance distributions satisfying Pr (|w| > 0) = ε the
system x+ = fcl(x,w); w ∈ W satisfies

lim sup
T→∞

1

T

T−1
∑

k=0

E [�(x(k), u(k))] ≤ γ̄(ε) (11)

in which x(k) = φ(k;x,wk) and u(k) = κN (x(k)), for all
ε ∈ [0, δ] and x ∈ XN .

Proof. We consider the evolution of the system with and
without the disturbance. Let x ∈ XN and x+ = fcl(x,w).
If w = 0, then the standard cost decrease applies, i.e., the
inequality in (6). We combine this bound with the bound
from Assumption 7 using the indicator function I>0(|w|),
which takes value unity when the random variable |w| > 0
and zero otherwise so that E [I>0(|w|)] = Pr(|w| > 0) = ε.

V 0
N (x+) ≤ V 0

N (x)− (1− I>0(|w|))�(x, κN (x))

+ I>0(|w|)(b1�(x, κN (x)) + b2)

Taking the expected value we have

E|x

[

V 0
N (x+)

]

≤ V 0
N (x)− (1− ε− b1ε)�(x, κN (x)) + b2ε

We choose δ < 1/(1 + b1) and for all ε ≤ δ, we have

E|x

[

V 0
N (x+)

]

≤ V 0
N (x)− b3�(x, κN (x)) + b2ε

with b3 = (1− (1 + b1)δ) > 0. Note that δ ∈ (0, 1].

For x ∈ XN , we denote the closed-loop state trajectory as
x(k) = φ(k;x,wk) and the input trajectory as u(k) =
κN (x(k)). By the independence of w and the law of
iterated expectation, we have

E
[

V 0
N (x(k + 1))

]

−E
[

V 0
N (x(k))

]

≤ −b3E [�(x(k), u(k))]+b2ε

for all k ∈ I≥0. We take the sum from k = 0 to T − 1 with
T ≥ 1, divide by T , and rearrange to give

b3
T

T−1
∑

k=0

E [�(x(k), u(k))] ≤
V 0
N (x)− E

[

V 0
N (x(T ))

]

T
+ b2ε

By Assumption 1, there exists M ∈ R such that V 0
N (x) ≥

M for all x ∈ XN and therefore

1

T

T−1
∑

k=0

E [�(x(k), u(k))] ≤
V 0
N (x)−M

b3T
+ γ̄(ε)

in which γ̄(ε) = (b2/b3)ε ∈ K. Thus, as T → ∞, the initial
and final costs vanish and we have

lim sup
T→∞

1

T

T−1
∑

k=0

E [�(x(k), u(k))] ≤ γ̄(ε)

which completes the proof. �

The inequality in (11) ensures that the asymptotic average
of the expected value of the stage cost is bounded for fixed
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ε. Furthermore, as ε → 0 we asymptotically approach the
nominal performance guarantee (in expected value).

For tracking MPC, robustness is characterized through
input-to-state stability in which the “input” to the closed-
loop system is the disturbance. With small and persistent
disturbances, the bound constructed for the closed-loop
state is based on size of the disturbance. For discrete and
infrequent disturbances, we instead construct a bound for
the expected value of the closed-loop state that is based
on the probability of the disturbance occurring.

Definition 10. (RESiE to discrete, infrequent disturbances).
The origin is RESiE to discrete, infrequent disturbances
on the robustly positive invariant set XN for the system
x+ = fcl(x,w); w ∈ W if there exists δ ∈ (0, 1], λ ∈ (0, 1),
ρ > 0, and γ(·) ∈ K such that for disturbance distributions
satisfying Pr(|w| > 0) = ε, the closed-loop trajectory
satisfies

E [|φ(k;x,wk)|] ≤ λkρ|x|+ γ(ε) (12)

for all ε ∈ [0, δ], x ∈ XN , and k ∈ I≥0.

Note that we can convert (12) to a similar bound for con-
fidence intervals of |φ(k;x,wk)| using Markov’s inequality.
Analogous to an ISS-Lyapunov function, we define an
exponential Stochastic ISS-Lyapunov function as follows.

Definition 11. (Exponential SISS-Lyapunov function). The
function V : XN → R≥0 is an exponential Stochastic ISS-
Lyapunov function on the robust positive invariant set XN

for the system x+ = fcl(x,w); w ∈ W if there exists
δ ∈ (0, 1], a ≥ 1, c1, c2, c3 > 0, and σ(·) ∈ K such that
for disturbances satisfying Pr (|w| > 0) = ε, we have

c1|x|
a ≤ V (x) ≤ c2|x|

a (13)

E|x [V (fcl(x,w))] ≤ V (x)− c3|x|
a + σ(ε) (14)

for all ε ∈ [0, δ] and x ∈ XN .

We also establish that for any system that admits an
exponential SISS-Lyapunov function, the origin is RESiE
to discrete, infrequent disturbance.

Proposition 12. If a system x+ = fcl(x,w); w ∈ W admits
an exponential SISS-Lyapunov function on the robustly
positive invariant set XN , then the origin is RESiE to
discrete, infrequent disturbances.

Proof. We use the upper bound in (13) and (14) to give

E|x [V (fcl(x,w))] ≤ V (x)−
c3
c2

V (x) + σ(ε)

= λ̃V (x) + σ(ε)

for all x ∈ XN , in which λ̃ := (1 − c3/c2) ∈ (0, 1). Note
that x(k) := φ(k;x,wk) ∈ XN for all x ∈ XN because XN

is robustly positive invariant. Therefore, we have

E|x(k) [V (x(k + 1))] ≤ λ̃V (x(k)) + σ(ε)

By independence of w, the law of iterated expectation, and
linearity of expected value we have

E [V (x(k + 1))] ≤ λ̃E [V (x(k))] + σ(ε)

By iteration of this bound from E [V (x)] = V (x), we have

E [V (x(k))] ≤ λ̃kV (x) + σ(ε)

k−1
∑

i=0

λ̃i

≤ λ̃kV (x) + σ(ε)/(1− λ̃)

≤ λ̃kc2|x|
a + σ(ε)/(1− λ̃) (15)

Since we have restricted a ≥ 1, we can apply the lower
bound on V (x) and Jensen’s inequality to give

c1E [|x(k)|]
a
≤ E [c1|x(k)|

a] ≤ E [V (x(k))] (16)

Because a ≥ 1, (x+ y)1/a is sub-additive and (x+ y)1/a ≤
x1/a + y1/a for all x, y ≥ 0. Combining (15) with (16) and
rearranging gives

E [|x(k)|] ≤ λkρ|x|+ γ(ε)

in which λ = λ̃1/a, ρ = (c2/c1)
1/a, and

γ(s) =

(

σ(s)

c1(1− λ̃)

)1/a

Note that α(s) = (s/c1/(1−λ̃))p for constant c and p > 0 is
a K-function. So γ(s) = α(σ(s)) is the composition of two

K-functions and is therefore a K-function. Since λ̃ ∈ (0, 1),
λ ∈ (0, 1) as well and the proof is complete. �

We now establish the main result of this paper: nominal
MPC produces a closed-loop system that is RESiE to
discrete, infrequent disturbances.

Theorem 13. Let Assumptions 1-7 hold. Then the origin
is RESiE to discrete, infrequent disturbances on XN for
the system x+ = fcl(x,w); w ∈ W.

Proof. From Assumption 1 and Assumption 4, we have
that c1|x|

a ≤ 
(x, κN (x)) ≤ V 0
N (x). From Assumption 4,

we immediately have V 0
N (x) ≤ c2|x|

a. Following the same
approach as the proof of Theorem 9, we choose δ < 1/(1+
b1) ∈ (0, 1] such that for all ε ∈ [0, δ],

E|x

[

V 0
N (fcl(x,w))

]

≤ V 0
N (x)− b3
(x, κN (x)) + b2ε

in which b3 = (1 − (1 + b1)δ) > 0. We substitute in the
lower bound for 
(·) from Assumption 4 to give

E|x

[

V 0
N (fcl(x,w))

]

≤ V 0
N (x)− c3|x|

a + σ(ε)

in which c3 = c1b3 and σ(ε) = b2ε. Thus, V
0
N : XN → R≥0

is an exponential SISS-Lyapunov function of the robustly
positive invariant set XN . We apply Proposition 12 to
complete the proof. �

In addition to robust exponential stability in 1st moment
of |φ(k;x,wk)|, we can also establish robust exponential
stability in the 2nd moment of |φ(k;x,wk)| if we apply the
usual quadratic stage and terminal costs used in tracking
MPC.

Corollary 14. Let Assumptions 1-7 hold with a = 2. Then
the origin is robustly exponentially mean-squared stable
for the system x+ = fcl(x,w); w ∈ W, i.e., there exists
δ ∈ (0, 1], λ ∈ (0, 1), ρ > 0, and γ ∈ K such that for
disturbance distributions satisfying Pr (|w| > 0) = ε, the
closed-loop trajectory satisfies

E
[

|φ(k;x,wk)|
2
]

≤ λkρ|x|+ γ(ε) (17)

for all ε ∈ [0, δ], x ∈ XN , and k ∈ I≥0.

Proof. Starting with (15), we substitute in c1|x(k)|
2 ≤

V (x(k)) and rearrange to give

E
[

|x(k)|2
]

≤ λkρ|x|+ γ(ε)

in which λ = λ̃, ρ = (c2/c1), and γ(s) = σ(s)/(c1(1− λ̃)).
Thus, λ ∈ (0, 1), γ(·) ∈ K, and the proof is complete. �

Since E [| · |] ≥ 0, we know that the variance of |x(k)| =
|φ(k;x,wk)| satisfies

Var(|x(k)|) = E
[

|x(k)|2
]

− E [|x(k)|]
2
≤ E

[

|x(k)|2
]






