
Functional

CAV
Evaluation
Artifact

Specification-Guided Learning of Nash
Equilibria with High Social Welfare?

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, Rajeev Alur

University of Pennsylvania

Abstract. Reinforcement learning has been shown to be an effective
strategy for automatically training policies for challenging control prob-
lems. Focusing on non-cooperative multi-agent systems, we propose a
novel reinforcement learning framework for training joint policies that
form a Nash equilibrium. In our approach, rather than providing low-
level reward functions, the user provides high-level specifications that
encode the objective of each agent. Then, guided by the structure of
the specifications, our algorithm searches over policies to identify one
that provably forms an ε-Nash equilibrium (with high probability). Im-
portantly, it prioritizes policies in a way that maximizes social welfare
across all agents. Our empirical evaluation demonstrates that our algo-
rithm computes equilibrium policies with high social welfare, whereas
state-of-the-art baselines either fail to compute Nash equilibria or com-
pute ones with comparatively lower social welfare.

1 Introduction

Reinforcement learning (RL) is an effective strategy for automatically synthesiz-
ing controllers for challenging control problems. As a consequence, there has been
interest in applying RL to multi-agent systems. For example, RL has been used
to coordinate agents in cooperative systems to accomplish a shared goal [22].
Our focus is on non-cooperative systems, where the agents are trying to achieve
their own goals [17]; for such systems, the goal is typically to learn a policy for
each agent such that the joint strategy forms a Nash equilibrium.

A key challenge facing existing approaches is how tasks are specified. First,
they typically require that the task for each agent is specified as a reward func-
tion. However, reward functions tend to be very low-level, making them difficult
to manually design; furthermore, they often obfuscate high-level structure in the
problem known to make RL more efficient in the single-agent [14] and coopera-
tive [22] settings. Second, they typically focus on computing an arbitrary Nash
equilibrium. However, in many settings, the user is a social planner trying to
optimize the overall social welfare of the system, and most existing approaches
are not designed to optimize social welfare.

We propose a novel multi-agent RL framework for learning policies from
high-level specifications (one specification per agent) such that the resulting

? The extended version of this paper can be found at [3].

2 Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, Rajeev Alur

Fig. 1: Intersection Example

joint policy (i) has high social welfare, and (ii) is an ε-Nash equilibrium (for
a given ε). We formulate this problem as a constrained optimization problem
where the goal is to maximize social welfare under the constraint that the joint
policy is an ε-Nash equilibrium.

Our algorithm for solving this optimization problem uses an enumerative
search strategy. First, it enumerates candidate policies in decreasing order of
social welfare. To ensure a tractable search space, it restricts to policies that
conform to the structure of the user-provided specification. Then, for each can-
didate policy, it uses an explore-then-exploit self-play RL algorithm [4] to com-
pute punishment strategies that are triggered when some agent deviates from the
original joint policy. It also computes the maximum benefit each agent derives
from deviating, which can be used to determine whether the joint policy aug-
mented with punishment strategies forms an ε-Nash equilibrium; if so, it returns
the joint policy.

Intuitively, the enumerative search tries to optimize social welfare, whereas
the self-play RL algorithm checks whether the ε-Nash equilibrium constraint
holds. Since this RL algorithm comes with PAC (Probably Approximately Cor-
rect) guarantees, our algorithm is guaranteed to return an ε-Nash equilibrium
with high probability. In summary, our contributions are as follows.

– We study the problem of maximizing social welfare under the constraint
that the policies form an ε-NE. To the best of our knowledge, this problem
has not been studied before in the context of learning (beyond single-step
games).

– We provide an enumerate-and-verify framework for solving the said problem.
– We propose a verification algorithm with a probabilistic soundness guar-

antee in the RL setting of probabilistic systems with unknown transition
probabilities.

Motivating example. Consider the road intersection scenario in Figure 1. There
are four cars; three are traveling east to west and one is traveling north to south.
At any stage, each car can either move forward one step or stay in place. Suppose
each car’s specification is as follows:

Specification-Guided Learning of Nash Equilibria with High Social Welfare 3

– Black car: Cross the intersection before the green and orange cars.
– Blue car: Cross the intersection before the black car and stay a car length

ahead of the green and orange cars.
– Green car: Cross the intersection before the black car.
– Orange car: Cross the intersection before the black car.

We also require that the cars do not crash into one another.
Clearly, not all agents can achieve their goals. The next highest social welfare

is for three agents to achieve their goals. In particular, one possibility is that
all cars except the black car achieve their goals. However, the corresponding
joint policy requires that the black car does not move, which is not a Nash
equilibrium—there is always a gap between the blue car and the other two cars
behind, so the black car can deviate by inserting itself into the gap to achieve its
own goal. Our algorithm uses self-play RL to optimize the policy for the black
car, and finds that the other agents cannot prevent the black car from improving
its outcome in this way. Thus, it correctly rejects this joint policy. Eventually,
our algorithm computes a Nash equilibrium in which the black and blue cars
achieve their goals.

1.1 Related Work

Multi-agent RL. There has been work on learning Nash equilibria in the multi-
agent RL setting [1, 12, 13, 21, 23, 24]; however, these approaches focus on
learning an arbitrary equilibrium and do not optimize social welfare. There has
also been work on studying weaker notions of equilibria in this context [9, 27], as
well as work on learning Nash equilibria in two agent zero-sum games [4, 20, 26].

RL from high-level specifications. There has been recent work on using spec-
ifications based on temporal logic for specifying RL tasks in the single agent
setting; a comprehensive survey may be found in [2]. There has also been recent
work on using temporal logic specifications for multi-agent RL [10, 22], but these
approaches focus on cooperative scenarios in which there is a common objective
that all agents are trying to achieve.

Equilibrium in Markov games. There has been work on computing Nash equilib-
rium in Markov games [17, 25], including work on computing ε-Nash equilibria
from logical specifications [6, 7], as well as recent work focusing on computing
welfare-optimizing Nash equilibria from temporal specifications [18, 19]; however,
all these works focus on the planning setting where the transition probabilities
are known. Checking for existence of Nash equilibrium, even in deterministic
games, has been shown to be NP-complete for reachability objectives [5].

Social welfare. There has been work on computing welfare maximizing Nash
equilibria for bimatrix games, which are two-player one-step Markov games with
known transitions [8, 11]; in contrast, we study this problem in the context of
general Markov games.

4 Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, Rajeev Alur

2 Preliminaries

2.1 Markov Game

We consider an n-agent Markov game M = (S,A, P,H, s0) with a finite set of
states S, actions A = A1 × · · · × An where Ai is a finite set of actions available
to agent i, transition probabilities P (s′ | s, a) for s, s′ ∈ S and a ∈ A, finite
horizon H, and initial state s0 [20]. A trajectory ζ ∈ Z = (S ×A)∗×S is a finite

sequence ζ = s0
a0−→ s1

a1−→ · · · at−1−−−→ st where sk ∈ S, ak ∈ A; we use |ζ| = t to
denote the length of the trajectory ζ and aik ∈ Ai to denote the action of agent
i in ak.

For any i ∈ [n], let D(Ai) denote the set of distributions over Ai—i.e.,
D(Ai) = {∆ : Ai → [0, 1] |

∑
ai∈Ai ∆(ai) = 1}. A policy for agent i is a

function πi : Z → D(Ai) mapping trajectories to distributions over actions. A
policy πi is deterministic if for every ζ ∈ Z, there is an action ai ∈ Ai such that
πi(ζ)(ai) = 1; in this case, we also use πi(ζ) to denote the action ai. A joint
policy π : Z → D(A) maps finite trajectories to distributions over joint actions.
We use (π1, . . . , πn) to denote the joint policy in which agent i chooses its action
in accordance to πi. We denote by Dπ the distribution over H-length trajectories
in M induced by π.

We consider the reinforcement learning setting in which we do not know the
probabilities P but instead only have access to a simulator of M. Typically, we
can only sample trajectories ofM starting at s0. Some parts of our algorithm are
based on an assumption which allows us to obtain sample trajectories starting
at any state that has been observed before. For example, if taking action a0 in
s0 leads to a state s1, we assume we can obtain future samples starting at s1.

Assumption 1 We can obtain samples from P (· | s, a) for any previously ob-
served state s and any action a.

2.2 Specification Language

We consider the specification language Spectrl to express agent specifications.
We choose Spectrl since there is existing work on leveraging the structure
of Spectrl specifications for single-agent RL [16]. However, we believe our
algorithm can be adapted to other specification languages as well.

Formally, a Spectrl specification is defined over a set of atomic predi-
cates P0, where every p ∈ P0 is associated with a function JpK : S → B =
{true, false}; we say a state s satisfies p (denoted s |= p) if and only if
JpK(s) = true. The set of predicates P consists of conjunctions and disjunctions
of atomic predicates. The syntax of a predicate b ∈ P is given by the grammar
b ::= p | (b1 ∧ b2) | (b1 ∨ b2), where p ∈ P0. Similar to atomic predicates, each
predicate b ∈ P corresponds to a function JbK : S → B defined naturally over

Specification-Guided Learning of Nash Equilibria with High Social Welfare 5

Boolean logic. Finally, the syntax of Spectrl is given by 1

φ ::= achieve b | φ1 ensuring b | φ1;φ2 | φ1 or φ2,

where b ∈ P . Each specification φ corresponds to a function JφK : Z → B, and
we say ζ ∈ Z satisfies φ (denoted ζ |= φ) if and only if JφK(ζ) = true. Letting ζ
be a finite trajectory of length t, this function is defined by

ζ |= achieve b if ∃ i ≤ t, si |= b

ζ |= φ ensuring b if ζ |= φ and ∀ i ≤ t, si |= b

ζ |= φ1;φ2 if ∃ i < t, ζ0:i |= φ1 and ζi+1:t |= φ2

ζ |= φ1 or φ2 if ζ |= φ1 or ζ |= φ2.

Intuitively, the first clause means that the trajectory should eventually reach a
state that satisfies the predicate b. The second clause says that the trajectory
should satisfy specification φ while always staying in states that satisfy b. The
third clause says that the trajectory should sequentially satisfy φ1 followed by
φ2. The fourth clause means that the trajectory should satisfy either φ1 or φ2.

2.3 Abstract Graphs

Spectrl specifications can be represented by abstract graphs which are DAG-
like structures in which each vertex represents a set of states (called subgoal
regions) and each edge represents a set of concrete trajectories that can be used
to transition from the source vertex to the target vertex without violating safety
constraints.

Definition 1. An abstract graph G = (U,E, u0, F, β,Zsafe) is a directed acyclic
graph (DAG) with vertices U , (directed) edges E ⊆ U×U , initial vertex u0 ∈ U ,
final vertices F ⊆ U , subgoal region map β : U → 2S such that for each u ∈ U ,
β(u) is a subgoal region,2 and safe trajectories Zsafe =

⋃
e∈E Zesafe ∪

⋃
f∈F Z

f
safe,

where Zesafe ⊆ Z denotes the safe trajectories for edge e ∈ E and Zfsafe ⊆ Z
denotes the safe trajectories for final vertex f ∈ F .

Intuitively, (U,E) is a standard DAG, and u0 and F define a graph reachability
problem for (U,E). Furthermore, β and Zsafe connect (U,E) back to the original
MDPM; in particular, for an edge e = u→ u′, Zesafe is the set of safe trajectories
in M that can be used to transition from β(u) to β(u′).

Definition 2. A trajectory ζ = s0
a0−→ s1

a1−→ · · · at−1−−−→ st in M satisfies the
abstract graph G (denoted ζ |= G) if there is a sequence of indices 0 = k0 ≤ k1 <
· · · < k` ≤ t and a path ρ = u0 → u1 → · · · → u` in G such that

1 Here, achieve and ensuring correspond to the “eventually” and “always” operators
in temporal logic.

2 We do not require that the subgoal regions partition the state space or that they be
non-overlapping.

6 Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, Rajeev Alur

– u` ∈ F ,

– for all z ∈ {0, . . . , `}, we have skz ∈ β(uz),

– for all z < `, letting ez = uz → uz+1, we have ζkz :kz+1 ∈ Z
ez
safe, and

– ζk`:t ∈ Z
u`
safe.

The first two conditions state that the trajectory should visit a sequence of
subgoal regions corresponding to a path from the initial vertex to some final
vertex, and the last two conditions state that the trajectory should be composed
of subtrajectories that are safe according to Zsafe.

Prior work shows that for every Spectrl specification φ, we can construct
an abstract graph Gφ such that for every trajectory ζ ∈ Z, ζ |= φ if and only if
ζ |= Gφ [16]. Finally, the number of states in the abstract graph is linear in the
size of the specification.

2.4 Nash Equilibrium and Social Welfare

Given a Markov gameM with unknown transitions and Spectrl specifications
φ1, . . . , φn for the n agents respectively, the score of agent i from a joint policy
π is given by

Ji(π) = Pr
ζ∼Dπ

[ζ |= φi].

Our goal is to compute a high-value ε-Nash equilibrium in M w.r.t these
scores. Given a joint policy π = (π1, . . . , πn) and an alternate policy π′i for
agent i, let (π−i, π

′
i) denote the joint policy (π1, . . . , π

′
i, . . . , πn). Then, a joint

policy π is an ε-Nash equilibrium if for all agents i and all alternate policies π′i,
Ji(π) ≥ Ji((π−i, π′i))− ε. Our goal is to compute a joint policy π that maximizes
the social welfare given by

welfare(π) =
1

n

n∑
i=1

Ji(π)

subject to the constraint that π is an ε-Nash equilibrium.

3 Overview

Our framework for computing a high-welfare ε-Nash equilibrium consists of two
phases. The first phase is a prioritized enumeration procedure that learns de-
terministic joint policies in the environment and ranks them in decreasing order
of social welfare. The second phase is a verification phase that checks whether
a given joint policy can be extended to an ε-Nash equilibrium by adding pun-
ishment strategies. A policy is returned if it passes the verification check in the
second phase. Algorithm 1 summarizes our framework.

For the enumeration phase, it is impractical to enumerate all joint policies
even for small environments, since the total number of deterministic joint policies

is Ω(|A||S|H−1

), which is Ω(2n|S|
H−1

) if each agent has atleast two actions. Thus,

Specification-Guided Learning of Nash Equilibria with High Social Welfare 7

Algorithm 1 HighNashSearch
Inputs: Markov game (with unknown transition probabilities)M with n-agents,
agent specifications φ1, . . . , φn, Nash factor ε, precision δ, failure probability p.
Outputs: ε-NE, if found.

1: PrioritizedPolicies← PrioritizedEnumeration(M, φ1, . . . , φn)
2: for joint policy π ∈ PrioritizedPolicies do
3: // Can π be extended to an ε-NE?
4: isNash, τ ← VerifyNash(M, π, φ1, · · · , φn, ε, δ, p)
5: if isNash then return π on τ // Add punishment strategies
6: return No ε-NE found

in the prioritized enumeration phase, we apply a specification-guided heuristic
to reduce the number of joint policies considered. The resulting search space is
independent of |S| and H, depending only on the specifications {φi}i∈[n]. Since
the transition probabilities are unknown, these joint policies are trained using
an efficient compositional RL approach.

Since the joint policies are trained cooperatively, they are typically not ε-Nash
equilibria. Hence, in the verification phase, we use a probably approximately
correct (PAC) procedure (Algorithm 2) to determine whether a given joint policy
can be modified by adding punishment strategies to form an ε-Nash equilibrium.
Our approach is to reduce this problem to solving two-agent zero-sum games.
The key insight is that for a given joint policy to be an ε-Nash equilibrium,
unilateral deviations by any agent must be successfully punished by the coalition
of all other agents. In such a punishment game, the deviating agent attempts
to maximize its score while the coalition of other agents attempts to minimize
its score, leading to a competitive min-max game between the agent and the
coalition. If the deviating agent can improve its score by a margin ≥ ε, then the
joint policy cannot be extended to an ε-Nash equilibrium. Alternatively, if no
agent can increase its score by a margin ≥ ε, then the joint policy (augmented
with punishment strategies) is an ε-Nash equilibrium. Thus, checking if a joint
policy can be converted to an ε-Nash equilibrium reduces to solving a two-
agent zero-sum game for each agent. Each punishment game is solved using
a self-play RL algorithm for learning policies in min-max games with unknown
transitions [4], after converting specification-based scores to reward-based scores.
While the initial joint policy is deterministic, the punishment strategies can be
probabilistic.

Overall, we provide the guarantee that with high probability, if our algorithm
returns a joint policy, it will be an ε-Nash equilibrium.

4 Prioritized Enumeration

We summarize our specification-guided compositional RL algorithm for learning
a finite number of deterministic joint policies in an unknown environment un-
der Assumption 1. These policies are then ranked in decreasing order of their
(estimated) social welfare.

8 Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, Rajeev Alur

u1 v1
Z1 = Zno collision

Fig. 2: Abstract Graph of black
car.

u2 v2
Z2 = Zno collision∩
Zdistance GreenOrange

Fig. 3: Abstract Graph of blue
car.

u1, u2

u1, v2

v1, u2

v1, v2

First(Z1) ∩ Z2

Z1 ∩ First(Z2)

Z1 ∩ Z2

Z1 ∩ Zv2

Zv1 ∩ Z2

Fig. 4: Product Abstract Graph of black
and blue cars. Zv1 and Zv2 refer to safe
trajectories after the black and blue cars
have reached their final states, respec-
tively.

Our learning algorithm harnesses the structure of specifications, exposed by
their abstract graphs, to curb the number of joint policies to learn. For every
set of active agents B ⊆ [n], we construct a product abstract graph, from the
abstract graphs of all active agents’ specifications. A property of this product
is that if a trajectory ζ in M corresponds to a path in the product that ends
in a final state then ζ satisfies the specification of all active agents. Then, our
procedure learns one joint policy for every path in the product graph that reaches
a final state. Intuitively, policies learned using the product graph corresponding
to a set of active agents B aim to maximize satisfaction probabilities of all
agents in B. By learning joint policies for every set of active agents, we are able
to learn policies under which some agents may not satisfy their specifications.
This enables learning joint policies in non-cooperative settings. Note that the
number of paths (and hence the number of policies considered) is independent
of |S| and H, and depends only on the number of agents and their specifications.

One caveat is that the number of paths may be exponential in the number
of states in the product graph. It would be impractical to näıvely learn a joint
policy for every path. Instead, we design an efficient compositional RL algorithm
that learns a joint policy for each edge in the product graph; these edge policies
are then composed together to obtain joint policies for paths in the product
graph.

4.1 Product Abstract Graph

Let φ1, . . . , φn be the specifications for the n-agents, respectively, and let
Gi = (Ui, Ei, u

i
0, Fi, βi,Zsafe,i) be the abstract graph of specification φi in the

environment M. We construct a product abstract graph for every set of active
agents in [n]. The product graph for a set of active agents B ⊆ [n] is used to

Specification-Guided Learning of Nash Equilibria with High Social Welfare 9

learn joint policies which satisfy the specification of all agents in B with high
probability.

Definition 3. Given a set of agents B = {i1, . . . , im} ⊆ [n], the product graph
GB = (U,E, u0, F , β,Zsafe) is the asynchronous product of Gi for all i ∈ B, with

– U =
∏
i∈B Ui is the set of product vertices,

– An edge e = (ui1 , . . . , uim) → (vi1 , . . . , vim) ∈ E if at least for one agent
i ∈ B the edge ui → vi ∈ Ei and for the remaining agents, ui = vi,

– u0 = (ui10 , . . . , u
im
0) is the initial vertex,

– F = Πi∈BFi is the set of final vertices,

– β = (βi1 , . . . , βim) is the collection of concretization maps, and

– Zsafe = (Zsafe,i1 , . . . ,Zsafe,im) is the collection of safe trajectories.

We denote the i-th component of a product vertex u ∈ U by ui for agent
i ∈ B. Similarly, the i-th component in an edge e = u → v is denoted by
ei = ui → vi for i ∈ B; note that ei can be a self loop which is not an edge in
Gi. For an edge e ∈ E, we denote the set of agents i ∈ B for which ei ∈ Ei, and
not a self loop, by progress(e).

Abstract graphs of the black car and the blue car from the motivating exam-
ple are shown in Figures 2 and 3 respectively. The vertex v1 denotes the subgoal
region βblack(v1) consisting of states in which the black car has crossed the inter-
section but the orange and green cars have not. The subgoal region βblue(v2) is
the set of states in which the blue car has crossed the intersection but the black
car has not. Z1 denotes trajectories in which the black car does not collide and
Z2 denotes trajectories in which the blue car does not collide and stays a car
length ahead of the orange and green cars. The product abstract graph for the
set of active agents B = {black, blue} is shown in Fig 4. The safe trajectories on
the edges reflect the notion of achieving a product edge which we discuss below.

A trajectory ζ = s0
a0−→ s1

a1−→ · · · at−1−−−→ st achieves an edge e = u → v
in GB if all progressing agents i ∈ progress(e) reach their target subgoal region
βi(vi) along the trajectory and the trajectory is safe for all agents in B. For
a progressing agent i ∈ progress(e), the initial segment of the rollout until the
agent reaches its subgoal region should be safe with respect to the edge ei. After
that, the rollout should be safe with respect to every future possibility for the
agent. This is required to ensure continuity of the rollout into adjacent edges in
the product graph GB . For the same reason, we require that the entire rollout
is safe with respect to all future possibilities for non-progressing agents. Note
that we are not concerned with non-active agents in [n]\B. In order to formally
define this notion, we need to setup some notation.

For a predicate b ∈ P , let the set of safe trajectories w.r.t. b be given by

Zb = {ζ = s0
a0−→ s1

a1−→ · · · at−1−−−→ st ∈ Z | ∀ 0 ≤ k ≤ t, sk |= b}. It is known
that safe trajectories along an edge in an abstract graph constructed from a
Spectrl specification is either of the form Zb or Zb1 ◦ Zb2 , where b, b1, b2 ∈ P
and ◦ denotes concatenation [16]. In addition, for every final vertex f , Zfsafe is

10 Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, Rajeev Alur

of the form Zb for some b ∈ P. We define First as follows:

First(Z ′) =

{
Zb, if Z ′ = Zb
Zb1 , if Z ′ = Zb1 ◦ Zb2

We are now ready to define the notion of satisfiability of a product edge.

Definition 4. A rollout ζ = s0
a0−→ s1

a1−→ · · · at−1−−−→ sk achieves an edge e =
u→ v in GB (denoted ζ |=B e) if

1. for all progressing agents i ∈ progress(e), there exists an index ki ≤ k such
that ski ∈ βi(vi) and ζ0:ki ∈ Z

ei
safe,i. If vi ∈ Fi then ζki:k ∈ Z

vi
safe,i. Otherwise,

ζki:k ∈ First(Zvi→wisafe,i) for all wi ∈ outgoing(vi). Furthermore, we require

ki > 0 if ui 6= ui0.
2. for all non-progressing agents i ∈ B\progress(e), if ui /∈ Fi, ζ ∈ First(Zui→wisafe,i)

for all wi ∈ outgoing(ui). Otherwise (if ui ∈ Fi), ζ ∈ Zuisafe,i

We can now define what it means for a trajectory to achieve a path in the
product graph GB .

Definition 5. Given B ⊆ [n], a rollout ζ = s0 → · · · → st achieves a path
ρ = u0 → · · · → u` in GB (denoted ζ |=B ρ) if there exists indices 0 = k0 ≤
k1 ≤ · · · ≤ k` ≤ t such that (i) u` ∈ F , (ii) ζkz :kz+1 achieves uz → uz+1 for all
0 ≤ z < `, and (iii) ζk`:t ∈ Z

u`,i
safe,i for all i ∈ B.

Theorem 2. Let ρ = u0 → u1 → · · · → u` be a path in the product abstract
graph GB for B ⊆ [n]. Suppose trajectory ζ |=B ρ. Then ζ |= φi for all i ∈ B.

That is, joint policies that maximize the probability of achieving paths in the
product abstract graph GB have high social welfare w.r.t. the active agents B.

4.2 Compositional RL Algorithm

Our compositional RL algorithm learns joint policies corresponding to paths in
product abstract graphs. For every B ⊆ [n], it learns a joint policy πe for each
edge in the product abstract graph GB , which is the (deterministic) policy that
maximizes the probability of achieving e from a given initial state distribution.
We assume all agents are acting cooperatively; thus, we treat the agents as
one and use single-agent RL to learn each edge policy. We will check whether
any deviation to this co-operative behaviour by any agent can be punished by
the coalition of other agents in the verification phase. The reward function is
designed to capture the reachability objective of progressing agents and the
safety objective of all active agents.

The edges are learned in topological order, allowing us to learn an induced
state distribution for each product vertex u prior to learning any edge policies
from u; this distribution is used as the initial state distribution when learning
outgoing edge policies from u. In more detail, the distribution for the initial

Specification-Guided Learning of Nash Equilibria with High Social Welfare 11

Has	any	agent	
deviated	from	

𝜋 in 𝜁?
History	𝜁

Use	punishment	strategy	
𝜏!" if	𝑗 is	first	to	deviate

Output
𝜋!(𝜁)

No

Yes

Fig. 5: πi augmented with punishment strategies.

vertex of GB is taken to be the initial state distribution of the environment;
for every other product vertex, the distribution is the average over distributions
induced by executing edge policies for all incoming edges. This is possible because
the product graph is a DAG.

Given edge policies Π along with a path ρ = u0 → u1 → · · · → u` = u ∈ F
in GB , we define a path policy πρ to navigate from u0 to u. In particular, πρ
executes πe[z], where e[z] = uz → uz+1 (starting from z = 0) until the resulting
trajectory achieves e[z], after which it increments z ← z + 1 (unless z = `).
That is, πρ is designed to achieve the sequence of edges in ρ. Note that πρ is a
finite-state deterministic joint policy in which vertices on the path correspond
to the memory states that keep track of the index of the current policy. This
way, we obtain finite-state joint policies by learning edge policies only.

This process is repeated for all sets of active agents B ⊆ [n]. These finite-
state joint policies are then ranked by estimating their social welfare on several
simulations.

5 Nash Equilibria Verification

The prioritized enumearation phase produces a list of path policies which are
ranked by the total sum of scores. Each path policy is deterministic and also
finite state. Since the joint policies are trained cooperatively, they are typically
not ε-Nash equilibria. Thus, our verification algorithm not only tries to prove
that a given joint policy is a ε-Nash equilibrium, but also tries to modify it
so it satisfies this property. In particular, our verification algorithm attempts to
modify a given joint policy by adding punishment strategies so that the resulting
policy is an ε-Nash equilibrium.

Concretely, it takes as input a finite-state deterministic joint policy π =
(M,α, σ,m0) where M is a finite set of memory states, α : S × A ×M → M is
the memory update function, σ : S ×M → A maps states to (joint) actions and
m0 is the initial policy state. The extended memory update function α̂ : Z →
M is given by α̂(ε) = m0 and α̂(ζstat) = α(st, at, α̂(ζ)). Then, π is given by
π(ζst) = σ(st, α̂(ζ)). The policy πi of agent i simply chooses the ith component
of π(ζ) for any history ζ.

12 Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, Rajeev Alur

The verification algorithm learns one punishment strategy τij : Z → D(Ai)
for each pair (i, j) of agents. As outlined in Figure 5, the modified policy for
agent i uses πi if every agent j has taken actions according to πj in the past. In
case some agent j′ has taken an action that does not match the output of πj′ ,
then agent i uses the punishment strategy τij , where j is the agent that deviated
the earliest (ties broken arbitrarily). The goal of verification is to check if there
is a set of punishment strategies {τij | i 6= j} such that after modifying each
agent’s policy to use them, the resulting joint policy is an ε-Nash equilibrium.

5.1 Problem Formulation

We denote the set of all punishment strategies of agent i by τi = {τij | j 6= i}.
We define the composition of πi and τi to be the policy π̃i = πi on τi such that

for any trajectory ζ = s0
a0−→ · · · at−1−−−→ st, we have

– π̃i(ζ) = πi(ζ) if for all 0 ≤ k < t, ak = π(ζ0:k)—i.e., no agent has deviated
so far,

– π̃i(ζ) = τij(ζ) if there is a k such that (i) ajk 6= πj(ζ0:k) and (ii) for all ` < k,
a` = π(ζ0:`). If there are multiple such j’s, an arbitrary but consistent choice
is made (e.g., the smallest such j).

Given a finite-state deterministic joint policy π, the verification problem is to
check if there exists a set of punishment strategies τ =

⋃
i τi such that the joint

policy π̃ = π on τ = (π1 on τ1, . . . , πn on τn) is an ε-Nash equilibrium. In other
words, the problem is to check if there exists a policy π̃i for each agent i such
that (i) π̃i follows πi as long as no other agent j deviates from πj and (ii) the
joint policy π̃ = (π̃1, . . . , π̃n) is an ε-Nash equilibrium.

5.2 High-Level Procedure

Our approach is to compute the best set of punishment strategies τ∗ w.r.t. π
and check if π on τ∗ is an ε-Nash equilibrium. The best punishment strategy
against agent j is the one that minimizes its incentive to deviate. To be precise,
we define the best response of j with respect to a joint policy π′ = (π′1, . . . , π

′
n) to

be brj(π
′) ∈ arg maxπ′′j Jj(π

′
−j , π

′′
j). Then, the best set of punishment strategies

τ∗ w.r.t. π is one that minimizes the value of brj(π on τ) for all j ∈ [n]. To be
precise, define τ [j] = {τij | i 6= j} to be the set of punishment strategies against
agent j. Then, we want to compute τ∗ such that for all j,

τ∗ ∈ arg min
τ
Jj((π on τ)−j , brj(π on τ)). (1)

We observe that for any two sets of punishment strategies τ , τ ′ with τ [j] = τ ′[j]
and any policy π′j , we have Jj((π on τ)−j , π

′
j) = Jj((π on τ ′)−j , π

′
j). This is

because, for any τ , punishment strategies in τ \ τ [j] do not affect the behaviour
of the joint policy ((π on τ)−j , π

′
j), since no agent other than agent j will deviate

from π. Hence, brj(π on τ) as well as Jj((π on τ)−j , brj(π on τ)) are independent

Specification-Guided Learning of Nash Equilibria with High Social Welfare 13

of τ \ τ [j]; therefore, we can separately compute τ∗[j] (satisfying Equation 1) for
each j and take τ∗ =

⋃
j τ
∗[j]. The following theorem follows from the definition

of τ∗.

Theorem 3. Given a finite-state deterministic joint policy π = (π1, . . . , πn), if
there is a set of punishment strategies τ such that π on τ is an ε-Nash equilibrium,
then π on τ∗ is an ε-Nash equilibrium, where τ∗ is the set of best punishment
strategies w.r.t. π. Furthermore, π on τ∗ is an ε-Nash equilibrium iff for all j,

Jj((π on τ∗)−j , brj(π on τ∗))− ε ≤ Jj(π on τ∗) = Jj(π).

Thus, to solve the verification problem, it suffices to compute (or estimate), for
all j, the optimal deviation scores

devπj = min
τ [j]

max
π′j

Jj((π on τ)−j , π
′
j). (2)

5.3 Reduction to Min-Max Games

Next, we describe how to reduce the computation of optimal deviation scores
to a standard self-play RL setting. We first translate the problem from the
specification setting to a reward-based setting using reward machines.

Reward Machines. A reward machine (RM) [14] is a tuple R = (Q, δu, δr, q0)
where Q is a finite set of states, δu : S × A × Q → Q is the state transition
function, δr : S × Q → [−1, 1] is the reward function and q0 is the initial RM

state. Given a trajectory ζ = s0
a0−→ . . .

at−1−−−→ st, the reward assigned by R
to ζ is R(ζ) =

∑t−1
k=0 δr(sk, qk), where qk+1 = δu(sk, ak, qk) for all k. For any

Spectrl specification φ, we can construct an RM such that the reward assigned
to a trajectory ζ indicates whether ζ satisfies φ.

Theorem 4. Given any Spectrl specification φ, we can construct an RM Rφ
such that for any trajectory ζ of length t+ 1, Rφ(ζ) = 1(ζ0:t |= φ).

For an agent j, let Rj denote Rφj = (Qj , δ
j
u, δ

j
r , q

j
0). Letting D̃π be the distri-

bution over length H+1 trajectories induced by using π, we have Eζ∼D̃π [Rj(ζ)] =
Jj(π). The deviation values defined in Eq. 2 are now min-max values of expected
reward, except that it is not in a standard min-max setting since the policy of
every non-deviating agent i 6= j is constrained to be of the form πi on τi. This
issue can be handled by considering a product of M with the reward machine
Rj and the finite-state joint policy π. The following theorem follows naturally.

Theorem 5. Given a finite-state deterministic joint policy π = (M,α, σ,m0),
for any agent j, we can construct a simulator for an augmented two-player zero-
sum Markov game Mπ

j (with rewards) which has the following properties.

– The number of states in Mπ
j is at most 2|S||M ||Qj |.

– The actions of player 1 is Aj, and the actions of player 2 is A−j =
∏
i6=j Ai.

14 Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, Rajeev Alur

Algorithm 2 VerifyNash
Inputs: Finite-state deterministic joint policy π, specifications φj for all j, Nash
factor ε, precision δ, failure probability p.
Outputs: True or False along with a set of punishment strategies τ .
1: existsNE← True

2: τ ← ∅
3: M̃ ← BFS-Estimate(M, δ, p) // Only run if M has not been estimated before.
4: for agent j ∈ {1, . . . , n} do
5: Rj ← ConstructRM(φj)
6: M̃j ← ConstructGame(M̃, j,Rj , π)

7: ˜devj ← minπ̄2 maxπ̄1 J̄
M̃j (π̄1, π̄2)

8: π̄∗2 ← arg minπ̄2 maxπ̄1 J̄
M̃j (π̄1, π̄2)

9: existsNE← existsNE ∧ (˜devj ≤ Jj(π) + ε− δ)
10: τ ← τ ∪ PunStrat(π̄∗2)
11: return existsNE, τ

– The min-max value of the two player game corresponds to the deviation cost
of j, i.e.,

devπj = min
π̄2

max
π̄1

J̄πj (π̄1, π̄2),

where J̄πj (π̄1, π̄2) = E
[∑H

k=0Rj(s̄k, ak) | π̄1, π̄2

]
is the expected sum of re-

wards w.r.t. the distribution over (H + 1)-length trajectories generated by
using the joint policy (π̄1, π̄2) in Mπ

j .
– Given any policy π̄2 for player 2 inMπ

j , we can construct a set of punishment
strategies τ [j] = PunStrat(π̄2) against agent j in M such that

max
π̄1

J̄πj (π̄1, π̄2) = max
π′j

Jj((π on τ [j])−j , π
′
j).

Given an estimate M̃ of M, we can also construct an estimate M̃π
j of Mπ

j .

We omit the superscript π from Mπ
j when there is no ambiguity. We denote by

ConstructGame(M̃, j,Rj , π) the product construction procedure that con-

structs and returns M̃π
j .

5.4 Solving Min-Max Games

The min-max game Mj can be solved using self-play RL algorithms. Many of
these algorithms provide probabilistic approximation guarantees for computing
the min-max value of the game. We use a model-based algorithm, similar to the
one proposed in [4], that first estimates the modelMj and then solves the game
in the estimated model.

One approach is to use existing algorithms for reward-free exploration to es-
timate the model [15], but this approach requires estimating eachMj separately.
Under Assumption 1, we provide a simpler and more sample-efficient algorithm,
called BFS-Estimate, for estimating M. BFS-Estimate performs a search

Specification-Guided Learning of Nash Equilibria with High Social Welfare 15

over the transition graph of M by exploring previously seen states in a breadth
first manner. When exploring a state s, multiple samples are collected by taking
all possible actions in s several times and the corresponding transition probabil-
ities are estimated. After obtaining an estimate of M, we can directly construct
an estimate of Mπ

j for any π and j when required. Letting |Q| = maxj |Qj | and
|M | denote the size of the largest finite-state policy output by our enumeration
algorithm, we get the following guarantee.

Theorem 6. For any δ > 0 and p ∈ (0, 1], BFS-Estimate(M, δ, p) computes

an estimate M̃ of M using O
(
|S|3|M |2|Q|4|A|H4

δ2 log
(
|S||A|
p

))
sample steps such

that with probability at least 1− p, for any finite-state deterministic joint policy
π and any agent j, ∣∣∣min

π̄2

max
π̄1

J̄M̃
π
j (π̄1, π̄2)− devπj

∣∣∣ ≤ δ,
where J̄M̃

π
j (π̄1, π̄2) is the expected reward over length H+1 trajectories generated

by (π̄1, π̄2) in M̃π
j . Furthermore, letting π̄∗2 ∈ arg minπ̄2

maxπ̄1
J̄M̃j (π̄1, π̄2) and

τ [j] = PunStrat(π̄∗2), we have∣∣∣max
π̄1

J̄M̃
π
j (π̄1, π̄

∗
2)−max

π′j

Jj((π on τ [j])−j , π
′
j)
∣∣∣ ≤ δ. (3)

The min-max value of M̃π
j as well as π̄∗2 can be computed using value iteration.

Our full verification algorithm is summarized in Algorithm 2. It checks if ˜devj ≤
Jj(π) + ε − δ for all j, and returns True if so and False otherwise. It also
simultaneously computes the punishment strategies τ using the optimal policies
for player 2 in the punishment games. Note that BFS-Estimate is called only
once (i.e., the first time VerifyNash is called) and the obtained estimate M̃
is stored and used for verification of every candidate policy π. The following
soundness guarantee follows from Theorem 6.

Corollary 1 (Soundness). For any p ∈ (0, 1], ε > 0 and δ ∈ (0, ε), with
probability at least 1 − p, if HighNashSearch returns a joint policy π̃ then π̃
is an ε-Nash equilibrium.

6 Complexity

In this section, we analyze the time and sample complexity of our algorithm
in terms of the number of agents n, size of the specification |φ| = maxi∈[n] |φi|,
number of states in the environment |S|, number of joint actions |A|, time horizon
H, precision δ and the failure probability p.

Sample Complexity. It is known [16] that the number of edges in the abstract
graph Gi corresponding to specification φi is O(|φi|2). Hence for any set of active
agents B, the number of edges in the product abstract graph GB is O(|φ|2|B|).

16 Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, Rajeev Alur

Hence total number of edge policies learned by our compositional RL algorithm
is
∑
B⊆[n]O((|φ|2)|B|) = O((|φ|2+1)n). We learn each edge using a fixed number

of sample steps C, which is a hyperparameter.

The number of samples used in the verification phase is the same as the num-
ber used by BFS-Estimate. The maximum size of a candidate policy output
by the enumeration algorithm |M | is at most the length of the longest path in
a product abstract graph. Since the maximum path length in a single abstract
graph Gi is bounded by |φi| and at least one agent must progress along every edge
in a product graph, the maximum length of a path in any product graph is at
most n|φ|. Also, the number of states in the reward machine Rj corresponding to
|φj | is O(2|φj |). Hence, from Theorem 6 we get that the total number of sample

steps used by our algorithm is O
(
(|φ|2 + 1)nC + 24|φ||S|3n2|φ|2|A|H4

δ log
(|S||A|

p

))
.

Time Complexity. As with sample complexity, the time required to learn all
edge policies is O((|φ|2 + 1)n(C + |A|)) where the term |A| is added to ac-
count for the time taken to select an action from A during exploration (we
use Q-learning with ε-greedy exploration for learning edge policies). Similarly,
time taken for constructing the reward machines and running BFS-Estimate

is O(24|φ||S|3n2|φ|2|A|H4

δ log
(|S||A|

p

)
).

The total number of path policies considered for a given set of active agents
B is bounded by the number of paths in the product abstract graph GB that
terminate in a final product state. First, let us consider paths in which exactly
one agent progresses in each edge. The number of such paths is bounded by
(|B||φ|)|B||φ| since the length of such paths is bounded by |B||φ| and there are
at most |B||φ| choices at each step—i.e., progressing agent j and next vertex of
the abstract graph Gφj . Now, any path in GB can be constructed by merging
adjacent edges along such a path (in which at most one agent progresses at any
step). The number of ways to merge edges along such a path is bounded by the
number of groupings of edges along the path into at most |B||φ| groups which is
bounded by (|B||φ|)|B||φ|. Therefore, the total number of paths in GB is at most
22|B||φ| log(n|φ|). Finally, the total number of path policies considered is at most∑
B⊆[n] 22|B||φ| log(n|φ|) ≤ ((n|φ|)2|φ| + 1)n = O(22n|φ| log(2n|φ|)).

Now, for each path policy π, the verification algorithm solves M̃π
j using value

iteration which takes O(|S̃||A|Hf(|A|)) = O(2|φ|n|φ||S||A|Hf(|A|)) time, where
f(|A|) is the time required to solve a linear program of size |A|. Also accounting
for the time taken to sort the path policies, we arrive at a time complexity bound
of 2O(n|φ| log(n|φ|))poly(|S|, |A|, H, 1

p ,
1
δ).

It is worth noting that the procedure halts as soon as our verification proce-
dure successfully verifies a policy; this leads to early termination for cases where
there is a high value ε-Nash equilibrium (among the policies considered). Further-
more, our verification algorithm runs in polynomial time and therefore one could
potentially improve the overall time complexity by reducing the search space in
the prioritized enumeration phase—e.g., by using domain specific insights.

Specification-Guided Learning of Nash Equilibria with High Social Welfare 17

7 Experiments

We evaluate our algorithm on finite state environments and a variety of specifi-
cations, aiming to answer the following:

– Can our approach be used to learn ε-Nash equilibria?

– Can our approach learn policies with high social welfare?

We compare our approach to two baselines described below, using two metrics:
(i) the social welfare welfare(π) of the learned joint policy π, and (ii) an estimate
of the minimum value of ε for which π forms an ε-Nash equilibrium:

εmin(π) = max{Ji(π−i, bri(π))− Ji(π) | i ∈ [n]}.

Here, εmin(π) is computed using single agent RL (specifically, Q-learning) to
compute bri(π) for each agent i.

Environments and specifications. We show results on the Intersection environ-
ment illustrated in Figure 1, which consists of k-cars (agents) at a 2-way intersec-
tion of which k1 and k2 cars are placed along the N-S and E-W axes, respectively.
The state consists of the location of all cars where the location of a single car is
a non-negative integer. 1 corresponds to the intersection, 0 corresponds to the
location one step towards the south or west of the intersection (depending on
the car) and locations greater than 1 are to the east or north of the intersection.
Each agent has two actions. STAY stays at the current position. MOVE decreases
the position value by 1 with probability 0.95 and stays with probability 0.05.
We consider specifications similar to the ones in the motivating example.

Baselines. We compare our NE computation method (HighNashSearch) to
two approaches for learning in non-cooperative games. The first, maqrm, is
an adaption of the reward machine based learning algorithm proposed in [22].
maqrm was originally proposed for cooperative multi-agent RL where there is a
single specification for all the agents. It proceeds by first decomposing the spec-
ification into individual ones for all the agents and then runs a Q-learning-style
algorithm (qrm) in parallel for all the agents. We use the second part of their
algorithm directly since we are given a separate specification for each agent. The
second baseline, nvi, is a model-based approach that first estimates transition
probabilities, and then computes a Nash equilibrium in the estimated game us-
ing value iteration for stochastic games [17]. To promote high social welfare, we
select the highest value Nash solution for the matrix game at each stage of value
iteration. Note that this greedy strategy may not maximize social welfare. Both
maqrm and nvi learn from rewards as opposed to specification; thus, we supply
rewards in the form of reward machines constructed from the specifications. nvi
is guaranteed to return an ε-Nash equilibrium with high probability, but maqrm
is not guaranteed to do so.

18 Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, Rajeev Alur

Spec.
Num. of
agents

Algorithm
welfare(π)

(avg ± std)
εmin(π)

(avg ± std)

Num. of
terminated

runs

Avg. num. of
sample steps
(in millions)

φ1 3
HighNashSearch 0.33 ± 0.00 0.00 ± 0.00 10 1.78

nvi 0.32 ± 0.00 0.00 ± 0.00 10 1.92
maqrm 0.18 ± 0.01 0.51 ± 0.01 10 2.00

φ2 4
HighNashSearch 0.55 ± 0.10 0.01 ± 0.02 10 11.53

nvi 0.04 ± 0.01 0.02 ± 0.01 10 12.60
maqrm 0.12 ± 0.01 0.20 ± 0.03 10 15.00

φ3 4
HighNashSearch 0.49 ± 0.01 0.00 ± 0.01 10 11.26

nvi 0.45 ± 0.01 0.00 ± 0.01 10 12.60
maqrm 0.11 ± 0.01 0.22 ± 0.02 10 15.00

φ4 3
HighNashSearch 0.90 ± 0.15 0.00 ± 0.00 10 2.16

nvi 0.98 ± 0.00 0.00 ± 0.00 4 2.18
maqrm 0.23 ± 0.01 0.39 ± 0.04 10 2.00

φ5 5
HighNashSearch 0.58 ± 0.02 0.00 ± 0.00 10 62.17

nvi 0.05 ± 0.01 0.01 ± 0.01 7 80.64
maqrm Timeout Timeout 0 Timeout

Table 1: Results for all specifications in Intersection Environment. Total of 10
runs per benchmark. Timeout = 24 hrs.

Results. Our results are summarized in Table 1. For each specification, we ran
all algorithms 10 times with a timeout of 24 hours. Along with the average social
welfare and εmin, we also report the average number of sample steps taken in the
environment as well as the number of runs that terminated before timeout. For
a fair comparison, all approaches were given a similar number of samples from
the environment.

Nash equilibrium. Our approach learns policies that have low values of εmin,
indicating that it can be used to learn ε-Nash equilibria for small values of ε.
nvi also has similar values of ε, which is expected since nvi provides guarantees
similar to our approach w.r.t. Nash equilibria computation. On the other hand,
maqrm learns policies with large values of εmin, implying that it fails to converge
to a Nash equilibrium in most cases.

Social Welfare. Our experiments show that our approach consistently learns
policies with high social welfare compared to the baselines. For instance, φ3

corresponds to the specifications in the motivating example for which our ap-
proach learns a joint policy that causes both blue and black cars to achieve their
goals. Although nvi succeeds in learning policies with high social welfare for
some specifications (φ1, φ3, φ4), it fails to do so for others (φ2, φ5). Additional
experiments (see extended version [3]) indicate that nvi achieves similar social
welfare as our approach for specifications in which all agents can successfully
achieve their goals (cooperative scenarios). However, in many other scenarios in
which only some of the agents can fulfill their objectives, our approach achieves
higher social welfare.

Specification-Guided Learning of Nash Equilibria with High Social Welfare 19

8 Conclusions

We have proposed a framework for maximizing social welfare under the con-
straint that the joint policy should form an ε-Nash equilibrium. Our approach
involves learning and enumerating a small set of finite-state deterministic policies
in decreasing order of social welfare and then using a self-play RL algorithm to
check if they can be extended with punishment strategies to form an ε-Nash equi-
librium. Our experiments demonstrate that our approach is effective in learning
Nash equilibria with high social welfare.

One limitation of our approach is that our algorithm does not have any guar-
antee regarding optimality with respect to social welfare. The policies considered
by our algorithm are chosen heuristically based on the specifications, which may
lead to scenarios where we miss high welfare solutions. For example, φ2 corre-
sponds to specifications in the motivating example except that the blue car is
not required to stay a car length ahead of the other two cars. In this scenario,
it is possible for three cars to achieve their goals in an equilibrium solution if
the blue car helps the cars behind by staying in the middle of the intersection
until they catch up. Such a joint policy is not among the set of policies consid-
ered; therefore, our approach learns a solution in which only two cars achieve
their goals. We believe that such limitations can be overcome in future work by
modifying the various components within our enumerate-and-verify framework.

Acknowledgements. We thank the anonymous reviewers for their helpful com-
ments. This work is supported in part by NSF grant 2030859 to the CRA for the
CIFellows Project, ONR award N00014-20-1-2115, DARPA Assured Autonomy
award, NSF award CCF 1723567 and ARO award W911NF-20-1-0080.

Bibliography

[1] Akchurina, N.: Multi-agent reinforcement learning algorithm with variable
optimistic-pessimistic criterion. In: ECAI. vol. 178, pp. 433–437 (2008)

[2] Alur, R., Bansal, S., Bastani, O., Jothimurugan, K.: A framework
for transforming specifications in reinforcement learning. arXiv preprint
arXiv:2111.00272 (2021)

[3] Alur, R., Bansal, S., Bastani, O., Jothimurugan, K.: Specification-
guided learning of nash equilibria with high social welfare.
https://arxiv.org/abs/2206.03348 (2022)

[4] Bai, Y., Jin, C.: Provable self-play algorithms for competitive reinforcement
learning. In: Proceedings of the 37th International Conference on Machine
Learning (2020)

[5] Bouyer, P., Brenguier, R., Markey, N.: Nash equilibria for reachability ob-
jectives in multi-player timed games. In: International Conference on Con-
currency Theory. pp. 192–206. Springer (2010)

[6] Chatterjee, K.: Two-player nonzero-sum ω-regular games. In: International
Conference on Concurrency Theory. pp. 413–427. Springer (2005)

[7] Chatterjee, K., Majumdar, R., Jurdziński, M.: On nash equilibria in stochas-
tic games. In: International workshop on computer science logic. pp. 26–40.
Springer (2004)

[8] Czumaj, A., Fasoulakis, M., Jurdzinski, M.: Approximate nash equilibria
with near optimal social welfare. In: Twenty-Fourth International Joint
Conference on Artificial Intelligence (2015)

[9] Greenwald, A., Hall, K., Serrano, R.: Correlated q-learning. In: ICML.
vol. 3, pp. 242–249 (2003)

[10] Hammond, L., Abate, A., Gutierrez, J., Wooldridge, M.: Multi-agent re-
inforcement learning with temporal logic specifications. In: International
Conference on Autonomous Agents and MultiAgent Systems. p. 583–592
(2021)

[11] Hazan, E., Krauthgamer, R.: How hard is it to approximate the best nash
equilibrium? In: Proceedings of the Twentieth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. p. 720–727. SODA ’09, Society for Industrial
and Applied Mathematics (2009)

[12] Hu, J., Wellman, M.P.: Nash q-learning for general-sum stochastic games.
Journal of machine learning research 4(Nov), 1039–1069 (2003)

[13] Hu, J., Wellman, M.P., et al.: Multiagent reinforcement learning: theoretical
framework and an algorithm. In: ICML. vol. 98, pp. 242–250. Citeseer (1998)

[14] Icarte, R.T., Klassen, T., Valenzano, R., McIlraith, S.: Using reward ma-
chines for high-level task specification and decomposition in reinforcement
learning. In: International Conference on Machine Learning. pp. 2107–2116.
PMLR (2018)

https://arxiv.org/abs/2206.03348

Specification-Guided Learning of Nash Equilibria with High Social Welfare 21

[15] Jin, C., Krishnamurthy, A., Simchowitz, M., Yu, T.: Reward-free explo-
ration for reinforcement learning. In: International Conference on Machine
Learning. pp. 4870–4879. PMLR (2020)

[16] Jothimurugan, K., Bansal, S., Bastani, O., Alur, R.: Compositional rein-
forcement learning from logical specifications. Advances in Neural Informa-
tion Processing Systems 34 (2021)

[17] Kearns, M., Mansour, Y., Singh, S.: Fast planning in stochastic games. In:
Proceedings of the Sixteenth conference on Uncertainty in artificial intelli-
gence. pp. 309–316 (2000)

[18] Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Equilibria-based
probabilistic model checking for concurrent stochastic games. In: Interna-
tional Symposium on Formal Methods. pp. 298–315. Springer (2019)

[19] Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Prism-games 3.0:
Stochastic game verification with concurrency, equilibria and time. In: Inter-
national Conference on Computer Aided Verification. pp. 475–487. Springer
(2020)

[20] Littman, M.L.: Markov games as a framework for multi-agent reinforce-
ment learning. In: Machine learning proceedings 1994, pp. 157–163. Elsevier
(1994)

[21] Littman, M.L.: Friend-or-foe q-learning in general-sum games. In: ICML.
vol. 1, pp. 322–328 (2001)

[22] Neary, C., Xu, Z., Wu, B., Topcu, U.: Reward machines for cooperative
multi-agent reinforcement learning (2021)

[23] Perolat, J., Strub, F., Piot, B., Pietquin, O.: Learning Nash Equilibrium for
General-Sum Markov Games from Batch Data. In: Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics (2017)

[24] Prasad, H., LA, P., Bhatnagar, S.: Two-timescale algorithms for learning
nash equilibria in general-sum stochastic games. In: Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent Systems.
pp. 1371–1379 (2015)

[25] Shapley, L.S.: Stochastic games. Proceedings of the national academy of
sciences 39(10), 1095–1100 (1953)

[26] Wei, C.Y., Hong, Y.T., Lu, C.J.: Online reinforcement learning in stochas-
tic games. In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. pp. 4994–5004 (2017)

[27] Zinkevich, M., Greenwald, A., Littman, M.: Cyclic equilibria in markov
games. Advances in Neural Information Processing Systems 18, 1641 (2006)

