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Abstract— In this work, we define and establish a selection of
significant and new properties for nonlinear stochastic model
predictive control (SMPC). First, we ensure that the underlying
stochastic properties of the closed-loop stochastic system are
indeed well-defined. We then define robust exponential stability
in expectation (RESIiE) and establish that nonlinear SMPC,
under suitable assumptions, renders the origin of the closed-
loop system RESIiE. We conclude with a numerical example to
demonstrate the implications of this analysis.

I. INTRODUCTION

For successful implementation of any control technique,
some margin of robustness to disturbances is required. The
inherent robustness of linear and nonlinear model predic-
tive control (MPC) to small disturbances has been well-
established [1]-[4]. To improve upon the inherent robustness
of nominal MPC, SMPC uses a probabilistic description
of uncertainty and optimizes the expected value of a cost
function subject to both deterministic and probabilistic con-
straints on the state and input variables [5]-[7]. Solving and
analyzing the closed-loop properties of the SMPC problem is
considerably more difficult than the nominal MPC problem
and therefore the majority of results for SMPC are restricted
to linear systems. Although approximating and solving the
nonlinear SMPC problem is a worthwhile pursuit in its
own right, we instead focus this work on the closed-loop
properties of nonlinear SMPC.

For linear SMPC with multiplicative disturbances, [8]
establish that the origin is asymptotically stable with prob-
ability one if a global stochastic Lyapunov function is used
for the terminal cost. For constrained linear SMPC with
bounded, additive disturbances, we can construct terminal
constraints and a terminal cost that ensure recursive feasi-
bility and stability in expectation [9]. We can also establish
that the minimal robust positive invariant set for the system
is asymptotically stable with probability one [10].

For nonlinear SMPC, the closed-loop system is stable
in expectation if a global stochastic Lyapunov function is
used as the terminal cost [11]. For constrained nonlinear
systems subject to bounded disturbances, these results extend
to SMPC algorithms with properly formulated terminal costs
and constraints [12]. Under certain viability and stochastic
controllability assumptions, nonlinear SMPC without termi-
nal conditions is also stabilizing, but these assumptions are
difficult to verify for nonlinear systems [13].
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There are, however, limitations to the current theory ad-
dressing nonlinear SMPC. Currently, there is little discussion
of the existence of optimal solutions to the SMPC problem
or measurability of the closed-loop trajectory. Both of these
properties, although likely to hold under mild regularity
assumptions, should be rigorously addressed. Furthermore,
the established closed-loop properties of nonlinear SMPC are
often limited to stability in expected value (no exponential
decay of the effect of the initial condition) if disturbances
do not vanish at the origin. In addition, there is no clear
connection between the disturbance considered in the SMPC
formulation and the closed-loop stability results. In this work,
we address these limitations.

To analyze the closed-loop properties of nonlinear SMPC,
we employ results derived from stochastic stability theory
[14]. Specifically, we use the concepts of stochastic input-
to-state stability (SISS) and SISS-Lyapunov functions [15]—
[17]. While we use definitions and results from this literature
as inspiration, we note that this literature often assumes that
the stochastic disturbance vanishes at the origin (excluding
additive disturbances) and does not address discontinuous
closed-loop systems, such as nonlinear SMPC with a possi-
bly discontinuous control law. Thus, we adjust these defini-
tions and results to address nonlinear SMPC.

In Section 2, we introduce SMPC and some suitable
assumptions. In Section 3, we discuss and establish the
existence of optimal solutions for nonlinear SMPC problem
and measurability of the closed-loop stochastic system. In
Section 4, we define robust exponential stability in expecta-
tion (RESIE), provide a sufficient condition for this property
in terms of an SISS-Lyapunov function, and establish that
SMPC generates a closed-loop systems that is RESiE. We
conclude with a nonlinear SMPC example.

Notation: Let I and R denote the integers and reals. Let
superscripts and subscripts denote dimensions and restric-
tions (e.g., RY, denotes nonnegative reals of dimension n).
We use | - | to denote Euclidean norm. Let () denote the
indicator function for a set S, i.e., Ig(z) =1 if z € S and
zero otherwise. The function o : R>g — R is in class K if
it is continuous, strictly increasing, and «(0) = 0. Let P(f2)
denote the power set and B(2) denote the Borel field of some
set Q. A set ' C R™ is Borel measurable if F' € B(R"™) and
a function f : R® — R™ is Borel measurable if for each
open set O C R™, the set f~1(0) :={z € R": f(z) € O}
is Borel measurable. A set-valued mapping S : X = YV
is Borel measurable if for every open set O C Y, the set
S7HO) :={x € X : S(x) N O # (0} is Borel measurable.
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II. STOCHASTIC MODEL PREDICTIVE CONTROL
A. The stochastic system

We consider the following discrete-time stochastic differ-
ence equation

vt = f(z,u,w) f:XxUxW-—X (1)

in which x € X C R"™ is the state, u € U C R™ is
the controlled input, and w € W C RP is the disturbance
(random variable). The successor state is denoted by zT.

Let (Q, F,P) be a probability space for the sequence
Woo : 0 — W of random variables, i.e., Woo := {w;}52,
for w; : @ — W. We denote w; : Q — W' as the
sequence w; := (wo,...,w;—1). Let {F;}32, denote the
natural filtration of the sequence {w;}°,, that is F; C F
is all sets of the form {w € Q : w;(w) € F} for all
F € B(W?%). By definition, w; is measurable w.r.t. F;. For
some Borel measurable function g : W! — R we define
expected value as

E [g(w;)] / 9(wi(w))dP(w)

We make the following assumption for the disturbance
in SMPC. Note that we require bounded disturbances (i.e.,
compact support) because we allow state constraints in the
problem formulation and do not require the terminal cost to
be a global stochastic Lyapunov function.

Assumption 1: The disturbances w; : 2 — W are in-
dependent and identically distributed, zero mean, random
variables. Each random variable has a known and equivalent
probability measure p : B(W) — [0,1] defined such that
wF)=P{w € Q: w;(w) € F}) for all F € B(W). The
support W is compact and contains the origin. The second
moment of w(¢) is finite and the covariance matrix is defined
as ¥ = E [w(i)w(s)'] for all i € I>o.

For the random variables (w;,w;41,...,w;+n—1) and
N € I, their joint distribution measure p¥ : B(WY) —
[0,1] is defined as u™(F) = p(F)u(Fit1) ... p(Fign—1)
for all F = (F;, Fiy1,...,Fiin_1) € B(WY). For any
Borel measurable function g : W1 — R and all i € I>o,
conditional expected value satisfies

Elg(wii1) | Fi] (@) = /W 9(wo(@), . wi—1 (), w)dpu(w)

B. SMPC formulation

In stochastic MPC, we typically use a predefined control
policy 7 : X x V — U in which v € V are the parameters.'
Thus, we redefine the system of interest as

t = f({E,’/T(I’,U),w)

2

We denote the solution of (2) at time &, given the initial con-
dition z, trajectory of parameters v € VVV, and disturbance
trajectory w € WY as ¢(k;z, v, w).

We consider both hard constraints, i.e., (x,u) € Zp C
X x U and probabilistic constraints on the state defined as

Pr(f(x,u,w)eX)zl—s 3)

'In many cases, we define 7(z,v) = Kz + v.
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for a set X and constant ¢ € [0, 1]. We can reformulate this
probabilistic constraint using the following function

G(zyu):=1-— /ng(f(x,u,w))du(w)

and constraint Z, := {(x,u) : G(x,u) < e}. Then we define
the combined hard and probabilistic constraints as

(z,u) € Z:= Zn N Ze

Calculating or approximating Z. is a difficult and impor-
tant research problem that we somewhat obscure by this
reformulation. However, we find this reformulation useful
in subsequent analysis.

For SMPC with a horizon of N &€ I-;, the mixed
constraint Z, and terminal constraint Xy C X, we have the
set of admissible (x,v) pairs defined as

Zy i ={(z,v) eX x VN
(z(k), m(z(k),v(k))) € Z ¥w € WY, k € Ijo n_1
z(N) € X; ¥Yw € WV}

in which z(k) = ¢(k;z, v, w). We define the set of admis-
sible parameter trajectories and the set of admissible states
as Vn(z) :={ve V¥ :(r,v) € Zy} and Xy = {r €X:
Iv € Vn(x)}.

Given a stage cost £ : X x U — R>( and terminal cost
Vi : X' — Ry, we define the function

In(z, v, w) = z_: U (k), m(x(k), v(k))) + Vi(2(N))
k=0

in which z(k) = ¢(k; xz, v, w). In SMPC, we define the cost
function based on the expected value of Jy (-), i.e., we define

/ JN('raVaW)d/U‘N(W)
WN
We define the SMPC problem for any z € X as

Py(x) :

Vn(z,v) :

Vi@ = min Vi(z.v)

and the optimal solutions for a given initial state are defined
by the set-valued mapping v° : Xy = V¥V,

We require the following basic regularity assumptions.

Assumption 2: The function f : X x U X W — X, 7 :
XXV—)U,K:XXU%Rzo,aHde:Xf —)RZO
are continuous. Furthermore, we have that f(0,0,0) = 0,
£(0,0) =0, and V;(0) = 0.

Assumption 3: The set Zj and X are closed and contain
the origin. The sets U, V, and Xy C X are compact and
contain the origin.

To ensure we achieve certain closed-loop performance and
stability objectives, we require the terminal conditions to
satisfy the following assumption.

Assumption 4: There exists a continuous terminal control
law k5 : Xy — U such that for all x € Xy, f(z,ks(x),w) €
Xy for all w € W and

Vi(f(@,k55(2),0)) < Vi(x) — Uz, 55 (7))
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Furthermore, (z,r(z)) € Zy, X; C X, and 7(z,0)
ky(x) for all x € X;. The functions Vj(-) and f(-) are
Lipschitz continuous on the sets Xy and X; x U x W,
respectively.

Note that we require V() to satisfy a cost decrease condi-
tion only for the nominal system, i.e., w = 0. The Lipschitz
continuity of V;(-) and f(-) are not typically required in
closed-loop analysis of MPC, but this restriction is minor.
Indeed, most MPC formulations require some assumptions
of Lipschitz continuity to ensure that the problem can be
solved by standard nonlinear optimization methods.

We also require bounds on the stage and terminal costs
detailed in the following assumption. The extra requirements
placed on the sets X and Xy are used to construct an upper
bound for the optimal cost.

Assumption 5: There exists a > 1, ¢i,¢y > 0 such that
Uz, u) > c1|z|* for all (z,u) € Zy, and Vy(z) < cs|z|* for
all x € X¢. The set Xy contains the origin in its interior and
Xy is bounded.

III. BASIC PROPERTIES OF SMPC
A. Existence of optimal solutions

To discuss the closed-loop properties of SMPC, we must
first establish that the optimization problem Py (z) is indeed
well-defined for all x € Xn. Due to space limitations, all
proofs of the results in this section are reported in [18]. We
begin with the following result for the set Z.

Lemma 1: Let Assumptions 1-3 hold. Then the set Z =
Zp N 25 is closed.

Since the probabilistic constraint can be reformulated as
a closed set we can apply an approach similar to that in
[19, Proposition 2.4] and Lebesgue’s dominated convergence
theorem to establish the following result.

Proposition 2: Let Assumptions 1-3 hold. Then for each
x € Xy, the function Vy(z,-) : VV — R is continuous,
the set V() is compact, and a solution to Py () exists.

Thus, we guarantee that the nonlinear SMPC optimiza-
tion problem is well-defined, even though solving such a
problem may be challenging or even intractable with current
optimization techniques.

B. Measurability of the closed-loop state trajectory

We define the control law mapping for SMPC as
Kn(x) = 7(x,v°(0;z)) in which v°(0;z) is the first
parameter vector in v°(z). If there are multiple solutions to
Py (z), then K (x) may be a set-valued mapping. However,
we typically assume there exists some selection rule ¥ :
(P(U)\ @) — U that defines a single-valued control law
kN @ Xn — U such that ky(x) = U(Ky(x)) € Kny(x)
for all z € Xy. The resulting closed-loop stochastic system
is then

2t = fu(z,w) == fla, kn(v),w) )

We define the solution to (4) at time k£ € I>¢ given the initial

condition x and disturbance sequence wy as ¢(k;x, wg).
We note that x(+) is not necessarily continuous or Borel

measurable. Furthermore, if kp(-) is not Borel measurable,
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then ¢(k;z, wy) is not necessarily Borel measurable w.r.t.
wy, and all stochastic properties of interest for the closed-
loop system (e.g., expected value) may be undefined. Fortu-
nately, basic regularity assumptions are sufficient to establish
that K y(x) is Borel measurable.

Proposition 3: Let Assumptions 1-3 hold. Then the func-
tion Vy : Xy — R is lower semicontinuous (Borel mea-
surable), the set Xy is closed, and the set-valued mapping
Ky(z) : Xy = U is Borel measurable.

The proof of this result can be found in [18] and relies
(almost entirely) on Proposition 7.33 in [20]. We note that
even if Ky (z) is a Borel measurable function we can still (in
theory) select a nonmeasurable selection rule. Accidentally
constructing such a selection rule for a real system, however,
is highly unlikely. Hence, we assume for the rest of this work
that U(-) is Borel measurable and have the following result.
See Appendix A in [18] for further discussion of these topics.

Proposition 4: Let Assumptions 1-3 hold and assume Xy
is robustly positive invariant for f.;(-), i.e, z € Xy implies
fa(z,w) € Xy for all w € W. Then the functions
o(k;x,wy) are well-defined and Borel measurable for all
k € I>¢. Furthermore, the integral

/Q 9(6(ks 2, wi(w)))dP(w)

is well-defined for all x € Xy, k € I>g, and any Borel
measurable function g : Xy — Rxo.

We note that the function V) : Xy — Rx( is Borel mea-
surable (lower semicontinuous) from Proposition 3. Thus, the
expected value of the optimal cost (and many other relevant
properties) along the closed-loop trajectory is indeed well-
defined for the stochastic system generated by SMPC.

IV. STOCHASTIC EXPONENTIAL STABILITY
A. Robust Exponential Stability in Expectation

We begin by defining the term robust exponential stability
in expectation (RESiE).

Definition 1: The origin is robustly exponentially stable
in expectation (RESiE) for the stochastic system xzt =
fer(z,w); w € W on the robustly positive invariant set X
if there exists A € (0,1), p > 0, and ~(-) € K such that the
closed-loop trajectory satisfies

E[lg(k; 2, wi)[] < Xplz| +~(t(2)) 5)

for all x € Xy and k € I>o.

RESIE bounds the expected value of the norm of the
closed-loop state based on the initial condition = and the
covariance of the disturbance, i.e., tr(X). Note that tr(X) — 0
implies ¥ — 0 for positive semidefinite 3. RESIiE implies
the typical notion of stability in expectation, but also ensures
that the effect of the initial condition |x| on the upper bound
exponential decays to zero as k — oo. We also note the
(intentional) similarities between the definition of RESIE and
the definition of robust exponential stability typically used
to characterize the inherent robustness of nominal MPC [2].
Furthermore, as tr(X) — 0, i.e., nominal MPC applied to
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a nominal system, we recover exponential stability of the
origin.

To establish this property for a closed-loop system we use
an (exponential) SISS-Lyapunov function defined as follows.
Note that we do not require continuity of fg;(-).

Definition 2: The Borel measurable function V' : Xy —
R>¢ is an (exponential) SISS-Lyapunov function on the
robustly positive invariant set Xy for the stochastic system
xt = fu(z,w); w € W, if there exists a > 1, ¢, ca,c3 > 0,
and o2(+),03(-) € K such that

c)z]® < V(x) < colx|® + oo (tr(X)) (6)
/WV(fcz(vaw))dﬂ(w) < Vi(z) — esfz|* + o3((X)) (1)

for all x € Xy.

Proposition 5: If a system z7 = fy(z,w); w € W,
with Borel measurable f.(-), admits an (exponential) SISS-
Lyapunov function on the robustly positive invariant set X',
then the origin is RESIE.

Proof: To streamline notation, we define d := tr(X) and
note that this value is constant. We assume without loss of
generality that c3 < c,.> From the upper bound on V (-), we
have that —|z|* < —V(x)/c2 + 02(d)/ca. Choose z € Xy
and let x(k) := ¢(k;z, wy) for all k € I>o. We apply the
definition of conditional expectation to give

E[V(x(k+1)) | Fi] < AV(z(k)) + o4(d)

in which A := 1 — ¢3/c; € (0,1) and oy(d) :=
(cs/c2)o2(d) + os(d). Note that o(-) € K. We apply the
law of iterated expected value to give

E[V(z(k +1))] < AE [V (2(k))] + 04(d)
By iteration and the fact that E [V (z)] = V(z) we have
E [V (2(k))] < AV (2(k) + oa(d) /(1 — X)

We substitute the upper and lower bound for V (x) to give®

o4(d)
E [lz(k)|*] < A —=
C1(1 — /\)
Since a > 1, we can apply Jensen’s inequality and use the
subadditivity of powers of 1/a < 1 to give E[|z(k)|]] <
Neplz| + ~(d) in which X := X/%, p:= (ca/c1)Y/®, and

Flea/er)|m]* +(1/cr)oa(d) + ®)

B 0'4(d) 1/a
1@ = (1) + D)

Note that v(-) € K and d = tr(X) to complete the proof. W

B. RESIE of SMPC

To establish that the closed-loop system generated by
SMPC is RESIE, we establish that the optimal cost is an
(exponential) SISS-Lyapunov function. We construct the cost
decrease condition by exploiting properties of the terminal
control law.

2If this inequality does not hold we can simply redefine co such that
c3 < cg with all the other constants remaining the same.
3If @ = 2, (8) implies robust exponential stability in mean-squared.

Lemma 6: Let Assumptions 1-4 hold. Then there exists
o(+) € K such that

AV Vi (@ g (), w))dp(w) < Vi), 5p(2)+o ()

for all x € Xy.

Proof: To streamline notation we define zt =
f(z,k¢(z),w) and 2T = f(z,ks(x),0). Since V(-) and
f(+) are Lipschitz continuous on X; and Xy x U x W,
respectively, and Xy is robustly positive invariant under the
control law x¢(x), we have that

Vi (@™) = V(@ )| < Ly, la" = 27| < Ly, Ly |wl

for all z € Xy and w € W in which Ly, and Ly are the
Lipschitz constants for Vy(-) and f(-), respectively. Thus,
we have that

/W Vi )du(w) < Vi@ + o(Elw]]?)

in which o(s) = Ly, Lys'/? and o(-) € K. From Jensen’s
inequality we have E[|w[]?> < E [|w[?] = tr(X). We substi-
tute in the nominal bound in Assumption 4 to complete the

proof. [ ]
Lemma 7: Let Assumptions 1-4 hold. Then Xy is ro-
bustly positive invariant for the system z7 = f.(z,w);

w € W and there exists o(-) € K such that

/W V(@) du(w) < V() — U, rin (@) + o((E))

for all x € Xy.
Proof: Let x € Xy and choose any v € v'(x).

We have that z(N) = ¢(N;z,v) € X; for all w €
WY and f(z(N),k¢(x(N)),w) € X; for all w € W
by Assumption 4. Thus, the candidate trajectory V™ =
(v(1),v(2),...,v(N —1),0) satisfies vt € Vy(zT) for
zt = f(z,ky(z),w) and all w € W. Since Vy(zT) # 0,
then 27 € Xy for all w € W and Xy is robustly positive
invariant. Thus, Proposition 4 holds for the closed-loop
system.

Letv~v+ = (wl,...,
of Jy(-) we obtain

wy—_1,wy) and using the definition

Iyt vt wt)

= Jn(z,v,w) —l(z,kn(x)) + n(z(N),wy) (9)
in which
0z, w) = =Vi(x) + (z, 57 (x)) + Vi(f (2, 5p(2), w))
From Lemma 6 and the fact that (V) € X, we have
[ o ). )i ()t < ofu()
We also have that
[ o v @ @) ) (w)uon) = V(@)

and by the principle of optimality we have

VR < [ It e ()
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We integrate (9) w.r.t. WV*1 and apply these inequalities to
complete the proof. [ ]

Next we construct the upper bound for the optimal cost.

Lemma 8: Let Assumptions 1-4 hold. Then there exists
02(-) € K such that V§(z) < Vi(z) + o2(tx(X)) for all
reX f

Proof: We choose v € Xy and consider a trajectory

generated by repeated application of the terminal control law,
ie., z(k) := ¢(k;x,0,w). Note that z(k) € Xy forall k €
I>¢ since Xy is robustly positive invariant for the terminal
control law and therefore 0 € Vi (). We define d := tr(X).
From Assumption 4 and Lemma 7 we have

[ Wrlati+ 1) = Vial) du ()

. Uz (k), kg (2(k)))dp™ (w) + o(d)

<

for all k € Tjg y_1;. We sum both sides of the inequality
from k=0to k=N — 1 to give

| Wrlath) = Vi) du (w

N-1
<= |3 ey @) d () + No(a)
k=0
By rearranging and using the definition of Jy(-), we have
/ In(z,0,w)du”™ (w) < Vi(z) + No(d) (10)
wWN

for all z € Xy. Define 05(d) := No(d) € K. Because V) (x)
is optimal and 0 € Vy(z) for all z € Xy, we have that

Vy(z) < /

WN

JIn(z,0, w)d,uN(W) an
Combine (10) and (11) to complete the proof. |

We use these Lemmata to establish the main theorem of
this work.

Theorem 9: Let Assumptions 1-5 hold. Then the origin is
RESIE for the stochastic system 27 = fo(z, w); w € W on
the robustly positive invariant set X .

Proof: From Assumption 5 we have that ¢1|z|® <
{(z,u) < VY (z). From Lemma 7 and the lower bound on
the stage cost we have the cost decrease condition in (7)
with o3(-) = o(-) and ¢3 = ¢;. From Lemma 8, we have
that Vi (z) < cflz|® + oo (tr(X)) for all z € Xy,

Since Xy contains the origin in its interior, there exists
r > 0 such that {z € R" : |z] < r} C X;. We define the
set C := {x € Xy : |z| > r} and since Xy is compact
(bounded by Assumption 5 and closed by Proposition 3) so
is C. Furthermore, because Jy (-) is continuous, the constant

4 := max {

is well-defined and finite since |z| > 0 for all x € C. We
define ¢y := max{0d, cs}. Clearly, we have

JIn(x,u,v)
||

:(:U,V,W)GCXVNXWN}

Vy(z) < ealz] + o2 (tr(%)) (12)
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for all z € Xy. Furthermore, if z € X but x ¢ Xy, then z €
C, and therefore (V3 (z)/|z|*) < & by optimality. Thus, (12)
holds for all z € Xx. Therefore, V3 (z) is an (exponential)
SISS-Lyapunov function and by Proposition 5 the proof is
complete. [ ]
We note that the KC-function o9 that we have constructed
from this analysis increases with increasing horizon length
N. This feature suggests that the function v(tr(X)) in (5) also
increases with horizon length /N for an otherwise equivalent
SMPC problem. We argue, however, that this result is not a
weakness of the analysis technique chosen, but an underlying
feature of nonlinear SMPC (subject to these assumptions).
We demonstrate this fact and other nonintuitive behaviors of
nonlinear SMPC with the following numerical example.

V. NUMERICAL EXAMPLE

Consider the discrete-time stochastic system

+
e Uy (1 —29)w
] = b+
in which Pr(w=04) = Pr(w=-04) = 0.3 and

Pr (w = 0) = 0.4. We enforce the following constraints

== [ el

—0.1 1 —0.2 0.2

and apply the stage cost ¢(z,u) = z'Qz + v Ru in which
Q@ = R = diag([1,0.1]). We note that the nominal system
(i.e., w = 0) is linear. We use the LQR cost P and gain K
for the nominal system to define the terminal cost Vy(z) =
«' Pz and terminal control law «¢(z) = Kx. We define the
terminal constraint as Xy = {o € R" : |z1] < 0.6, |zo| <
0.05} and confirm that Assumption 4 holds. We define the
control policy as w(z,v) := Ka + v and V such that for
all (z,u) € Z there exists v € V such that 7(z,v) = wu.
Assumption 5 is satisfied with a = 2.

We simulate the closed-loop response of this stochastic
system subject to nominal MPC and nonlinear SMPC con-
trollers with varying horizon lengths. We initialize the state
at z(0) [—2,0]. We solve the stochastic optimization
problem by considering all possible disturbance realizations
in the optimization horizon. Since the disturbance has finite
support, all expected values are calculated exactly.

We plot the expected value of the state in Figure 1. The
SMPC controller with a horizon of N = 1 produces a similar
closed-loop trajectory to the nominal MPC controller, but
with a slightly more aggressive control action. However,
as we increase the horizon length of the SMPC controller,
E [x2(k)] is driven away from the origin. Nonlinear SMPC
with N > 2 does not stabilize the terminal region (with
probability one) as we might expected for linear SMPC or
ISS nonlinear stochastic systems in general [10], [21]. We
emphasize that this behavior is a result of the controller and
not strictly necessary for the chosen stochastic system (as
evident by the closed-loop trajectory of SMPC with N = 1).

In Figure 2, we plot the value of E[lz(k)|] for each
closed-loop stochastic system. We note that these results are
consistent with the bound in (5). For all horizon lengths of
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Fig. 2. The expected value of the norm of the state for the closed-loop

stochastic system for different controllers.

SMPC, we observe an initial decay in the value of E [|z(k)[]
as the effect of the initial condition vanishes. After k = 5
the value of E [|a(k)|] remains fairly constant. The value of
E[|z(k)|] as & — oo, however, increases with increasing
horizon length N for SMPC. This example suggests that the
dependence of ~y(+) on the horizon length N is not an artifact
of the chosen analysis approach and is instead a property
of nonlinear SMPC. Even quasi-linear systems, such as the
one in this example, can produce closed-loop results that are
distinctly different from linear systems.

This nonintuitive behavior occurs because the effect of
the disturbance is attenuated by larger values of xo and we
have selected smaller penalties for zs, uo than 21, u;. Thus,
driving the system to a large value of x5 is favorable in
terms of expected cost. By increasing the horizon length, we
allow the optimizer to explore operating points further away
from the origin and terminal set, resulting in larger values
of E[z2(k)] as k — oo. In general, however, the effect of
horizon length on the behavior of nonlinear SMPC remains
an open question.

VI. CONCLUSIONS

In this work, we have established that SMPC, under
suitable assumptions, produces a well-defined optimization
problem and all stochastic properties of interest for the
closed-loop system are indeed well-defined. We also es-
tablish that the closed-loop system generated by nonlinear
SMPC is RESIE. This result provides a clear connection
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between the behavior of nonlinear SMPC and the disturbance
w that is often absent from closed-loop analysis of SMPC.
Through a numerical example, we demonstrated both the
implications of this analysis and the nonintuitive closed-loop
behavior that may arise from nonlinear SMPC.
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