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The IceCube Neutrino Observatory, located at the geographic South Pole, is the world’s largest neu-
trino telescope, instrumenting 1 km? of Antarctic ice with 5160 photosensors to detect Cherenkov
light. For the IceCube Upgrade, to be deployed during the 2022-23 polar field season, and the en-
larged detector IceCube-Gen?2 several new optical sensor designs are under development. One of
these optical sensors, the Wavelength-shifting Optical Module (WOM), uses wavelength-shifting
and light-guiding techniques to measure Cherenkov photons in the UV range from 250 nm to
380nm. In order to understand the potential gains from this new technology, a measurement
of the scattering and absorption lengths of UV light was performed in the SPICEcore borehole
at the South Pole during the winter seasons of 2018/2019 and 2019/2020. For this purpose, a
calibration device with a UV light source and a detector using the wavelength shifting technology
was developed. We present the design of the developed calibration device, its performance during
the measurement campaigns, and the comparison of data to a Monte Carlo simulation.
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UV calibration device

1. Introduction / Wavelength-shifting Optical Module

The IceCube Neutrino Observatory is a cubic-kilometer detector installed in the ice at the
geographic South Pole at depths between 1,450 m and 2,450 m [1]. The detector was completed in
2010. To reconstruct direction, energy, and flavor of interacting neutrinos the Cherenkov radiation,
emitted by charged secondary particles, is measured.

To improve the reconstruction of low energy neutrinos and the calibration of the instrumented
ice, the IceCube Upgrade will be deployed in the austral summer 2022-2023. Seven additional
strings will be deployed, including several types of novel optical modules.

Several of the new modules under development, are designed to measure Cherekenkov radiation
inthe UV range. This improves the sensitivity of the modules since the number of emitted Cherenkov
photons is proportional to one over the wavelength squared.

One of these UV-sensitive detectors is the Wavelength-shifting Optical Module (WOM)[2].
The WOM consists of a 76 cm long transparent (PMMA or quartz glass) tube with 10.6 cm diameter.
The tube is coated with a wavelength-shifting paint [3] and connected to two photomultiplier tubes
(PMTs), one on each side. The paint absorbs photons with a wavelength between 250 nm and
400 nm and reemits them at roughly 420 nm. The reemitted photons are guided via total internal
reflection to one end of the tube and are detected by the PMTs.

2. Ice Properties

To understand the potential improvement of new optical modules, the surrounding material
has to be calibrated in the sensitive range. The Antarctic ice originates in compacted snow turning
to ice over long times. To measure scattering and absorption specifically, an in-situ measurement
device, the UV calibration device (UV logger) has been built.

2.1 Absorption

In the visible spectrum down to 300 nm, the ice is mostly transparent, with absorption and
scattering driven by impurities in the ice like dust, mineral, or soot [4]. In the very deep UV range
a strong absorption occurs, the “Urbach tail” [5]. The exact cutoff wavelength is yet unknown but
believed to be below 200 nm [6].

2.2 Scattering

Using the AMANDA detector the scattering and absorption coefficient could be calibrated
down to 337 nm. Above 1300 m depth the scattering is dominated by small air bubbles converting
to craigite in the IceCube depth range due to the ice pressure [7]. Below this so-called bubble-
dominated region, the photons scatter on aforementioned impurities. The particles have varying
radii between a few nanometers and several micrometer [4], which results in a mixture of Rayleigh
and Mie-Scattering.

3. In-situ measurement in the SPICEcore hole

The in-situ measurements were done in the South Pole ice core hole (SPICEcore hole). It is an
open borehole at about 1 km distance from the IceCube array with a depth of 1750 m [8] and 126
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UV calibration device

Top endcap
with winch connector Detector Main/UV board Bottom endcap
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Figure 1: UV Calibration device with a detector, using PMTs, two open ones and four connected to
wavelength shifting rods, a light source, capable of pulsing light with nanosecond pulse width and the read
out electronic, stored in a quarz glass vessel with titanium endcaps and flanges .

mm diameter. During the drilling process, the hole was filled with Estisol 140, a synthetic ester fluid
that stays liquid in the South Pole environment. As its density is very similar to the surrounding
ice, it prevents the hole from collapsing and keeps the hole open for calibration measurements.

To measure in an open hole, the measurement device has to be the light emitter and detector
at the same time. The light is sent out into the ice in nanosecond short pulses. The detector
records the arrival time of the back-scattered photons. This time distribution can later be compared
to simulation to obtain the ice properties. Early simulations suggest that the rising edge of the
distribution is driven by the scattering coefficient, while the tail of the distribution is driven by the
absorption coefficient. These effects are visible in the Figures 5 a) and b).

Since a measurement with emitter and detector at the same place is more sensitive to backward
scattering than forward scattering, an additional future task will be the comparison between this
scattering measurement and former measurements with large detectors as IceCube or AMANDA.

In addition to the UV Calibration device several other in-situ measurements took place in the
two seasons as the Luminescence Logger [9], the Camera System [10] and the dust logger [11].

4. Optimized UV calibration device

The device, designed for this measurement consists of a LED-based light source with different
wavelengths and a UV-sensitive detector. The detector is divided longitudinally into three segments
by aluminum mirrors. Two PMTs are placed in every segment (six in total), one near the light
source (bottom) and one on the top. In the two segments opposite of the LED, PMMA rods of
50 cm length and 2 cm diameter are connected to the PMTs. The rods are coated with a wavelength
shifting paint, developed for the WOM. In the segment facing the same direction as the LED the
PMTs are left open for direct photon detection. On the bottom PMT, an additional small mirror is
placed to increase the sensitivity of photons with only a few scattering processes. Figure 1 shows
the full logger with all components.
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UV calibration device

Most of the development and design have been
done prior to the first measurement season and
can be read up in previous works [12]. Only the
light source was altered between the two measure-
ment seasons. The light source is based on flasher
boards with one LED each. In the two measure-
ment seasons four flasher boards with wavelengths
of 245 nm, 278 nm, 310 nm and 370 nm were used.
The nanosecond light pulses are obtained using
a Kapustinsky Pulser with adjustible light inten-
sity. In the first measurement season an integrating
sphere [13] was used to create a well-defined emis-
sion profile. For the second measurement season
the integrating sphere was removed to increase the
number of emitted photons.

5. Measurements
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Figure 3: All measurement depths of the two seasons,
together with the effective scattering coefficients[7],
shifted to compensate the ice tilt between IceCube and
SPICEcore. Depending on the depth the error of the ice
tilt can increase up to 30 m.

5.2 Second measurement season

Figure 2: Cross section of the UV calibration
device with the WOMs and open PMTs sketched
according to the LED emission angle

The measurements were done in two sea-
sons with a total of 4 wavelengths at 7 depths
in the ice. Figure 3 shows the measurement
depths together with the expected scattering
coefficients.

5.1 First measurement season

In the austral summer 2018/2019 the first
data set was collected on two days, at depths of
1056 m, 1475 m, and 1560 m, using both the
278 nm and 400 nm LED at each depth. Due
to light intensity problems only the 278 nm
LED provided useful data. During the whole
measurement season one of the PMT chan-
nels, connected to a wavelength shifting rod
did not record data. For some measurements
the open PMTs picked up electric noise from
the light source, but in every measurement at
least 3 Channels recorded useful data.

The second measurement was performed in the austral summer 2019/2020. In total 4 mea-

surement days were taken with three different flasher boards, where the flasher board with 250 nm
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Figure 4: Prepared example data sets of the measurements a) with 250 nm at 1483 m depth for all channels
and b) with 310 nm and the top WOM channel for all measured depths.

was used on two measurement days. The measurements were done at depths of 1218 m, 1442 m,
1483 m and 1532 m.

The measurements with 250 nm, 310 nm and 370 nm all provided useful data. For the 250 nm
measurement one channel connected to a wavelength shifting rod was not working.

5.3 Data preparation

To prepare the data for analysis it is represented in the form of histograms with 8 ns bins (limited
by a firmware bug), and cut to a time window from 80 ns to 1050 ns. The PMTs connected to the
wavelength shifting rods are summed for each side, to have only two WOM channels, one for the
bottom PMTs (the side nearer to the light source) next to the PMT with the mirror and one for the
top PMTs (further away from the light source).

Figure 4 shows two sorted and prepared example datasets. (a) displays all channels of one
measurement with a wavelength of 245 nm at a depth of 1483 m, (b) displays the top WOM channel
for all measured depths with 310 nm. From these examples, it is evident, that the WOM channels
have a larger time spread due to the wavelength shifting. Also the different depths have visible
differences in the histograms.

6. Data Analysis

The analysis is done by comparing the experimental data to Monte Carlo (MC) simulation with
different absorption and scattering coefficients. The comparison to data is done using a binned
maximum likelihood fit.

6.1 Simulation

The simulation models the experimental design in as much detail as possible. For the light
emission, angular distribution, and wavelength spectrum of the LEDs datasheet values are interpo-
lated.

The simulation follows the light path out of the calibration device through the quartz glass and
Estisol into the ice using Fresnel equations. Every photon reaching the ice is assigned an absorption
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and scattering length sampled from random exponential distributions with the absorption and scat-
tering coeflicient as coefficients. After each scattering length, a scattering angle is sampled and the
photon receives a new direction and scattering length. After every scattering process, the traveled
path length is integrated and compared to the absorption length. After passing the assigned absorp-
tion length in the ice the photon is counted as absorbed in the ice. The scattering angle is highly
dependent on the scattering model. For the simulation, Mie-Scattering was tested, but found to be
impractical, since the experiment is mostly sensitive to backward scattering. Rayleigh scattering is
used instead. The angular distribution for Rayleigh scattering follows a (1 — cos®)2-distribution,
with ¥ as the scattering angle.

Photons scattered back to the detector again pass through the Estisol and quartz glass into the
detector and are counted as detected when crossing a PMT or wavelength shifting rod. The transit
time spread of the different detection ways was measured in the laboratory and is dependent on the
position of the photon.

6.2 Maximum Likelihood fit

To analyze the measurements, the distribution of binned photon arrival times is compared to the
simulation. The comparison is done by calculating a test statistic 7'S for every simulation according

to the formula
N

TS:Z (di —a; - Ng/Ng)? 0
izl di+ai~N§/N,21

where N is total number of bins in the measurement, d; and a; are the number of events in the bin
i for the measurement ¢ and the Monte-Carlo simulation a and N; and N, are the total number of
events in the measurement and Monte-Carlo simulation [14].

With this test statistic, a best fitting simulation with a given set of parameters can be found.
Figure 5 a) shows how the data of one depth, wavelength, and PMT-Channel connected to a WOM
and five simulations are matching up. Four simulations are done with a set of high or low scattering
and absorption parameters to show the boundaries of the chosen 2D scan. One simulation with a
set of medium coefficients is shown in red and gives the best fit with the smallest calculated 7'S .
Below the time distributions, the 7'S per bin is plotted, so to understand the influence of each part
of the distribution

To find a region of trustworthy minima the simulation with the lowest T'S is re-simulated and
analysed 100 times to find a standard deviation o. The true value for the parameters is supposed to
lie inside an area where the difference of the 7'S values to the minimum is smaller than o, called
the 10 region. This method is used to compensate for the limited simulation time. Since the
number of simulated photons are smaller by a factor 10 to 100 it statistical error is mostly driven
by the simulation instead of the measurement. This represents only the statistical error and not the
systematic errors of the measurement.

6.3 Open issues

The analysis returns a well defined minimum for each channel of the measurement, but there
are still unsolved inconsistencies to be explained. Figure 6 a) and b) show two simplified simulation
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Figure 5: Dataset of a measurement with 5 simulations, 4 at the edges of the chosen parameter space and
one best fit, a) for all bins with 10 or more entries, b) for a restricted time window of 150 ns - 300 ns.

IceCube Work in progress IceCube Work in progress

increasing absorption coefficient
increasing absorption coefficient

Increasing scattering coefficient a) Increasing scattering coefficient b)

Figure 6: Simplified 7'S grid of several simulated sets of parameters compared to one data set for two
PMT-channels of the same measurement.

grids of T'S calculations as a function of absorption and scattering. Both axes depict about 1 order
of magnitude for each parameter. The red curve indicates the 1o region around the minimum.

The first unexplained observation is the differences between the PMT-channels. Comparing
the minima in Figure 6 a) and b) the o regions are not overlapping. Therefore no definite minimum
connecting all channels of one measurement has yet been found. This questions the correctness of
the simulation and how well the experimental setup is understood.

Another concern is the size of the o region. For some measurements as 6 a) it covers almost
the whole simulation grid. This and the form of the o region indicate a strong correlation of the
two parameters. The choice of the scanned parameter space has to be therefore made very carefully
to not have a minimum on the borders of the scanned area.

To decouple the two parameters the histograms are restricted to a time window of 150 ns -
300 ns, where the distributions are believed to be mostly absorption driven. Figure 5 b) again
shows the best fit and several example simulations for this restricted time window. Figure 7 gives
again the simplified simulation grid with the o region around the minimum, showing still the
same dependency of the two parameters. This leads to the conclusion that the two parameters
are not easily decoupled and the final results could be a combined extinction parameter instead of
independent absorption and scattering coefficients.



178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

UV calibration device

IceCube Work in progress

IceCube Work in progress

increasing absorption coefficient
increasing absorption coefficient

B

Increasing scattering coefficient a) Increasing scattering coefficient b)

Figure 7: Simplified T'S grid of several simulated sets of parameters compared to one data set for two
PMT-channels of the same measurement with a restricted time window.

7. Outlook

In the future, the focus will be on increasing the understanding of the experimental setup to
understand and compensate for the differences in the measurement channels. This should lead to
a combined minimum for each data set on each measured wavelength and depth, which can be
compared to previous ice calibrations.
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