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Stochastically switching force terms appear frequently in models of biological systems under the action
of active agents such as proteins. The interaction of switching forces and Brownian motion can create an
“effective thermal equilibrium,” even though the system does not obey a potential function. In order to extend
the field of energy landscape analysis to understand stability and transitions in switching systems, we derive
the quasipotential that defines this effective equilibrium for a general overdamped Langevin system with a
force switching according to a continuous-time Markov chain process. Combined with the string method for
computing most-probable transition paths, we apply our method to an idealized system and show the appearance
of previously unreported numerical challenges. We present modifications to the algorithms to overcome these
challenges and show validity by demonstrating agreement between our computed quasipotential barrier and

asymptotic Monte Carlo transition times in the system.
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I. INTRODUCTION

Biological systems under the influence of microscale active
agents such as proteins are frequently modeled using switch-
ing forces as the agents shift between different states [1].
Examples include molecular motors [2], crosslinked biopoly-
mer networks [3], and transient antibody crosslinking of
antigens to mucus protein networks [4,5]. Protein action also
plays a crucial role in the organization of DNA inside the cell
nucleus, both in the form of stochastic crosslinking [6-9],
and more recently, protein loop extrusion [10-12]. Model-
ing these active agents in combination with passive diffusion
leads to mathematical models with two sources of noise—
stochastically switching forces combined with stochastic
Brownian motion.

In the case of crosslinking proteins, prior work in the lit-
erature on modeling the dynamic organization of DNA with
polymer bead-spring models included stochastically switch-
ing spring forces between beads representing 5 kbp of DNA
[13,14]. These rapidly switching forces are on timescales
faster than the time to reach thermal equilibrium; thus the
system is in a constant state of disequilibrium. However,
in [14] we observed long-lived stable condensed clusters of
beads consistent with experimental results, with the stochas-
tic switching rate acting like an effective temperature. Rapid
switching produced low-temperature-like stable clusters, slow
switching produced high-temperature-like amorphic arrange-
ments, and intermediate switching times allowed for dynamic
clusters with beads exchanging between clusters.

To explain the mechanism behind this emergent clustering
behavior, we seek an effective thermal equilibrium. Recall that
if the forces in a system, v(x) = —VU (x), are the gradient
of a potential function U (x), the dynamics governed by the
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stochastic differential equation (SDE)

dX = v(X)dt + /2ksTdW (1)

approach, in the long time limit, a Boltzmann thermal equilib-
rium distribution given by

U(x)
p(x) ~exp| — T ) (2)

States x that minimize U (x) are long-lived stable configu-
rations at temperatures small enough relative to the energy
barriers of U (x) separating such states, defined as the gap AU
between the energy at the minimum and the energy at the low-
est saddle point on the region of attraction of the minimum.
The mean transition time between the wells surrounding the
energy-minimizing states can be computed asymptotically for
vanishing temperature (kg7 — 0): the time t taken for the
system to escape from a potential well under Brownian noise
relates asymptotically to the energy barrier of the well follow-
ing the Arrhenius equation given by

E[l ~ AU 3

[log 7] T 3)

The most-probable path (MPP) the system traverses as it

makes one such transition can also be found asymptotically

for vanishing temperature; it is a path that is everywhere
parallel to the gradient of the energy landscape U (x).

The study of energy landscapes and large deviations allows
for valuable insights to be made by viewing systems through
the lens of statistical thermodynamics. In the cases of either
stochastic switching of deterministic forces alone [15,16] or
nongradient forces with thermal noise [17-19], the derivation
of a quasipotential in the small temperature limit successfully
predicts equilibrium distributions as well as transition times
and paths. We seek an effective equilibrium that takes into
account both the thermal fluctuations and the stochasticity
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induced by the switching forces in the above-mentioned DNA
bead-spring model.

A first thought to find an effective potential function U (x)
is to simply time-average the force, thereby removing the
switching. However, this approach significantly overestimates
the effective strength of a strong force when the switching
is not very fast. Considering a thought experiment of an
infinitely high potential barrier that is only sometimes on,
we can see that no matter the manner of the switching, the
barrier remains infinitely high after averaging. However, as the
particle could cross the barrier due to diffusion while it is off,
transmission is clearly possible, contrary to the expectation of
the naive time-averaging.

This time-averaging takes the noise from the stochas-
tic switching to zero first and then considers the effects of
thermal noise. Rather, we seek a distinguished limit that
takes the switching timescale to zero simultaneously with
the thermal noise. To simultaneously consider both sources
of randomness while leveraging the power of the energy
landscape framework, we compute a quasipotential W (x)
whose gradient represents an average force that generalizes
the asymptotic properties of the potential function to non-
gradient systems. We build off the work in Ref. [16] that
used a Wentzel-Kramers-Brillouin (WKB) approximation to
construct a quasipotential for the Morris-Lecar equation, an
ordinary differential equation whose evolution depends on a
stochastically changing number of open ion gates. In our case
we consider both a switching state modeled by a continuous-
time Markov chain and diffusive noise from Brownian motion.
We extend the WKB ansatz approach of [16] to form the
Hamilton-Jacobi equation for our problem.

The quasipotential W (x; x4 ) differs from a global potential
function in that it is only defined in the basin of attraction of a
particular fixed point x4 of the deterministic system. Since we
are interested in using the quasipotential to predict expected
transition times, we seek its values along the MPP the system
escapes along. As with MPPs for gradient systems, this path
connects x4 to a saddle point and is everywhere parallel to
the gradient of the quasipotential. To simultaneously find this
path and the quasipotential along it we use the string method
[20] and its climbing variant [21]. These string methods place
a number of copies of the system, or images, along a path in
phase space to form a “string.” Each image is independently
updated via gradient descent, and then the images are rein-
terpolated along the path to keep them equally spaced in arc
length. Thus the path aligns itself with the gradient descent
direction, converging to the MPP. In the climbing variant,
the final image “climbs” in energy in the direction tangent to
the string, and gradient descends in all others. Thus this final
image converges to a saddle point, with the remaining images
parametrizing the MPP from this saddle point.

In this work, we must couple the evolving string with
finding the quasipotential. Therefore we develop a numerical
scheme to iteratively solve for the quasipotential along a path,
then update the path based on the found quasipotential until it
converges to the MPP.

While previous work generally looked at one- to three-
dimensional problems [16,22-27], we demonstrate an exam-
ple for three particles in two dimensions for a total of six
spatial dimensions. Under our proposed framework, several

aspects of the problem present numerical challenges that were
not reported in the previous literature. This numerical insta-
bility arises in both the implicit solver for the gradient of
the quasipotential and the solver for the MPP. We find that
Newton’s method does not generally converge from the start-
ing guesses we can make, and so we use a modified version
of Newton’s method with an additional fallback designed to
ensure convergence. This also leads to high sensitivity in the
Hessian matrix, which is used in the geometric minimum
action method (gMAM) for finding the MPP [16,28]. This
explains the choice of using the string method instead, which
does not require the Hessian matrix. Still, we see significant
high-frequency noise in the string method update, arising for
larger numbers of images in the string. We present a set of
numerical methods, along with code, that overcomes all of
these challenges and demonstrate validity by showing agree-
ment between quasipotential barriers and Monte Carlo escape
time asymptotics.

In Sec. II, we derive the form of the Hamiltonian for our
problem and describe the numerical methods we apply to
solve for the gradient of the quasipotential and most-probable
transition paths. In Sec. Il we validate the formulation of
the Hamiltonian on a one-dimensional problem in which the
string method is not necessary. In Sec. IV we then apply
the full method to compute transition paths and asymptotic
escape times for a system of three particles moving in two
dimensions, revealing an important physical principle, that the
interaction of stochastic switching and Brownian noise leads
to a weaker effective force than would be expected by simple
averaging. Finally, in Sec. V we review our contributions and
note future directions of research.

II. FORMULATION

In this section we detail the steps required to compute the
gradient of the quasipotential VW along transition paths. We
start by introducing a general model system of the form of
Eq. (1) but with a deterministic force term that switches based
on a continuous-time Markov chain. Then in Sec. IIB we
derive the Hamiltonian and the associated Hamilton-Jacobi
equation that defines the gradient of the quasipotential VW
for our problem. In Sec. IIC we describe the algorithm that
we use to address the additional numerical challenges in this
version of the problem and solve the Hamilton-Jacobi equa-
tion for VW . In Sec. II D we describe the numerical procedure
for finding the most-probable transition paths which minimize
the action. In the following sections we apply our method to
two example systems.

A. Model framework

Taking Eq. (1) and introducing a parameter € = kgT, we
modify the forces v(x) to switch between different states to
arrive at the general mathematical form of the equation for
the dynamics. The configuration of the system is represented
as the combination of a position X; € R” and a switching
state index s; € Z' for some dimensionality m and number of
possible switching states n. The time evolution of the position
follows an overdamped Langevin equation given by

dX, = v(X,;s,)dt + ~/2€dW, )
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where the switching state s, € {1, ..., n} affects the drift term.
The time evolution of the state s, follows a continuous-time
Markov Chain (CTMC) process whose transition rate matrix
%S (X;) depends on position. In this way the processes govern-
ing position and switching state are coupled.

We chose the scaling of é in front of S to produce inter-
action between the CTMC switching noise and the € = kgT
noise from Brownian motion at lowest order asymptotically,
thus preparing to take a distinguished limit of small noise.
This is also a physically relevant scaling for biological sys-
tems where the timescale of these switching forces is likely
temperature dependent. We compare our results to the case
of faster scaling of the CTMC [for example, ELZS (X;)], find-
ing this limit significantly overestimates the effective energy
barrier.

B. Deriving the Hamilton-Jacobi equation

The Hamilton-Jacobi equation that defines the quasipo-
tential arises from making a WKB-like quasi-steady-state
assumption for the solution to a system of Fokker-Planck
equations that are coupled by the transitions between switch-
ing states. We start by defining these coupled Fokker-Planck
equations. Let the force (drift) on the ith position coordinate
under switching configuration s be represented as v?. Recall
the CTMC process transition matrix elements S;; hold the
transition rate into state j from state k. Finally, let ps(x,t)
represent the joint probability function between the discrete
variable s and the continuous position variables of each bead,

ps(x,t) = p(x, tls; = s)P(s; =) fors=1,2,...n, (5)

where p(x, t|s, = s) is the conditional density for the process
X, at time ¢ given that the force state is currently in state s.
Each individual p; will follow a Fokker-Planck equa-
tion associated with that state’s drift term from Eq. (4), with
an additional coupling term to represent transitions between
states. These coupled Fokker-Planck equations take the form

ap“——ii[v? ]+62m:a—2[ ]+12n:S ©6)
T e e e T T

=

with the associated steady-state equation

m 2

3 . m 9 1 n
O:—ZE[U,'ps]‘FG;a_x%[ps]"f—g;sskpk (7)

1 1

15

fors=1,2,...n.

If the drift term v did not depend on the switching process
s;, the Langevin process for X; would have a potential function
constructed from a path integral of v. However, in our formu-
lation in which the drift function v exhibits random switching,
it is no longer the gradient of a potential function, and so
such a U cannot be found. Intuitively, in the small-noise limit,
€ — 0, in which the magnitude of the Brownian noise goes to
zero as the rate of the stochastic switching goes to infinity,
there is no diffusion and the forces are extremely rapidly
switching, creating an effective force given by the average of
the switching forces v* over the steady-state distribution of the
switching matrix.

The above informs our choice of the WKB-like ansatz for
the steady-state distribution p,(x) in the form

1
ps(x) = r5(x) exp <_ZW(X)) ®)

fors =1...nas e — 0, similar to the one employed in [16]
for purely stochastically switching forces (no diffusion). We
see here that W (x) takes the place of the potential U (x) in
Eq. (2); W(x) is the quasipotential. The preexponential term
ry superimposes the different states s.

We then plug Eq. (8) into Eq. (7), seeking equations for
rg(x) and W(x) given by the order é terms, which are the
lowest order in €. In this way, Eq. (8) differs from a typical
WKB expansion in which there would be no preexponential
term present at lowest order. This r; term only encapsulates
the relationship between states—the full preexponential term
would emerge at higher order in €.

The resulting order é equation has the form

M(x, VW)r(x) = 0, 9)

where the matrix M depends on both the position x and
the gradient of the quasipotential VW. The vector r(x) =
(r1, ¥2, ..., r,)T has components r,(x) for each state s. Details
are shown in Appendix B 1. The n x n matrix M is given by

M(x, VW) =D(VW) +A(x, VW) + 5(x), (10)

the sum of three matrices corresponding to the three terms
in Eq. (7): D, the diffusion matrix; A, the advection matrix;
and S, the switching matrix. Note that S is unchanged from
its original definition as the CTMC transition rate matrix and
serves the purpose of coupling the different states, while D
and A are diagonal matrices with diagonal elements for each
switching state s = 1...n given by

aw\? mL AW
Dy, = Z(¥> and Ay =Zvi5. (11)
. 1 i=1 1

We can observe that in order to have nontrivial solu-
tions to the system (9) we must have that det M(x, VW) =
0. Choosing the Hamiltonian as the greatest eigenvalue of
M, H(x, p) = max A s.t. M(x, p)u = Au, we see that having
nontrivial solutions to the system (9) is equivalent to the
Hamilton-Jacobi equation, H(x, p) = 0. Note that we have
introduced a new variable p as the second argument by anal-
ogy to the typical form of the Hamilton-Jacobi equation. This
means that our solution for VW will be given by the value of
p that solves the Hamilton-Jacobi equation.

Combining the above with an additional curl-zero con-
straint, we obtain the pair of equations

H(x, VW (x)) = 0, (12)

V x VW(x) =0, (13)

that uniquely defines the gradient of the quasipotential. In
this work we will compute the quasipotential along MPPs
parameterized as ¢(s) : [0, 1] — R™. On the interior of the
path 0 < s < 1, Eq. (12) will define a convex surface, and the
curl constraint that defines the unique solution can be replaced
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with a constraint evaluated only on the path given by

d

Y HO v | d—f. (14)
We will require that the endpoints of this path are fixed points
of the “deterministic dynamics,” defined by the limit € — 0
of Eq. (4). Recall that in this limit the Brownian noise term
vanishes, and the CTMC switching rates go to infinity such
that the system always exists in a superposition of states
consistent with the steady state of the switching matrix S(x)
at its current position. These dynamics can be expressed as

n
dx,»

7 :vafrkforizl...m
k=1

n

Zrk = 1,

k=1

(15)
r=null §

where v; defines the force on coordinate i when in switching
state s, and r is a null vector of S(x) appropriately normalized
so that it represents the steady-state distribution of the CTMC
at fixed position x. While H(x, 0) = 0 everywhere, we show
in Appendix B3 that at fixed points of the deterministic dy-
namics, H(x,0) = 0 is a minimum of H, and therefore the
unique solution (note that 7{ is a convex function). Thus, at the
endpoints we necessarily have VW = 0, and on the interior
VW is defined by the simultaneous solution of Eqgs. (12) and
(14).

Solving Eq. (14) for the MPP ¢ can be done using vari-
ational methods such as the string method [20]. However, in
the nongradient case, as the quasipotential can be thought of as
propagating along caustics, we do not know the true value of
the quasipotential except on an MPP. This creates the need for
an iterative algorithm that alternates between estimating VW
using the current value of ¢ and using the computed values of
VW to update the path ¢. We discuss this procedure in more
detail next.

C. Solving for VW

We will now describe the numerical optimization pro-
cedure by which we obtain VW, the gradient of the
quasipotential, through which we obtain the final quasipoten-
tial by numerical integration. This will require formulating the
simultaneous solution of Egs. (12) and (14) as an optimization
problem using Lagrange multipliers and then plugging in the
Hamiltonian constructed in Sec. II B.

Our approach for computing VW is based on the Newton’s
method equations in [16], which are presented for an arbitrary
Hamiltonian H, and also require the gradient and Hessian of
‘H with respect to the momentum variables p [see Egs. (C1)
and (C2)]. Using the Hamiltonian derived in Sec. II B along
with the differentiation formulas shown in Appendix B2, we
are able to apply these equations to our problem.

In practice, we have observed that direct application of
these Newton’s method equations often fails to converge for
the problems we have attempted. To address this, we have
added a fallback scheme that is designed to make guaranteed
iterative improvements until the region in which Newton’s
method converges is reached.

This fallback method reframes Eqs. (12) and (14) as the
problem of maximizing the dot product with ‘fl—‘f on the convex
surface H(x, p) = 0. The fallback method moves the current
guess a small distance in the direction of ‘;—f projected onto the
normal of the surface H(x, p) = 0, and then applies Newton’s
method to return to a solution of Eq. (12), H(x, p) = 0. Note
that the application of Newton’s method in the fallback is only
on Eq. (12), as opposed to the outer Newton’s method which
seeks a simultaneous solution to Egs. (12) and (14).

If the outer Newton’s step fails to improve the quality of
the solution, this fallback is used instead, which is guaranteed
to produce a better solution. In practice, the fallback is able
to quickly bring the guess close enough to the true solution
for Newton’s method to begin to converge quadratically. Ad-
ditional details of this routine are written in Appendix C 1.

D. Computing minimum action paths

Previous work on computing quasipotentials has either
computed the quasipotential along MPPs (for example,
[15,16]) or on a grid using an upwind scheme [16,26]. As we
are interested in transition asymptotics, we restrict this work
to considering computing quasipotentials along MPPs, and so
the routine for computing the quasipotential must simultane-
ously search for an MPP.

An MPP, ¢(s), is a curve in the configuration space of the
system parameterized by s, typically taken to be the normal-
ized arc length along the curve. It connects two points x,, X
such that ¢(0) = x,, ¢(1) = x;. Numerically, the path ¢(s)
is discretized into a sequence of “images,” ¢, ¢z, @3, ..., P,
representing the state of the physical system along the tran-
sition path. These images are chosen so that the arc length is
constant between images, €.g., ||¢r — ¢r—1|| = const.

To compute the MPP, we make an initial guess of the
transition path (typically linearly interpolated) and then apply
the string method [20], in which each image along the path
is moved a small distance opposite to the direction of VW
and then interpolated along the path to remain equally spaced
in arc length. Compared to typical applications of the string
method, there is an additional step of applying the implicit
solver to find the value of VW at each image, which itself
depends on the current direction of the string.

Because we are looking for escape trajectories from a well,
we allow the final image of the string to move according to
the climbing string method [21]. The final image moves in a
different direction: letting VWjy refer to the gradient of the
quasipotential at the final image and d¢y refer to the tangent
direction of the string at the final image, the direction for
moving the final image is given by

VWy — (1 + a)proj,, VWy (16)

for some o > 0. This can be interpreted as descending in the
directions orthogonal to d¢y, but climbing in the direction
parallel to d ¢y, as the projection term inverts that component.
Details of the algorithm are presented in Appendix C 2.

The more general method for finding transition paths in
nongradient systems is gMAM [16,28]. This method also
time-evolves a discretized path but requires additionally com-
puting the Hessian of the Hamiltonian, in our case defined
as the largest eigenvalue of the matrix M. In practice, we
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noticed the interaction between the largest and second-largest
eigenvalues led to high sensitivity of the Hamiltonian on the
state of the system and corresponding instability in the gMAM
iteration. For this reason we chose to work with the string
method to find MPPs.

Once the MPP ¢(s) is found, together with VW along this
path, the quasipotential barrier is defined via integration,

1
AW = /0 VW I(s)]I¢(s)lds.

We compute this numerically using the trapezoid scheme with
centered differences for computing ¢’(s).

III. ONE-DIMENSIONAL CASE

To demonstrate our formulation of the Hamiltonian (Ap-
pendix B1) and correspondingly, the quasipotential, we begin
by applying our method to the one-dimensional case of a
single bead subject to a constant excluded volume force and
an on-off switching attractive force pulling it towards the
origin. We note that the presence of only a single spatial
dimension means the transition path is trivially known; this
frees us from the additional optimization step of computing
the most-probable transition path out of the minimum.

In this case there are only two states of the switching force
corresponding to whether the attractive force is switched off
or on—we label these forces v!' and v2, respectively, in line
with the notation introduced in Sec. II B. They are given by

1 K
v (x) =daepxexp| —— ),

Cev

2

vz(x) = QX eXp (——) — kx.

ev

In this example we use parameters k = 5, a,, = 3, ¢,, = 0.5.
We note that the method is independent of the choice of these
parameters, and the choice is simply motivated to create a well

with a basin of attraction extending to |x| & 1.

Correspondingly, the transition rate matrix takes the form

1o l(‘“(x) ¢ ) (17)

€ e\ alx) —c

with a(x) being some decreasing function of distance from the
origin, and c a constant that is here taken to be 0.5. Note the
1/€ scaling of the CTMC to couple the switching rates with
the magnitude of the Brownian motion, thus allowing us to
take the limit as both fluctuations go to zero with ¢ — 0.

We consider three different choices of a(x), chosen to
create quasipotential barriers of different heights, to allow us
to show agreement in three different cases. These functions
a(x) are

ap(x) = 2¢ 3" (18)
2

a(x) = T 0075 (19)
4

az(x) = 1 + 2006075 20

Because the most-probable transition path can only move
in the single dimension of the problem, we simply compute

(a) 12

o

<9
:
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(Quasi-)potential
o o
IN o
~ ~

o
N
-

N

Position

(b) 11
10.5
10

9.5

log(7)

8.5

5 5.5 6
1/e
FIG. 1. Comparison of quasipotential and escape time asymp-
totics for the three different affinity functions given by Egs. (18)—
(20). (a) Comparison of quasipotential (solid) along the string with
the deterministic average (dashed) that time averages the switching
force, illustrating that the deterministic average would not agree
with Monte Carlo statistics. (b) Average Monte Carlo escape times
(points) overlaid on a solid line whose slope is given by the
quasipotential barrier, showing full agreement between Monte Carlo
statistics and asymptotic prediction. Logarithms are taken base e.

the quasipotential along some interval (0, xp) such that x is to
the right of the “saddle point” of the quasipotential (which in
one dimension is, in fact, a maximum). For the above choices,
the maximum is in the vicinity of x = 1, so we compute values
through xy = 2.

In order to validate the size of the computed quasipotential
barrier, we compare to escape times, computed as described
in Appendix A, using the modified Euler-Maruyama method.
Note that the transition rate from state s = 1 to s = 2 depends
on the changing variable x, and so waiting times are resampled
each time step; the rate ¢ is constant, and so the waiting time
from state s = 2 to s = 1 can be preserved until it is reached.

Figure 1(a) shows the results of computing the quasipo-
tential for each of the three affinity functions, along with
the deterministic energy computed by numerically integrating
the deterministic force from Eq. (15). This shows that while
the two agree on the location of the highest point of the
barrier, they disagree significantly on its height. Figure 1(b)
shows the average Monte Carlo escape times for different
values of €, compared to lines whose slope is given by the
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height of the quasipotential barrier. The quasipotential barrier
height clearly predicts well the slope followed by the escape
times, confirming that our formulation of the quasipotential
is consistent with the theory and preparing us to add the
string descent element in higher-dimensional problems. We
note that the theoretical intercept of these lines would follow
from higher-order asymptotics. Here, it is chosen by hand to
fit the data.

We also recall the thought experiment of the infinitely high
switching barrier from the introduction. Figure 1 confirms
that the interaction between Brownian noise and stochas-
tic switching leads the deterministic average to significantly
overestimate the effective barrier, in this case by a factor of
roughly two. This reinforces the need to properly consider the
distinguished asymptotic limit in both sources of noise.

IV. TWO-DIMENSIONAL CASE

In this section we detail the model of three beads moving
in two dimensions that exhibits the same mixing behavior that
originally inspired this work. We characterize the four stable
states of the system and show that the system spends most of
its time in those states in which a pair of the beads is clustered
together. We compute a most-probable escape path from one
of these states and show that it agrees with Monte Carlo
simulated escape times for transitions between two clustered
states.

A. Model

Our interest in stochastically switching Langevin systems
is originally motivated by prior work on modeling dynamics
of chromosomes inside a yeast nucleus [14]. We consider
here a toy model using the same functional forms of forces,
while noting that the methods apply in general to any type of
stochastically switching force between particles.

We consider three beads, affected by three forces: bonding,
repulsion (excluded volume), and a global confinement force.
These are collectively sufficient to produce multiple stable
equilibria in the system. The confinement force is given by

fix) = —nx;, @D
the excluded volume force is given by
; (i —x;)’
Fiv(x})) = e — xj) exp [——’ N C)
ev

JF#

and the binding attraction force is given by

Frona((xi}) =Y by — i), (23)
J#
where b;; = 1 if beads i and j are presently bonded and zero
otherwise. We use parameter values k = 5, a., = 2, ¢, = 0.5,
and n = 1. With this notation, the entries b;; stochastically
switch as beads bind and unbind. Thus only the binding force
foond 18 stochastic; the others are deterministic.
This gives the following SDE for the position of bead i:

dXi = (fl + fiy + fiona)dt + V2edW, (24)

where € is a small positive parameter that controls the amount
of stochasticity in the system and also appears in the switch-
ing, as described below.

The stochastic switching of the bonding term models the
crosslinking proteins that bind two nearby beads. Each bead
can be either unbound or bound to a single other bead. Bonds
are symmetric. If a bond is formed between two beads, assume
that the lifetime of the bond is an exponentially distributed
random variable with rate ¢, meaning it has an expected
lifetime of % To simulate it, one can simply draw such an
exponentially distributed random variable and use it as the
lifetime.

It is natural to assume that crosslinking proteins would be
more likely to bind beads that are closer together. Therefore,
by analogy to the form of Eq. (17) we include an “affin-
ity function” a(r) dependent on pairwise distances for the
binding rate. Specifically, a(r) gives the (exponential process)
rate at which a bond forms between two currently unbound
beads i, j with positions x;, x; that are separated by a distance
r = |x; — x;|. We note that this rate is only meaningful until a
bond forms—a rate of a(r) is equivalent to stating that in an
infinitesimally short time d¢, there is a probability % that a
bond forms. However, note that as the system moves in time,
these probabilities will change accordingly. In this section we
will use a = a», given in Eq. (19), which is

2
a(x) = 1 + €20(4—0.75) "

Following the framework of Sec. Il A, the CTMC switches
between the different binding configurations. These binding
configurations corresponding to the states of the Markov chain
are enumerated as all three beads unbound (s = 1), bead 1
bound to 2 (s = 2), bead 1 bound to 3 (s = 3), bead 2 bound
to 3 (s = 4). The corresponding transition rate matrix S takes
the form

b c c c
1. llaxi—x) —c¢ 0 0
STclam—x 0o — o 25)
alx;—x3) 0 0 —c
with b= —a(x; —x2) —a(x; —x3) —a(x, —x3). Recall

again the fixed rate ¢ = 0.5 describes bonds breaking.

To illustrate the qualitative behavior of this constructed
model system, Fig. 2 demonstrates a sample simulated tra-
jectory. In particular, we can see that this model replicates
the “mixing” property that motivated this research, with
rapid switching between which pair of beads (analogous to
a cluster) are currently close. This motivates the further inves-
tigation into the behavior of this system, and the stability of
these cluster states.

B. Computing most-probable escape paths

We now proceed to compute MPPs out of a basin of at-
traction using the quasipotential climbing string method. We
begin by initializing a climbing string to search from the two-
bead cluster minimum, with two beads in the same location
and the third further away.

Compared to previous work utilizing a string method, our
problem exhibits a greater level of numerical instability. In
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FIG. 2. (a) Trajectories taken by three beads over the first 20 000 time steps of a simulation. (b) Plot of pairwise distances between the
three beads over time. Observe that at any time, one distance is small (between the two currently clustered beads) and the other two distances
are large, with which pair is bound rapidly switching. (c) Snapshots of the simulation illustrating possible transitions between two clustered
states. The nearby beads separate, arranging into a line. Another possible intermediate state is a triangle. Finally, two beads again approach

and enter a cluster state.

particular, we notice high-frequency error along the string
with each image zigzagging back and forth. This coincides
with a lack of convergence, as shown in Fig. 3(a), where
we plot the total change over all images since the previous
iteration for different numbers of images along the string.
Only the string with 10 images shows convergence. While
reducing the time-step size for evolving the string helped with
convergence, we noticed that reducing the number of images
had a greater effect on convergence. Further evidence for the
lack of convergence for strings with more than 10 images
appears in Fig. 3(b). This figure shows that the computed
barrier height of the quasipotential continues to evolve with
more iterations, except for the string with 10 images.

Figure 4(a) shows the computed escape trajectory from
the two-bead cluster minimum to the saddle point of three
colinear beads, using a string with 10 images along it. This is
consistent with the observation in Fig. 2(c), that transitions out
of the two-bead cluster state pass through an intermediate state
in which the three beads are colinear. In fact, the beads remain
colinear along the entire transition path; therefore in Fig. 4(b),
we plot only the y coordinate of the beads along the MPP, as
the x coordinate remains unchanged. Note that our system is
rotationally symmetric, so any transition from the cluster to
the colinear state is simply a rotation of this transition taking
place along the y axis.

Figure 4(c) shows a different computed escape trajectory
from the two-bead cluster to a saddle point shown by the
black circles with two beads still on top of each other, but
closer to the third bead, before separating into the stable trian-

gle state. This spatially longer transition path was computed
using a string with 30 images along it. We point out that this
placed about 10 images between the starting minimum and
saddle point, which covers about the same spatial distance
as the MPP in Fig. 4(a). This hints at a possible relationship
between the physical distance between images and the time
step to evolve the images to ensure convergence, similar to
some finite difference methods for evolving partial differential
equations. Further investigation is required to determine the
exact relationship between convergence and the number of
images along a string.

C. Monte Carlo escape statistics

We validate our computation of the quasipotential barrier
by comparing it to Monte Carlo simulations of the model test
system in Eq. (24). As mentioned in Sec. IV A, our test system
exhibits switching between permutations of the stable cluster
state, with two beads close together and one far away; see
Fig. 2(b). By design, it spends minimal time in other stable
configurations such as the triangle, as we are particularly
interested in transitions between the stable cluster states.

To compute the Monte Carlo escape times, we initialize
the simulation with beads 1 and 2 close and bound together,
and measure the time until a different pair of beads form a
cluster by a criterion that the newly clustered beads should
be separated by a distance under 0.3 and the original pair
is separated by a distance of at least 1. While this criterion
represents entering a new cluster state, as opposed to simply
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FIG. 3. (a) Maximum change over all images from previous
iteration, showing convergence only in the case of 10 images.
(b) Quasipotential barrier height over iterations, showing that the
n = 10 converges to a barrier height of approximately 0.011.

reaching the edge of the basin of attraction, these two events
take the same amount of time asymptotically to the lowest
(logarithmic) order. Due to the multidimensionality of the
system combined with the stochastic switching force, directly
determining the edge of the basin of attraction is not trivial.
Further details on the numerical simulations and estimate of
the mean escape time t are given in Appendix A.

In Fig. 5(a) we compute the quasipotential (solid line)
along the MPP shown in Fig. 4(a), connecting the two-
bead cluster to the saddle point of the quasipotential. For
comparison, we also include the deterministic average poten-
tial (dashed line) computed by averaging the stochastically
switching force over the steady-state distribution of the
Markov chain, thereby taking the switching noise to zero first
before considering the effect of the Brownian noise. Note
that in both these cases this effective potential is in the six-
dimensional configuration space of the three-bead system; it
is not a pairwise effective potential between two beads. We
find the quasipotential barrier AW to be equal to approxi-
mately 0.011, whereas the deterministic average is an order of
magnitude greater at approximately 0.096. This illustrates the

(a) 0.8
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04 | ]
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FIG. 4. Visualization of escape paths computed using quasipo-
tential string descent. (a) Path connecting the two-bead cluster state
[Fig. 2(c), first panel] to the saddle point of three colinear beads
[Fig. 2(c), second panel]. (b) The y coordinate only of the transition
in (a) as the x coordinate remains unchanged. Note that the behavior
is not simply linear, especially visible in the case of bead 2 (green).
(c) Path connecting the two-bead cluster state [Fig. 2(c), first panel]
through a different saddle point indicated by the black circles to the
triangle state [Fig. 2(c), third panel].
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FIG. 5. (a) Quasipotential (solid) and deterministic average
(dashed) along transition path from Fig. 4(a). Quasipotential barrier
height is approximately 0.011. (b) Comparison of asymptotic escape
times computed via Monte Carlo simulation (points) to slope taken
from quasipotential barrier height (red line).

disagreement between the quasipotential and the deterministic
average even more strikingly than in the one-dimensional
case.

In Fig. 5(b) we test if the Monte Carlo escape times
are well described by the quasipotential theory that log v ~
AW/e. We run simulations for a collection of values of
€ € [0.005, 0.035] and compute the mean escape time t for
each € as described in Appendix A. For values of 1/¢ > 100
(e < 0.01), the escape times are linear in the log-log plot, as
predicted by the asymptotic relation, with a best-fit slope of
approximately 0.118. We then compare this to the quasipo-
tential barrier from Fig. 5(a), drawing a red line whose slope
is given by the theory and fitting the y intercept. The slope
of the Monte Carlo points agrees essentially perfectly with
the line, demonstrating the validity of our quasipotential. We
importantly note that this slope of approximately 0.011 clearly
disagrees both with the deterministic average (approximately
0.096) and the quasipotential that would be derived along a
linear trajectory between minimum and saddle (approximately
0.015), as opposed to our nonlinear path shown in Fig. 4(b).
Thus we are confident that our numerical method converged
to the correct MPP and quasipotential and that this asymptotic
limit is the correct way to capture the dynamics of metastable
switching systems under Brownian noise.

The main source of numerical error in our computation
comes from integrating the gradient of the quasipotential
along the string. This error decreases with more images,
but more images cause the convergence issues mentioned
previously, including that the computed barrier continues to
increases as more iterations are performed. To get a sense of
the error, we also computed the same quasipotential using 6
through 12 images along the string, finding the quasipotential
barrier to vary from 0.0108 (6 images) to 0.0115 (12 images).
These all round to the value of 0.011 reported above.

V. DISCUSSION

In this paper we extended the theory of quasipotentials to
systems of Langevin equations with an additional source of
stochasticity arising from a continuous-time Markov process
switching the force term, a natural mathematical framework
for modeling systems in biology under the effect of protein
binding and unbinding mechanics. We demonstrated that un-
der the interaction of switching forces and Brownian motion,
an effective potential is generated that is weaker than pre-
dicted by a simple time averaging of the switching force.
We further demonstrated that the quasipotential represents
an effective thermal equilibrium in the low-noise regime and
can be used to predict asymptotic transition times between
metastable states created by such switching forces. This sets
the stage for further analysis of switching models of biologi-
cal systems, representing states created by thermal action of
proteins as minima in an effective energy landscape given
by the quasipotential and transitions as most-probable paths
in this landscape, only made possible by understanding the
interaction between both sources of stochasticity.

By taking a distinguished limit simultaneously in both
sources of noise, we derived the Hamiltonian for this problem
and demonstrated the numerical problems that arise when
using the standard methods in the literature. We developed
modifications to these methods that allow us to compute most-
probable transition paths and quasipotential barriers along
these paths. These quasipotential barriers accurately predict
escape times, reinforcing that this simultaneous treatment of
both noise sources is required over a time average of only the
stochastic switching to produce a single deterministic force
before considering the effects of thermal noise. This determin-
istic average significantly overestimates the effective energy
barrier and thus the stability of a pseudoequilibrium state such
as the gene clusters observed in [14]. Thus we have shown
that an effective thermal equilibrium can be constructed by
simultaneously incorporating both the stochastic switching
that pushes the system out of equilibrium and the thermal
noise.

The inclusion of Brownian motion in our framework con-
trasts with previous work in which the only source of noise
comes from random switching between deterministic differ-
ential equations [16,22]. With the correct choice of scaling
between the thermal noise and the stochastic switching rates,
we were able to demonstrate that a similar WKB ansatz
approach can be applied to derive the Hamilton-Jacobi equa-
tion for this framework.

Our example six-dimensional system produced new nu-
merical issues not reported by others computing quasipo-
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tentials for one- to three-dimensional systems in previous
literature [16,22—-27]. These numerical issues arose in two
separate places in our algorithm: the implicit solve step for
VW, as discussed in Sec. II C, and the optimization method
for finding the most-probable transition path, as discussed in
Sec. IV B. In each case we showed how to modify the algo-
rithm to overcome these issues. As solving for VW is a convex
optimization problem, it is expected that there should exist a
good solver, and our modified Newton’s method seems to fit
this role, with guaranteed convergence under a short number
of iterations from practical considerations. However, there is
room for future work in further understanding the error in the
MPP computation step, as the current remedy of reducing the
number of images leaves desired the ability to compute paths
on a finer resolution. We reiterate that the most commonly
observed alternative to the string method, gMAM, does not
alleviate this problem, as it runs into instability due to high
sensitivity in the Hessian matrix. However, it is conceivable
that continued work on the method used for this optimization
step could produce a more stable algorithm in higher numbers
of images.

Applying our methods to our idealized model, we showed
how a stochastically switching pairwise crosslinking force
could create effective bound states, with the system exhibiting
switching between which pair of beads is in the effective
bound state. We note that this is not simply switching be-
tween which pair of beads is currently bound by the switching
crosslinking force. When beads are in this so-called effective
bound state, they are switching back and forth between being
bound and unbound, but on average are bound enough of the
time to remain in close proximity until a rare event through
a combination of Brownian noise and switching of the force
allows them to separate and a new pair of beads to enter the
effective bound state. We showed the ability to accurately
predict the asymptotic timescales on which this escape occurs,
showing strong agreement between the slope of Monte Carlo
simulations of the timescale and the height of the quasipoten-
tial barrier, in line with the Arrhenius law of escape times.
This validates our methods and code and sets the stage for use
in further applications.

Our work here was originally motivated by observations in
[14] in which we observed particles representing beads in a
polymer model of the yeast genome associating into clusters
as though on an effective energy landscape, even though the
stochastically switching forces meant the system was never
truly in equilibrium. In this work we were able to mathemati-
cally demonstrate that the observed behavior can be explained
by an effective energy landscape through the analysis of a
reduced model. Having derived the Hamilton for a general
overdamped Langevin system and the numerical methods to
compute transition paths, we would like to apply our methods
in future work to analyze the clustering states observed in this
model as fixed points of the associated deterministic dynam-
ics, and then compute the quasipotential barrier to escape from
these states to understand the stability of each clustering state
in terms of system parameters.

One of the challenges facing scaling up this method to
more particles is the size of the matrix M, which increases
factorially with the number of particles. Our previous work
in [14] showed a collection of approximately 380 beads con-

densing into clusters dynamic clusters of approximately 5-10
beads in suitable parameter regimes. In future work we would
like to apply our methods to larger numbers of beads using
forces directly taken from biological modeling. The largest
challenge to this will be addressing the state space of the
switching process, which increases exponentially with the
number of beads. The algorithm does not use the matrix
M (x, p) in full, only the derived (scalar) Hamiltonian H(x, p)
arising from the greatest eigenvalue. Since x and p only scale
up in dimension linearly with the number of particles, this
suggests an alternative approach in which we construct an
approximation either for the map (x, p) — H(x, p), which is
used to implicitly solve for p, or even directly for the map
x — p (noting that the direction ‘jj—‘f of the string would also
need to be included). Recently machine learning methods
have been used to develop approximations to challenging-to-
compute mathematical functions, and so this is an approach
we would like to incorporate into our method in future work.

The WKB ansatz approach also allows for the computa-
tion of additional terms by following through the asymptotic
expansion to higher order. In particular, the next term in the
series would give the full preexponential term that would
allow for computation of the intercept of the escape time
asymptotics as shown in Figs. 1 and 5. While the current
work focused on developing the machinery to compute most-
probable transition paths under our framework, future work
could expand on this and compute this preexponential coeffi-
cient.

The full code to compute transition paths and quasipoten-
tial barriers for these systems and replicate all results in this
work is available on GitHub [29].
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APPENDIX A: MONTE CARLO SIMULATION

To validate our quasipotential, we compare it to Monte
Carlo simulations of the system. These simulations are taken
by numerically evaluating Eq. (24) using a modified Euler-
Maruyama method, to incorporate both the SDE and the
stochastic switching. We track the current switching state s
in addition to the position x and update the position in each
step as

Xnew = X + AtF (x;5) + V2€AB, (A1)

where F'(x; s) is the drift function at position x in state s, and
AB ~ N(0, At) is the increment of Brownian noise. Then we
compute any changes to the state variable s. The specifics
of this update depend on the nature of the switching but in
general involve checking whether any changes occur within
the time step At by drawing waiting times from exponential
distributions. Due to the memoryless property of exponen-
tial random variables, we may safely redraw in future time
steps any waiting times that do not correspond to a transition
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within the current time step, in case the transition rate changes
between time steps. In this work we make a first-order approx-
imation and treat all switches as occurring at the beginning of
the time step.

To empirically estimate the mean escape time associated
with a particular €, we initialize a Monte Carlo simulation in a
state corresponding to a stable equilibrium of the deterministic
dynamics, as obtained through descent of the deterministic
force. We proceed to simulate Eq. (A1) until a termination
condition is reached indicating escape from the basin of at-
traction that the simulation began in. The escape time is then
recorded as 7;. The simulation may also reach maximum time
T without exiting the original basin of attraction, in which we
take 7, = T. We assume escape times follow an exponential
distribution with mean u and use the maximum likelihood
estimator (MLE) for the mean of an exponential distribution
given samples capped at a maximum time, given by [30]:

D VS (A2)
Zk I(‘L’k < T)
Note that as T — oo, this reduces to the simple mean of the

samples 1.

We then repeat the above process for a sequence of values
of €, computing a relationship t(e). We expect a linear rela-
tionship between i and log 7,

b
logtr =a+ -, (A3)
€

where the value b is corresponds theoretically with the

quasipotential barrier height, and a would be given by the
higher-order preexponential term.

APPENDIX B: DERIVATION DETAILS
1. Derivation of the Hamiltonian

Here we will present the computation arising from plug-
ging in the WKB ansatz Eq. (8),
1
ps(x) =rsexp| ——W(x) ),
€
to the steady-state equation, Eq. (7),

CE 9 1
0= —Za—xl[vlps] +6Za_x?[ps] + E[Sp]s’

(both reproduced for clarity) and collecting lowest order terms
in €, which will be the é terms.
The spatial derivatives of the WKB ansatz are given by

a ( W(x)> ( W(x))|: 1 oW ]
xp | — =exp|— -
€ € € 0x; |

02 W(x) W(x) 1 oW 7]
a_xl?eXp e - T _232x3_

3)6,‘
( W(x))[lBWT
+exp| — -—— .
€ € 0x;

and

For the drift term, we obtain a f term by differentiating once
the exponential, thus giving us

0, 11 W@ W
_Xi:a_xi[vip.v] ErseXp< - >Xi:viaxi'

For the diffusion term we obtain a é term by differentiating the
exponential twice and combining with the € prefactor, giving
us

92 1 W (x) VAN
€ 2,: a—xiz[l?s] z"s €xp <_ E ) Xl: (8_)6,) .
Finally, the switching term itself is a é term, given by

l[Sp]x ~ Lexp (—W(x)>[5r]s.
€ € €

Together, Eq. (7) reduces to, at lowest order in €,

1 W (x) 4
0 = Erﬁ:xp(— . )Zvla—xl
1 W (x) aw\?
-I-Ersexp <— p )Z(a—xl)
+Lexp (—W(x))[sr]s. (B1)
€ €

We can cancel out the common term of é exp(—@) and
then rewrite the resulting equation as a matrix equation by
defining vector r with components r;, s = 1...n and turning
the advection (drift), diffusion, and switching terms into the
matrices A, D, and S, respectively:

[A+D+Slr=Mr=0, (B2)

with the diffusion matrix D defined as

D= [Z (2—1‘/)2]11 (B3)

i

where I represents the identity matrix, and the advection
matrix A is defined as

A = diag(VVW) (B4)

(note that diag here indicates the mapping of a vector to
the square matrix with it on the diagonal), and the matrix S
unchanged from its original definition. Note also that D and A
are diagonal matrices, so the only off-diagonal contributions
come from S, which is not dependent on W.

2. Derivatives of the Hamiltonian

In order to apply Newton’s method for finding critical
points, we will need to compute the gradient and Hessian of
H(x, p) with respect to the momentum variable p. To do so
we will use the formulas of [31] in differentiating eigenvalues
of a matrix with respect to the entries of that matrix. Consider
a real, square matrix M = My + dM such that Myuy = loug
and voMy = Agvp, and then consider the function A(dM) s.t.
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A(0) = Ag. Using the superscript + to refer to the Moore-
Penrose inverse, we have

T
vy dMu
dr= 22
Vg Uo
P — 20 (dM)Ko(hol — Mo)TKo(dM )uy
o vguo ’
T
Ky=1— 2%
UO up

We now consider the case that M is in fact a function of the
momentum variable p, centered at a value pg. In this case
we have M(py) = My. Applying the chain rule, we get the
formulas

dr  vIM,u
o 20 Tp, 0 (B5)
dp; Vv, Uo
d*x 2v§ M, Ko(rol — Mo)" KoM, ug
dpdp; Vg Uo ’
T
vy My, U0
+ 8 R (B6)
Vg Uo

where p; = dW/dx; fori=1...m.

Because H(x, p) is simply the largest eigenvalue of the
matrix M, we can compute the gradient and Hessian H, and
‘H,, with direct application of Egs. (B5) and (B6).

3. Relationship between deterministic dynamics and
quasipotential

In this section we provide a proof that fixed points x¢
of the deterministic dynamics correspond to points where
V,H(x?,0) = 0, showing that VW = 0 corresponds to a min-
imum and therefore unique solution of Hx4, VW) =0.

Let x? be a fixed point of the deterministic dynamics such
that Fye;(x?) = 0, and let ¢ be the probability vector across
the states, and let the force term for each switching state v} be
represented in a matrix V;; = v such that

S r* =0 because r is a null vector,
V(x¥)yr? =0  because x? is a fixed point,

Recall the definition M(x, VW) = A(x, VW) + D(VW) +
S(x). One can see from the definitions in Egs. (B3) and (B4)
that A and D vanish when VW = 0, so that M (x, 0) = S(x).
It follows that M (x, O)r = S(x)r = 0, so 0 is an eigenvalue of
M (x, 0) and therefore H (x, 0) = O for any x.

We apply Eq. (B5) to compute Z—;’f, which we will show to
be O for all i,

dH i (dM/dp;)u
dpi vd ug

)

where ug, vo are the right and left eigenvectors, respectively,
of M(x4,0) = S(x4), corresponding to an eigenvalue A = 0.
Recalling that S is a CTMC transition rate matrix, the right
eigenvector uo will naturally be the steady-state vector r?.
Similarly, as a transition rate matrix its columns always sum
to 0, and so the ones vector will be a left eigenvector with

eigenvalue 0, and thus vo = [1,1,1...1]7.

Noting that
Ao Vi)
—— = dia i)
dpi £
dD
— =2pl =0 (p;=0),
dpi
we get that
d
dM(x?, 0)uy = diag(Vi)r! = vl v r! = Zxd =0,

as x, is a fixed point of the deterministic dynamics.

APPENDIX C: ALGORITHM IMPLEMENTATION
DETAILS

Note that full code for reproducing all results is available
on GitHub [29].

1. Quasipotential implicit solver

The core Newton updates from [16] are given by the itera-
tive update equations:

d
DPn+1 = P+ H;pl [And_f -H :|7 (CDhH
H,HIH, — 2H
L= it ) Rt iy (C2)
d(])TH;[}d(]ﬁ

starting from an initial guess for po, where H, H,, H,, are
evaluated at x, p,, and the derivatives w.r.t p are computed
in Appendix B 2. If the starting guess is sufficiently close to
the correct value, Eq. (C1) will converge to the value p that
satisfies Eqs. (12) and (14), which is the value of VW. How-
ever, in practice, we find that for our problems the Newton
method frequently fails to converge, and so we add a modifi-
cation based on the structure of the optimization problem to
guarantee convergence.

The solution to Eq. (14) under the constraint Eq. (12) can
be equivalently posed as the unique solution of

arg max |:p' d—¢i| s.t. H(x, p) =0, (C3)
p ds

as the surface H(x, p) = 0 is convex. In other words, Eq. (14)
can be viewed as a maximization problem. Correspondingly,
we require that each iteration increase the objective quantity
p- %. If the Newton’s step fails to do so, we move a small
distance « in the direction of % projected onto the normal to
the H(x, p) = O surface: '

" : d¢
pllzpn+KprOJLHp g .

We then use the root-finding version of Newton’s method to
find a p,1 such that H(x, p,y1) = 0, starting from p}, until
convergence:

N «  HO,py)

fo ol (C4)
P = Pn = 30 o pt)

If this did not increase the objective quantity p - ‘%, we reduce
k by a factor of 2 and try again. Because the surface is convex
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and we are moving in the objective direction projected onto
the surface normal, we are guaranteed an improvement for
sufficiently small . However, it is desirable that ¥ not be
too much smaller than necessary to reduce the number of
iterations until Newton’s method begins to converge.

We find that with this modification we always reach a point
where Newton’s method begins to converge quadratically to
the true solution.

2. String method

We apply the climbing string method as described in [21]
and summarized here for systems of the form

dX = -VUX)dt + V2edW.

The string ¢ is a path in the configuration space of X, starting
at an energy minimizer x4 of U(x). It is discretized into a
number of images, ¢; for i = 1...N with ¢ = x4, that are
evolved according to

oIt =gr —VU(¢!)dri=2...N — 1,

= gp — VU (op)dt + (1 +)[VU(¢y) - t]2dt,
(C5)
where 7 is a unit vector approximating the tangent to the string
at the end point

dy — by
o — @,

7T =

’

and o > 0 is a parameter that controls the climbing speed of
the last image. After each iteration of Eq. (C5), the interme-
diate images along the string are interpolated uniformly in
arc length to prevent them from bunching up at the energy
minimizer.

The only modification is the replacement of the gradient
of the potential VU with the gradient of the quasipotential
VW. These differ in that whereas VU evaluated at an image
¢; would depend only on the value of ¢;, VW depends on
both ¢; and the direction of the string %|¢=¢i' We estimate
this using a centered finite difference approximation,

d i — Q;—
L QNS N (6)
ds | s_, 2h
which turns Eq. (14) into the numerical condition,
do
T Il @iv1 — Pi1- (CT)
§lo=0

Note that we drop the denominator ﬁ, as it does not affect the

direction and therefore is irrelevant to the parallel condition.
This, however, means that the update order affects the algo-
rithm. In our case we compute the directions %f at all images
first and then perform updates simultaneously.
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