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Biodiversity mediates ecosystem sensitivity to
climate variability
Brunno F. Oliveira 1,2✉, Frances C. Moore 1 & Xiaoli Dong1

A rich body of evidence from local-scale experiments and observational studies has revealed

stabilizing effects of biodiversity on ecosystem functioning. However, whether these effects

emerge across entire regions and continents remains largely overlooked. Here we combine

data on the distribution of more than 57,500 plant species and remote-sensing observations

throughout the entire Western Hemisphere to investigate the role of multiple facets of plant

diversity (species richness, phylogenetic diversity, and functional diversity) in mediating the

sensitivity of ecosystems to climate variability at the regional-scale over the past 20 years.

We show that, across multiple biomes, regions of greater plant diversity exhibit lower sen-

sitivity (more stable over time) to temperature variability at the interannual and seasonal-

scales. While these areas can display lower sensitivity to interannual variability in pre-

cipitation, they emerge as highly sensitive to precipitation seasonality. Conserving landscapes

of greater diversity may help stabilize ecosystem functioning under climate change, possibly

securing the continuous provisions of productivity-related ecosystem service to people.
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Rapid global environmental change, including greater and
more frequent extreme climate events, is profoundly
transforming Earth’s ecosystems1–3. Identifying factors that

contribute to the persistence and stability of ecosystems despite
these changes is fundamental for ensuring the continuous pro-
vision of services they underpin, such as carbon storage, timber,
wildlife habitats and regulation of the hydrological cycle4–6.
Biodiversity plays a critical role in stabilizing ecosystem func-
tioning (i.e., less variable over time) as evidenced in a growing
number of experimental7–10 and observational11–14 studies.
Although fundamental to our basic understanding of ecosystem
functioning and stability, this body of work has emphasized a
limited range of ecosystem types (i.e., mostly grasslands) and
smaller spatial scales (i.e., few square meters plots) than those
relevant for management and policy15–18. Yet, sustaining eco-
system structure, functioning and services under future envir-
onmental conditions requires a deeper understanding of how
biodiversity underpins their stability under realistic settings,
across ecosystem types, and along climate gradients19.

The magnitude and stability of many ecosystem processes,
such as vegetation productivity and biomass production, are
largely controlled by climate variability acting at multiple tem-
poral scales20,21. This variability ranges from short-term climate
extremes (e.g., heat waves) to seasonal climate dynamics that
affect plant phenology, and to longer-term processes that can
reflect climate change22. Recent global analyses using satellite
remote-sensed data have revealed remarkable geographic varia-
tion in how vegetation production responds to fluctuation in
multiple climate components over different temporal scales20–24.
These patterns may at least in part reflect natural selection of a
combination of successful plant life-history traits to patterns
of climate variability in different regions25,26. For example,
arid ecosystems (e.g., savannas and grasslands) show large
amplitudes in vegetation green-ups to interannual variability in
precipitation24,27, while vegetation dynamics in seasonally cold
ecosystems (e.g., temperate, arctic, and boreal biomes) are largely
controlled by intra-annual variability in temperature, including
climate-driven phenology20,21. Even while climate variability
influences vegetation dynamics and idiosyncrasies of assemblage
composition26,28,29, it also reflects large-scale gradients of energy,
resources, and other abiotic conditions that constrain, the
diversity of plants, animals, and microbes, which is generally
highest in temporally stable, warm and wet environments30–32.
Yet, limited empirical evidence exists demonstrating that biodi-
versity can mediate the stability of ecosystems to climate varia-
bility at large spatiotemporal extents.

Much of the focus in biodiversity-stability studies has been
built upon fine-scale and short-time periods in ecological systems.
However, there is an increasing interest in coarse-scale (e.g.,
regional- or landscape-scale) perspectives of biodiversity–stability
relationships to inform policy and conservation15,33–36. Land-
scapes of greater diversity are more likely to include a range of
species that respond differently to environmental variation37 and
utilize different components of the resource base38. It is therefore
expected that diverse landscapes would increase ecosystem sta-
bility via temporal and spatiotemporal niche partitioning35,39–41.
This would occur because species may respond asynchronously to
environmental fluctuation, such that variability of biomass pro-
duction through time is reduced. Moreover, individuals of dif-
ferent species may occur in different vegetation patches across
heterogeneous landscapes, and the resulting compositional turn-
over can increase stability due to spatial niche partitioning17.
Even when a few highly productive species dominate
biodiversity–stability relationships at the local-scale (i.e., selection
effect42), differential responses to environmental changes by these
few dominant species would reduce variability of biomass at the

landscape-scale, hence higher stability39,40. In contrast, incon-
sistent or even negative species richness-stability relationships
may occur in regions where strong environmental filtering selects
for a limited set of traits across different species (i.e., functional
redundancy43) that respond synchronously to highly fluctuating
resources10, thus increasing temporal variability of vegetation
productivity.

The current consensus is that biodiversity is much more than
the simple sum of the species in a given locality. However, how
multiple dimensions of biodiversity such as the richness of
species (taxonomic diversity), the diversity of evolutionary
lineages (phylogenetic diversity) and that of the traits related to
ecological strategy (functional diversity) simultaneously influ-
ence ecosystem stability remains poorly investigated7,44,45, in
particular at large spatial scales. We explore the effects of mul-
tiple biodiversity dimensions on ecosystem stability, with a focus
on those dimensions that are more directly related to hypothe-
sized mechanisms, such as phylogenetic (PD) and functional
diversity (FD) (Supplementary Fig. 1), which may provide deeper
insights than focusing on species richness alone. While FD
reflects how greatly assemblages differ in functional trait com-
position, PD is a metric of phylogenetic relatedness. Assuming
phylogenetic relatedness reflects trait similarity, PD has been
advocated as an indirect indicator of FD46–48. Yet, PD may
capture a broader set of traits than is accounted for in FD
measures48, including hard-to-measuring traits46,47. Both PD
and FD have shown stronger positive effects on ecosystem sta-
bility than richness in most studies7,19,43,49–51, but not all52. PD
and FD are more direct indicators for ecological differences
among species than richness, hence niche-based processes.
However, they may reveal little about spatiotemporal variability
in the functional effects of species (i.e., temporal asynchrony and
spatial complementarity). Therefore, by including species rich-
ness we expect to capture biodiversity–stability relationships
related to the portfolio effect38, when richness increases chances
for asynchronous environmental responses by constituent spe-
cies, regardless of their phylogenetic relatedness (i.e., PD) or trait
similarity (i.e., FD).

In this study we set out to gain an understanding of the role of
regional-scale biodiversity in modulating the co–variability
between vegetation production and climate (e.g., ecosystem
sensitivity21) across multiple terrestrial biomes, which to date is
lacking. We assess this relationship using data on the species
distribution, phylogeny and functional traits for more than 57,500
vascular plant species distributed across the Western Hemisphere
(North, Central and South America)53,54, at a 0.5° grid-cell
resolution (~50 km2 at the equator; see Methods). At each grid-
cell (N= 11,527), we employ a multiple linear regression
approach to identify regions (i.e., grid-cells) of strong vegetation
sensitivity to climate variability, a key component of stability and
resilience21,55. This study sheds light on how biodiversity can
influence the sensitivity of ecosystem productivity to climate
variability at the regional-scale, beyond the conventional plot-
scales.

Results and discussion
Ecosystem sensitivity to climate variability. The resilience of a
system determines its capacity for absorbing changes to maintain
fundamental controls on structure and function55–57. We esti-
mate vegetation sensitivity to climate variability, a key component
of resilience56, by pairing 20 years’ satellite-based time-series of
vegetation productivity (enhanced vegetation index, EVI58) with
that of two ecologically relevant climate components, temperature
and precipitation59. These represent critical limiting factors for
plant greenness and thus important drivers of vegetation
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temporal dynamics20–22. Given that vegetation carries the sig-
nature of climate variability at multiple time-scales22, we explore
ecosystem sensitivity to month-to-month (intra-annual) and
year-to-year (interannual) oscillations in temperature and rain-
fall. While the former primarily captures short-term vegetation
responses to climate variability (i.e., phenology dynamics, rapid
gains in greenness shortly after rainfall, rapid drops in greenness
that may reflect heat waves or insect outbreaks), the latter
approximates mid-to-long-term vegetation responses to climate
change (e.g., global warming and droughts). We refer to these
temporal scales as seasonal and interannual, respectively.

Ecosystem sensitivity to temporal variability in temperature
and precipitation varies systematically across the Western
Hemisphere (Fig. 1, Supplementary Fig. 2, and Supplementary
Fig. 3). Our framework depicts the typical phenology in
vegetation greenness response to seasonality in temperature
(Fig. 1a and Supplementary Fig. 2a), revealing a latitudinal
gradient in the relative importance of temperature to vegetation
dynamics (increasing temperature-limitation with latitude, Sup-
plementary Fig. 4). At higher latitudes, temperature is also a
limiting factor at the interannual-scale (Fig. 1b and Supplemen-
tary Fig. 2c), corroborating increasing evidence of greenness in
polar areas in response to global warming60,61. The Amazon
Forest shows relatively low-sensitivity levels, suggesting elevated
resilience of tropical forests relative to most biomes in the
Western Hemisphere (Fig. 1). In arid regions (e.g., South
American Caatinga and Cerrado biomes, and North American
Great Plains), vegetation shows positive sensitivity to seasonality
in both temperature and precipitation, that is, more vegetation

greenness in warm and wet seasons (Fig. 1a, Supplementary
Fig. 2b and Supplementary Fig. 3). Arid regions also show
positive sensitivity to interannual variation in precipitation
(Fig. 1b and Supplementary Fig. 2d). Thus, while vegetation
greenness in these arid regions can respond rapidly to short-term
fluctuations in temperature and precipitation, it is still highly
limited by hydrologic stress from limited water supply in dry
years. This agrees with previous findings highlighting plastic
interannual vegetation dynamics in semi-arid ecosystems, which
exert a strong influence on interannual variability of the terrestrial
CO2 sink62,63. The overall picture of our analysis on the
vegetation sensitivity to climate variability is similar to previous
modeling exercises conducted at either seasonal20,21,23 or
interannual-scales24,27.

Biodiversity effects on ecosystem sensitivity. In order to control
for the correlations among climate, productivity, and biodiversity,
we investigate biodiversity–stability relationships within targeted
ecosystem types that share similar climates and comparable dis-
tribution of life forms: biomes (e.g., shrublands, grasslands, for-
ests), constituting historically and climatically well-defined
bioregions64. Across multiple biomes, we show that plant diver-
sity plays a significant role in affecting the spatiotemporal
dynamics of ecosystem productivity (Fig. 2).

Plant richness and PD are the main drivers to reduce
ecosystem sensitivity to temperature variability at both the
interannual and seasonal-scales (Fig. 2a, c). PD has shown to
stabilize biomass production over time at the plot-scale45,65 and
at the regional-scale17, but to the best of our knowledge this is one
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Fig. 1 Geographic patterns of ecosystem sensitivity across the Western Hemisphere. Bivariate plots representing ecosystem sensitivity to seasonality
(a) and interannual changes (b) in temperature and precipitation. Ecosystem sensitivity is denoted by standardized coefficient from time-series of
vegetation productivity against that of temperature and precipitation at each grid-cell (see methods). Sensitive ecosystems are those showing amplified
response of vegetation production to climate variability. In contrast, ecosystems of low sensitivity are those of largely stable productivity conditions despite
climate variability. White areas in the maps represent extremely sparse or inexistent vegetation cover and were eliminated from our analyses to reduce the
potential impact of noisy data at low EVI values. For univariate geographical patterns see Extended Data Fig. 1.
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of the first studies to show that PD influences the sensitivity
of vegetation production to climate variability. Assuming
phylogenetic relatedness reflects ecological similarity, a high PD
may increase spatiotemporal niche complementarity among
distantly related species, hence buffering year-to-year climate
variability17,45,65. Moreover, closely related species tend to share
many traits, including pathogens or immune responses, via their
shared co-evolutionary history66. As pathogens and herbivores
often target a narrow range of phylogenetically related co-
evolving species66, the effects of pathogen outbreaks and
herbivore attacks may be diluted in communities of high PD
(e.g., spillover onto closely related species66). Therefore, if pests
and pathogens outbreaks are triggered by abiotic conditions,
landscapes dominated by phylogenetically clustered species would
experience strong declines in biomass production as pests and
pathogens spread across vegetation patches in response to
environmental variability.

All biodiversity dimensions reduce ecosystem sensitivity to
seasonal variability in temperature (Fig. 2c). These effects are
stronger in colder biomes (Supplementary Fig. 5), where
seasonality in temperature is highest. Landscapes of high
biodiversity may increase resistance of biomass production to
seasonality if they are composed of a set of species that respond
asynchronously to environmental fluctuations. Moreover, a
greater diversity of slow-growth species, capable of holding
biomass despite seasonal climate fluctuation (e.g., via low leaf
turnover), may prevent short-term (i.e., seasonal) climate
variation from affecting baseline vegetation productivity levels.
Indeed, using plant height and wood density as indicators of
growth rate67, we found that ecosystem sensitivity to temperature
seasonality decreases in areas where trees are taller (Coefficient:
–0.29, p-value: <0.001, R2: 0.53) and wood density is higher
(Coefficient: –2.98, p-value: <0.001, R2: 0.44).

Sensitivity to temperature variability at the interannual-scale
increases in areas of greater FD (Fig. 2a), with stronger effects in
colder biomes (Supplementary Fig. 6). We identify increases in
vegetation greenness in response to temperature trends over the
last two decades (Supplementary Fig. 2c), consistent with
previous research in cold biomes60,61. Our results add to these
previous studies by suggesting that vegetation greenness response
to global warming in cold environments is maximized in
landscapes composed by diverse functional characteristics.

When assessing the contribution of biodiversity to ecosystem
sensitivity to precipitation, our results reveal increases in
sensitivity at both time-scales of climate variability in most
biomes (Fig. 2b, d). An increase in ecosystem sensitivity may
result from more fast-growing plant species, capable of increasing
vegetation responsiveness to erratic resource availability shortly
after rainfalls (e.g., nutrients induced by water availability), thus
elevating rates of ecosystem recovery. This responsiveness effect is
supported by all three biodiversity dimensions to short-term (i.e.,
seasonal) variability in rainfall (Fig. 2d). However, FD generally
decreases sensitivity to interannual variability in precipitation
(Fig. 2b), suggesting that functionally diverse landscapes can be
more resistant, varying less in their productivity across dry and
wet years.

Although our study demonstrates that PD and FD can
influence ecosystem sensitivity in different biomes, the strongest
and most consistent dimension of biodiversity contributing to
ecosystem sensitivity is species richness (Figs. 2 and 3). As species
richness increases at the regional-scale, it increases the likelihood
of including a set of highly productive species in different
vegetation patches and the chance for asynchronous population
responses over time within each vegetation patch, both of which
can potentially enhance the resistance of vegetation production to
climate variability. Species richness can increase ecosystem
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Fig. 2 Biome-level biodiversity effects on ecosystem sensitivity. Biodiversity effects on sensitivity to temperature (a, c) and precipitation (b, d) at the
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stability, regardless of levels of phylogenetic relatedness or
ecological similarity among coexisting species, if it reflects the
number of species with key functional traits that influence
ecosystem functioning68. For example, high-biomass, slow-
growth, long-lived, and deep-roots can increase the stability of
biomass production over time11,69,70. Although fundamental for
explaining many ecosystem processes71, a high PD or FD may
reflect an elevated diversity of lineages or traits that contribute
little to vegetation productivity68. Identifying relevant functional
traits and, perhaps more importantly, the functional composition
that reflects structure and functioning of ecosystems in different
biomes, should be a priority in research addressing questions
related to ecosystem stability and management in a changing
world15,69.

To gain further insights into the role of biodiversity in
stabilizing ecosystem productivity, we assess the extent to which
the effect size of biodiversity changes in face of disturbances
brought about by spatiotemporal variation in primary limiting
factors on ecosystem productivity of a region. Variability in
primary limiting factors of ecosystem productivity can generate
amplified responses20–22,24. For example, regions of low water
deficit show low sensitivity of vegetation productivity to
precipitation variability because water is not the limiting factor
(Fig. 1). We expect a strong effect of biodiversity in modifying the
ecosystem sensitivity to the variability of the primary limiting
factor of the region. This would occur if diverse landscapes are
more efficient in their resource use, which enhances their
productivity in conditions of limited resources72,73. Accordingly,
we identified regions in which vegetation productivity is mainly
limited by temperature and those by precipitation. We took the
difference between ecosystem sensitivity to temperature and to
precipitation for each temporal scale (seasonal and interannual),
and classified temperature-limited regions as those with a
stronger sensitivity to temperature than to precipitation, whereas
water-limited were those with a stronger sensitivity to precipita-
tion than to temperature (Supplementary Fig. 2).

Consistent with our expectations, we find strong effects of
biodiversity in modifying ecosystem sensitivity to the variability
in the primary regional limiting factor. For example, species
richness and PD show stronger effects in reducing ecosystem
sensitivity to temperature in temperature-limited regions than in
water-limited regions (Fig. 3a, c), and FD enhances responsive-
ness to interannual variability in temperature more strongly in
temperature-limited regions than in water-limited regions. PD
and FD reduce ecosystem sensitivity to interannual variability in

precipitation in water-limited regions (Fig. 3b), while richness
increases the responsiveness. Moreover, all biodiversity dimen-
sions decrease ecosystem sensitivity to temperature seasonality in
temperature-limited regions (Fig. 3c), whereas increase respon-
siveness to precipitation seasonality in water-limited regions
(Fig. 3d).

Despite clear biogeographic congruences we identified between
multiple biodiversity dimensions and ecosystem sensitivity
metrics at the regional-scale, we acknowledge some limitations.
First, biodiversity indices we used do not account for the evenness
of biomass or abundance among species38. Second, these
biodiversity indices do not account for temporal dynamics of
production, which are more direct indicators of asynchrony74.
Third, although species range maps often are well-suited for
macroecological analyses and have been widely used75, these
inevitably depict imperfect spatial occurrence patterns (e.g.,
species ranges larger than those realized for some species).
Nevertheless, the biogeographic pattern in plant richness we
identify in our study is validated by an independent site-level
plant occurrence database (SALVIAS), indicating a fairly accurate
and robust description of regional-scale diversity patterns
(See Supplementary Text, and Supplementary Fig. 7). Finally,
we acknowledge our approach cannot definitively distinguish
between correlation and causation because productivity and
biodiversity covary with many environmental and historical
drivers. Yet, the challenge in discerning causal relationships may
be partly overcome by offering repeated evidence of patterns
across different biomes. Results reported in our study call for
future research to move from local-scale experiments and
observations to broader-scale patterns to fully understand and
predict the impacts of biodiversity change on ecosystem
sensitivity to climate variability.

Conclusion
Our study provides support for a mediating effect of regional-
scale biodiversity patterns on the sensitivity of ecosystem pro-
ductivity, and likely productivity-dependent ecosystem services,
to temporal variability in environmental conditions. That bio-
geographical patterns of biodiversity largely coincide with those
of low ecosystem sensitivity to temperature variability suggests
sustaining biodiversity across the landscape may help stabilize
ecosystem functioning under climate change. Nevertheless,
vegetation productivity is driven by environmental conditions
and species composition, both of which are affected by changing
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climate28,76,77. As climate change alters the abundances and
distributions of plant species1,78–80, it also risks modifying eco-
system sensitivity to climate variability.

Methods
All analyses were performed in R version 4.0.281.

Environmental data. We used the Enhanced Vegetation Index (EVI) derived from
the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the
Terra Satellite as a proxy for vegetation productivity58. Vegetation productivity
represents the total amount of carbon and energy fixed by plants that can be
transfer up the food web to support the entire heterotrophic biomass in a given
ecosystem82, therefore being a key feature underpinning multiple ecosystem
functions83. EVI is a normalized ratio of reflectance bands, with a practical range of
0 to 1, which has improved sensitivity over high-biomass regions than the other
widely used Normalized Difference Vegetation Index (NDVI)58. We downloaded
20 years monthly aggregated EVI data from the MOD13C2 version 6 product at
0.05° (~5 km2) resolution from the periods of February 2000 to December 2020
using the R package MODIS version 1.2.2. MOD13C2 represents cloud-free spatial
composites achieved by replacing clouds with the historical MODIS time-series
climatology record. We chose MODIS EVI over other vegetation products derived
from sensors designed for vegetation monitoring because MODIS data is con-
sidered an improvement over other products58.

We retrieved monthly data on temperature and precipitation from
TerraClimate59 that match the spatiotemporal resolution in the EVI data (i.e., 20
years’ monthly values at a 0.05° spatial resolution). TerraClimate uses a spatial
downscaling approach that employs bilinear interpolation of temporal anomalies to
generate high-spatial resolution monthly climate datasets. Monthly temperature
and precipitation products from TerraClimate were validated using station-based
data obtained from the Global Historical Climatology Network (GHCN) database.
This dataset shows noted improvement in overall mean absolute error and
increased spatial realism relative to other available climate datasets59.

Biodiversity data. We retrieved a collection of integrated and standardized data on
vascular plants from the Western Hemisphere from the Botanical Information and
Ecology Network (BIEN, http://bien.nceas.ucsb.edu/bien/) database version 4.253

using the R package BIEN version 1.2.454. We started by selecting species with
range maps and phylogenetic information as the absence of these data prohibit
estimates of biodiversity dimensions (see below). For the purpose of our analyses,
we decided for removing bryophytes (N= 7691) because their small biomass may
contribute little to estimates of vegetation productivity, especially at large spatial
scales. By keeping all other vascular plants we expect our data reflects the complex
structural diversity that influence vegetation productivity patterns84. This resulted
in 57,606 species for use in downstream analyses.

BIEN provides the largest set of standardized modeled range maps for plants
available to date. Different range estimation methods were employed depending
upon the sample size of (unique) presence records for each species. Most range
maps were produced using species distribution models (SDM) generated in
MaxEnt85 with a combination of climate variables86 and spatial eigenvectors87,
following recommendations for building less complex models88. For species with
fewer than five occurrence records, a variety of approaches were employed as
outlined in ref. 89. Prior to species range estimation, occurrence records were
cleaned and cultivated or nonnative occurrences removed. However, SDMs may
still predict ranges larger than those realized for some species. To minimize this
issue, cells where presence was predicted by MaxEnt further than 1000 km from
any occurrence record were removed from the estimated range89. We must
acknowledge that these range-map-derived data represent species’ actual
distributional patterns only at some relatively coarse resolution. Although the
coarse resolution of our analyses (~50 km2 grid-cells) has been considered well-
suited for macroecological analyses75, as any other species range prediction
method, these predictions represent hypotheses about spatial occurrence patterns.
An in-depth description of this modeling approach is available from ref. 89.

We downloaded 100 species-level multi-gene phylogenetic trees from BIEN.
Genetic data used for estimating this phylogeny was queried from the GenBank
based on the standardized list of Western Hemisphere species. Data extracted from
GenBank was aligned using the standard single-run, unconstrained ML search
method, and penalized likelihood was used to estimate divergence times from the
molecular branch lengths of this tree. Taxa without genetic data were randomly
grafted onto the base tree using taxonomy (genus membership) as a guide. Taxa
not in the BIEN database were pruned from the ultrametric topology. Additional
information on the BIEN phylogenies is available from ref. 54.

For traits, we used a combination of data retrieved from BIEN54 and TRY77 as
to maximize trait coverage. Traits from TRY were requested from the web portal
(https://www.try-db.org) and downloaded on 5/28/2021. We selected the 23 most
complete and ecologically relevant traits (13 from BIEN and 21 from TRY). These
traits are related to the global spectrum of plant form and function67

(Supplementary Table 1), known to strongly influence the production and stability
of plant biomass71. This resulted in more than 1 million trait values across species
(Supplementary Table 1).

As many species lack trait information, we imputed missing values via a
machine learning gap-filling algorithm with Bayesian Hierarchical Probabilistic
Matrix Factorization (BHPMF90), which is a robust technic that has been used in
other global trait-related studies67,91–93. The facts that many traits are strongly
correlated and evolutionarily closely related species tend to occupy similar
functional space suggest that imputation approaches must benefit from including
allometric relationships among traits and evolutionary relationships among species.
BHPMF accommodates both trait-trait correlation matrix and the phylogenetic
trait signal via taxonomic hierarchy information90. To increase the imputation
accuracy, we included phylogenetic information in the form of the phylogenetic
eigenvectors (PEs94,), as suggested by ref. 95. PEs were calculated using the PVR
package96 in R. As PE calculation for large phylogenies is computationally
prohibitive, we calculated PEs at the genus level (N= 4498 genera). Although we
acknowledge that species-level PEs would be more informative than genus-level
PEs, the fact that evolutionarily closely related species tend to be close in the
functional space means that genus-level PEs must capture important aspects of
phylogenetic relatedness. We randomly chose one species per genus, removed all
other species, and computed PEs using the resulting genus-level tree. We repeated
this process 100 times to capture phylogenetic uncertainty and averaged resulting
PEs values across the 100 replicates. Across replicates, the first six PEs accounted
for 43% of the variation of the whole phylogeny. We thus used the first six PEs in
the final gap-filling process, excluding from the analyses low-representative PEs
accounting for less than 3% phylogenetic variation97. We repeated the imputation
approach for each one of the 100 phylogenies and averaged the resulting species-
level imputed traits. We further used the minimum and maximum values per trait
of the observed data as thresholds, replacing the gap-filled data with observed
minimum or maximum when outside of the thresholds92,93. Finally, we selected
eight ecologically relevant and commonly used traits67,92,93 for further functional
diversity analyses: leaf nitrogen content, leaf phosphorus content, leaf dry matter
content, specific leaf area, leaf area, wood density, plant max height and seed dry
mass. Imputations were performed using the R package BHPMF version 1.0.

Despite efforts in data collection, missing information is commonplace in life-
history trait databases. This is a major challenge in macroecological studies, which
often involve analyses across a large number of species (>103). A large percentage
of missing data also occurs in our trait values to construct FD. Additionally, since
phylogenetic and functional diversity are usually highly correlated47,98, imputation
of traits using the PEs could increase the intensity of the correlation between
phylogenetic and functional diversity. Despite this common pitfall, model results
show distinct effects of each biodiversity dimension on ecosystem sensitivity.
Nonetheless, more data on the three dimensions of biodiversity are needed to
improve our inferences. Regardless, the imputation approach for missing trait data
we applied likely results in less bias than omitting data for species whose trait data
were not available.

Pre-processing. We harmonized all variables with a Mollweide equal-area pro-
jection in a grid-cell resolution of 0.5° (~50 km2). Any cell with a mean annual EVI
below 0.1 was removed to reduce the potential impact of noisy data at low EVI
values, which are attributed to areas with extremely sparse or inexistent vegetation
cover21. We selected 13 well-established, geographically and climatically distinct
biomes across the Western Hemisphere, as described by Olson et al.64. We
excluded the “mangroves” due to small area (N= 8 grid-cells), and split “deserts
and xeric scrublands” into “north desert” and “south desert” because the former
gets seasonally colder than the latter. The biomes included in this study correspond
to “tundra”, “temperate conifers”, “tropical and subtropical grasslands and
savannas”, “taiga”, “flooded savannas”, “montane savannas”, “temperate mixed
forest”, “north desert”, “Mediterranean forests”, “subtropical conifers”, “subtropical
dry forests”, “tropical forests” and “south desert”.

Ecosystem sensitivity metrics. We used a multiple linear regression approach to
estimate the relative influence of temporal viability in each climate variable in
driving temporal changes in vegetation productivity. Ecosystem sensitivity was
determined based on the standardized coefficients for temperature and precipita-
tion extracted from multiple regressions fitted for each time-series. This approach
has been used in previous conceptual modeling exercises looking at temporal
vegetation responses to climate variability20,21,23. Prior to analyses, all time-series
(for each grid-cell) were z-transformed using mean zero and unit variance to
generate comparable (standardized) coefficients.

We estimated ecosystem sensitivity at two temporal scales: seasonal and
interannual. While the former primarily captures short-term vegetation responses
to climate variability (e.g., phenology dynamics, rapid drops in greenness that may
reflect heat waves or insect outbreaks), the latter approximates mid-to-long-term
vegetation responses to climate change (e.g., global warming and droughts)22. At
the seasonal time-scale, monthly time-series of EVI and temperature, and
precipitation were detrended using a time-series decomposition for removing
distortions related to deterministic trends99. The function determines the trend
component using a moving average, and removes it from the time-series.
Therefore, our estimates of ecosystem sensitivity to seasonal variability in climate is
unlikely to reflect deterministic trends. On the other hand, for estimates of
ecosystem sensitivity to interannual climate variability, we aggregated monthly
time-series to the annual-scale by calculating mean annual EVI and temperature,
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and cumulative annual precipitation (following86). We did not detrend the
interannual time-series as deterministic temporal increases or decreases are of
interest at this scale.

Once we estimated ecosystem sensitivity, we identified regions in which
vegetation productivity is mainly limited by temperature or precipitation. We
referred to these regions as temperature-limited and water-limited regions,
respectively. To this end, we classify grid-cells as temperature-limited if they show
stronger sensitivity to temperature than to precipitation. Likewise, we classify grid-
cells as water-limited if they show stronger sensitivity to precipitation than to
temperature (Supplementary Fig. 2). As sensitivity to temperature is stronger in
temperature-limited ecosystems, we expect that biodiversity would lower sensitivity
to temperature to a greater degree in these regions than it does in other regions.
Likewise, as ecosystem sensitivity to precipitation is stronger in water-limited
regions, we expect that biodiversity would lower sensitivity to precipitation in these
regions to a greater degree compared to its effect in other regions.

Biodiversity dimensions metrics. A myriad of approaches has been developed to
measure biodiversity and its multiple dimensions (i.e., species richness, PD and
FD). We chose biodiversity metrics sharing similar mathematical proprieties that
have been classified as richness metrics100,101. Biodiversity dimensions were cal-
culated for each 0.5° grid-cell.

We determined vascular plant richness by overlaying species range maps and
counting the number of species that overlap at each grid-cell. PD was estimated
with the widely used Faith’s index48, which quantifies the amount of evolutionary
history of a set of species in terms of millions of years. PD sums across all the
branch lengths connecting species in a phylogeny, from tips to root. PD was
calculated on a maximum clade credibility (MCC) tree estimated from the 100
original BIEN trees using the ‘maxCladeCred’ function from the “phangorn” R
package102. For FD, we used functional richness, representing the volume of the
trait space encapsulated by a group of species (e.g., convex hull103). We
summarized the trait space using a principal coordinate analysis (PCA) carried out
on the eight selected traits. A single trait space including all species was used to
preserve total inertia and distance between the same species occurring in different
assemblages104. We selected the first three PCA axes as traits for inferring FD as
these captured >80% of the total variance in traits. Functional richness was
calculated in R using the FD package105. We avoided the use of dendrogram‐based
FD indices since recent studies showed that these indices may lead to biased
estimates and inaccurate ecological conclusions104,106,107.

Owing to the mathematical proprieties of these metrics, PD and FD values can
be highly dependent on species richness (Supplementary Fig. 8). We remove this
artifact by quantifying the amount of deviation by the observed PD or FD from the
null expectation given the species richness observed in a grid-cell. This was done by
applying a null model that kept grid-cell richness constant while randomizing
assemblage composition, and recalculating PD and FD108,109. This procedure was
repeated 1000 times to generate a null distribution of PD and FD values, which was
contrasted against the observed PD and FD values using the formula of
standardized effect size (SES) [SES= (observed –mean(null))/sd(null)]. Positive
SES indicates assemblages with more PD or FD than expected by richness, while
negative SES indicates assemblages with more PD or FD than expected by richness.

Statistics and reproducibility. We used spatial simultaneous autoregressive (SAR)
models with a spatial error term to analyze the data while accounting for spatial
autocorrelation. SAR models incorporate spatial autocorrelation with weight
matrices that specify the strength of interaction between neighboring sites110,111.
We assessed the effect of multiple weighting functions when defining the matrix of
spatial weights and chose the one that best accommodated the spatial structure
present in the variables. We built a connectivity matrix defined by the distance in
which Moran’s I was strongest, and an inverse distance weighting function (1/d)
was necessary to account for spatial structure.

We fitted SAR models for each vegetation sensitivity metric (temperature and
precipitation) and at the two temporal scales (seasonal and interannual). We used a
weighting scheme for accommodating uncertainty in ecosystem sensitivities estimates.
To this end, we used the inverse of the range in confidence intervals from each
sensitivity metric as weights in our SAR models. Our model structure includes as
predictor variables the three biodiversity dimensions, biome, regional limitation factors
(water-limited vs. temperature-limited), interactions between each biodiversity
dimension and biomes, and interactions between each biodiversity dimension and
regional limiting factor. We model each vegetation sensitivity metric as absolute values,
as values close to zero are assumed to be more stable. All variables were z-transformed
to a mean of zero and unit variance to make model coefficients comparable. SAR
models were fitted in R, using the R package spatialreg112.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The project was based entirely on data that are publicly available through BIEN (https://
bien.nceas.ucsb.edu/bien/), TRY (https://www.try-db.org/), WWF biomes (https://www.

worldwildlife.org/publications/terrestrial-ecoregions-of-the-world), NASA MODIS
vegetation index (https://lpdaac.usgs.gov/products/mod13c2v006/), and TerraClimate
(https://www.climatologylab.org/terraclimate.html).

Code availability
Code used for generating all analyses can be found at: https://github.com/oliveirab/
EcoSens.
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