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A B S T R A C T   

Climatic history can shape the functioning of soil microbial communities and thus rates of ecosystem processes 
such as organic matter decomposition. For example, broad spatial scale differences in climatic history, such as 
contrasting precipitation regimes, have been shown to generate unique microbial functional responses to 
contemporary moisture conditions. Yet it is an open question as to whether local differences in soil microclimate 
similarly influence the functional potential of decomposer communities. Here, we use a multi-scale approach 
within and among two temperate forest field sites to investigate this question. Soils from fifty-four microsites, 
that vary in their soil moisture climate-regimes, were used as inocula for a common leaf litter (Quercus rubra L.) 
in a controlled, laboratory microcosm study. Microcosms were placed under dry, mesic and wet lab-moisture 
conditions and the rate of carbon (C) mineralization of the litter was measured over 202 days. Our results 
reveal differences in decomposition rates under controlled conditions that highlight broad-scale functional dif
ferences between the soil communities at each site. Specifically, we found that C mineralization differed by as 
much as two-fold for soil communities when compared between the sites. Our results also show that functional 
differences of soil communities are observable within one site but not the other. In the site where local-scale 
functional legacies were apparent, the historical soil moisture microclimate-regimes generated as much as an 
89% change in C mineralization rates of the leaf litter under the same contemporary, lab-imposed moisture 
conditions. A similar pattern was not observable in the other site; instead, laboratory moisture conditions 
explained almost all variation in C mineralization. Notably, for the site with pronounced local-scale functional 
legacies, there was much greater within-site variation in field-soil microsite moisture than at the site which did 
not exhibit functional legacies, suggesting that the extent of local-scale variation in microclimate may act as 
control on whether local-scale functional legacies are observed. Regardless of whether this mechanism does 
explain our findings, our observations do confirm those from prior studies where regional-scale moisture-regime 
differences shape microbial function, and extend this prior work by providing evidence that pronounced local- 
scale differences in soil moisture microclimate-regimes are associated with microbial functional legacies.   

1. Introduction 

Soil heterotrophic microorganisms produce carbon dioxide as they 
metabolize decomposing organic material for energy and growth (Swift 
et al., 1979). As biological agents that mediate decomposition, their 
activities contribute substantially to the fluxes of carbon (C) from 
terrestrial ecosystems to the atmosphere (Falkowski et al., 2008; 
Bond-Lamberty and Thomson, 2010). Soil temperature, moisture, and 

litter quality are important controls on decomposition rates (Aerts, 
1997; Parton et al., 2007) and are consequently represented in soil 
biogeochemical models. These models are used to understand and 
project how decomposition rates respond to changing environmental 
conditions, and the inclusion of microbial biomass and community traits 
as additional controls on organic matter decomposition reflect growing 
evidence that their influence on decomposition rates extends beyond 
those mediated directly by abiotic controls (Glassman et al., 2018; 
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Maynard et al., 2018). These modeling efforts have revealed that the 
way in which microbes are represented can strongly influence projected 
changes in soil organic matter flux rates and pool sizes (Schimel and 
Weintraub, 2003; Wang et al., 2013; Wieder et al., 2015b; Abramoff 
et al., 2018; Fatichi et al., 2019). 

There is now a wealth of empirical evidence that the abiotic envi
ronment shapes both the structure and function of microbial commu
nities. In experimental manipulations and across environmental 
gradients, past abiotic regimes of temperature (Karhu et al., 2014; 
Romero-Olivares et al., 2017), moisture (Evans and Wallenstein, 2012, 
2014; Hawkes et al., 2017), and litter input quality (Keiser et al., 2011) 
have been observed to shape contemporary microbial function (Strick
land et al., 2015; Crowther et al., 2019). Additionally, the abiotic his
torical legacies of these regimes on microbial community function can 
be persistent. For example, Hawkes et al. (2020) showed that within a 
regional precipitation gradient, 4.5 years of manipulated rainfall did not 
significantly shift microbial community function. Instead, soil respira
tion responses to the rainfall manipulation continued to reflect the 
community’s ‘climate origin’. These findings suggest that persistent 
functional legacies in biotic communities may constrain local ecosystem 
responses to environmental change, yet it is unclear in which environ
ments and at which scales these legacies manifest (Baveye et al., 2018; 
Ladau and Eloe-Fadrosh, 2019). 

Climatic variables are known to vary at both macro- and micro- 
scales. For instance, soil moisture regimes often vary substantially in 
space both across and within sites. In forests, spatial variation in soil 
moisture at local scales (m to km) can be equal in magnitude, or even 
exceed, variation in site-mean soil moisture among sites arrayed across 
regional climate gradients (Bradford et al., 2014, 2017; Loescher et al., 
2014). Variables including topography, soil properties and plant traits 
interact to produce microscale heterogeneity in moisture (Vanderlinden 
et al., 2012), but how microclimatic variation imprints historical leg
acies on the functioning of microbial communities appears largely un
known. Yet within-site moisture regimes have been linked to patterns in 
fungal composition and function (van der Wal et al., 2015; Štursová 
et al., 2016), enzyme activities (Baldrian et al., 2010; Baldrian, 2014) 
and litter decomposition (Bélanger et al., 2019) suggesting that micro
climate, as well as macroclimate, regimes may influence how microbial 
community function responds to contemporary and future variation in 
environmental conditions. 

In this study we take an experimental approach to disentangle 
whether the climatic regime influences decomposition rates via direct 
effects on microbial activities only, or additionally via indirect effects 
mediated by functional legacies that are embedded within the climate 
regime. We first look for evidence that site-level macroclimate regimes 
generate microbial communities that function distinctly. Second, we test 
competing hypotheses, the first of which is based on the idea that 
microclimate variation within sites does not generate functional legacies 
because they would be overwhelmed by rates of local dispersal of mi
crobes and/or materials (e.g., decomposing leaves; Allison and Martiny 
2008; Nemergut et al., 2013). Alternatively, high within-site heteroge
neity in microclimate could allow functional legacies to manifest at local 
scales, generating microbial communities with distinct functional re
sponses to contemporary moisture conditions. Our laboratory micro
cosm approach established and controlled three contemporary soil 
moisture regimes, imposed on a common leaf litter inoculated with soil 
microbial communities sourced from local-scale spatial gradients in soil 
moisture regime found within two forest sites within a regional climate 
gradient. We repeatedly measured carbon mineralization of the litter for 
202 days. 

2. Materials and methods 

2.1. Microsite characteristics and sampling 

We worked at two forest sites, ~650 km apart, that are part of the 

National Ecological Observation Network (NEON), which splits the 
continental United States into 20 ecoclimate domains to monitor eco
systems under environmental change across time and space (Keller et al., 
2008). Both sites are temperate deciduous forests that spanned from the 
mid-Atlantic domain (SCBI: Smithsonian Conservation Biological Insti
tute, Front Royal, VA) to the Northeast domain (HARV: Harvard Forest, 
Petersham, MA). The two sites have different climate and soil charac
teristics (Table 1) and differ in the degree to which soil moisture varies 
within each site (Fig. 1). Within each forest site we established 
twenty-seven microsites (1 m2) around the perimeter of the eddy-flux 
tower footprint, which covers about 1.3 km2. 

Microsites were on average 46 m apart from the next nearest 
microsite with the closest two microsites being 18 m apart and the two 
microsites furthest from one another being 1389 m apart within a site. 
We chose microsites that varied in topographic position (e.g., ridge 
versus valley bottom) to capture heterogeneity in microsite conditions. 
Microclimate measurements were taken at three discrete time points 
over a 10-month period from December 2019 to September 2020. 
Temperature was measured at 5 cm depth for soil and 1 cm depth for the 
litter layer using a hand-held thermometer. Soil volumetric moisture 
was measured in the field using a time domain reflectometry (TDR) 
probe, inserted at a 45◦ angle to ~5 cm depth, in addition to gravimetric 
moisture measured in the lab. These discrete point measurements were 
intended to capture relative differences in soil characteristics over space, 
specifically for soil moisture, which has often been described as 
temporally stable where relative moisture differences in sampled loca
tions persist over time (Vachaud et al., 1985; Brocca et al., 2010; Penna 
et al., 2013). In our study, temporal stability calculated through 
Spearman’s rank-order correlation reveals high temporal stability in 
gravimetric soil moisture (rs > 0.73) for the three point measurements 
over the year, confirming that point measurements are useful for char
acterizing spatial patterns in soil variables such as relative moisture 
regimes (Vanderlinden et al., 2012). 

Leaf litter was collected at peak litter fall in November 2019 across 
all of the microsites. Due to its presence across both sites, northern red 
oak (Quercus rubra L.) litter was pooled to create a common litter sub
strate and air dried. The Q. rubra leaves were ground to 2 mm using a 
Wiley mill, further mixed to homogenize the sample, and then auto
claved twice at 121 ◦C at 15 psi for 20 min, following the approach of 

Table 1 
Site characteristics. Soil data are from the microsites within each site. Values 
represent the mean of the microsites and standard deviation is displayed in 
parentheses for %C, %N, C:N, Soil Moisture, Soil pH, and Microbial Biomass.   

Unit Harvard Forest, MA 
(HARV) 

Smithsonian 
Conservation Biological 
Institute, VA (SCBI) 

Coordinates  (42.54, −72.17) (38.89, −78.14) 
Elevation m a.s.l. 351 361 
Mean Annual 

Temperature 

◦C 8 13 

Mean Annual 
Precipitation 

mm 976 1054 

Soil C % 23.9 (11.9) 8.0 (3.2) 
Soil N % 0.9 (0.4) 0.6 (0.4) 
C:N unitless 26.8 (3.1) 14.4 (1.8) 
Soil Moisture % 57.4 (15.0) 37.6 (7.2) 
Soil pH unitless 4.2 (0.3) 6.8 (0.5) 
Microbial 

Biomass 
μg CO2-C 
hr−1 g−1 

dry soil 

9.0 (4.2) 8.7 (6.4) 

Dominant Tree 
Species  

Red oak (Quercus 
rubra), White pine 
(Pinus strobus L.), Red 
maple (Acer rubrum 
L.) 

Red oak (Quercus rubra), 
Tulip poplar 
(Liriodendron tulipifera 
L.), Pignut hickory 
(Carya glabra Miller) 

Soil Order  Spodosol, Inceptisol, 
Entisol 

Alfisol 

n  27 27  
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Strickland et al. (2009a, b; Keiser et al., 2011) to sterilize the litter. The 
top 5 cm of soil was sampled with a 2-cm dia. corer at each microsite in 
December 2019 for HARV and January 2020 for SCBI. Five to ten cores 
were taken per microsite, passed through a 4-mm sieve, then homoge
nized and stored at 4 ◦C until their use as the microbial community 
inoculum (see next section). 

Soils were similarly sampled at each microclimate measurement 
point. Specifically, gravimetric soil moisture (GWC) was measured by 
drying soils for 24 h at 105 ◦C and is reported as the percent water 
contained in field fresh soil. Water holding capacity (WHC) was 
measured for the soils and sterilized litter by allowing saturated samples 
to drain for 2 h in Whatman #1 filter paper and then to dry for 24 h at 
105 ◦C. Soil pH was measured by placing soil in deionized water (1:1 
volumetric ratio), followed by measurement of the supernatant with a 
benchtop pH meter after 10 min. Microbial biomass was assayed using a 
modified substrate induced respiration (SIR) method (Fierer et al., 2003; 
Strickland et al., 2010) whereby 5 mL of soil was incubated at 20 ◦C with 
autolyzed yeast. After 1 h of gentle shaking, headspaces were flushed 
with CO2-free air, and then accumulated headspace CO2 was measured 
after 4 h with an infrared gas analyzer (IRGA; Model LI-7000, Li-Cor 
Biosciences, Lincoln, Nebraska, USA). SIR biomass is reported as 
maximum CO2 production normalized by dry weight equivalent of soil. 
Volume, as opposed to mass, was used to determine the amount of soil 
for the SIR incubations because of marked differences in soil organic 
matter contents (which causes similar masses to have very different 
volumes). Total soil carbon and nitrogen were measured on air-dried 
soils by grinding, packing in tins and combusting them on an NA1500 
CHN Analyzer (Carlo Erba Strumentazione, Milan, Italy). 

2.2. Microcosm set-up 

Our microcosm design followed published approaches (Strickland 
et al., 2009a, b; Keiser et al., 2011; Cleveland et al., 2014) that introduce 
a small amount of soil, to serve as a microbial inoculum, to a litter 
environment which serves as the dominant organic substrate across the 
incubation. The approach then standardizes the substrate (i.e., the litter) 
and varies the microbial community inoculum, to tease out whether 
communities function similarly or differently once placed in a standard 
environment. Specifically, we used 50-mL centrifuge tubes with 0.25 g 
of dry weight equivalent soil from each microsite, which was thoroughly 
mixed with 1-g dry-weight equivalent and ground Q. rubra litter. 
Soil-only controls were constructed that contained ~6 g dry-weight 

equivalent soil, which were used to correct C mineralization fluxes 
from the leaf litter by subtracting the C mineralized throughout the 
experiment from the soil. The estimated respiration from the soil in the 
soil-litter microcosms was, at most, 10.6% and the mean was 2.3 ± 1.6% 
(SD) of the cumulative CO2 respired per microcosm. 

Three treatments were applied to the soil only and soil + litter mi
crocosms to create constant moisture regimes (‘Lab Moisture’) that 
spanned from drier (35% WHC) to mesic (60% WHC) to wet (100% 
WHC) conditions. WHC for the litter + soil mixtures was obtained by 
measuring WHC for the ground litter and soils as described above and 
calculating target moisture content based on the dry mass equivalents 
for the litter and soil. In total, 162 unique soil-litter mixtures were 
created (2 sites × 27 composite soils from each microsite × 3 lab 
moisture treatments) and were maintained at target moisture by mass 
adjustments with weekly DI-water additions. The additional 162 soil- 
only microcosms were also incubated under the same three lab mois
ture regimes. All microcosms were kept at 20 ◦C over the course of the 
experiment. Carbon mineralization was measured over 202 days by 
measuring CO2 production in each microcosm over 24 h at 17 time 
points (day 1, 6, 9, 13, 20, 27, 34, 43, 50, 64, 78, 92, 105, 120, 141, 168, 
202) with the frequency of measurement decreasing over the course of 
the experiment. At each time point, a cap with a rubber septum and O- 
ring was fitted to the top of the 50-mL tube and the headspace flushed 
with CO2-free air. After 24 h of incubation, a 5-mL sample of gas was 
taken and used to flush a 1-mL sample loop that was then transferred for 
measurement on an IRGA. 

To assess variability of C mineralization of the same litter-soil mix 
under different conditions, we captured the distribution of responses 
from a subset of the unique litter-soil mixes through high replication. 
This approach can be useful for representing error in measurements and 
for propagating parameter uncertainties into modeling frameworks 
(LeBauer et al., 2013). Here, one microsite was selected from dry and 
wet field moisture conditions at each site and replicated 7 times under 
each treatment (4 soils × 7 replicates × 3 lab moisture treatments = 84 
microcosms). Together with the experimental units (164) and soil con
trols (164), we maintained 408 microcosms across the 202-day 
experiment. 

2.3. Data and inferential analysis 

Cumulative C mineralization rates were calculated using the area 
under the curve (‘AUC’) function in the DescTools package (Signorell, 
2021) in the statistical freeware R (R Core Team, 2020). To estimate CO2 
evolved from Q. rubra litter, cumulative C mineralization from litter-soil 
microcosms were subtracted from soil-only controls for the corre
sponding microsite soil sample. Differences in cumulative C minerali
zation between the two sites and lab moisture treatment were analyzed 
using ANOVA and comparisons were assessed using Tukey’s honest 
significance test. 

To directly test the competing hypotheses that decomposer com
munity response to contemporary moisture conditions are or are not 
modified by historical soil moisture microclimate, we used regression to 
model experimental moisture treatment with known controls on litter 
decomposition – via microbial functional legacies – such as field soil 
moisture, temperature, and soil pH (Table 2). This causal statistical 
inferential approach follows Holland (1986), where the focus is on 
identifying the conditional effect size of a causal variable relative to 
other known causes (see Bradford et al., 2021). Cumulative respiration 
response was natural-log transformed to meet assumptions of normality, 
but results were qualitatively the same with non-transformed data. We 
first ran a linear model including only gravimetric soil moisture (‘Field 
Soil Moisture’), treatment (‘Lab Moisture’), and their interaction 
(Reduced Model, Table S1). A second-order term for Lab Moisture was 
included because of the expectation that microbial communities will 
have a unimodal response, where mesic (60% WHC) conditions will 
have the highest mineralization rates (Howard and Howard, 1993). We 

Fig. 1. Soil moisture variation in sampling points from HARV (a) and SCBI (b) 
from Spring 2020. Values represent point measurements representative of the 
spatial range in moisture regimes. Histogram represents the number of micro
sites, binned at 2.5% intervals with n = 27 per site. 
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ran ‘Lab Moisture’ as a continuous variable to allow comparison with 
‘Field Soil Moisture’ at the same scale and assess relative effect sizes. 
Variables were standardized by subtracting the mean and dividing by 
one standard deviation to allow comparison of relative effects when 
adding variables with different units. When we included site in the 
models, variables were standardized by subtracting the mean and 
dividing by two standard deviations to assess continuous and binary 
predictors (‘Site’) on the same scale (Gelman, 2008). 

Among the reduced and full models, we iteratively included and 
omitted interactions and non-correlated variables to explore the degree 
to which the effect sizes of our variables of interest (‘Field Soil Moisture’ 
and ‘Lab Moisture’) were influenced by model structure (Fig. S1). This 
sensitivity analysis approach is tailored to test the robustness of the 
absolute and relative causal effect sizes of the predictors of interest, in 
light of the fact that ecological outcomes are multi-causal and condi
tional, with plausible causative variables typically non-orthogonal (see 
Hobbs et al., 2012 and Bradford et al., 2019). The variables used in the 
model for both sites and for each site included soil pH, soil temperature, 
litter temperature, and soil bulk density. In addition to including vari
ables that were not or only marginally correlated with field soil mois
ture, we examined how inferences about soil moisture regime might be 
influenced by related microsite conditions such as total soil organic C 
(TOC) concentration and microbial biomass that also can influence 
microbial function. Unstandardized model results and those of the 
sensitivity analyses are included in the supplementary material (; 
Table S2 Figs. S1-2). R package ‘tidyverse’ (Wickham et al., 2019) was 
used to process data and for visualization; ‘jtools’ (Long, 2020), ‘in
teractions’ (Long, 2019), and ‘sjPlot’ (Lüdecke, 2021) were used to 
report and visualize model analyses. 

3. Results 

3.1. Site comparisons 

We found functional differences between soil communities from the 

two sites, but the strength of the difference was dependent on contem
porary moisture conditions (Table 2). Specifically, cumulative C 
mineralization in the dry conditions was 110.3 ± 5.1 mg C g−1 litter 
(mean ± SE) for the SCBI soils, which is 97% higher than the cumulative 
mineralization observed for the HARV soil communities (55.7 ± 2.5 mg 
C g−1 litter; Fig. 2d). In mesic conditions, SCBI communities mineralized 
only 24% more litter C than the corresponding HARV communities 
(74.1 ± 3.5 mg C g−1 litter compared to 59.7 ± 2.0 mg C g−1 litter), 
whereas under the wet conditions, mean cumulative mineralization for 
SCBI was 4% higher than HARV (53.8 ± 1.4 mg C g−1 litter compared to 
51.9 ± 1.3 mg C g−1 litter; Fig. 2f). 

The differences between the sites and among the lab treatments were 
underlain by differences in temporal dynamics over the 202-day incu
bation, which translated to different cumulative mineralization rates 
(Fig. 2d–f). Carbon mineralization rates from leaf litter increased and 
peaked in all treatments across the first six to nine days of the in
cubations (Fig. 2). Decomposer communities from HARV across treat
ments exhibited a single peak respiration after six to nine days. SCBI 
communities exhibited a second, delayed increase in respiration that 
varied in magnitude and length depending on laboratory treatment: dry 
conditions produced a large response which began at day 43 and peaked 
at day 105 (Fig. 2a); mesic conditions exhibited a second, smaller peak 
at 27 days (Fig. 2b); and the wet conditions had a second peak at day 34 
that was similar in magnitude to the first peak (Fig. 2c). These secondary 
peaks in C mineralization rates for the SCBI soils in the two drier lab 
treatments meant that the expectation that cumulative respiration rates 
would peak at 60% WHC – as they did for HARV soil inocula (Fig. 2d–f) – 
was not realized for the SCBI soil communities. Instead, the main effect 
of lab moisture treatment for the both-sites model was negative 
(Table 2). Notably, however, the standardized coefficient for the inter
action between lab moisture and the field moisture conditions was 
approximately three-fourths the size of the lab moisture main effect 
(Both Sites, Table 2). This large interaction effect most likely arose 
because in the dry and mesic lab treatments, drier soils from SCBI 
resulted in higher cumulative mineralization than from wetter soils from 
HARV, whereas the wet treatment had similar cumulative fluxes when 
the two sites were compared (Fig. 2d–f). The large coefficient for Site 
was likely driven by these high cumulative mineralization rates for SCBI 
inocula in the dry and mesic lab-moisture treatments, which overall led 
to higher cumulative mineralization (across all lab treatments) for SCBI 
versus HARV inocula. 

3.2. Harvard Forest, MA – HARV 

Functional differences among the soil decomposer communities, 
associated with the field moisture conditions from where they were 
sourced, were similarly observed when the HARV data were considered 
independent of the SCBI data. Specifically, there was a main effect of 
field soil moisture and an interactive effect with lab moisture treatment 
(Table 2). The imposed lab moisture regime did not have a strong effect, 
but the relatively large, negative second-order Lab Moisture term re
flects the observation that the highest cumulative mineralization rates 
were under mesic moisture conditions. The effect of field soil moisture 
and the interaction with lab moisture treatment drove the majority of 
variation in this site as indicated by the standardized coefficient terms. 
Notably, the ‘Field Soil Moisture’ terms reveal that the soil communities 
from across the different microsite moisture regimes at the HARV site 
are functionally distinct. Notably, these functional differences had a 
larger effect on the observed mineralization rates than the lab-imposed 
moisture conditions. 

The interaction term appeared to be associated with the fact that soil 
communities sourced from drier microsites had lower cumulative 
mineralization rates under the drier lab moisture treatment, whereas for 
soil communities sourced from the wettest microsites cumulative 
mineralization was lowest under the wettest lab moisture treatment 
(Fig. 3a). These dynamics meant that the field moisture regime had a 

Table 2 
Model results from a linear regression model of cumulative mineralization rates 
including laboratory treatments and microsite soil conditions from within HARV 
and SCBI sites. Lab moisture was treated as a continuous variable to allow 
comparison with field soil moisture. A second-order lab moisture term was 
included to capture the unimodal response where mesic moisture conditions 
resulted in higher respiration rates. Standardized coefficients with their stan
dard error in parentheses are shown and were calculated by subtracting the 
mean and dividing by 2 × standard deviation (SD) when there were categorical 
predictors, and one SD when only continuous predictors were assessed. Un
standardized model results are presented in supplemental information 
(Table S2).   

Both Sites (Full 
Model) 

HARV (Full 
Model) 

SCBI (Full Model) 

Predictors Standardized 
Estimates 

Standardized 
Estimates 

Standardized 
Estimates 

(Intercept) 3.91 (0.05)*** 4.08 (0.03)*** 4.22 (0.05)*** 
Site [HARV = 0] 0.48 (0.09)*** na na 
Lab Moisture ¡0.31 (0.04)*** 0.01 (0.02) ¡0.30 (0.03)** 
Lab Moisture2 0.03 (0.11) ¡0.07 (0.03)** 0.09 (0.04)** 
Field Soil 

Moisture 
0.14 (0.05)** 0.08 (0.02)*** 0.03 (0.03) 

Soil pH 0.04 (0.05) 0.02 (0.02) 0.01 (0.03) 
Soil Temperature −0.06 (0.09) 0.00 (0.02) −0.02 (0.03) 
Lab Moisture ×

Field Soil 
Moisture 

0.25 (0.07)*** ¡0.04 (0.02)* 0.00 (0.03) 

Observations 162 81 81 
R2/R2 adjusted 52.7/50.5 36.7/31.5 62.8/59.8 

*P < 0.05. 
**P < 0.01. 
***P < 0.001; na: not applicable. 
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strong positive effect on cumulative respiration rates for the dry lab 
treatment, but a much shallower slope for the wet lab treatment 
(Fig. 3a). The slope for the mesic lab treatment was intermediate but, 
again, communities sourced from increasingly moist microclimate re
gimes had higher cumulative respiration rates than those sourced from 
drier field regimes (Fig. 3a). Using the regressions from Table 2 and 
Fig. 3, we estimated the effect size that history of soil moisture had on 
contemporary responses. In dry lab conditions (Fig. 3a), communities 
from the wetter end of the moisture gradient mineralized 89% more 
litter C than soils from drier microclimate regimes: 39.0 ± 3.7 mg C g−1 

litter compared to 73.6 ± 3.9 mg C g−1 litter. Under mesic conditions 
(Fig. 3a), communities sourced from wetter microclimates mineralized 
50% more than dry microclimates: 48.2 ± 2.8 mg C g−1 litter compared 
to 72.0 ± 2.9 mg C g−1 litter. The wet lab treatment (Fig. 3a, blue solid- 
line) resulted in soils from the wettest microclimates mineralizing 14% 
more C compared to soils from drier microclimates: 48.7 ± 3.9 mg C g−1 

litter compared to 55.4 ± 4.2 mg C g−1 litter. Notably, the within-site 
variation across the field soil moisture gradient is comparable to the 
differences in mineralization rates between sites under dry conditions: 
89% difference within HARV vs. 97% between sites. Further, the dif
ference in cumulative respiration from the microsite communities that 
were incubated under mesic lab conditions were higher within the 
HARV site than between the two forest sites (50% variation within 
HARV microsites vs. 24% variation between HARV and SCBI sites). 

3.3. Smithsonian Conservation Biological Institute, VA – SCBI 

Decomposer communities from the SCBI site were not influenced by 

their local historical moisture regimes (Table 1, Fig. 3b). The slopes for 
cumulative respiration for lab moisture treatments were not signifi
cantly different suggesting that there were no within-site differences in 
microbial function. Standardized effect size estimates for field soil 
moisture ranged from 0 to 0.10 which indicates that there is potentially 
a positive association of field soil moisture regime with cumulative C 
mineralization, but the interaction between lab and field moisture 
essentially had a slope of zero (Table 2). As a result, the lab-based 
moisture treatments accounted for nearly all of the variation in cumu
lative C mineralization that was observed (SCBI: ‘Lab Moisture’, Table 2, 
Fig. 3b). Dry conditions resulted in mineralization rates of 110 ± 5.1 mg 
C g−1 litter (mean ± SE): 49% higher than mesic conditions (74.1 ± 3.5 
mg C g−1 litter) and 105% higher than wet conditions (53.8 ± 1.4 mg C 
g−1 litter). 

3.4. Model structural sensitivity 

Given that the microsites from where we sourced the soil commu
nities differed in more than moisture, we evaluated how other micro
environmental predictors that might influence microbial community 
functioning affected our interpretation of field moisture history as a 
causal variable. We explored how the addition of factors not strongly 
correlated with soil moisture, such as soil pH and soil temperature, 
affected the coefficient estimates of interest (Table 2). For the both site 
model, HARV, and SCBI models, coefficient sizes for ‘Field Soil Moisture’ 
remained relatively unchanged compared to a reduced model with only 
‘Field Soil Moisture’ and ‘Lab Moisture’ (Table S1). Microbial biomass 
and TOC were highly correlated with field soil moisture (respectively, r 

Fig. 2. Litter mineralization rates over 202 days. The upper panels (a–c) are shown here as the mean carbon mineralization rate (μg CO2-C g−1 litter hr−1) of each 
time point from litter microcosms comprised of Quercus rubra litter and decomposer communities from HARV (solid line) or SCBI (dashed line) sites. Laboratory 
treatments are presented from left to right of increasing moisture conditions. Error bars are ±SD (n = 27). Bottom panels (d–f) represent boxplots of cumulative 
mineralization over 202 days grouped by site. The median of each site is within the 25th and 75th percentiles (interquartile range, IQR) shown as horizontal lines 
with vertical lines extending to the first observation closest to but not exceeding 1.5*IQR. Each point represents an observation. 
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= 0.67 and 0.89 for HARV and 0.68 and 0.91 for SCBI; SI Tables 3, 4), 
with variance inflation factors (VIF) > 2 when included in main effects 
models. For the models including both sites and only HARV, the inclu
sion of these variables continued to not affect the sign and magnitude of 
the ‘Field Soil Moisture’ effects (Fig. S1c). In the model specified for 
SCBI, the inclusion of TOC modified the coefficient for field soil moisture 
but it remained insignificant and close to zero (Fig. S1e). Across all 
models, we lastly substituted measures of field soil moisture taken at 
different times, and the mean value of these over the three time points. 
Soil moisture across sampled time points provided coefficient estimates 
that support our conclusions (Figs. S2a-e). In short, our results appeared 
relatively insensitive to model structural and parameter assumptions, 
suggesting that the coefficient estimates for ‘Field Soil Moisture’ and 
‘Lab Moisture’ were robust. 

To understand how unique experimental units might vary if they 
themselves were replicated, we replicated microcosms from one wet and 
one dry microsite within each site (4 microsites × 3 treatments × 8 
replicates). Variation within these subsamples had a median coefficient 
of variation (COV) of 12%, which was consistently lower than the 
variation within treatments and site groupings except for a single highly- 
replicated SCBI community under dry conditions. Overall, within- 
replicate variation in C mineralization was about half that of within- 
site variation across treatments providing confidence that our conclu
sions about laboratory moisture treatment and microsite legacy effects 
are robust to potential within-replicate variation in observed C miner
alization rates. 

4. Discussion 

Numerous studies report that soil communities sampled from sites 
with different precipitation regimes (and hence assumed differences in 
soil moisture regimes) exhibit functionally distinct responses to 
contemporary moisture conditions (Evans and Wallenstein, 2012; 
Hawkes et al., 2017). Our site-level findings contribute a further 

empirical example where our two sites, HARV and SCBI, had distinct C 
mineralization time-courses and cumulative fluxes across different 
lab-imposed moisture regimes (Fig. 2). This finding supports regional 
studies that observe that microbial responses to new conditions can be 
shaped by environmental history (Evans and Wallenstein, 2012; Averill 
et al., 2016; Hawkes et al., 2017; Glassman et al., 2018). We additionally 
asked whether these macroscale functional differences were exhibited at 
local, within-site scales. We found evidence for both of our hypotheses 
where, in one site (HARV), historical microsite conditions were associ
ated with differences in cumulative C mineralization. Whereas in the 
other site (SCBI) only lab-imposed moisture conditions drove differences 
in C mineralization with no evidence of within-site differences in 
functioning. 

Differences in microbial function emerge from multiple controls such 
as environmental history and contemporary conditions. We specifically 
asked how within-site heterogeneity in soil moisture regimes might 
generate microbial functional differences. In HARV, soils sourced from 
wetter microclimates mineralized more litter C than soils from drier 
microclimates across all lab-imposed moisture conditions (Fig. 3a). This 
effect was stronger for the dry and mesic lab moisture conditions 
compared to the wet lab conditions (Table 3; Fig. 3a). Results from this 
site suggest historical legacies of soil moisture shape the functioning of 
communities at local scales, reflecting similar functional patterns across 
regional precipitation gradients where historically wetter sites exhibit 
higher respiration rates (Hawkes et al., 2017, 2020). Whereas dispersal 
limitation, landscape heterogeneity and adaptation can play a role in 
functional divergence across broad spatial extents (Talbot et al., 2014; 
Strickland et al., 2015; Maynard et al., 2019), patterns revealed here 
also suggest that within-site, spatial heterogeneity in environmental 
conditions can generate functionally different microbial communities. 

Drier moisture regimes can lead to lower microbial biomass but 
select for taxa that are more resistant to moisture stress and lead to 
higher functional ability under stressful conditions (Lennon et al., 2012; 
Maynard et al., 2019; Lustenhouwer et al., 2020). This broad scale 

Fig. 3. Cumulative mineralization (reported as mg CO2-C mineralized g−1 litter) for unique decomposer communities sourced from within the SCBI (a) and HARV (b) 
sites. Cumulative values (for the 202-day incubations) are plotted against microsite soil moisture conditions (% gravimetric soil moisture) from Spring 2020 and by 
the three laboratory moisture treatments that were imposed on each community. Points (n = 27 soil inocula per site) represent unique litter-soil microcosms 
subjected to 35% of maximum water holding capacity (Dry: red points and quick dashed line), 60% of maximum water holding capacity (Mesic: black points and long 
dashed line), and 100% of maximum water holding capacity (Wet: blue points and solid line). Note that the regression lines are not fit to the observations in a 
univariate manner. Instead, regression lines were calculated using unstandardized coefficients from the multiple regression models with non-log transformed cu
mulative respiration rates but otherwise are identical to models presented in Table 2. Note the different scales on the Y-axes. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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pattern was observed between the two sites, where the SCBI soil com
munities, that generally experience a drier soil moisture regime (Fig. 1), 
also exhibited much higher mineralization rates than the HARV soil 
communities under dry lab-moisture conditions (Figs. 2d and 3). How
ever, the highest mineralization rates for the HARV soil communities 
were always observed for communities sourced from wetter microcli
mates, and the greatest among-community sensitivity to contemporary 
moisture conditions was observed under dry lab conditions (Fig. 3a). 
This within-site pattern observed at HARV was distinct from the 
within-site SCBI pattern (Fig. 3), and these within-site patterns were 
distinct from the patterns observed between sites. Collectively, our re
sults suggest that functional differences observed among sites at regional 
scales do not necessarily translate to finer scales, raising the possibility 
that mechanisms that generate microbial functional differences at one 
scale might be distinct to mechanisms operating at another scale. 

In contrast to the HARV observations, within the SCBI site we 
observed functionally equivalent decomposer communities where C 
mineralization rates were driven almost entirely by the lab moisture 
conditions (Table 2; Fig. 3b). Both forest sites experience similar 
amounts of annual precipitation, but the warmer mean climate of SCBI 
contributes to lower soil moisture values and a narrower spatial range in 
field-soil moisture regimes (Fig. 1, Table 1; CV = 0.191 for SCBI 
compared to 0.261 for HARV). Although results from SCBI do not show a 
strong effect of within-site moisture, as found at HARV, the effect size 
was still positive (Table 2). This positive coefficient suggests that there 
was also a positive effect of field soil moisture regime at this site, but it 
had only a small influence on mineralization rates. The microbial 
functional response of the SCBI soil communities to lab moisture con
ditions were, however, unexpected. Specifically, communities under dry 
lab conditions had higher C mineralization than communities under 
mesic and wet moisture lab conditions (Figs. 2 and 3b). This empirical 
result provides further evidence that microbial respiration does not al
ways peak at mesic moisture conditions (Moyano et al., 2013). A po
tential explanation for the drier conditions under which we observed the 
peak is that, in leaf litter, constraints on C mineralization rates due to 
lower moisture may be smaller than in soil due to better gas and nutrient 
diffusion in dense litter packs. Nevertheless, the peak mineralization for 
the SCBI communities was still drier than for the HARV communities. 
Whereas we did not uncover the specific mechanisms explaining this 
observation, adaptation to drier conditions across the two sites and 
within SCBI reflect evidence from other systems where drier sites exhibit 
higher functional potentials. For example, Averill et al. (2016) found 
that enzyme potentials were linked to historical precipitation and soil 
moisture, with historically drier sites exhibiting stronger enzyme ac
tivity and sensitivity to moisture. Similarly, in our study, historical 
moisture regimes beget unique functional microbial responses that can 
lead to deviations from the typical unimodal response of mineralization 
to contemporary moisture conditions. 

Models that represent explicitly how microorganisms mediate 
decomposition aim to explore how changes in environmental conditions 
affect microbes and in turn the rates of the biogeochemical processes 
they mediate (Wang et al., 2013; Wieder et al., 2013; Abramoff et al., 
2018). These process-based models are an ideal framework for querying 
how functional legacies might affect rates. Our study is a starting point 
in addressing how functional legacies between and within sites might 
affect biogeochemical rates as moisture changes seasonally and inter
annually through climate change. For example, these models typically 
assume a unimodal moisture response, such that increasing moisture 
increases decomposition up to a threshold where decomposition rate 
decreases again (Davidson et al., 2012). We did observe this pattern at 
HARV, for the lab moisture treatments that were imposed, but not at 
SCBI suggesting that functional legacies create context-dependency in 
how contemporary moisture controls litter-C mineralization rates. 
Certainly, our data still support the assumption that contemporary 
moisture exerts strong direct control on mineralization rates, but equally 
our lab experiment provides further justification for field experiments 

that address how historical moisture regimes modify these contempo
rary responses. Experimental studies that tease out microbial functional 
effects from other environmental effects can help quantify the influence 
of functional microbial differences on contemporary biogeochemical 
process rates (Hawkes et al., 2017; Glassman et al., 2018). When part
nered with process-based models that represent microbial functional 
differences, such experimental observations can help inform how func
tional differences might affect biogeochemical process rates under new 
conditions (Wieder et al., 2015a; Hall et al., 2018; Malik et al., 2020; 
Wang and Allison, 2021). 

As more research focuses on the role of microbial biogeography, 
diversity and its relation to ecosystem function, our data reveal that the 
nature of these relationships are likely to be strongly scale- and context- 
dependent. Certainly, our data contribute to previous findings that 
historical contingencies shape contemporary functioning when sites are 
compared at regional scales. As such, they bolster expectations that 
measuring community functional potentials at the regional scale cap
tures community adaptation to climatic drivers at similar scales 
(Strickland et al., 2015; Maynard et al., 2019). Yet our data also reveal 
that pronounced differences in field microclimate regime equally can 
affect microbial function under contemporary moisture conditions, in a 
manner distinct from those observed to arise because of macroclimate 
regimes. These scale dependencies might be expected to generate 
unique, non-linear, emergent responses of biogeochemical process rates 
to changing moisture conditions at regional scales, highlighting the 
importance of evaluating their influence on projections of climate 
change impacts on C cycling. 
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