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ORGANISMAL BIOLOGY

Divergent cis-regulatory evolution underlies
the convergent loss of sodium channel expression

in electric fish

Sarah LaPotin't, Mary E. Swartz2, David M. Luecke?, Savvas J. Constantinou®?, Jason R. Gallant®?,

Johann K. Eberhart?, Harold H. Zakon'>*

South American and African weakly electric fish independently evolved electric organs from muscle. In both groups,
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a voltage-gated sodium channel gene independently lost expression from muscle and gained it in the electric
organ, allowing the channel to become specialized for generating electric signals. It is unknown how this voltage-
gated sodium channel gene is targeted to muscle in any vertebrate. We describe an enhancer that selectively
targets sodium channel expression to muscle. Next, we demonstrate how the loss of this enhancer, but not trans-
activating factors, drove the loss of sodium channel gene expression from muscle in South American electric fish.
While this enhancer is also altered in African electric fish, key transcription factor binding sites and enhancer
activity are retained, suggesting that the convergent loss of sodium channel expression from muscle in these two

electric fish lineages occurred via different processes.

INTRODUCTION
Weakly electric fish provide excellent study systems to analyze how
molecular processes underlie phenotypic evolution because of the
convergent evolution of numerous phenotypes (I, 2). The two most
studied groups of electric fish (African: Mormyroidea and South
American: Gymnotiformes) generate electric fields from electric
organs (EOs), an evolutionary novelty that arose independently from
muscle (3). Electric fish detect their species-specific electric organ
discharges (EODs) with specialized electrosensory cells that evolved
from lateral line hair cells (4). Weakly electric fish are nocturnally
active and use this “radar-like” system to identify objects and con-
specifics in the dark or in muddy waters. One well-known member
of the gymnotiforms, the electric eel (Electrophorus electricus), has
additionally evolved a strong EO for defense and prey capture (5, 6).
The EODs of both groups are generated by sodium-based action
potentials. The voltage-gated sodium channel gene, Scn4a, is expressed
in vertebrate muscle (7). Scn4a function is essential for proper mus-
cle physiology (8, 9), making its expression in muscle evolutionarily
constrained. As a result of a whole-genome duplication event at the
origin of teleosts, Scnda duplicated into scn4aa and scn4ab. In most
teleosts, both paralogs are expressed in muscle (10, 11). In both groups
of weakly electric fish, this duplication event facilitated the evolu-
tion of EOs for signaling as one paralog, scn4ab, retained expression
in muscle, while the other paralog, scn4aa, shifted its expression from
muscle to the evolutionarily novel EO. There, it evolved at elevated
rates underlying variations in species-specific EOD waveforms (3, 12, 13).
We used the independent loss of expression of scn4aa from muscle
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to determine whether convergent molecular mechanisms underlie
the convergent evolution of novelty.

Gymnotiformes include five families with myogenic (muscle-
derived) EOs (Fig. 1) (14). However, the Apteronotidae only have a
myogenic EO for the first few weeks of life (15). It then degenerates
and is replaced with a neurogenic (neuron-derived) EO that develops
from the axons of specialized spinal electromotor neurons (Fig. 1).
Perhaps because of the fleeting appearance of a myogenic EO in this
family, the apteronotids have not lost expression of scn4aa in skele-
tal muscle unlike the other gymnotiforms.

The superfamily mormyroidea includes one family (Gymnarchidae)
with a single species (Gymnarchus niloticus) and a second family with
well over 200 species (Mormyridae). scn4aa expression is lost from
muscle in mormyroids (3, 16).
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Fig. 1. Gymnotiform electric fish and their EOs. Some lineages generate sinusoidal
EODs (wave EOD); others generate brief pulsatile EODs (pulse EOD). The structure
of the electrocytes, the single cells that comprise the EO, is schematically repre-
sented to the right. Wave fish have simple, cylindrical electrocytes that resemble
elongated muscle fibers, whereas the pulse fish have more complex, derived electro-
cytes with box-like shapes [the most extreme variant is observed in the electric eel
(E. electricus), in which the electrocytes are thin, pancake-like cells]. The gymnoti-
form species used in this study are identified in their relative phylogenetic position
according to (74).
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RESULTS
A conserved enhancer drives scn4a gene
expression in muscle
Because little was known about the transcriptional targeting of Scn4a
channels to muscle, we performed a bioinformatic analysis to iden-
tify conserved noncoding elements (CNEs) of Scn4a and scn4aa in
vertebrates. We aligned introns and intergenic regions, both 5" and 3’,
of scn4aa of nonelectric teleosts as well as the Scn4a of other verte-
brates. We identified three CNEs within the large first intron that is
flanked on both sides by exons containing the 5’ untranslated region
(5'UTR; Fig. 2A). CNE1 and CNE2 are teleost specific, and their
presence is labile across teleosts, whereas CNE3 is conserved across
shark, teleosts, gar, chicken, and mammals (Figs. 2C and 3A, figs. S1
and S2, and table S1). We did not detect CNE3 in lamprey or hagfish.
We note that Kraner et al. (17, 18) identified a region that regu-
lates Scn4a expression (which we refer to as CNEx) in a partial survey

of the 5’'UTR of rat Scnda (17, 18). We located CNEx ~14 kb upstream
of CNE3 in the rat genome. BLAST search demonstrates that CNEx
is conserved in tetrapods but absent in other vertebrates (fig. S3).
Because CNEI and CNE2 are teleost specific and CNEXx is tetrapod
specific, we propose that CNE3 is a major, ancient element for
targeted expression of Scn4a in vertebrate muscle because it is con-
served widely in gnathostomes.

To test whether CNE3 regulates scn4aa expression, we deleted it
from zebrafish using CRISPR-Cas9 mutagenesis (fig. S4), and com-
pared the expression of scn4aa in the trunks of CNE-deleted and
wild-type (WT) zebrafish embryos with reverse transcription quan-
titative polymerase chain reaction (RT-qPCR). In CNE3-deleted fish,
we found that the expression of scn4aa was largely eliminated (>62-
fold decrease compared with WT siblings; Fig. 2B).

Next, we used a green fluorescent protein (GFP) expression assay
to determine whether CNE3 can drive gene expression in zebrafish
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Fig. 2. CNE3 is an enhancer for the muscle sodium channel gene Scn4a/scn4aa. (A) Map of scn4aa exon and intron structure in Danio rerio (zebrafish) beginning at the
transcription start site (TSS). The scn4aa 5'UTR is interrupted by a long intron with three CNEs (CNE1 to CNE3). (B) CRISPR-Cas9-mediated deletion of CNE3 knocks down
expression of scn4aa in trunk muscle of zebrafish embryos by 62-fold. Average fold change in expression of scn4aa in WT (black) versus CNE3-deleted (white) siblings at
52 hours postfertilization. (C) Examination of CNE3s conservation among vertebrates including salmon (Salmo salar), gar (Lepisosteus oculatus), and chicken (Gallus gallus)
(see figs. S1 and S2 for full set). Putative CNE3 sequences were aligned using LAGAN and displayed using mVISTA software (calculation window size = 50 bp; white = 50%
homology, pink =60% homology, dotted line =75% homology with the reference species, D. rerio). Transgenic zebrafish were created using Tol2-transposase-mediated
insertion (see Materials and Methods). For each species shown, CNE3 was inserted into a plasmid containing a minimal promoter and GFP gene, injected into single-cell
zebrafish embryos, and then imaged under standardized conditions 50 hours postfertilization.
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Fig. 3. TFBS in CNE3. (A) Alignment of CNE3 region across vertebrates. CNE3 has MCAT and E-Box TFBS, with gymnotiforms (orange) and mormyrids (blue) indicated. The
sequence logo plot indicates strong conservation of key motifs across vertebrates. TFBS predicted by rVISTA are indicated by a bold bar (MCAT, red; E-Box, blue). Ten
additional nucleotides flanking each TFBS are indicated by a broken bar (TEF1-3"-extended, red; myogenin-5'-extended, blue). (B) Functional assessment of TFBS
in zebrafish muscle using Tol2-transposase-mediated transgenesis. Zebrafish CNE3 with scrambled TFBS for MCAT, MCAT-3"-ex, and E-Box-5"-ex alone were combined
with a minimal promoter and GFP into constructs in combinations as indicated and injected into single-cell stage embryos. Alternatively, CNE3 from the gymnotiform
B. gauderio in zebrafish muscle with intact TFBS for MCAT, MCAT-3"-ex, and E-Box-5"-ex alone were used to make constructs instead, in combinations as indicated. Resulting
PO progeny were scored for fluorescence in muscle. A minimum of 40 individuals were scored for each group.

muscle. We made GFP constructs containing CNE3 from salmon
(Salmo salar), zebrafish (Danio rerio), gar (Lepisosteus oculatus), or
chicken (Gallus gallus) and injected each construct into zebrafish
embryos at the single-cell stage (19). The CNE3 sequences from each
species drove GFP expression selectively in zebrafish muscle (Fig. 2C
and movies S1 to S3). Collectively, these experiments demonstrate
that CNE3 is a major enhancer of the Scn4a and scn4aa sodium
channel genes, selectively targeting it to vertebrate muscle.

CNE3 has binding sites for muscle transcription factors

The strong conservation of CNE3 and its demonstrated enhancer activity
in zebrafish suggest that it has evolutionarily conserved transcrip-
tion factor binding sites (TFBS). Using rVISTA, we identified two

LaPotin et al., Sci. Adv. 8, eabm2970 (2022) 1 June 2022

putative TFBS within CNE3 that are highly conserved across verte-
brates (Fig. 3A and fig. S2): an E box motif (CANNTG) and an MCAT
element (GGAATG). These are binding sites for basic helix-loop-helix
(bHLH) transcription factors (TFs) important in muscle development
such as myogenin, myoD, etc. (20, 21), and TEA domain transcrip-
tion factor 1 (TEADI; also known as NTEF-1 or Tefl) (22), respec-
tively. We also detected conservation of the 5’ flanking region of the
MCAT element TFBS and the 3’ region of the E box TFBS, although
we identified no additional TFBSs in these regions.

To determine whether these putative TFBSs facilitate gene ex-
pression in muscle, we selectively scrambled them in our CNE3 GFP
constructs, scrambling either the predicted binding site alone (MCAT-
sc; E box-sc) or along with 10 to 12 nucleotides extended on one
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side (MCAT+3’ex-sc; E box+5’ex-sc; Fig. 3B). We tested the CNE3
GFP constructs singly or in combination to assess whether these
sequences are necessary for enhancer activity. The zebrafish CNE3
GFP constructs with either MCAT-sc or E box-sc alone consistently
drove GFP expression in muscle, suggesting a level of redundancy
of these TFBS. The combination of MCAT-sc and E box-sc still drove
GFP expression, but in only about 30% of cases, suggesting that
some of the conserved regions flanking MCAT and E box binding
sites or other regions of CNE3 have residual ability to drive transcrip-
tion (Fig. 3B). When the two TFBS along with their flanking exten-
sions were all scrambled (MCAT-3’ex-sc and E box-5’ex-sc), GFP
muscle expression was never observed (Fig. 3B). We conclude that
the MCAT and E box TFBSs and their extended regions are neces-
sary for enhancer activity.

Evolutionary change in CNE3 in both groups of electric fish
We next introduced sequences from four gymnotiforms and two
mormyrids into the CNE3 alignments (Figs. 2C and 3A and fig. S1).
In the gymnotiforms, the black ghost (Apteronotus albifrons), scn4aa
is robustly expressed in muscle (3, 12, 23). In three other species—
the gold-lined knifefish (Sternopygus macrurus), the pintail knifefish
(Brachyhypopomus gauderio), and the electric eel (E. electricus)—
scndaa expression is lost from muscle (3, 12, 24-26). Mormyrid muscle
does not express scn4aa.

The electric fish sequences were well anchored at both ends within
the alignments by the sequence from the genomic regions that
correspond to the 5’'UTR of the mRNA transcript. In contrast, the
presence and integrity of CNE3 were variable across gymnotiforms
in a pattern generally consistent with the expression of scn4aa in
muscle. A. albifrons, a member of an earlier branching lineage (14, 27)
[but see (28)] (Fig. 1) in which scn4aa is highly expressed in muscle,
has an CNE3 similar to other teleosts. In the remaining three spe-
cies, scn4aa expression is lost in muscle. S. macrurus shows a recog-
nizable but reduced CNE3. In contrast, B. gauderio and E. electricus
have no clear CNE3 despite repeated attempts at alignment with a
range of window sizes and thresholds of homology; at most, a few
remnants remain (Fig. 3A). Furthermore, these regions showed little
sequence similarity between B. gauderio and E. electricus, suggesting
that once this region began degrading in a common ancestor, it
degraded rapidly and independently in each lineage. Considering
these findings in light of gymnotiform phylogeny suggests that CNE3
began to degrade following the divergence of the Apteronotidae from
the rest of the gymnotiforms and was completely lost at the base of
the more derived pulse EOD lineages (Fig. 2B). Last, we note that
CNES3 is present in mormyrids but is substantially altered in com-
parison with other teleosts (fig. S1). It still has E box and MCAT
motifs (Fig. 3A) but has a slightly degraded 3’ flanking region. Thus,
extensive changes occurred in the CNE3 in both electric lineages,
most markedly, its complete loss in gymnotiforms with derived EOs.

We next made GFP constructs containing CNE3 from gym-
notiforms (A. albifrons, S. macrurus, B. gauderio, and E. electricus)
and one mormyroid (Brienomyrus brachyistius). CNE3 from the
gymnotiforms A. albifrons and S. macrurus drove gene expression
in zebrafish muscle. The GFP constructs made from the best-aligned
regions from B. gauderio and E. electricus did not drive GFP expres-
sion (Fig. 2C). Loss of CNE3 would likely contribute to the loss of
expression of scn4aa from trunk muscle, as seen in derived gymno-
tiforms. However, the CNE3 from the mormyrid, B. brachyistius,
did drive GFP expression. Thus, loss of enhancer activity of CNE3

LaPotin et al., Sci. Adv. 8, eabm2970 (2022) 1 June 2022

is not an explanation for the loss of scn4aa expression in muscle of
S. macrurus or mormyrids.

Sufficiency of TFBS in CNE3 to drive gene expression

While the MCAT and E box TFBSs are greatly degraded in the
derived gymnotiforms, it remains possible that other nucleotide
changes in CNE3 contribute to the loss of enhancer activity in these
species. To determine whether either of these two TFBS is sufficient
for enhancer activity, we assembled chimeric constructs with the
zebrafish TFBSs inserted into the CNE3 sequence from B. gauderio
at approximately the same location as seen in other vertebrates. We
first tested the activity of the minimal MCAT+E box sites (MCAT+E
box-bg) and found that this combination was insufficient to drive
GFP expression (Fig. 3B). We next tested each extended binding site
and found that MCAT-3’ex-bg drove expression 10% of the time,
whereas E box-5’ex-bg alone and the combination of MCAT-
3’ex-bg with E box-5’ex-bg consistently drove muscle expression.
Collectively, our results demonstrate that the extended MCAT and
E box binding sites are necessary and sufficient to drive gene expres-
sion in muscle, and the loss of these binding sites, as occurs in derived
gymnotiforms, is likely responsible for the loss of scn4aa expression
in muscle.

No loss of trans-factors in gymnotiform electric fish

While CNE3 is necessary and sufficient for scn4aa expression in
muscle, it remains plausible that loss of expression of scn4aa in gym-
notiform muscle was secondary due to the loss of its trans-activation.
To address this, we injected a zebrafish CNE3-driven GFP construct
into newly fertilized eggs of the gymnotiform B. gauderio. Of 18
embryos with visible fluorescence, all showed a consistent pattern
of parallel stripes along the dorsal flank (Fig. 4A). Visualizing the larvae
at a time when the EO is present (18 days) (29), we noted robust ex-
pression of GFP in muscle, none in the electrocytes, and none in
uninjected siblings (Fig. 4B). We observed an additional individual
after 5 months postfertilization, which showed consistent and strong
GFP expression in all skeletal muscles but not in adjacent electro-
cytes (Fig. 4C). The lack of GFP expression in electrocytes is consistent
with our previous findings that EOs down-regulate myogenic TFs
such as myogenin (25). This demonstrates that gymnotiforms retain
the capacity to drive scndaa expression in muscle, indicating that only
loss of cis-regulatory elements led to reduced expression of scndaa
in their muscle.

DISCUSSION

CNE3 is an enhancer targeting scn4aa expression to muscle
in vertebrates

Before our study, little was known about what directs Scn4a expres-
sion to vertebrate muscle. We identified a CNE that is widely present
in vertebrates within the 5’ intron of Scn4a that selectively drives
gene expression in muscle and whose deletion eliminates scn4aa
expression. CNE3 has an E box that would potentially bind bHLH
myogenic TFs that initiate and maintain the muscle phenotype in
vertebrates and an MCAT motif that would likely bind TEAD1,
known to activate a number of muscle-specific genes (22). Myogenic
TFs, in particular MRF4, were known to regulate Scn4a expression
in rat muscle (17, 18, 30, 31) at a site in the 5’UTR. However, we
only observed this site in tetrapods; so, it cannot be a universal en-
hancer for Scn4a expression in vertebrates. We propose that these
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Fig. 4. Trans-environment of B. gauderio muscle is consistent with Danio rerio.
Transgenic B. gauderio were created using Tol2-mediated transgenesis. A D. rerio
CNE3 was combined with a minimal promoter and GFP into a plasmid construct
and injected single-cell B. gauderio embryos. Representative PO progeny are shown.
(A) A newly hatched B. gauderio embryo 3 days postfertilization (dpf) show fluores-
cence in muscle under epifluorescence. (B) A confocal micrograph of the larval tail
at 8 dpf shows individual fluorescent muscle fibers. (C) At 150 dpf, the EO is fully
functional. Tail containing electrocytes (EC), fin rays (FR), and skeletal muscle (SM)
indicates strong fluorescence in the muscle but not EO. In all images, dorsal is up
and anterior is to the left.

bHLH TFs, as well as TEADI, likely regulate Scn4a widely across
vertebrates by their action on CNE3.

Alterations in CNE3 of electric fish
Both groups of electric fish show alterations in CNE3 compared
with other teleosts (fig. S1). The most pronounced alteration of
CNE3—its complete loss—occurs in the pulse gymnotiform species
that comprise the majority (68%) of gymnotiforms with myogenic
EOs (i.e., excluding apteronotids) as adults (32); B. gauderio and
E. electricus are from two different families and are widely separated
within the lineage of pulse fish (Fig. 1B), suggesting that the loss of
CNES3 occurred in most gymnotiforms with adult myogenic EOs.
S. macrurus has a recognizable CNE3 with intact TFBS that drive
GFP expression in the zebrafish assay. This species, unique among
gymnotiforms, is believed to regulate gene expression in its muscle
and EO primarily by posttranscriptional processes (33). Such a
mechanism would not be detected in our transgenic method. The
two mormyrids we examined have an altered CNE3, although with
largely intact TFBS, and their CNE3 drives gene expression in the
zebrafish muscle assay. The mormyrids lack scn4aa mRNA in their
EO. Collectively, our findings indicate that the degradation of critical
TFBS in CNE3 of the gymnotiforms with derived EOs can fully
explain the loss of scn4aa expression in muscle. However, despite
some unusual features, the CNE3 in mormyrids functions as an
enhancer in the GFP assay and contains the critical TFBS. Therefore,
the loss of scn4aa expression in muscle in these two different clades
of electric fish is likely via different mechanisms (e.g., epigenetic
regulation, or mormyrid-specific repressors and silencer elements
or miRNAs). Our results open the way for further studies aimed
at identifying how CNE3 is regulated in electric species with other
modes of regulation than complete loss.

LaPotin et al., Sci. Adv. 8, eabm2970 (2022) 1 June 2022

MATERIALS AND METHODS
Bioinformatics
Available genome data on the NCBI (National Center for Biotech-
nology Information) were BLAST searched with scn4a or scn4aa
5'UTR sequences from a number of teleosts and other vertebrates
(see supplemental file 3 for complete list) to find the 5’ intron
sequence. Unpublished genome data were similarly BLAST searched
with scn4aa 5"UTR sequences to find 5” intron sequences from the
electric species S. macrurus (provided by G. Unguez and M. Samanta),
B. gauderio, and B. brachyistius (J. Gallant, Michigan State University).
The 5’ intron sequence from black ghost (A. albifrons) was sequenced
from genomic DNA via PCR (NEB Q5 High-Fidelity DNA Polymerase,
Qiagen DNeasy Blood & Tissue protocol, GSAF, The University of
Texas at Austin). Alignments of the 5" intron from all vertebrates were
run using mLAGAN and visualized using mVISTA (http://genome.
Ibl.gov/vista/mvista/submit.shtml).

Putative TFBS were identified with rVISTA (https://rvista.dcode.org/).
To minimize the high rate of potential false positives when individual
sequences are analyzed, rVISTA identifies putative TFBS in pairs of
sequences. We took a conservative approach and only called a puta-
tive TFBS when it was recognized in all of the sequences submitted
for a particular CNE. We then cross-checked with the JASPAR
database (http://jaspar.genereg.net/) to determine whether there was
a match for the predicted TFBS.

Zebrafish husbandry

Zebrafish were raised and cared for in the Eberhart laboratory facility
at UT Austin. All zebrafish were derived from AB WT stocks. Institutional
animal care and use committee—approved protocols were observed.

GFP assay

We used transgenic zebrafish to assess the functional importance of
CNE3. Cytoplasmic GFP constructs (Eberhart laboratory, The Uni-
versity of Texas at Austin) were made with CNE3 sequences from a
wide variety of electric and nonelectric species. Genomic DNA was
obtained from S. macrurus, B. brachyistius (Zakon laboratory, UT
Austin), gar (L. Braasch, Michigan State University), and zebrafish
(Eberhart laboratory, UT Austin). Genomic DNA from chicken,
salmon, eel, B. gauderio, and black ghost was extracted according to
the DNeasy Blood & Tissue protocol (QIAGEN). Primers were
designed to flank the CNE3 sequences that were identified for each
species with restriction sites added (5Xho I, 3'Bgl II, Integrated
DNA Technologies). Each insert sequence was PCR amplified from
genomic DNA using Q5 High-Fidelity DNA Polymerase (NEB) and
digested with Xho I and Bgl II restriction enzymes (NEB). Ligations
were performed for each insert and GFP vector (Quick Ligation Kit,
NEB), cloned into One Shot TOP10 Chemically Competent Escherichia.
coli (Thermo Fisher Scientific), and grown on LB Agar plates with
ampicillin resistance. Plasmid DNA was extracted according to the
QIAprep Spin Miniprep Kit (QIAGEN) protocol. All GFP constructs
were sequenced for verification (GSAF, The University of Texas at
Austin) before injection. In vitro synthesis of a transposase plasmid
was done with the mMESSAGE mMACHINE SP6 Transcription
Kit (Invitrogen).

GFP construct injections were performed in zebrafish AB WT em-
bryos at the single-cell stage. Each embryo was injected with a 1-nl
cocktail of GFP plasmid (100 ng/pl), transposase mRNA (50 ng/pl),
and 0.2% phenol red. At 24 hours postfertilization, embryos were
screened for GFP expression. Injected PO fish were raised to maturity
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and outcrossed to an AB WT line to generate stable transgenic lines.
Confocal images of PO embryos were taken at 50 hours postfertilization
using a Zeiss LSM 710. A minimum of 40 embryos were sampled for
every group. The pTol2-HuC(elavl3)-CaMPARI2 plasmid used to
generate pan-neuronal expression was obtained from Addgene
(catalog #137185).

There were two predicted TFBS within CNE3, as well as highly
conserved regions flanking both of these TFBS. We used a GFP as-
say to test the functional consequence of the loss of these predicted
TFBS from zebrafish CNE3. GFP constructs were made, injected, and
imaged according to the above protocol.

The GFP construct that contains the CNE3 sequence from the
electric fish species B. gauderio does not consistently drive GFP ex-
pression in any tissue and does not contain either of the predicted
TEBS seen in other vertebrates. To test whether either of these TFBS
could cause the gain of muscle expression, we also made GFP con-
structs containing the CNE3 sequence from B. gauderio, with both
the E box and MCAT (and extended regions) sites added in at ap-
proximately the same location seen in other vertebrates (Genscript).
Site-directed mutagenesis was performed according to the QuikChange
II Kit (Agilent) to add the highly conserved 5" (E box) and 3’ (MCAT)
flanking sequences. GFP constructs were made, injected, and imaged
according to the same established protocol.

Generating zebrafish CRISPR mutants

CNES3 zebrafish mutants were generated using CRISPR-Cas9. We
designed two guide RNAs (Integrated DNA Technologies) to flank
and target CNE3 for deletion in zebrafish (extended data, Fig. 4).
Injections were performed in WT AB embryos at the single-cell stage
according to the Alt-R CRISP-Cas9 system guidelines (Integrated DNA
Technologies). At 3 months old, fish were fin clipped to extract DNA
and genotyped using PCR. A 229-base pair (bp) indel completely
deleting CNE3 was identified by sequencing (GSAF, The University
of Texas at Austin) and designated scn4aa”aul08. A single hetero-
zygous PO founder was then backcrossed to the AB strain.

Reverse transcription quantitative polymerase
chain reaction
We quantified the expression level of scn4aa in CNE3 mutants and
WT siblings using RT-qPCR. Trunk tissue from CNE3 mutant
zebrafish embryos and WT siblings at 52 hours after fertilization was
homogenized and stored in TRIzol at —80°C. Heads were lysed and
DNA was extracted to verify CNE3 mutations using PCR. Trunk tissues
from three individual embryos were combined together before
RNA extraction. Total RNA was extracted from the trunks using the
TRIzol RNA isolation protocol and RNA Clean & Concentrator kit (Zymo
Research). Quality of total RNA extracted was assessed via NanoDrop,
and the concentration was normalized to 50 ng/pl for each sample.
cDNA was synthesized from scn4aa”aul08 and WT total RNA
samples using SuperScript II First-Strand Synthesis (Thermo Fisher
Scientific) with random hexamer primers. RT-qPCR was performed
using the QuantStudio 3 Real-Time PCR System (Thermo Fisher
Scientific) with SYBR Green PCR Master Mix (Thermo Fisher Scientific).
Beta-actin and glyceraldehyde-3-phosphate dehydrogenase genes
were chosen as endogenous controls because of their stable expres-
sion. Expression levels were calculated via delta delta CT relative to
both endogenous controls across all groups. Five biological replicates,
each with three technical replicates, of both CNE3 mutant and WT
samples were assessed.
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Transgenics and microscopy methods for B. gauderio

The CNE3-GFP and Tol2 plasmids were produced with the Qiagen
Miniprep Kit, and mRNA synthesis with the nMESSAGE mMACHINE
SP6 Transcription Kit (Thermo Fisher Scientific). The transposase
template was pCS2FA from the Tol2kit (34).

A mix of CNE3 construct (100 ng/ul), capped Tol2 mRNA
(25 ng/ul), and 1% phenol red dye was injected into single-cell
B. gauderio embryos obtained via in vitro fertilization, following the
methods described by (35). In total, 80 embryos were injected. Ini-
tial embryo screening was done under a Leica MZ10F stereoscope:
Of the 80 embryos, 18 showed a pattern of fluorescence. After 18 days,
two GFP-expressing individuals were euthanized in 0.1% w/v MS-
222, whole mounted in VectaShield, and imaged on an Olympus
FV1000 (Fig. 3). After 5 months, another individual was euthanized;
total body fluorescence was examined before samples of flank muscle
and tail (containing EO) were removed for histological processing.
Tissue samples were embedded in OTC and flash frozen in an iso-
pentane bath submerged in liquid nitrogen, then cryo-sectioned to
20-um thickness, and imaged on a Leica MZ10F stereomicroscope.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm2970

View/request a protocol for this paper from Bio-protocol.
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