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ARTICLE INFO ABSTRACT

Handling Editor: Brett Anthony Neilan Ciguatoxins (CTXs) and gambierones are ladder-shaped polyethers associated with ciguatera poisoning and

Gambierdiscus spp. Several of these compounds contain carbonyl or hemiketal groups, which have the potential to

Keywords: exchange with 180-labeled water under acidic conditions. The effects of solvent composition and acid on the rate
C‘guafm‘“‘ of exchange and on the stability of the labels at various pH values were assessed to optimize the incorporation of
Scam;:ﬁ;e 180 into Caribbean ciguatoxin-1 and -2 (C-CTX1/2), gambierone, and 44-methylgambierone. LC—HRMS results

Stable isotope labeling showed that '80-labeling occurred at the hydroxy group of the hemiketal at C-56 in C-CTX1/2, and at the hy-
H,'%0 droxy group of the hemiketal at C-4 and the ketone at C-40 in gambierones. Labeling occurred very rapidly
(complete in <30 min) for C-CTX1/2, and more slowly (complete in ca. 16 h) for both gambierones. Labeled C-
CTX1/2 was reduced with sodium borohydride to produce '80-labeled C-CTX3/4. The incorporated 20 labels in
the gambierones and C-CTXs were retained in aqueous solvent mixtures under neutral conditions in a short-term
stability study, demonstrating that these 80-labeled toxins have the potential to be used in isotope dilution and

Oxygen-18

metabolism studies.

1. Introduction

Ciguatera poisoning is caused by the consumption of ciguatoxin-
contaminated seafood including commercially relevant fish harvested
from tropical and sub-tropical regions. Ciguatoxins (CTXs) production
has been linked to the benthic dinoflagellate genera Gambierdiscus and
Fukuyoa with toxins moving into marine food webs via herbivory fish.
Several precursor Pacific CTXs have been identified in these genera
(Chinain et al., 2010), and have been shown to undergo biotransfor-
mation into the more toxic CTXs found in fish flesh (Ikehara et al.,
2017).

Ciguatoxins are large ladder-shaped polyether compounds with
molecular masses of 1000-1150 Da. They are odourless, tasteless and
heat-stable compounds that are potent voltage-gated sodium channel
activators, and very low levels are required to induce a toxic effect
(Friedman et al., 2008). While no regulatory limit for CTXs has been
established, the guidance levels of 0.01 pg/kg CTX1B and 0.1 pg/kg

Caribbean CTXs (C-CTXs) in fish flesh suggested by the US Food and
Drug Administration has also been endorsed by the European Food
Safety Authority (EFSA Panel on Contaminants in the Food Chain, 2010;
Food and Agriculture Organization of the United Nations and World
Health Organization, 2020; Food and Drug Administration, 2021).
Detection of CTXs at these levels using mass spectrometry can be diffi-
cult due to significant matrix effects, low recovery, poor ionization ef-
ficiency, and in-source fragmentation, which all contribute to poor
sensitivity (Harwood et al., 2017; Suzuki et al., 2017).

Gambierdiscus and Fukuyoa spp. produce a wide array of ladder-
shaped polyethers including gambierol (Satake et al., 1993a), gambie-
ric acids (Morohashi et al., 2000), maitotoxins (Murata et al., 1994),
CTXs (Satake et al., 1993b, 1996) and gambierones (Rodriguez et al.,
2015). Gambierone and 44-methylgambierone are members of a class of
sulfated polyethers identified across several species of these genera and
in Coolia tropicalis (Murray et al., 2020, 2021; Tibirica et al., 2020).
Gambierones exhibit CTX-like effects on sodium channels, although at a
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much lower potency than CTXs, and have minimal toxicity following
intraperitoneal injection in mouse bioassays (Boente-Juncal et al., 2019;
Murray et al., 2020, 2021; Rodriguez et al., 2015). While the diversity
and distribution of gambierones across Gambierdiscus and other benthic
dinoflagellate genera is not fully understood, the presence of known
gambierones in several species suggests they have potential to be used as
biomarkers for environmental monitoring of Gambierdiscus dominance
in coral reef systems (Murray et al., 2020; Yon et al., 2021).

LC—MS analysis of complex samples, including fish tissues, can result
in performance issues associated with matrix effects and sample prep-
aration that can be improved through the use of isotopically labeled
analytes as internal standards (Haddad et al., 2019; Stokvis et al., 2005).
Furthermore, isotopically labeled analytes can be used to investigate in
vitro and in vivo metabolism, where the use of mass spectrometry can
provide accurate metabolite tracing and potentially identify pathways
associated with metabolism (Mutlib, 2008). There is limited availability
of CTX standards, especially those associated with the Caribbean region.
Several algal CTXs can be isolated from toxin-producing Gambierdiscus
isolates, but this will not be feasible for C-CTXs until C-CTX-producing
algae can be identified and brought into culture. With their complex
structures and laborious synthesis schemes (Inoue et al., 2006; Sasaki
et al., 2021), availability of standards relies on isolation from incurred
fish tissue. This limits the possibilities for incorporating isotopic labeling
during laboratory synthesis, or by modification of culture conditions
such as that used in the production of 180-labeled yessotoxins (Yamazaki
et al., 2012). At this time, there are no commercially available isotopi-
cally labeled CTX standards. An alternative strategy for stable isotope
labeling would be to utilize acid-catalyzed oxygen exchange. In this
case, carbonyl groups exchange oxygen with water by the reversible
formation of hydrates (Theodorou et al., 2014). For example, 180.1a-
beling of peptides on their carboxyl-containing amino acid residues has
proven to be a successful method for isotopic labeling (Niles et al.,
2009).

In this study, we investigated the feasibility of oxygen exchange with
C-CTXs and gambierones using %0-labeled water. The aim of this work
was to identify suitable reaction conditions for label incorporation and
the extent of labeling for these marine toxins. The labeling kinetics and
label stability were analyzed to evaluate their potential for use in
analytical and biological studies.

2. Material and methods
2.1. Chemical and reagents

Acetonitrile and formic acid (~98%) were LC-MS grade from Fisher
Scientific (Ottawa, ON, Canada). Ammonium acetate (LC-MS grade,
~98%), sodium borohydride (~98%) and m-aminophenylboronic
acid-agarose (mAPBAG) aqueous gel suspension were from Milli-
pore-Sigma (Oakville, ON, Canada). Glass-distilled dichloromethane
was from Caledon Laboratories (Georgetown, ON, Canada). Additional
MeOH, dichloromethane, and hexane used in preparation of fish mate-
rials was HPLC grade from Fisher Scientific (Waltham, MA, USA). H,'®%0
(97 atom-% '80) was from Cambridge Isotope Laboratories (Tewksbury,
MA, USA). Distilled water was ultra-purified to 18.2 MQ-cm using a
Milli-Q water purification system (Millipore-Sigma). All solvent mix-
tures were prepared by volume. Gambierone (19.9 pg/mL in MeOH) was
from CIFGA (Lugo, Spain) and 44-methylgambierone (25 pg/mL in
MeOH) was from Cawthron Institute (Nelson, New Zealand).

2.2. Preparation of semi-purified C-CTX1/2

Due to the current lack of reference materials for C-CTXs, semi-
purified C-CTX1/2 was prepared from C-CTX-laden fish muscle tissue
(Sphyraena barracuda and Scomberomorus cavalla), and a small aliquot of
the semi-pure toxin isolate was used in this study. Briefly, fish previously
collected near St. Thomas, U.S. Virgin Islands that had been confirmed
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to be toxic via an in vitro ouabain-veratrine dependent mouse neuro-
blastoma assay, and the presence of C-CTX-1/2 verified using LC-MS/
MS analysis (described elsewhere (Robertson et al., 2014)), were ho-
mogenized, combined, and subsequently extracted in MeOH (2 mL/g)
three times. Extracts were dried by rotary evaporation at 50 °C, then
reconstituted in 80% aqueous MeOH and twice partitioned with hexane
(1:1). The methanolic phase was subsequently adjusted to 60% aqueous
MeOH and partitioned three times with CHCly and dried at 40 °C by
rotary evaporation. The residue was reconstituted in CHyCl, and loaded
onto an open column packed with silica gel (BDH, 120 g, 60 A, 60-200
pm; VWR, Suwanee, GA, USA) and eluted by gravity. The column was
preconditioned with approximately 5 bed volumes of CH3Cly. The
C-CTX1/2 pool was eluted in 95:5 CH,Cl,-MeOH, dried and then loaded
onto a prepacked silica cartridge (5 g/20 mL, Strata® SI-1 Silica, 55 pm,
70 }o\; Phenomenex, Torrance, CA, USA) that had been preconditioned
with CHyCl,. The C-CTX1/2 was eluted with 4% MeOH in CH,Cl; and
dried. The residue was further fractionated by semi-preparative HPLC on
a Luna PFP(2) column (150 x 10 mm, 5 pm; Phenomenex, Torrance, CA,
USA) at 30 °C with a mobile phase composed of water (A) and methanol
(B) with gradient elution (3.0 mL/min) as follows: 0-1 min, 60% B;
1-15 min, 60-100% B; 15-22 min, 100% B; followed by re-equilibration
at 60% B. Fractions containing C-CTX1/2 were pooled and verified by
LC-HRMS analysis (Kryuchkov et al., 2020).

2.3. 180—exchange experiments

Experiment 1 (preliminary investigation)

Aliquots (10 pL) of S. barracuda extract, gambierone and 44-methyl-
gambierone were prepared separately by evaporation under N3 at 35 °C
in glass vials. The residues were each dissolved in 8:4:1
MeCN—Hzlso—formic acid (10-50 pL). The solutions were vortex-mixed
for 1 min and allowed to stand at ambient temperature for 48 h, then
transferred to a vial insert and analyzed by LC-HRMS.

Experiment 2 (labeling kinetics)

Gambierone and 44-methylgambierone (10 pL of each) were added
into the same vial and evaporated under N3 at 35 °C. An aliquot of
S. barracuda extract (10 pL) was aliquoted into a separate vial and also
evaporated under Ny at 35 °C. The residues were dissolved in 40:9:1
MeCN—H2180—forrnic acid (50-100 pL) and vortex-mixed for 1 min. The
solutions were transferred to vial inserts and placed in the LC auto-
sampler at 25 °C and analyzed repeatedly for 17 h by LC-HRMS.

Experiment 3 (borohydride reduction of 180-labeled G-CTXs and
gambierones)

Semi-purified C-CTX1/2 (2 pL) and gambierone (10 pL) were evap-
orated under N3 at 35 °C in separate vials and prepared according the
procedure described in Experiment 1 and allowed to stand for 2 h and 24
h, respectively. NaBH,4 (1 mg) was added to the solutions and allowed to
react for 10 min. The reaction was terminated by addition of 10% formic
acid (10 pL) and the solution filtered through a PVDF filter (0.22 pm,
Canadian Life Sciences; Peterborough, ON, Canada) at 6010xg. The
filtrate was transferred to a vial insert and analyzed by LC-HRMS.

Experiment 4 (removal of acid from '80-labeled C-CTX1/2 by partitioning)

Semi-purified C-CTX1/2 (2.5 pL) was evaporated under N at 35 °C
and dissolved in 45:45:2 MeCN—Hzlgo—formic acid (92 pL). The solution
was vortex-mixed for 1 min and allowed to stand at ambient tempera-
ture for 2 h. The aqueous content of the solution was increased by the
addition of H,'®0 (20 pL) and transferred to a glass conical test tube.
Dichloromethane (CH2Cly) (100 pL) was added and the solution was
vortex-mixed for 1 min and centrifuged at 260xg for 3 min to separate
the two layers. The CHCl; layer was removed and evaporated under Ny
at 40 °C, dissolved in 100 pL of MeCN, and transferred to a vial insert for
LC-HRMS analysis.
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Table 1
Parameters evaluated and the overall level of 180 incorporation into C-CTX1/2.
Trial  Acid type Acid H,'%0 Temperature Extent of
(%) (%) Q) labeling (%)
[M + NH4]*
1 Trifluoroacetic 5 40 25 30.6
acid
2 Trifluoroacetic 2.5 20 40 35.2
acid
3 Formic acid 5 20 40 60.8
4 Formic acid 2.5 40 25 73.8

2.4. Partial factorial study of [180]C-CTX1/2 labeling parameters

A two-level partial factorial design was applied to the labeling of
CTXs by modifying the conditions described in Experiment 1. The pa-
rameters evaluated included: the proportion of 180-water, the type and
concentration of the acid used, and temperature. A low and a high level
was used for each parameter as described (Table 1). Aliquots (10 pL) of
S. barracuda extract were prepared separately by evaporation under Ny
at 35 °C in glass vials. The residues were each dissolved in
MeCN-H,'®0-acid (10 pL) according to Table 1. The solutions were
vortex-mixed for 1 min and allowed to stand at ambient temperature for
48 h, then transferred to a vial insert and analyzed by LC—HRMS to
determine the extent of labeling for each trial.

2.5. LC-HRMS analysis

Analyses were performed according to Kryuchkov et al. (2020) with
some modifications. An Agilent 1200 LC was equipped with a binary
pump, temperature-controlled autosampler (10 °C) and column
compartment (40 °C) (Agilent Technologies, Mississauga, ON, Canada)
coupled to a Q Exactive HF Orbitrap mass spectrometer (Thermo Fischer
Scientific, Waltham, MA, USA) with a heated electrospray ionization
probe (HESI-II). Chromatographic separation was on an F5 column (100
mm X 2.1 mm, 1.7 pm; Phenomenex, Torrance, CA, USA) using gradient
elution. The mobile phase was composed of water (A) and 95:5 aceto-
nitrile-water (B), each containing 5 mM ammonium acetate (pH 6.8).
The gradient employed varied for gambierones and C-CTXs. The
gradient for C-CTXs was as follows: 0-18 min, 30-60% B; 18-18.1 min,
60-99% B; 18.1-22 min, 99% B; followed by a 4-min re-equilibration at
30% B. The gradient for gambierones was as follows: 0-18 min, 10-80%
B; 18-18.1 min, 80-99% B; 18.1-22 min, 99% B; followed by an 8 min
re-equilibration with 10% B. The flow rate was 0.3 mL/min with an
injection volume of 5.0 pL.

Full-scan acquisition was performed with a range of m/z 1000-1250
for C-CTXs in positive polarity, and m/z 800-1400 for gambierones with
positive and negative polarity switching. The spray voltage of the source
was +4500 V, with a capillary temperature of 400 °C. The sheath and
auxiliary gas were set at 45 and 10, respectively, with a max spray
current of 100 pA. The probe heater temperature was set at 250 °C and
the S-Lens RF level was set to maximum (100). The mass resolution was
set at 120 000 with an AGC target of 5 x 10° and a maximum injection
time of 512 ms per scan.

Product-ion spectra were acquired using parallel reaction monitoring
(PRM) in positive mode with an isolation window of 1 Da. The mass
resolution setting was set at 240 000 with an AGC target of 5 x 10° and a
maximum injection time of 512 ms, with a normalized collision energy
of 12 for C-CTXs, and a collision energy of 30 eV for gambierones.

2.6. Isotope distribution analysis

Isotopic peak height profiles were collected from LC—HRMS spectra
of the protonated or deprotonated molecule ([M+H] ", [M—H] ") as well
as sodium ([M+Na]™) or ammonium ([M + NH4]") adducts of the
compounds of interest. The observed isotopic profiles were used to
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extract the isotopic composition of oxygen-18 of the CTXs and gam-
bierones. By knowing the identity of the analyzed compounds (their
molecular formulae), we established the corresponding isotopic patterns
using Fourier-transform-based methods described by Ipsen (2014) and
implemented in R package ecipex (https://CRAN.R-project.org/packa
ge=ecipex). By specifying the number of exchangeable sites for incor-
poration of oxygen-18, and adopting natural isotopic composition of all
other makeup elements in the molecules, the isotopic composition of
oxygen at these sites was obtained using partial least-squares fitting. The
NRC Isotopic Enrichment Calculator (Mallia et al., 2019) was modified
to implement these calculations (Version December 2021; currently
available at https://metrology.shinyapps.io/isotopic-enrichment-calc
ulator with source code available from https://github.com/meijaj/iso
topic-enrichment-calculator). Parsing mass spectra provides isotopic
composition of oxygen at each of the labeling sites and the relative
abundances of isotopologues having, in the case of gambierones, 0-2
oxygen-18 atoms incorporated. These results were then used to fit the
kinetic model of oxygen-18 uptake as described below. The changes in
the abundance of label at different locations in the molecule and the
total extent of labeling were plotted in SigmaPlot (version 14.0) against
time for Experiment 2.

2.7. Analysis of the isotopic label stability

C-CTX1/2 (10 pL) was evaporated under Ny at 35 °C and recon-
stituted in 45:45:2 MeCN—HzlsO—formic acid (92 pL). The solution was
vortex-mixed for 1 min and allowed to stand at ambient temperature for
2 h. The aqueous content of the solution was increased by the addition of
H,'%0 (20 pL) and transferred to a glass conical test tube. CH2Cly (100
pL) was added and the solution was vortex-mixed for 1 min and
centrifuged at 260xg for 3 min to separate the two layers. The CH,Cly
layer was separated, evaporated under N5 at 40 °C, and reconstituted in
100 pL of MeCN to afford a solution of '80-labeled C-CTX1/2. Buffers of
various pH were assessed for their effects on label stability. Buffers (100
mM) were prepared at pH 3.0 (formate), pH 5.0 (acetate), pH 6.7
(ammonium acetate), pH 7.0 (phosphate) and pH 9.0 (ammonium bi-
carbonate). '80-labeled C-CTX1/2 (20 pl) was mixed with 1:1
MeCN-buffer (90 pL), placed in the HPLC autosampler at 25 °C,
analyzed by LC—HRMS at regular intervals for 17 h, and the isotopic
profile assessed with the NRC Isotope Enrichment Calculator to assess
the stability of the isotope labeling of CTXs overnight.

Gambierone and 44-methylgambierone (10 pL) were aliquoted
together into a vial and evaporated under N3 at 35 °C. The residue was
dissolved in 8:4:1 MeCN—H2180—formic acid (100 pL) and allowed to
stand at ambient temperature for 48 h. The solvent was evaporated
under Ny and the residue dissolved in CHCl3 (250 pL) and prepared
mAPBAG was added (100 pL, filtered) (Mudge et al., 2022). The sus-
pension was shaken for 3 h at 850 rpm and ambient temperature. The
CHCl3 was removed with a micropipette and residual solvent was gently
evaporated from the gel under Nj. The gambierones were eluted from
the gel by adding 1:1 MeCN-H>0 (250 pL) and shaking the suspension at
850 rpm for 2 h. The resulting solution of 0-labeled gambierones was
transferred to a glass vial with a micropipette and stored at —20 °C until
the stability assessment. Strongly acidic conditions (HCI, 100 mM; pH
1.0) and various pH buffers (100 mM) were prepared at pH 3.0
(formate), pH 5.0 (acetate), pH 6.7 (ammonium acetate), pH 7.0
(phosphate) and pH 9.0 (ammonium bicarbonate) to assess the stability
of 80-labeled gambierones. Aliquots of the solution of '®0-labeled
gambierones (10 pL) were combined with 1:1 MeCN-buffer (90 pL),
placed in the HPLC autosampler at 25 °C, and analyzed by LC—HRMS at
regular intervals for 17 h. The observed isotopic patterns were then
evaluated with the NRC Isotope Enrichment Calculator to assess the
stability of the isotope labeling of gambierones.
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Scheme 1. The kinetic model for oxygen-18 exchange in gambierones.

2.8. Kinetic modeling and data fitting

The changes in the isotopic composition of gambierones were
modelled using a network of reversible first-order reactions. The two
sites of exchangeable oxygen give rise to four distinct isotopologues
depending on the incorporation of oxygen-18 (Scheme 1): unlabeled
gambierone (1°0-1°0 or y;), two mono-labeled gambierones (1°0-180
and 180-1°0 or y2 and y3), and bi-labeled gambierone (*80-'%0 or ¥4).

The concentration profiles of these four isotopologues was modelled
using a set of four ordinary differential equations with three parameters
(eq. (1)) — forward rate constants corresponding to the uptake of oxygen-
18 at each site (k; and k3) and a scale parameter (R) which sets the
magnitude of the two backward rate constants (k;/R and kz/R).

Toxicon 211 (2022) 11-20

This mechanistic kinetic model was fitted to the parsed mass spectral
data in R using a general-purpose quasi-Newton optimization method.
For example, the observed proportion of mono-labeled gambierones at
any given time is calculated from the model parameters as [ya(t) +
y3O1/[y1(0 + y2®) + y3(®) + ya(®)]. The kinetic model was fitted to
parsed mass spectra by finding the best parameter values that minimized
the squared differences between the observed and predicted proportions
of non-labeled, mono-labeled, and bi-labeled gambierones across all
time points.

2.9. Stability data fitting

Stability data from Section 2.6 were plotted in SigmaPlot (version
14.0) where 3-parameter exponential decay curves were fitted to the
stability data with constraints to the variables y; and b, which were set
to 0.2% (the natural abundance of 18O), and >0 (eq. (2)), respectively.

@

Observed half-lives (t,) were calculated from the first order rate
constants (b) obtained from fitting the stability data.

—b x 1)

Extent of Labeling (%, stability) =y, +a x e

dy, /dt —ki—k» R 'Ky R 'k, 0 (1)
dy, /dt k R Y% =k O t
2/ _ 1 1 2 R 'k, »2(1) )
dy3 /d[ k> 0 o . y3 (l)
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Fig. 1. Full-scan mass spectra in positive ionization mode for C-CTX1/2 in: (A) unlabeled control, and; (B) 180.labeled C-CTX1/2 after 48 h of reaction (Experiment

1), using an extract of S. barracuda containing C-CTX1/2.
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Fig. 2. Sodium borohydride reduction of '0-labeled C-CTX1/2 to produce
labeled C-CTX3/4.
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Fig. 3. Full-scan mass spectra in positive ionization mode for: (A) unlabeled C-
CTX3/4, and; (B) 180.labeled C-CTX3/4 produced by sodium borohydride
reduction of 80-labeled C-CTX1/2 (Experiment 3).
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Fig. 4. Full-scan mass spectra in positive ionization mode for: (A) unlabeled C-
CTX1/2, and; (B) '®0-labeled C-CTX1/2 after CHxCl, partitioning to remove
residual acid (Experiment 4).

Gambierone R=H
44-Methylgambierone R = CH3

Fig. 5. Chemical structures of gambierone and 44-methylgambierone.

3. Results and discussion
3.1. 80-labeling of C-CTXs

The hemiketal on the N-ring at C-56 on C-CTX1/2 (Fig. 2) opens
under acidic conditions, as suggested by the formation of a methyl ketal
in acidified methanol (Estevez et al., 2020a), and by the apparent
on-column epimerization during LC-HRMS (Kryuchkov et al., 2020).
This potentially allows for exchange with H,'80 to produce 0-labeled
C-CTXs. Preliminary work was performed with aliquots of fish extracts
contaminated with C-CTXs and monitored using LC-HRMS. The extent
of labeling of C-CTX1/2 was assessed by analyzing the isotope distri-
bution of adduct ions in the full-scan mass spectra using the NRC Isotope
Enrichment Calculator. Full-scan mass spectra (Fig. 1) obtained from
Experiment 1 revealed an apparent variation in '20-labeling in the
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Fig. 6. Full-scan mass spectra in negative ionization mode for: unlabeled (A) gambierone and (B) 44-methylgambierone; and '0-labeled (C) gambierone and (D)
180-labeled 44-methylgambierone after 48 h of acid catalyzed reaction with Hy'®0 (Experiment 1).
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Fig. 7. Product-ion spectra in positive ionization mode of the protonated molecules of: (A) gambierone ([M+H] +, m/z 1025.4750), and; (B) 180.1abeled gambierone

(IM+H]1*, m/z 1029.4844).

adducts, with the isotope distribution of [[*®0]M + H]* and the
ammonium adduct indicating 52% and 71% labeling, respectively. The
variance between the observed extent of labeling for the [['%o1M +H1*
and the ammonium adduct is most likely due to the facile loss of water in
the electrospray ion source in positive mode. The loss of Ho0 or Hy'%0

from the ammonium adduct interferes with the observed isotope dis-
tribution of the [[*®0IM + HI" ion. The labeling percentages were
essentially identical when determined from the ammonium, sodium and
potassium adducts (data not shown) in the full-scan spectrum, and were
consistently higher than those determined from the corresponsing
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Fig. 8. '®0-incorporation into gambierone with time. (A) Extent of labeling at
each location, and; (B) proportion of gambierone molecules labeled at no, one,
or both locations within the molecule (Experiment 2). The decay and growth
curves were fitted to the data using a network of reversible first-order reactions.

[M+H] " ions, suggesting that the extent of labeling determined using
the ammonium adduct should be used. The lower apparent labeling of
the in-source water loss fragment at m/z 1123.6234 ([M + H-H,01"
(Fig. 1) suggested that the labeling was at a location where it was readily
lost from [M+H]" under ESI conditions. Due to the relatively low
abundance of the [[¥0]M + H]™ for the labeled CTX, it was not possible
to obtain MS/MS spectra to confirm the location of label, but based on
the presence of a hemiketal at C-56, the N-ring hemiketal is the only
plausible location for the addition of the labeled oxygen.

The extent of labeling was relatively low after 48 h, therefore a
partial factorial experiment was conducted to determine the factors
responsible for the low extent of labeling observed in the preliminary
experiment. These included a comparison of the proportion of 20-
water, and the type and concentration of the acid used. The results
comparing the average response of the low and high levels for each
factor, as summarized in Table 1 and Fig. S1, indicated that lower per-
centages of labeling were observed with trifluoroacetic acid and higher
acid concentration, and increased percentages with higher proportions
of 180 water, while temperature did not have a significant effect. Further
investigations on the proportions of water were later found to have
minimal effect on labeling, as it was present in excess relative to C-
CTX1/2. Based on these findings, a 24-h kinetic study was performed to
assess the rate of labeling (Experiment 2). Given the low 180.

17

Toxicon 211 (2022) 11-20

incorporation observed after 48 h and the limited supply of C-CTX1/2,
these samples were placed in the autosampler at 25 °C and analyzed
after 8 h, and every 4 h thereafter. At 8 h, labeling had reached 73%
based on the ammonium adduct and did not change throughout the
remainder of the experiment, therefore no kinetic modeling was possible
for C-CTXs. These results suggested that 80-exchange with C-CTX1/2
might be fast, and that the low incorporation observed could be caused
by back-exchange (loss of '20) prior to reaching the mass spectrometer.
This would be consistent with the lower extent of labeling observed with
TFA during the factorial study, as the stronger acid would be expected to
promote faster back-exchange.

This hypothesis was tested by reducing the labeled C-CTX1/2 to C-
CTX3/4 with sodium borohydride (Kryuchkov et al., 2020), which in the
case of C-CTX1/2 labeled on the ketal at C-56, will result in a
non-exchangeable '80-labeled hydroxy group at C-56 (Experiment 3;
Fig. 2). For this work, semi-purified C-CTX1/2 without detectable levels
of C-CTX3/4 was used in order to avoid interference by any unlabeled
C-CTX3/4 present in the sample. Comparison of the full-scan mass
spectra of naturally-occurring C-CTX3/4 in a fish extract and the
borohydride-reduced [180]C-CTX1/2 (i.e. 180-labeled C-CTX3/4) indi-
cated that the labeling of C-CTX1/2 had occurred very quickly, with
greater than 90% 180-labeling observed after 2 h (Fig. 3). Furthermore,
the resulting [*®0]C-CTX3/4 did not undergo back-exchange prior to
detection. This supports the hypothesis that the measured '80-incor-
poration of C-CTX1/2 had been affected by back-exchange promoted by
the presence of acid and exposure to unlabeled water in the chromato-
graphic separation. That greater than 90% labeling was observed after 2
h of reaction suggested this reaction was very fast, with a half-life of less
than 30 min. Furthermore, the product-ion spectrum of [*0]C-CTX3/4
indicated that the location of label must be the open N-ring, as shown by
the presence of unlabeled product ion at m/z 979.5395 and 180.1abeled
product ions at m/z 285.1943, 257.1530 and 227.1524 (Fig. S2).
Therefore, C-CTX1/2 became irreversibly '®0-labeled at the C-56 hy-
droxy group when reduced to 180-labeled C-CTX3/4 (Fig. 3), confirming
the position of the label at C-56.

A procedure was developed to extract the labeled C-CTX1/2 by lig-
uid—liquid partitioning (Experiment 4) with CHxCl, in the absence of
unlabeled water, to separate it from the acid. This allowed the recovery
of the labeled C-CTX1/2 under neutral conditions and resulted in a 91%
incorporation of 80 into G-CTX1/2, based on the ammonium adduct
(Fig. 4).

3.2. 80-labeling of gambierones

Gambierone and 44-methylgambierone have two locations in their
structures potentially available for oxygen exchange under acidic con-
ditions. These are the hemiketal located at C-4 on the A-ring and the
ketone at C-40 on the aliphatic hydroxyketone side chain (Fig. 5). Initial
investigations of both gambierones (Experiment 1; Fig. 6) resulted in
88% and 91% labeling at two positions in the molecules.

The product-ion spectrum of 180-labeled gambierone had several
product ions in the high mass range that were 2 or 4 m/z higher
compared to unlabeled gambierone, although the MS/MS data sug-
gested that one of the labeled oxygen atoms was eliminated from the
structure (Fig. 7). There were limited product ions indicative of cleav-
ages in the A-E rings, making identification of the exact location of this
easily eliminated label difficult. However, based on the structure of
gambierone, it is most likely the A-ring hemiketal at C-4. The low-mass
product ions at m/z 221.1417, m/z 291.1832 and m/z 345.2301 strongly
suggested labeling on or after the I-ring, with the most probable location
being the ketone at C-40. The product ion at m/z 161.0960 resulting
from the cleavage between C-36 and C-37 in the I-ring was present in
both the labeled and unlabeled spectra, suggesting that the water loss for
this product ion occurred from the ketone position. Corresponding
product ions were observed in the mass spectra of [*%0,]44-methyl-
gambierone and unlabeled 44-methylgambierone, suggesting that the
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Fig. 9. Full-scan mass spectra in negative ionization mode for: (A) 1%0-labeled gambierone, and; (B) 44-methylgambierone, and after sodium borohydride reduction
of; (C) 180.labeled gambierone, and; (D) 44-methylgambierone, to irreversibly incorporate stable isotopes.

Table 2

Stability of [*80]1C-CTX1/2 under several pH conditions, based on LC—HRMS
measurement of the ammonium adduct [M + NH,4]", at the beginning and
completion of a stability study (17 h) at 25 °C, with observed half-life estimates
based on 3-parameter logarithmic decay curves.”

pH buffer Extent of labeling (%) Half-life (h)
initial after 17 h

3.0 formate 77.9 20.5 11

5.0 acetate 78.9 75.2 220

6.7 ammonium acetate 78.5 78.6 3900

7.0 phosphate 76.8 62.9 55

9.0 ammonium bicarbonate 77.8 20.6 11

@ Constrained to yo = 0.2%.

locations of the '80-labels in 44-methylgambierone were identical to
those in gambierone (Fig. S3).

A kinetic study (Experiment 2) was performed to assess the rate of
labeling for gambierones at 25 °C. After 13 h, the extent of labeling
reached a maximum, with 96% and 89% labeling at locations 1 and 2,
respectively. This corresponded to approximately 13% labeling at a
single location, and 83% at both locations, in the two gambierones at the
completion of the experiment (Fig. 8; Fig. S4). The labeling reactions
followed first-order kinetics and were fitted to the network of reversible
first-order reactions, with logarithmic decay and growth curves. The

kinetics of isotope exchange were virtually identical for both com-
pounds, with unlabeled gambierone and 44-methylgambierone incor-
porating oxygen-18 with half-lives of about 40 min, and with the two
exchange sites being labeled with half-lives of approximately 50 and
190 min (Figs. 8 and S4). An additional kinetic study of 44-methylgam-
bierone was monitored over a 2-h period to identify which position was
exchanging at a faster rate by acquiring MS/MS data of the labeled
products. Monitoring the product-ion spectrum of [[*®0]M + H] " at m/z
1041.4973 and the rate of formation of the product ion at m/z 235.1579
indicated that the ketone at C-40 exchanged faster than the hemiketal at
C-4.

Sodium borohydride reduction was used to test for the possible ef-
fects of back-exchange during analysis due to the presence of acid, as
was done for C-CTX1/2 (Experiment 3). The unreduced 180.labeled
gambierones showed 94% labeling at both locations. Gambierones
contain two functional groups that are potentially reducible with
NaBHy, the carbonyl at C-40 and the hemiketal at C-4, and these are also
the expected sites for oxygen-18 labeling. Borohydride-reduced %0-
labeled gambierones were observed to have 94% labeling at both loca-
tions (Fig. 9), suggesting that no detectable back-exchange had occurred
prior to detection, in contrast to the situation for C-CTX1/2.

3.3. Isotopic stability of 180-labeled C-CTXs and gambierones

Due to the limited quantities of semi-purified C-CTX1/2 available,

Table 3
Effect of pH on'80-labeled gambierone and 44-methylgambierone in a 17-h stability study at 25 °C, and observed t,, for back-exchange of the two labeled positions (C-4
and C-40).
pH Gambierone 44-Methylgambierone
Half-life (h) Extent of Labeling (%) Half-life (h) Extent of Labeling (%)
C-40 C-4 Initial 17 h C-40 C-4 Initial 17 h
C-40 C-4 C-40 C-4 C-40 C-4 C-40 C-4
1.0° 0.4 0.02 91 91 15% 0" 0.4 0.02 91 91 16" 0"
3.0 260 9 91 91 87 17 270 8 91 91 87 16
5.0 570 570 91 91 88 88 540 540 90 90 88 88
6.7" 3100 3100 91 91 90 90 2400 2400 91 91 90 90
7.0° 170 170 91 91 84 84 180 180 920 90 84 84
9.0 45 13 90 90 67 29 44 13 90 90 68 28

2 Initial and final (45 min after preparation) analysis for pH 1.

b Slow back-exchange appeared consistent at both positions, but was too slow to measure accurately at these pH values in only 17 h.
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the stability of the '®0-labeling could only be followed at a few pH
values and analyzed 3 to 4 times over a 17 h period at 25 °C. The labeled
C-CTX1/2 used in the stability study had 78% labeling at a single
location for C-CTX1/2. LC-HRMS analysis indicated an incorporation
level of 78% for the '80-labeled C-CTX1/2 after 17 h at pH 6.7, indi-
cating very high stability under neutral conditions, whereas all other pH
conditions assessed resulted in some degree of back-exchange (Table 2).
The fastest back-exchange was observed at pH 3 and 9, with '80-labeled
C-CTX1/2 having half-lives of less than 24 h. Full-scan HRMS spectra at
each pH after 17 h are shown in Fig. S5, and confirm considerable back-
exchange under these conditions. Neutral conditions were also evalu-
ated with phosphate buffer (100 mM). These data suggest that there may
be some phosphate-catalyzed back-exchange of [\80]C-CTX1/2, as after
17 h the extent of labeling dropped to 63% in the presence of phosphate
buffer, which was prepared at a neutral pH similar to that of the
ammonium acetate for which minimal back-exchange was observed.
Due to limited quantities of C-CTX1/2, lower concentrations of phos-
phate buffer were not assessed. However, a previous study reported
concentration-dependent general acid catalysis of the exchange of the
carbonyl oxygen of acetone (Greenzaid et al., 1968). Based on these
findings, 180.1abeled C-CTX1/2 appears to be sufficiently stable under
neutral conditions to be used for analytical measurements and possibly
also for in vitro assays, although alternative neutral buffers may be
necessary if the use of phosphate buffers proves problematic. While not
assessed due to sample availability, it is probable that storage at lower
temperatures would reduce the rate of back-exchange.

To evaluate the rate of back-exchange for 10-labeled C-CTX3/4,
['80]C-CTX1/2 was reduced with sodium borohydride and mixed with
formate (pH 3), ammonium acetate (pH 6.7) and ammonium bicar-
bonate (pH 9) buffers. The samples were analyzed after 5 h at ambient
temperature and all were found to have >95% 180.]abel incorporation,
showing that back-exchange was negligible, in contrast to [1%0]C-CTX1/
2. This is because borohydride reduces the hemiketal at C-56 of C-CTX1/
2 to an open-ring hydroxy group (Kryuchkov et al., 2020), where the
180-label is permanently affixed to the molecule and no longer able to
undergo acid-catalyzed oxygen exchange.

As with C-CTXs, the stability of gambierones was assessed after the
removal of residual acid. However, the procedure developed for sepa-
ration of the C-CTXs from the acid catalyst was not appropriate for
gambierones, because they do not partition efficiently into CHyCly
(Estevez et al., 2020b). Instead, the labeled gambierone was removed
from the acidic solution using a recently developed boronate affinity
technique with mAPBAG (Mudge et al., 2022). The resulting solution
was a mixture of the two 80-labeled gambierones in 1:1 MeCN-water,
thereby enabling the addition of buffered solutions to control the pH.
The stability of the ®0-incorporation was assessed at a range of pH
values, from strongly acidic to weakly basic for gambierone and
44-methylgambierone. Comparisons of the full-scan spectra of the time
zero control with spectra after 17 h in the various buffers are shown in
Figs. S6 and S7. The extent of labeling at the two positions was deter-
mined from the LC-HRMS spectra with the NRC Isotope Enrichment
Calculator and fitted to 3-parameter first-order decay curves at each pH
(Figs. S8 and S9), and the results are summarized in Table 3.
Back-exchange (loss of '20) was observed relatively quickly in strong
acid and at pH 3 and 9, indicating that these are not suitable for storage
or use of 180-labeled gambierones. Strong acid (0.1 M HCI) caused a
rapid back-exchange at both locations on the gambierone structure, with
the 80 at C-40 exchanging almost instantaneously, with a half-life of
around 1 min, while for the C-4 label the half-life was 22 min. This
back-exchange was slower at pH 3 and 9, but loss of labeling was also
observed. As was observed for C-CTXs, phosphate buffer appeared to
have a catalytic effect on the stability of the label. Exchange was slower
at pH 5 with acetate buffer (half-life ~550 h) than at pH 7 using phos-
phate (~175 h). The half-life estimated for 180 1abeled gambierones in
ammonium acetate at neutral pH was approximately 100-130 d. These
experiments were performed at 25 °C and, although it is likely that
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stability would be improved at lower temperatures, the stability of the
label may be sufficient for analytical measurements and in vitro assays.

There remains a paucity of CTX reference materials, which are
necessary for reliable quantitation, identification and verification of
these toxins in screening and monitoring work, and in fish from out-
breaks worldwide. Recent work on the development of CTX reference
materials has highlighted several difficulties associated with this work,
including large sample requirements, low levels of CTXs in the fish flesh,
and relatively low LC-MS instrument response (Gago-Martinez et al.,
2021). Isotope-labeled internal standards provide a complementary
approach for the development of sample preparation and quantitative
procedures, as isotope dilution is an effective methodology for evalu-
ating matrix effects, extraction efficiencies, and instrument response in
high matrix materials (Haddad et al., 2019; Stokvis et al., 2005). This
would require less standard for the developmental stages of LC—MS
methods, thus reducing overall reference material needs. Future work
will focus on using '20-labeled gambierones and CTXs to establish
isotope dilution methodologies and determine the impact of matrix ef-
fects on LC—MS detection of these toxins in crude and semi-purified
fractions from algae and fish.
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