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ABSTRACT

This paper presents the results from a study of the role of soil fabric on the cyclic response of silty soil samples
retrieved from two different sites from a series of sites investigated as a part of a larger study: one along the
Willamette River (Site B) and one along the Columbia River (Site D). The soils investigated in this study were
retrieved from Site B and exhibited an average Pl = 13, and from Site D which were characterized with an
average PI = 28. The cyclic response of the soils was evaluated by performing several constant-volume, stress-
controlled, cyclic direct simple shear tests (CDSS) with varying cyclic stress ratios, CSRs, on natural, intact
specimens and their reconstituted counterparts. Despite the lower void ratios of the reconstituted specimens, the
cyclic resistance of the intact specimens for Sites B and D at 15 loading cycles were 19% and 37% greater than
their reconstituted counterparts, respectively. For the given loading conditions, the rate of excess pore pressure
development, single amplitude shear strain (y) accumulation, and shear stiffness degradation in reconstituted
specimens were greater than the natural intact specimens, emphasizing the role of soil fabric, as confirmed by the
lower shear wave velocity (V5) of reconstituted specimens compared to their intact counterparts.

Introduction
Earthquake-induced liquefaction and cyclic softening-induced ground failures present a major challenge to
society at large. Over the last several decades, significant progress has been made to understand the cyclic
response of sands and clays; however, uncertainty on the cyclic response of transitional silty soil remains.
Although numerous laboratory studies on reconstituted soil specimens have been performed to aid the
understanding of general trends in cyclic response of transitional soils, these efforts have not captured the role of
soil fabric, stress history, aging, cementation, preshaking history, mineralogy, and anisotropy, which contribute
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to the complexity of liquefaction or cyclic mobility of silty soil [1-5]. Limited laboratory studies on intact
specimens of silt, e.g. [4-6], provide a basis to establish the dynamic responses of transitional soils and calibrate
dynamic constitutive models. Laboratory cyclic tests of intact transitional soils continues to represent the best
practice to identify the factors contributing to their cyclic response. This study presents comparison of cyclic
responses of intact and reconstituted silt from two different tests sites to elucidate fundamental similarities and
differences in their response.

Experimental Program and Testing Procedure

The two test sites, B and D, of a series of sites investigated as part of a larger study [6,7], are situated in Oregon
along the Willamette and Columbia Rivers, respectively. Both sites are vulnerable to potential future seismic
hazards, and in particular, a Cascadia Subduction Zone earthquake event with moment magnitude, M,, > 9. A
series of mud-rotary borings were drilled for the retrieval of intact thin-walled Shelby tubes samples. Intact
specimens were prepared from soil samples extruded from the top of tube in the same direction as movement of
the soil during sampling to prevent any shear reversal-induced disturbance [8]. Cylindrical specimens with 20
mm height and 72 mm diameter were subjected to cyclic direct simple shear (CDSS) loading. All soil specimens
were consolidated to in-situ vertical effective stress, g,,, using the recompression method under zero lateral strain
prior to cyclic testing. Various stress-controlled cyclic tests were performed on intact specimens of the silt and
their reconstituted counterparts. Reconstituted samples were prepared from intact thin-walled tube samples using
slurry deposition technique outlined by [9]. The soil slurry was consolidated in 72 mm diameter cylinders to the
preconsolidation pressure, g,, estimated from consolidation tests conducted on intact specimens.

Material Characteristics

The soil samples from Site B were lightly overconsolidated (1.4 < OCR < 1.7) low-plasticity silts (ML) with
average water content w,, = 39%, average P/ = 13, and a fines content FC = 86%. Site D soil samples were
lightly overconsolidated (1.6 < OCR < 2.2) high-plasticity silts (MH) with average w,, = 75%, PI = 28, and
FC = 100%. Using typical liquefaction screening criteria, the soil from Site B is susceptible to moderately
susceptible to liquefaction [8], although they are identified to behave fundamentally as clay-like soils [10]. On
the other hand, the Site D specimens are deemed insusceptible to liquefaction under the “sand-like” paradigm [8,
10] and may be susceptible to cyclic softening in accordance with clay-like behavior and the liquefaction
susceptibility criterion proposed by [10].

Experimental Results
Figure 1 compares the CSR — y hysteresis loops and the development of y and excess pore pressure ratio, ;,, with
number of loading cycles, N, of an intact specimen from Site D (Figs. 1a - 1¢) with its reconstituted counterpart
(Figs. 1d - 1f) subjected to the CDSS tests with CSR = 0.27. Generally, both intact and reconstituted specimens
exhibit a similar cyclic response in terms of wide hysteresis loops (i.e., clay-like response) without a transient
zero shear stiffness during reloading along with a cyclic mobility-type response associated with gradual
accumulation of y and r;, with N. Despite the observed similarities, there are significant differences in the cyclic
response of the intact and reconstituted specimens. For example, at CSR = 0.27 and for any given N, the
reconstituted specimen generates larger y and broader hysteresis loops (i.e., higher dissipated energy, rapid
degradation of shear stiffness), exhibits larger contractive behavior, and develops y and r, at a faster rate
compared to the intact specimen, to result in fewer cycles for the to reach y = 3% (N = 2.3) compared to its
intact counterpart (N = 45.8). Similarly, the CSR — y hysteresis and accumulation of y and r,, with N for the
intact and reconstituted specimens from Site B are shown in Figs. 1g - 11. The intact and reconstituted specimens
exhibit similar cyclic response in terms of narrow hysteresis loops with transient zero shear stiffness upon
reloading. The rate of y and r;, accumulation with N is higher in the reconstituted specimen compared to its intact



counterpart, indicating a lower cyclic resistance compared to its intact counterpart.

Figure 2 presents the variation of the CSR with N required to reach y = 3% for CDSS tests conducted on
reconstituted specimens from Sites B and D and their intact counterparts. The results indicate that the intact
specimens from Sites B (e, = 0.94) and D (e, = 2.20) and exhibit appreciably higher cyclic resistance ratios,
CRR, compared to the reconstituted specimens despite the lower void ratios of the reconstituted specimens (Site
B: e, = 0.84, Site D: e, = 1.14;). Although the reconstituted and intact specimens have identical mineralogy,
grain size distribution, stress history, the observed differences in their behavior cannot be explained by common
state parameters (e.g., e. and a,,); however, the differences in their response may originate from the differences
in depositional environment and aging effects. This highlights the significance of soil fabric on cyclic response,
as confirmed by the higher shear wave velocity of intact specimens (Site B: V; = 168 m/s, Site D: V; =
122 m/s,) compared to their reconstituted counterparts (Site B: V; = 159 m/s, Site D: V; = 107 m/s).

Figure 1.
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Conclusions

This study presents comparison of cyclic response of intact and reconstituted silt from two sites located along
Columbia and Willamette rivers. Both intact and reconstituted specimens exhibited the cyclic mobility behavior
in the form of incremental accumulation of shear strain, excess pore pressure generation, and degradation of shear
stiffness without abrupt strength loss as cyclic loading progressed. Despite the lower void ratio, the reconstituted
specimens exhibit lower cyclic resistance, as deduced from the higher rate of pore pressure generation, stiffness
degradation, and strain accumulation compared to their intact counterparts. This observation highlights the
beneficial role of natural soil fabric and aging on the cyclic resistance of intact soils that are not present in
reconstituted specimens. The results of this study indicate that the commonly used state parameters (e.g., void
ratio and vertical effective consolidation stress) may not be sufficient to explain the existing difference between
intact specimens and their reconstituted counterparts.
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Figure 2. Comparison of variation of cyclic stress ratio, CSR, with number of loading cycles, N, for y = 3%
derived from constant-volume, stress-controlled, cyclic tests conducted on natural, intact and
reconstituted specimens of Sites B and D.
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