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Abstract— In this work, we define and establish a selection of
significant and new properties for nonlinear stochastic model
predictive control (SMPC). First, we ensure that the underlying
stochastic properties of the closed-loop stochastic system are
indeed well-defined. We then define robust exponential stability
in expectation (RESiE) and establish that nonlinear SMPC,
under suitable assumptions, renders the origin of the closed-
loop system RESiE. We conclude with a numerical example to
demonstrate the implications of this analysis.

I. INTRODUCTION

For successful implementation of any control technique,

some margin of robustness to disturbances is required. The

inherent robustness of linear and nonlinear model predic-

tive control (MPC) to small disturbances has been well-

established [1]–[4]. To improve upon the inherent robustness

of nominal MPC, SMPC uses a probabilistic description

of uncertainty and optimizes the expected value of a cost

function subject to both deterministic and probabilistic con-

straints on the state and input variables [5]–[7]. Solving and

analyzing the closed-loop properties of the SMPC problem is

considerably more difficult than the nominal MPC problem

and therefore the majority of results for SMPC are restricted

to linear systems. Although approximating and solving the

nonlinear SMPC problem is a worthwhile pursuit in its

own right, we instead focus this work on the closed-loop

properties of nonlinear SMPC.

For linear SMPC with multiplicative disturbances, [8]

establish that the origin is asymptotically stable with prob-

ability one if a global stochastic Lyapunov function is used

for the terminal cost. For constrained linear SMPC with

bounded, additive disturbances, we can construct terminal

constraints and a terminal cost that ensure recursive feasi-

bility and stability in expectation [9]. We can also establish

that the minimal robust positive invariant set for the system

is asymptotically stable with probability one [10].

For nonlinear SMPC, the closed-loop system is stable

in expectation if a global stochastic Lyapunov function is

used as the terminal cost [11]. For constrained nonlinear

systems subject to bounded disturbances, these results extend

to SMPC algorithms with properly formulated terminal costs

and constraints [12]. Under certain viability and stochastic

controllability assumptions, nonlinear SMPC without termi-

nal conditions is also stabilizing, but these assumptions are

difficult to verify for nonlinear systems [13].
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There are, however, limitations to the current theory ad-

dressing nonlinear SMPC. Currently, there is little discussion

of the existence of optimal solutions to the SMPC problem

or measurability of the closed-loop trajectory. Both of these

properties, although likely to hold under mild regularity

assumptions, should be rigorously addressed. Furthermore,

the established closed-loop properties of nonlinear SMPC are

often limited to stability in expected value (no exponential

decay of the effect of the initial condition) if disturbances

do not vanish at the origin. In addition, there is no clear

connection between the disturbance considered in the SMPC

formulation and the closed-loop stability results. In this work,

we address these limitations.

To analyze the closed-loop properties of nonlinear SMPC,

we employ results derived from stochastic stability theory

[14]. Specifically, we use the concepts of stochastic input-

to-state stability (SISS) and SISS-Lyapunov functions [15]–

[17]. While we use definitions and results from this literature

as inspiration, we note that this literature often assumes that

the stochastic disturbance vanishes at the origin (excluding

additive disturbances) and does not address discontinuous

closed-loop systems, such as nonlinear SMPC with a possi-

bly discontinuous control law. Thus, we adjust these defini-

tions and results to address nonlinear SMPC.

In Section 2, we introduce SMPC and some suitable

assumptions. In Section 3, we discuss and establish the

existence of optimal solutions for nonlinear SMPC problem

and measurability of the closed-loop stochastic system. In

Section 4, we define robust exponential stability in expecta-

tion (RESiE), provide a sufficient condition for this property

in terms of an SISS-Lyapunov function, and establish that

SMPC generates a closed-loop systems that is RESiE. We

conclude with a nonlinear SMPC example.

Notation: Let I and R denote the integers and reals. Let

superscripts and subscripts denote dimensions and restric-

tions (e.g., Rn
≥0 denotes nonnegative reals of dimension n).

We use | · | to denote Euclidean norm. Let IS(x) denote the

indicator function for a set S, i.e., IS(x) = 1 if x ∈ S and

zero otherwise. The function α : R≥0 → R≥0 is in class K if

it is continuous, strictly increasing, and α(0) = 0. Let P(Ω)
denote the power set and B(Ω) denote the Borel field of some

set Ω. A set F ⊆ R
n is Borel measurable if F ∈ B(Rn) and

a function f : Rn → R
m is Borel measurable if for each

open set O ⊂ R
m, the set f−1(O) := {x ∈ R

n : f(x) ∈ O}
is Borel measurable. A set-valued mapping S : X ⇒ Y
is Borel measurable if for every open set O ⊆ Y , the set

S−1(O) := {x ∈ X : S(x) ∩O 6= ∅} is Borel measurable.
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II. STOCHASTIC MODEL PREDICTIVE CONTROL

A. The stochastic system

We consider the following discrete-time stochastic differ-

ence equation

x+ = f(x, u, w) f : X× U×W → X (1)

in which x ∈ X ⊆ R
n is the state, u ∈ U ⊆ R

m is

the controlled input, and w ∈ W ⊆ R
p is the disturbance

(random variable). The successor state is denoted by x+.

Let (Ω,F , P ) be a probability space for the sequence

w∞ : Ω → W
∞ of random variables, i.e., w∞ := {wi}

∞
i=0

for wi : Ω → W. We denote wi : Ω → W
i as the

sequence wi := (w0, . . . , wi−1). Let {Fi}
∞
i=0 denote the

natural filtration of the sequence {wi}
∞
i=0, that is Fi ⊆ F

is all sets of the form {ω ∈ Ω : wi(ω) ∈ F} for all

F ∈ B(Wi). By definition, wi is measurable w.r.t. Fi. For

some Borel measurable function g : W
i → R we define

expected value as

E [g(wi)] :=

∫

Ω

g(wi(ω))dP (ω)

We make the following assumption for the disturbance

in SMPC. Note that we require bounded disturbances (i.e.,

compact support) because we allow state constraints in the

problem formulation and do not require the terminal cost to

be a global stochastic Lyapunov function.

Assumption 1: The disturbances wi : Ω → W are in-

dependent and identically distributed, zero mean, random

variables. Each random variable has a known and equivalent

probability measure µ : B(W) → [0, 1] defined such that

µ(F ) = P ({ω ∈ Ω : wi(ω) ∈ F}) for all F ∈ B(W). The

support W is compact and contains the origin. The second

moment of w(i) is finite and the covariance matrix is defined

as Σ = E [w(i)w(i)′] for all i ∈ I≥0.

For the random variables (wi, wi+1, . . . , wi+N−1) and

N ∈ I≥1, their joint distribution measure µN : B(WN ) →
[0, 1] is defined as µN (F ) = µ(Fi)µ(Fi+1) . . . µ(Fi+N−1)
for all F = (Fi, Fi+1, . . . , Fi+N−1) ∈ B(WN ). For any

Borel measurable function g : Wi+1 → R and all i ∈ I≥0,

conditional expected value satisfies

E [g(wi+1) | Fi] (ω) =

∫

W

g(w0(ω), . . . , wi−1(ω), w)dµ(w)

B. SMPC formulation

In stochastic MPC, we typically use a predefined control

policy π : X× V → U in which v ∈ V are the parameters.1

Thus, we redefine the system of interest as

x+ = f(x, π(x, v), w) (2)

We denote the solution of (2) at time k, given the initial con-

dition x, trajectory of parameters v ∈ V
N , and disturbance

trajectory w ∈ W
N as φ̂(k;x,v,w).

We consider both hard constraints, i.e., (x, u) ∈ Zh ⊆
X× U and probabilistic constraints on the state defined as

Pr
(

f(x, u, w) ∈ X̃

)

≥ 1− ε (3)

1In many cases, we define π(x, v) = Kx+ v.

for a set X̃ and constant ε ∈ [0, 1]. We can reformulate this

probabilistic constraint using the following function

G(x, u) := 1−

∫

W

I
X̃
(f(x, u, w))dµ(w)

and constraint Z̃ε := {(x, u) : G(x, u) ≤ ε}. Then we define

the combined hard and probabilistic constraints as

(x, u) ∈ Z := Zh ∩ Z̃ε

Calculating or approximating Z̃ε is a difficult and impor-

tant research problem that we somewhat obscure by this

reformulation. However, we find this reformulation useful

in subsequent analysis.

For SMPC with a horizon of N ∈ I≥1, the mixed

constraint Z, and terminal constraint Xf ⊆ X, we have the

set of admissible (x,v) pairs defined as

ZN := {(x,v) ∈ X× V
N :

(x(k), π(x(k), v(k))) ∈ Z ∀w ∈ W
N , k ∈ I[0,N−1]

x(N) ∈ Xf ∀w ∈ W
N}

in which x(k) = φ̂(k;x,v,w). We define the set of admis-

sible parameter trajectories and the set of admissible states

as VN (x) := {v ∈ V
N : (x,v) ∈ ZN} and XN := {x ∈ X :

∃v ∈ VN (x)}.

Given a stage cost ` : X × U → R≥0 and terminal cost

Vf : X → R≥0, we define the function

JN (x,v,w) :=

N−1
∑

k=0

`(x(k), π(x(k), v(k))) + Vf (x(N))

in which x(k) = φ̂(k;x,v,w). In SMPC, we define the cost

function based on the expected value of JN (·), i.e., we define

VN (x,v) :=

∫

WN

JN (x,v,w)dµN (w)

We define the SMPC problem for any x ∈ XN as

PN (x) : V 0
N (x) := min

v∈VN (x)
VN (x,v)

and the optimal solutions for a given initial state are defined

by the set-valued mapping v
0 : XN ⇒ V

N .

We require the following basic regularity assumptions.

Assumption 2: The function f : X × U × W → X, π :
X × V → U, ` : X × U → R≥0, and Vf : Xf → R≥0

are continuous. Furthermore, we have that f(0, 0, 0) = 0,

`(0, 0) = 0, and Vf (0) = 0.

Assumption 3: The set Zh and X̃ are closed and contain

the origin. The sets U, V, and Xf ⊆ X are compact and

contain the origin.

To ensure we achieve certain closed-loop performance and

stability objectives, we require the terminal conditions to

satisfy the following assumption.

Assumption 4: There exists a continuous terminal control

law κf : Xf → U such that for all x ∈ Xf , f(x, κf (x), w) ∈
Xf for all w ∈ W and

Vf (f(x, κf (x), 0)) ≤ Vf (x)− `(x, κf (x))
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Furthermore, (x, κf (x)) ∈ Zh, Xf ⊆ X̃, and π(x, 0) =
κf (x) for all x ∈ Xf . The functions Vf (·) and f(·) are

Lipschitz continuous on the sets Xf and Xf × U × W,

respectively.

Note that we require Vf (·) to satisfy a cost decrease condi-

tion only for the nominal system, i.e., w = 0. The Lipschitz

continuity of Vf (·) and f(·) are not typically required in

closed-loop analysis of MPC, but this restriction is minor.

Indeed, most MPC formulations require some assumptions

of Lipschitz continuity to ensure that the problem can be

solved by standard nonlinear optimization methods.

We also require bounds on the stage and terminal costs

detailed in the following assumption. The extra requirements

placed on the sets Xf and XN are used to construct an upper

bound for the optimal cost.

Assumption 5: There exists a ≥ 1, c1, cf > 0 such that

`(x, u) ≥ c1|x|
a for all (x, u) ∈ Zh and Vf (x) ≤ cf |x|

a for

all x ∈ Xf . The set Xf contains the origin in its interior and

XN is bounded.

III. BASIC PROPERTIES OF SMPC

A. Existence of optimal solutions

To discuss the closed-loop properties of SMPC, we must

first establish that the optimization problem PN (x) is indeed

well-defined for all x ∈ XN . Due to space limitations, all

proofs of the results in this section are reported in [18]. We

begin with the following result for the set Z.

Lemma 1: Let Assumptions 1-3 hold. Then the set Z =
Zh ∩ Z̃ε is closed.

Since the probabilistic constraint can be reformulated as

a closed set we can apply an approach similar to that in

[19, Proposition 2.4] and Lebesgue’s dominated convergence

theorem to establish the following result.

Proposition 2: Let Assumptions 1-3 hold. Then for each

x ∈ XN , the function VN (x, ·) : VN → R≥0 is continuous,

the set VN (x) is compact, and a solution to PN (x) exists.

Thus, we guarantee that the nonlinear SMPC optimiza-

tion problem is well-defined, even though solving such a

problem may be challenging or even intractable with current

optimization techniques.

B. Measurability of the closed-loop state trajectory

We define the control law mapping for SMPC as

KN (x) := π(x, v0(0;x)) in which v0(0;x) is the first

parameter vector in v
0(x). If there are multiple solutions to

PN (x), then KN (x) may be a set-valued mapping. However,

we typically assume there exists some selection rule Ψ :
(P(U) \ ∅) → U that defines a single-valued control law

κN : XN → U such that κN (x) := Ψ(KN (x)) ∈ KN (x)
for all x ∈ XN . The resulting closed-loop stochastic system

is then

x+ = fcl(x,w) := f(x, κN (x), w) (4)

We define the solution to (4) at time k ∈ I≥0 given the initial

condition x and disturbance sequence wk as φ(k;x,wk).
We note that κN (·) is not necessarily continuous or Borel

measurable. Furthermore, if κN (·) is not Borel measurable,

then φ(k;x,wk) is not necessarily Borel measurable w.r.t.

wk and all stochastic properties of interest for the closed-

loop system (e.g., expected value) may be undefined. Fortu-

nately, basic regularity assumptions are sufficient to establish

that KN (x) is Borel measurable.

Proposition 3: Let Assumptions 1-3 hold. Then the func-

tion V 0
N : XN → R is lower semicontinuous (Borel mea-

surable), the set XN is closed, and the set-valued mapping

KN (x) : XN ⇒ U is Borel measurable.

The proof of this result can be found in [18] and relies

(almost entirely) on Proposition 7.33 in [20]. We note that

even if KN (x) is a Borel measurable function we can still (in

theory) select a nonmeasurable selection rule. Accidentally

constructing such a selection rule for a real system, however,

is highly unlikely. Hence, we assume for the rest of this work

that Ψ(·) is Borel measurable and have the following result.

See Appendix A in [18] for further discussion of these topics.

Proposition 4: Let Assumptions 1-3 hold and assume XN

is robustly positive invariant for fcl(·), i.e, x ∈ XN implies

fcl(x,w) ∈ XN for all w ∈ W. Then the functions

φ(k;x,wk) are well-defined and Borel measurable for all

k ∈ I≥0. Furthermore, the integral
∫

Ω

g(φ(k;x,wk(ω)))dP (ω)

is well-defined for all x ∈ XN , k ∈ I≥0, and any Borel

measurable function g : XN → R≥0.

We note that the function V 0
N : XN → R≥0 is Borel mea-

surable (lower semicontinuous) from Proposition 3. Thus, the

expected value of the optimal cost (and many other relevant

properties) along the closed-loop trajectory is indeed well-

defined for the stochastic system generated by SMPC.

IV. STOCHASTIC EXPONENTIAL STABILITY

A. Robust Exponential Stability in Expectation

We begin by defining the term robust exponential stability

in expectation (RESiE).

Definition 1: The origin is robustly exponentially stable

in expectation (RESiE) for the stochastic system x+ =
fcl(x,w); w ∈ W on the robustly positive invariant set XN

if there exists λ ∈ (0, 1), ρ > 0, and γ(·) ∈ K such that the

closed-loop trajectory satisfies

E [|φ(k;x,wk)|] ≤ λkρ|x|+ γ(tr(Σ)) (5)

for all x ∈ XN and k ∈ I≥0.

RESiE bounds the expected value of the norm of the

closed-loop state based on the initial condition x and the

covariance of the disturbance, i.e., tr(Σ). Note that tr(Σ) → 0
implies Σ → 0 for positive semidefinite Σ. RESiE implies

the typical notion of stability in expectation, but also ensures

that the effect of the initial condition |x| on the upper bound

exponential decays to zero as k → ∞. We also note the

(intentional) similarities between the definition of RESiE and

the definition of robust exponential stability typically used

to characterize the inherent robustness of nominal MPC [2].

Furthermore, as tr(Σ) → 0, i.e., nominal MPC applied to
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a nominal system, we recover exponential stability of the

origin.

To establish this property for a closed-loop system we use

an (exponential) SISS-Lyapunov function defined as follows.

Note that we do not require continuity of fcl(·).
Definition 2: The Borel measurable function V : XN →

R≥0 is an (exponential) SISS-Lyapunov function on the

robustly positive invariant set XN for the stochastic system

x+ = fcl(x,w); w ∈ W, if there exists a ≥ 1, c1, c2, c3 > 0,

and σ2(·), σ3(·) ∈ K such that

c1|x|
a ≤ V (x) ≤ c2|x|

a + σ2(tr(Σ)) (6)
∫

W

V (fcl(x,w))dµ(w) ≤ V (x)− c3|x|
a + σ3(tr(Σ)) (7)

for all x ∈ XN .

Proposition 5: If a system x+ = fcl(x,w); w ∈ W,

with Borel measurable fcl(·), admits an (exponential) SISS-

Lyapunov function on the robustly positive invariant set XN ,

then the origin is RESiE.

Proof: To streamline notation, we define d := tr(Σ) and

note that this value is constant. We assume without loss of

generality that c3 ≤ c2.2 From the upper bound on V (·), we

have that −|x|a ≤ −V (x)/c2 + σ2(d)/c2. Choose x ∈ XN

and let x(k) := φ(k;x,wk) for all k ∈ I≥0. We apply the

definition of conditional expectation to give

E [V (x(k + 1)) | Fk] ≤ λ̃V (x(k)) + σ4(d)

in which λ̃ := 1 − c3/c2 ∈ (0, 1) and σ4(d) :=
(c3/c2)σ2(d) + σ3(d). Note that σ(·) ∈ K. We apply the

law of iterated expected value to give

E [V (x(k + 1))] ≤ λ̃E [V (x(k))] + σ4(d)

By iteration and the fact that E [V (x)] = V (x) we have

E [V (x(k))] ≤ λ̃kV (x(k)) + σ4(d)/(1− λ̃)

We substitute the upper and lower bound for V (x) to give3

E [|x(k)|a] ≤ λ̃k(c2/c1)|x|
a+(1/c1)σ2(d)+

σ4(d)

c1(1− λ̃)
(8)

Since a ≥ 1, we can apply Jensen’s inequality and use the

subadditivity of powers of 1/a ≤ 1 to give E [|x(k)|] ≤
λkρ|x|+ γ(d) in which λ := λ̃1/a, ρ := (c2/c1)

1/a, and

γ(d) :=

(

(1/c1)σ2(d) +
σ4(d)

c1(1− λ̃)

)1/a

Note that γ(·) ∈ K and d = tr(Σ) to complete the proof.

B. RESiE of SMPC

To establish that the closed-loop system generated by

SMPC is RESiE, we establish that the optimal cost is an

(exponential) SISS-Lyapunov function. We construct the cost

decrease condition by exploiting properties of the terminal

control law.

2If this inequality does not hold we can simply redefine c2 such that
c3 ≤ c2 with all the other constants remaining the same.

3If a = 2, (8) implies robust exponential stability in mean-squared.

Lemma 6: Let Assumptions 1-4 hold. Then there exists

σ(·) ∈ K such that
∫

W

Vf (f(x, κf (x), w))dµ(w) ≤ Vf (x)−`(x, κf (x))+σ(tr(Σ))

for all x ∈ Xf .

Proof: To streamline notation we define x+ =
f(x, κf (x), w) and x̂+ = f(x, κf (x), 0). Since Vf (·) and

f(·) are Lipschitz continuous on Xf and Xf × U × W,

respectively, and Xf is robustly positive invariant under the

control law κf (x), we have that

|Vf (x
+)− Vf (x̂

+)| ≤ LVf
|x+ − x̂+| ≤ LVf

Lf |w|

for all x ∈ Xf and w ∈ W in which LVf
and Lf are the

Lipschitz constants for Vf (·) and f(·), respectively. Thus,

we have that
∫

W

Vf (x
+)dµ(w) ≤ Vf (x̂

+) + σ(E[|w|]2)

in which σ(s) = LVf
Lfs

1/2 and σ(·) ∈ K. From Jensen’s

inequality we have E[|w|]2 ≤ E
[

|w|2
]

= tr(Σ). We substi-

tute in the nominal bound in Assumption 4 to complete the

proof.

Lemma 7: Let Assumptions 1-4 hold. Then XN is ro-

bustly positive invariant for the system x+ = fcl(x,w);
w ∈ W and there exists σ(·) ∈ K such that

∫

W

V 0
N (x+)dµ(w) ≤ V 0

N (x)− `(x, κN (x)) + σ(tr(Σ))

for all x ∈ XN .

Proof: Let x ∈ XN and choose any v ∈ v
0(x).

We have that x(N) = φ̂(N ;x,v) ∈ Xf for all w ∈
W

N and f(x(N), κf (x(N)), w) ∈ Xf for all w ∈ W

by Assumption 4. Thus, the candidate trajectory ṽ
+ =

(v(1), v(2), . . . , v(N − 1), 0) satisfies ṽ
+ ∈ VN (x+) for

x+ = f(x, κN (x), w) and all w ∈ W. Since VN (x+) 6= ∅,

then x+ ∈ XN for all w ∈ W and XN is robustly positive

invariant. Thus, Proposition 4 holds for the closed-loop

system.

Let w̃+ = (w1, . . . , wN−1, wN ) and using the definition

of JN (·) we obtain

JN (x+, ṽ+, w̃+)

= JN (x,v,w)− `(x, κN (x)) + η(x(N), wN ) (9)

in which

η(x,w) = −Vf (x) + `(x, κf (x)) + Vf (f(x, κf (x), w))

From Lemma 6 and the fact that x(N) ∈ Xf , we have
∫

WN+1

η(x(N), wN )dµN (w)dµ(wN ) ≤ σ(tr(Σ))

We also have that
∫

WN+1

JN (x,v0(x),w)dµN (w)dµ(wN ) = V 0
N (x)

and by the principle of optimality we have

V 0
N (x+) ≤

∫

WN

JN (x+, ṽ+, w̃+)dµN (w̃+)
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We integrate (9) w.r.t. WN+1 and apply these inequalities to

complete the proof.

Next we construct the upper bound for the optimal cost.

Lemma 8: Let Assumptions 1-4 hold. Then there exists

σ2(·) ∈ K such that V 0
N (x) ≤ Vf (x) + σ2(tr(Σ)) for all

x ∈ Xf .

Proof: We choose x ∈ Xf and consider a trajectory

generated by repeated application of the terminal control law,

i.e., x(k) := φ̂(k;x,0,w). Note that x(k) ∈ Xf for all k ∈
I≥0 since Xf is robustly positive invariant for the terminal

control law and therefore 0 ∈ VN (x). We define d := tr(Σ).
From Assumption 4 and Lemma 7 we have

∫

WN

(Vf (x(k + 1))− Vf (x(k))) dµ
N (w)

≤ −

∫

WN

`(x(k), κf (x(k)))dµ
N (w) + σ(d)

for all k ∈ I[0,N−1]. We sum both sides of the inequality

from k = 0 to k = N − 1 to give

∫

WN

(Vf (x(k))− Vf (x(0))) dµ
N (w)

≤ −

∫

WN

N−1
∑

k=0

`(x(k), κf (x(k)))dµ
N (w) +Nσ(d)

By rearranging and using the definition of JN (·), we have
∫

WN

JN (x,0,w)dµN (w) ≤ Vf (x) +Nσ(d) (10)

for all x ∈ Xf . Define σ2(d) := Nσ(d) ∈ K. Because V 0
N (x)

is optimal and 0 ∈ VN (x) for all x ∈ Xf , we have that

V 0
N (x) ≤

∫

WN

JN (x,0,w)dµN (w) (11)

Combine (10) and (11) to complete the proof.

We use these Lemmata to establish the main theorem of

this work.

Theorem 9: Let Assumptions 1-5 hold. Then the origin is

RESiE for the stochastic system x+ = fcl(x,w); w ∈ W on

the robustly positive invariant set XN .

Proof: From Assumption 5 we have that c1|x|
a ≤

`(x, u) ≤ V 0
N (x). From Lemma 7 and the lower bound on

the stage cost we have the cost decrease condition in (7)

with σ3(·) = σ(·) and c3 = c1. From Lemma 8, we have

that V 0
N (x) ≤ cf |x|

a + σ2(tr(Σ)) for all x ∈ Xf .

Since Xf contains the origin in its interior, there exists

r > 0 such that {x ∈ R
n : |x| ≤ r} ⊆ Xf . We define the

set C := {x ∈ XN : |x| ≥ r} and since XN is compact

(bounded by Assumption 5 and closed by Proposition 3) so

is C. Furthermore, because JN (·) is continuous, the constant

δ := max

{

JN (x,u,v)

|x|a
: (x,v,w) ∈ C × V

N ×W
N

}

is well-defined and finite since |x| > 0 for all x ∈ C. We

define c2 := max{δ, cf}. Clearly, we have

V 0
N (x) ≤ c2|x|

a + σ2(tr(Σ)) (12)

for all x ∈ Xf . Furthermore, if x ∈ XN but x /∈ Xf , then x ∈
C, and therefore (V 0

N (x)/|x|a) ≤ δ by optimality. Thus, (12)

holds for all x ∈ XN . Therefore, V 0
N (x) is an (exponential)

SISS-Lyapunov function and by Proposition 5 the proof is

complete.

We note that the K-function σ2 that we have constructed

from this analysis increases with increasing horizon length

N . This feature suggests that the function γ(tr(Σ)) in (5) also

increases with horizon length N for an otherwise equivalent

SMPC problem. We argue, however, that this result is not a

weakness of the analysis technique chosen, but an underlying

feature of nonlinear SMPC (subject to these assumptions).

We demonstrate this fact and other nonintuitive behaviors of

nonlinear SMPC with the following numerical example.

V. NUMERICAL EXAMPLE

Consider the discrete-time stochastic system
[

x+
1

x+
2

]

=

[

x1

1.1x2

]

+

[

u1

u2

]

+

[

(1− x2)w
0

]

in which Pr (w = 0.4) = Pr (w = −0.4) = 0.3 and

Pr (w = 0) = 0.4. We enforce the following constraints
[

−3
−0.1

]

≤ x ≤

[

3
1

] [

−5
−0.2

]

≤ u ≤

[

5
0.2

]

and apply the stage cost `(x, u) = x′Qx + u′Ru in which

Q = R = diag([1, 0.1]). We note that the nominal system

(i.e., w = 0) is linear. We use the LQR cost P and gain K
for the nominal system to define the terminal cost Vf (x) =
x′Px and terminal control law κf (x) = Kx. We define the

terminal constraint as Xf = {x ∈ R
n : |x1| ≤ 0.6, |x2| ≤

0.05} and confirm that Assumption 4 holds. We define the

control policy as π(x, v) := Kx + v and V such that for

all (x, u) ∈ Z there exists v ∈ V such that π(x, v) = u.

Assumption 5 is satisfied with a = 2.

We simulate the closed-loop response of this stochastic

system subject to nominal MPC and nonlinear SMPC con-

trollers with varying horizon lengths. We initialize the state

at x(0) = [−2, 0]′. We solve the stochastic optimization

problem by considering all possible disturbance realizations

in the optimization horizon. Since the disturbance has finite

support, all expected values are calculated exactly.

We plot the expected value of the state in Figure 1. The

SMPC controller with a horizon of N = 1 produces a similar

closed-loop trajectory to the nominal MPC controller, but

with a slightly more aggressive control action. However,

as we increase the horizon length of the SMPC controller,

E [x2(k)] is driven away from the origin. Nonlinear SMPC

with N ≥ 2 does not stabilize the terminal region (with

probability one) as we might expected for linear SMPC or

ISS nonlinear stochastic systems in general [10], [21]. We

emphasize that this behavior is a result of the controller and

not strictly necessary for the chosen stochastic system (as

evident by the closed-loop trajectory of SMPC with N = 1).

In Figure 2, we plot the value of E[|x(k)|] for each

closed-loop stochastic system. We note that these results are

consistent with the bound in (5). For all horizon lengths of
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