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Abstract: In recent years, theoretical results for model predictive control (MPC) have been
expanded to address discrete actuators (decisions) and high-level planning and scheduling
problems. The application of MPC-style methods to scheduling problems has been driven,
in part, by the robustness afforded by feedback. The ability of MPC, and feedback methods
in general, to reject small persistent disturbances is well-recognized. In many planning and
scheduling applications, however, we must also consider an additional class of discrete and
infrequent disturbances, such as breakdowns and unplanned maintenance. In this paper, we
establish that nominal MPC is robust, in a stochastic context, to this class of discrete and
infrequent disturbances. We illustrate these results with a nonlinear blending example.
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1. INTRODUCTION

For successful implementation, model predictive control
(MPC) must be robust to disturbances. While robust
or stochastic MPC algorithms can be used to directly
consider disturbances in the optimal control problem, the
inherent robustness of nominal MPC (i.e., the robustness
obtained solely through feedback) is often sufficient in
practice. Thus, the inherent robustness of nominal MPC is
a subject that has received significant attention. Inherent
robustness is typically characterized by robust asymptotic
(or exponential) stability of the closed-loop system subject
to sufficiently small and persistent disturbances (Allan
et al., 2017; Grimm et al., 2004). For many process control
applications, this characterization of disturbances is rea-
sonable. Nonlinear MPC is inherently robust if the opti-
mal cost function satisfies certain continuity assumptions
(Pannocchia et al., 2011). These results extend to MPC
implementations with compact input constraints (includ-
ing integrality constraints) and discontinuous optimal cost
functions with specific restrictions on the terminal region
and cost (Allan et al., 2017; Yu et al., 2014).

By extending theoretical results for MPC to include
discrete actuators (inputs), higher-level planning and
scheduling problems with numerous discrete-valued deci-
sion variables are within the purview of MPC (Rawlings
and Risbeck, 2017). In these scheduling problems, the most
pertinent class of disturbances to consider is not small and
persistent, but discrete and infrequent (e.g., equipment
breakdowns, maintenance, or delays). Typically, these dis-
crete disturbances are large and constructing a bound
for the worst deterministic performance possible, e.g.,
the entire facility is broken or under repair, leads to an
excessively conservative bound that offers little insight.
Instead, we intend to exploit the infrequent nature of
these disturbances and characterize their robustness with
a stochastic form of robust exponential stability.

* The authors gratefully acknowledge the financial support of the
NSF through grant 2027091.

The notion of stochastic stability for nonlinear systems
has been developed and refined over several decades
(Florchinger, 1995; Kushner, 1967). Teel and co-workers
provide a modern treatment of these topics and establish
that stochastic Lyapunov functions ensure uniform asymp-
totic convergence (Teel, 2013; Teel et al., 2012). Analogous
to input-to-state stability (ISS) for deterministic systems,
stochastic input-to-state stability (SISS) was also defined
(Tsinias, 1998; Krstic and Deng, 1998; Tang and Basar,
2001; Liu et al., 2008). However, unlike these works, we do
not assume that the effect of the stochastic disturbance
vanishes as the state of the system approaches the origin.

In this work, we present a stochastic definition of robust-
ness for nonlinear systems, robust exponential stability in
expectation (RESIE), subject to discrete and infrequent
disturbances. We define an exponential SISS-Lyapunov
function and establish that any system that admits an
exponential SISS-Lyapunov function is RESIiE. We then
establish that nominal MPC under the typical assump-
tions required for nominal stability and an additional
assumption of robust recursive feasibility is RESIE with
respect to discrete and infrequent disturbances. We con-
clude with a nonlinear blending example to demonstrate
the implications of this analysis.

Notation. Let T denote integers, R denote reals, and
subscripts on these sets denote restrictions (e.g. I> for
nonnegative integers). The function « : R>g — Rx¢ is of
class K if it is continuous, strictly increasing, and «(0) = 0.
We use | - | to denote Euclidean norm. Sequences are
denoted in bold face and we use subscripts to indicate
the length of the sequence if the length is ambiguous from
context (e.g. wy, indicates the sequence of w’s from wy to
wy). We use Pr(A) to denote the probability of event A.

2. MODEL PREDICTIVE CONTROL

We consider a discrete-time system of the following form
at :f(:c,u,w) (1)
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defined for the state x € X C R™, input © € U C R™, and
disturbance w € W C RP. The successor state is denoted
by 2. The system is subject to state and input constraints
of the form (z,u) € Z C X x U and a terminal constraint
Xy C X. The nominal system is described by

at = f(z,u,0) 2)
For the current state x and input sequence u, the function

¢(k;x,u) denotes the open-loop state solution to the
nominal system (2) after k € I steps.

For a horizon of length N, we define the set of feasible
(z,u) pairs Zy, the set of feasible u for a given state
Un (), and the set of admissible initial states X as

Zy = {(z,u) : (¢p(k;z,u), u(k)) € Z Vk € Tp,n—_1

d(N;z,u) € Xy}
Un(xz) ={u: (z,u) € Zx}
Xy = {z:Uy(z) # 0}
We define the stage cost £ : R™ x R™ — R, terminal cost
Vi : R™ = R>, and the controller’s objective function
N—-1
Vi (z,u) = Y Uk 2, w), u(k)) + Vi($(Nsz,u))
k=0
The optimal control problem for x € Xy is defined as
Py(z): Va(z) = min Vy(z,u)
ueln (x)

and we denote the optimal solution(s) to Py (z) as u®(z).
The MPC control law kx(x) = u%(0;z) is defined as
the first input in u%(z).' Note that this control law is
based solely on the nominal system model, i.e., f(x,u,0),
and does not consider uncertainty within the optimization
problem.

For the controlled system, the state evolves according to

at :fCl(l‘vw) :f(JZ,IiN(ZE),’UJ) (3)
We define the closed-loop state solution to (3) at time
k € I>¢ as ¢(k; z, wy,) given the initial condition z at k = 0
and the disturbance sequence wy = (wy, . .., Wg_1).

Let (2, F,P) be a probability space for the random
sequence w Q — W< of independent, identically
distributed random variables, i.e, w = {w;}$2, for w; :
Q) — W. In particular, we have the probability measure
Pr(w; € F) = P{w € Q : w;j(w) € F}), ie., the
probability that w; is in the Borel measurable set F.
From the i.i.d. property, each random variable has the
same probability measure p : 2% — [0,1] defined as
w(F) = P{w € Q: w;(w) € F}). Since we are interested
in discrete disturbances, we assume that W is a countable
set and therefore 2 is a countable set as well. Thus, we
may define expected value as

Elg(d(k;z,wi)] = Y g(d(k; z, wi(w))) P(w)
weN

in which g : X — R is a lower-bounded function.? We also
define conditional expected value given z(k) as

L If there are multiple solutions to Py (), we assume some selection
rule is applied such that ky () is a single-valued mapping. We note
that subsequent results hold for any such selection rule.

2 By restricting our attention to countable 2, we ensure that
expected value is well-defined without verifying that ¢(k;z,w) is
a measurable function.

Epoi) [9(fa(a(k),wi)] = D g(f (x(k), wi(w)))P(w)

weN

= 57 g(F@lk), wi)) ()
weW
in which ¢ : X — R is a lower-bounded function and

x(k) = ¢p(k; x, wy).

We consider the following typical assumptions for nominal
MPC (Rawlings et al., 2020, sec. 2.2, 2.4).

Assumption 1. (Continuity of system and cost). The
model f:R"” x R™ x R? — R", stage cost £: R" x R™ —
R, and terminal cost V¢ : R™ — R>( are continuous.
The function ¢(x,u) is lower bounded for all (z,u) € Z.
Furthermore, we have that f(0,0,0) = 0, £(0,0) = 0, and
V¢ (0) = 0.

Assumption 2. (Properties of constraint set). The sets Z
and Xy C X are closed and contain the origin. The set
U is compact and contains the origin.

Assumption 3. (Terminal control law). There exists a ter-
minal control law ¢ : Xy — U such that for all x € Xy,
(x,k¢(x)) € Z, f(z,kf(x),0) € Xy, and

Vi(f(z,k5(2),0)) < Vi(x) — L2, ks (7))
Assumption 4. (Exponential cost bounds). There exist
constants a > 1, ¢1,co > 0 such that

Uz, u) > er|z]* (4)
V(@) < cala]® (5)
for all (z,u) € Z and x € X.

Assumptions 1 and 2 are sufficient to establish that the op-
timization problem Py (z) is well-defined (Rawlings et al.,
2020, Proposition 2.4). We note compact U admits in-
tegrality constraints, e.g., u € U := {0,1} is allowed.
Thus, discrete-valued inputs can be considered without
additional modifications. The addition of Assumption 3
ensures that the nominal closed-loop system (i.e., w = 0)
satisfies the typical optimal cost decrease condition (Rawl-
ings et al., 2020, pp. 116-117).
Lemma 5. If Assumptions 1-3 hold, then

Vy (fa(z,0)) < Vy(z) — Uz, kv (2)) (6)
and fo(z,0) € Xy for all x € Xy.

For economic MPC, in which economic performance (de-
termined by the stage cost £(-)) is paramount relative to
stability, Assumption 3 is sufficient to achieve an asymp-
totic average performance guarantee (Amrit et al., 2011,
Theorem 18). The addition of Assumption 4 ensures that
the origin is exponentially stable for the nominal closed-
loop system (Rawlings et al., 2020, pp. 114-119).

The exponential upper bound for the optimal cost function
can be difficult to directly verify for nonlinear systems.
For compact X, we can verify this upper bound using
properties of the terminal set and terminal cost (Rawlings
et al., 2020, p. 141). The exponential upper bound for
VY (z), however, may also hold for unbounded Xy (e.g.,
stable linear systems) so we include the more general
version in Assumption 4.

3. ROBUSTNESS TO DISCRETE DISTURBANCES

Before we derive properties for the closed-loop trajectory,
we must first ensure that the MPC optimization problem
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and therefore the closed-loop trajectory is well-defined for
all potential realizations of the disturbance. For sufficiently
small disturbances, we can establish that MPC is robustly
recursively feasible, i.e, the optimization problem remains
feasible along the closed-loop trajectory for all w € W
(Allan et al., 2017). For discrete disturbances that have a
large effect on the state of the system, we cannot apply this
approach. Instead, we are required to make the following
assumption.

Assumption 6. (Recursive feasibility). The set Xy is ro-
bustly positive invariant for the system zt = fu(z,w);
we W, ie., if x € Xy then fy(z,w) € Xy for all w e W.

Clearly, Assumption 6 does not apply to all systems and
disturbances. We therefore focus on a class of systems and
disturbances that do not render the optimization prob-
lem infeasible, but cannot be assumed to be arbitrarily
small. In general, we must ensure the MPC problem is
robustly recursively feasible by design to consider discrete
disturbances. Nonetheless, there exist many applications
of MPC that admit this assumption. Many higher-level
applications of MPC that may encounter discrete distur-
bances, such as production scheduling, are robustly recur-
sively feasible if sufficiently long horizons and reasonable
state constraints are used. We present such an example
in Section 4. In addition to robust recursive feasibility,
we also require a cost increase bound for the closed-loop
system.

Assumption 7. (Maximum cost increase). There exist con-
stants by, b2 € R>¢ such that

Vy(fa(z,w)) < Vy(@) + bil(z, iy (@) +b2 - (7)
for all z € Xy and w € W.

This bound is notably weaker than the bound required
for an ISS-Lyapunov function and the optimal cost may
increase proportional to the current stage cost. Indeed,
the increase in optimal cost may even grow as x increases
for an equivalent disturbance. While Assumption 7 is
difficult to verify for an arbitrary system, we can apply
the following lemma.
Lemma 8. Let Assumptions 1-6 hold. If there exists
e1,e2 > 0 such that

|f(z,u,w) = f(z,u,0)] < erz| + ez (3)
for all (z,u) € Z and w € W, then Assumption 7 holds.

Proof. Choose z € Xy and w € W. From (5) and (8), we
have

Vi (fa(z,w)) < eol fu(w,w)|®
< ez (|fa(z, 0)] + | fer(@, w) — falz,0)])"
< ez (|fa(z,0)| + er]z| + e2)"
< 2% fu(x,0)|* 4+ 2%coet|x|* + ca(2e9)”
(9)
From (4) and V() > 0, we have ¢;|z|* < V() for all
x € Xn. We use this bound with (5) and (6) to give

[, 0" < VR (fu(,0)

1 —
< —Vi(w) - ot < 2=2
1

ke

(10)

We substitute (10) into (9) to get the bound
V(fa(z,w)) < bifz|* +by = erfe]® + (b — e1)[z[* + by

in which by = 2% ((c2 — ¢1)/c1 + €2) and by = ¢9(2e2)2.
We use (4) and ¢;1|z|* < V() to give

V(fa(z,w)) < Vy(z) + bil(z, iy (2)) + bo
for all z € Xy and w € W in which b1:51/0171. O

In many applications of MPC with discrete actuators,
economic performance, defined by the stage cost, is more
important than stabilizing a specific setpoint and Assump-
tion 4 does not necessarily hold. We can establish, how-
ever, that the closed-loop trajectory satisfies the following
robust performance guarantee.

Theorem 9. Let Assumptions 1-3, 6, and 7 hold. Then
there exists 6 € (0,1] and ¥(-) € K such that for
disturbance distributions satisfying Pr (|w| > 0) = ¢ the
system 2 = fu(z,w); w € W satisfies

(1)

in which z(k) = ¢(k;x,wy) and u(k) = sy (z(k)), for all
€ €0,6] and z € Xy.

T—o0

tm sup S E [((a(k), u(k)] < 7()
k=0

Proof. We consider the evolution of the system with and
without the disturbance. Let € Xy and zt = f(z, w).
If w = 0, then the standard cost decrease applies, i.e., the
inequality in (6). We combine this bound with the bound
from Assumption 7 using the indicator function Iso(|w|),
which takes value unity when the random variable |w| > 0
and zero otherwise so that E [Is(Jw|)] = Pr(jw| > 0) = e.

V(™) < VR(e) — (1= Lso(|w]))é(z, kn ()
+ Loo(Jw|)(brf(z, iy (x)) 4 b2)
Taking the expected value we have
E. [VN(zT)] < VR(2) — (1 — e — bie)l(z, n(2)) + bae

We choose d < 1/(1 + b1) and for all € < ¢, we have

E, [Va(2zT)] < Vi(z) — bsl(z, iy (2)) + bae
with b3 = (1 — (1 4 b1)d) > 0. Note that ¢ € (0, 1].
For z € X, we denote the closed-loop state trajectory as
x(k) = ¢(k;x,wyi) and the input trajectory as u(k) =
kn(z(k)). By the independence of w and the law of
iterated expectation, we have

E [Vy(z(k+1))]-E [Vy(z(k))] < —bsE [((z(k), u(k))]+bse
for all k£ € I>9. We take the sum from £ = 0 to T'— 1 with
T > 1, divide by T, and rearrange to give

~rl V() ~ E [VR((T))
?3 kZ:O]E[E(z(k),U(k))] <+ T -

By Assumption 1, there exists M € R such that V{(z) >
M for all x € Xy and therefore
V() —M

;kz;)]E[é(x(k)aU(k))]g o7 ()

in which 7(e) = (b2/bs)e € K. Thus, as T' — oo, the initial
and final costs vanish and we have

=
lim sup 7 Z E [((z(k),u(k))] < 7(e)
k=0

+ b2€

T—o00

which completes the proof. O

The inequality in (11) ensures that the asymptotic average
of the expected value of the stage cost is bounded for fixed
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€. Furthermore, as ¢ — 0 we asymptotically approach the
nominal performance guarantee (in expected value).

For tracking MPC, robustness is characterized through
input-to-state stability in which the “input” to the closed-
loop system is the disturbance. With small and persistent
disturbances, the bound constructed for the closed-loop
state is based on size of the disturbance. For discrete and
infrequent disturbances, we instead construct a bound for
the expected value of the closed-loop state that is based
on the probability of the disturbance occurring.

Definition 10. (RESIE to discrete, infrequent disturbances).
The origin is RESIE to discrete, infrequent disturbances
on the robustly positive invariant set X for the system
2t = fo(z,w); w € W if there exists § € (0,1], A € (0,1),
p >0, and v(-) € K such that for disturbance distributions
satisfying Pr(Jlw| > 0) = ¢, the closed-loop trajectory
satisfies

E [l6(k; o, wi)l] < Meplal + ()
for all € € [0,0], x € Xy, and k € I>o.

(12)

Note that we can convert (12) to a similar bound for con-
fidence intervals of |¢(k; z, wy)| using Markov’s inequality.
Analogous to an ISS-Lyapunov function, we define an
exponential Stochastic ISS-Lyapunov function as follows.
Definition 11. (Exponential SISS-Lyapunov function). The
function V' : Xy — R>( is an exponential Stochastic ISS-
Lyapunov function on the robust positive invariant set X
for the system 27 = fy(z,w); w € W if there exists
5 € (0,1, a > 1, ¢1,¢2,¢35 > 0, and o(-) € K such that
for disturbances satisfying Pr (Jw| > 0) = ¢, we have
alz|* < V(z) < eolx|®
Epp [V(fa(z,w))] < V(z) — cslz|* + a(e)

for all € € [0,6] and = € Xy.

(13)
(14)

We also establish that for any system that admits an
exponential SISS-Lyapunov function, the origin is RESIiE
to discrete, infrequent disturbance.

Proposition 12. If a system 7 = fu(z,w); w € W admits
an exponential SISS-Lyapunov function on the robustly
positive invariant set X, then the origin is RESIE to
discrete, infrequent disturbances.

Proof. We use the upper bound in (13) and (14) to give
c
Bjo [V (Ja(w, w))] < V(@) = 2V (@) + o(e)

=V (z) 4+ 0o(e)
for all z € Xy, in which X := (1 — ¢3/c2) € (0,1). Note
that z(k) := ¢(k;z,wg) € Xn for all x € Xy because Xy
is robustly positive invariant. Therefore, we have
By [V(z(k +1))] < AV (2(k)) + o(e)
By independence of w, the law of iterated expectation, and
linearity of expected value we have

E[V(z(k+1))] < AE[V (x(k))]
By iteration of this bound from E [V (z)]
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Since we have restricted a > 1, we can apply the lower
bound on V(z) and Jensen’s inequality to give

aBllz(k)]* <Elala(k)"] <E[V(2(k)]  (16)
Because a > 1, (z +%)/* is sub-additive and (z +y)Y/* <
x/e 4 y1/e for all z,y > 0. Combining (15) with (16) and
rearranging gives
E [Ja(k)[] < Xplz| +~(e)
in which \ = 5\1/“, p = (ca/c1)*/?, and

+(5) ({‘1(_)9/

Note that a(s) = (s/c1/(1—)))P for constant ¢ and p > 0 is
a K-function. So v(s) = a(c(s)) is the composition of two

K-functions and is therefore a K-function. Since A € (0, 1),
A € (0,1) as well and the proof is complete. O

We now establish the main result of this paper: nominal
MPC produces a closed-loop system that is RESIE to
discrete, infrequent disturbances.

Theorem 13. Let Assumptions 1-7 hold. Then the origin
is RESIE to discrete, infrequent disturbances on Xy for
the system z7 = fo(z,w); w € W.

Proof. From Assumption 1 and Assumption 4, we have
that ¢;]z|* < l(x,kn(z)) < VF(x). From Assumption 4,
we immediately have Vy(x) < ca|z|®. Following the same
approach as the proof of Theorem 9, we choose § < 1/(1+
b1) € (0,1] such that for all € € [0, d],

B, [VR (fa(z, w)] < Vy(2) — bsl(z, Ky (x)) + boe

in which b3 = (1 — (1 + b1)d) > 0. We substitute in the
lower bound for ¢(-) from Assumption 4 to give

Ejp [Vy(fa(z,w)] < Vy(z) = eslz|® +a(e)
in which c¢3 = ¢1b3 and o(g) = bge. Thus, VY : Xn — R>g
is an exponential SISS-Lyapunov function of the robustly

positive invariant set Xx. We apply Proposition 12 to
complete the proof. m]

In addition to robust exponential stability in 1%' moment
of |¢p(k;z,wy)|, we can also establish robust exponential
stability in the 2" moment of |¢(k; z, wy)| if we apply the
usual quadratic stage and terminal costs used in tracking
MPC.
Corollary 14. Let Assumptions 1-7 hold with a = 2. Then
the origin is robustly exponentially mean-squared stable
for the system zt = fy(x,w); w € W, i.e., there exists
6 € (0,1], A € (0,1), p > 0, and v € K such that for
disturbance distributions satisfying Pr (Jw| > 0) = ¢, the
closed-loop trajectory satisfies

E [|¢(k; 2, we)[?] < Afpla| +(e)
for all € € [0,4], x € Xy, and k € I>o.

(17)

Proof. Starting with (15), we substitute in c¢;|z(k)> <
V(z(k)) and rearrange to give
E [|z(k)|?] < A*plz| + v(e)

in which A = X, p = (¢2/c1), and v(s) = o(s)/(c1 (1 — A)).
Thus, A € (0,1), v() € K, and the proof is complete. O

Since E[| - [] > 0, we know that the variance of |z(k)]
|o(k; x, wy)| satisfies

Var(|z(k)]) = E [Jo(k)]*] = E[lz(k)|)* < E [Jo(k)]



68 Robert D. McAllister et al. / IFAC PapersOnLine 54-6 (2021) 64—69

81| X 2.0 Reactor 1
/| Xy [ Reactor 2
6 - 15 N
mr, ’ ™ 1.0 4
9 0.5 §
0 T T 0.0 1 7 T T
0 10 20 0.0 2.5 5.0
v Vi

Fig. 1. Feasible state and input space for the blending
example. Round black markers show steady-state val-
ues.

and therefore Corollary 14 implies robust exponential
stability in variance as well.

4. EXAMPLE

We consider a blending example similar to the one in
Rawlings and Risbeck (2017). Two batch reactors deliver
product to a single holding tank from which product may
be withdrawn at the start of each hour. The goal of
the controller is to maintain both the total volume and
concentration of product species within the tank while
withdrawing 7 m? every hour. We consider a discrete time
model of the facility as follows:

U; =ur +U1(1 — dl) —|—U2(1 —dg) — U4

m
mg =mrp +mi(1—dy) +ma(l —dg) — U—Tvd
T

in which vy is the volume of fluid in the tank, mrp
is the mass of product in the tank, v{,m; and wvs, mo
are the volumes and masses, respectively, of product
produced by reactors 1 and 2. We also include the binary
disturbance variables d; and dsy that represent breakdowns
or unplanned maintenance of reactors 1 and 2. To enforce
minimum capacity requirements of each reactor we use the
binary variables z; and z5 to indicate if the reactor is ‘on’
or ‘off’. We also allow the controller to select the outlet
flow rate vy. Thus, the system has two states = (vp, mp),
seven inputs u = (z1,v1, m1, 22, V2, Ma, vg), and two binary
disturbances w = (dy, da).

We require that the maximum volume of the tank is
not exceeded, 0 < vr < 25, and the concentration of
product remains within acceptable bounds, 0.1vpr < mp <
0.35v7.3 We also require that 0 < vy < 10 and vg < vr
to ensure that we do not withdraw more material than is
available at the start of each hour. The input constraints
associated with the reactors are shown in Figure 1.

With a given steady state (xss,uss), we define the stage
cost as £(x,u) = | — 2|3 + |u — uss |} with diagonal Q
and R. To construct the terminal cost and constraint, we
linearize the system, take m; and vs as free inputs, assume
Mo = Pmaz¥2, and fix all other inputs to their steady-
state values. We then determine the LQR solution and
state-feedback gain for the reduced linear system with only
two free inputs. This procedure produces a linear terminal

3 Note that the reactors cannot produce concentrations that violate
these bounds.

Fig. 2. Closed-loop volume and product mass for the blend-
ing example subject to breakdowns of each reactor
with probability p = 0.1. The blue lines show closed-
loop trajectories for 50 realizations of the trajectory
from the initial condition z¢ = (24,6.24). The black
line is the nominal trajectory, i.e, p = 0, for compari-
son.

control law ky(x) = K(z — xss) + uss and terminal cost
Vi(z) = |x — 255|%. A candidate terminal set is then

Xf:{x€X|/<;f(:c)€U}
We verify that the set Xy is invariant under x¢(-) and that
the cost decrease condition in Assumption 3 is satisfied.

Clearly, Assumptions 1 and 2 are satisfied. From the
definition of V(z), there exists ¢y > 0 such that V(z) <
cslz|? for all z € X;. Since Xy C X is bounded and the
origin is in the interior of X, there exists co > 0, such that
Vy(z) < eo|z|? for all z € Xy. We choose positive definite
(@ and therefore Assumption 4 is satisfied with a = 2.

We note that Xy = X for N > 6.4 Let z € Xy,
¢t = (b7,mf) = fa(z,0), and 27 = (v, mf) =
fer(z,w). For any value of w € W := {0,1}?, we have
that vq‘t < 13; < 25. Furthermore, we restricted vqy < vy
and therefore 0 < U; . We also know that the reactors
cannot produce concentrations that violate the product
quality state constraints. So if 0.1vy < m7 < 0.35v7, then
0.1v} < mj < 0.35v} as well. Thus, 27 € X = Xx and
Assumption 6 holds. The system model f(-) also satisfies
the condition in Lemma 8 and therefore the closed-loop
system is RESIiE and robustly exponentially mean-squared
stable to discrete, infrequent disturbances.

We simulate the closed-loop trajectory subject to break-
downs that occur with some probability p for each reactor.
For each value of p we simulate the closed-loop system
over 20 hours of operation and for 50 realizations of the
disturbance with the initial condition zg = (24,6.24). The
resulting state trajectories for each of the 50 realizations
with p = 0.1 are plotted in Figure 2.

We evaluate the distance of each trajectory from the
steady state for all k£ and calculate the sample mean
and sample mean-squared for all k. These trajectories are

4 Three steps to drain the tank from full and three steps to fill to
15 m3 with the correct concentration.



Robert D. McAllister et al. / IFAC PapersOnLine 54-6 (2021) 64—69 69

Fig. 3. Trajectory of the sample mean and mean-squared
distance of the closed-loop trajectory to the steady
state for different values of p.

plotted in Figure 3. In both plots, we observe an initial
decrease of the sample mean (mean-squared) towards zero
and then the sample mean (sample mean-squared) remains
below some upper bound for all future k. This bound
increases with increasing p (i.e., ¢ = p? + 2p(1 — p) in
RESIE definition) and decreases towards zero as p — 0
(i.e., € = 0). Thus, the results in Figure 3 are consistent
with the bounds in (12) and (17).

5. CONCLUSIONS

We established that under typical assumptions for tracking
MPC and an additional assumption of robust recursive
feasibility, nominal MPC renders the origin robustly expo-
nentially stable in expectation for the closed-loop system
subject to discrete and infrequent disturbances. This ro-
bustness is solely the result of feedback as the nominal
MPC algorithm does not consider disturbances in the
optimization problem. Therefore, we can confidently apply
MPC to problems in which discrete disturbances, such as
breakdowns, are relevant. This extension is particularly
meaningful for higher-level, scheduling problems in which
discrete decisions and discrete disturbance are ubiquitous.
We can also extend many of these results to include asymp-
totic stability and time-varying systems (McAllister and
Rawlings, 2020).

To ensure these robustness properties, however, we require
the MPC problem to be robustly recursively feasible by
design. Thus, an important direction for future research
is develop terminal conditions that guarantee robust re-
cursively feasibility for relevant problems. In addition, we
may want to combine these results with typical robustness
results for small, persistent disturbances to construct a
robustness result for MPC subject to both types of distur-
bances.
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