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Abstract

We present a novel means to understand granular materials, the Hydra String Method (HSM). This is an efficient and
autonomous way to trawl an arbitrary potential energy surface (or any similarly high dimensional function) that enumerates
the saddle points, minima, and minimum energy paths between them. In doing so, it creates a reduced dimensional network
representation of this surface. We also present a series of tests to choose optimized parameters for the application of the HSM.
We apply this to the potential energy function of a granular system consisting of a configuration of bi-disperse, frictionless,
soft spheres. Future work will make use of the found ensemble of transition pathways to statistically predict the dynamics

of a system of grains.

Keywords Transition path - Frictionless soft spheres - Stable packings - Computational algorithm - Energy landscape

1 Introduction

The class of granular materials is second only to water
in materials used by humans and despite recent advance-
ments to understand their unusual behavior, scientists still
lack an adequate way to describe the full range of their
behavior [1-4]. Attempts at firmly grasping the dynamics
and mechanics of granular materials have been as fruitful
as firmly grasping a handful of sand, it quickly runs away
from us.

This work presents the foundation of a new approach to
predict the dynamic response of purely repulsive-interaction
granular systems from a defined energy landscape. We take
a soft-sphere quadratic potential between overlapping 2D
bidisperse frictionless disks and map out energy-minimiz-
ing jammed states as well as the paths between neighbor-
ing states that minimize the energy, the minimum energy
paths (MEP). Unlike other work that seeks to enumerate all
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uniquely jammed states [5, 6], we only seek a representa-
tive sample of states as full enumeration is computation-
ally infeasible for even small systems of 12 particles. Note
that the neighboring states and pathways between them are
dependent on the protocol generating the packing (c.f. Ref.
[7] that allows the box size to change).

We expect this energy-based approach will lead to
advances in understanding both thermal and athermal gran-
ular systems. In small colloidal packings, random thermal
motion can have a significant effect on rheological properties
[8], and even athermal granular systems can be subject to
thermal-like fluctuations such as in vibration-fluidized sys-
tems [9]. Energy landscape exploration methods are already
being implemented for the thermal jamming transition [10,
11] and shearing using an extended potential energy land-
scape to account for the external strain [12]. Thus we antici-
pate our efficient energy landscape exploration algorithm
will have predictive power by speeding up energy landscape
exploration and creating transition networks like those gen-
erated from observing rearrangements under strain as in Ref.
[13].

The idea of exploring an energy landscape is not itself
new. In fact the building blocks of our automated “Hydra”
method are the string method [14] and its climbing variant
[15] (two of many such methods [16-23]) developed for use
in computational chemistry to probe the evolution of a single
reactant to a product state with possibly many intermediate
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transition states. These transitions are often diagrammati-
cally sketched as a graph of energy vs. reaction coordinate
called reaction coordinate diagrams [24]. Intermediate tran-
sition states along this path appear as maximums in energy,
but correspond to saddle points in the full high-dimensional
phase space of the system. Such a saddle point sits on top
of the local lowest energy barrier separating two states and
therefore chemical reactions are most likely to proceed over
this barrier near a MEP (c.f. [25]). We show a sample MEP
in Fig. 1 for a simple 2D potential (a and b) and for a more
complicated soft-sphere model (c) discussed in more detail
in Sect. 3.

Our automated method reduces the energy landscape to
a network representation of transition pathways between
neighboring states, through saddle points, like those pre-
sented for smaller systems such as six colloidal particles
with depletion attraction [26], nematic liquid crystals on 2-D
hexagons [27], small atomic clusters interacting with Len-
nard-Jones potential [28, 29] and 2D lattice polymers [30].
Unlike previous approaches, we find not just the transition
state but the full transition path. The method sends out mul-
tiple climbing strings to find saddle points that are ensured
to be on the edge of the basin of attraction (for gradient-
descent dynamics) around a minimum by the monotonicity
of the energy along the string. From the unique saddle points
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Fig. 1 a A simple potential function with a MEP shown in orange and
b the normalized energy along this transition path or “coordinate”. ¢
Example of an energy versus transition coordinate for a granular sys-
tem moving between minima
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found, strings are descended to find neighboring minima.
This process is repeated and, like a Hydra, this “string” will
grow new exploring heads to continue mapping the energy
landscape.

The main focus of this paper is laying out a sequence of
tests that can be applied to any system with an energy land-
scape to determine parameters that balance accuracy with
computational cost to be able to efficiently sample higher-
dimensional more complex systems. These tests seek gen-
eral characteristics of the basins of attractions (of gradient
descent dynamics) around each energy-minimizing state in
order to efficiently climb to the edge of the basins and thereby
sample the neighboring states. The first test dictates how pre-
cisely each state must be resolved to determine if two states
are unique. The next test characterizes the radial size of a
basin and informs how to resolve the smallest features of the
landscape and how far away to look for saddle points on the
edge of this basin. The last test determines how many climb-
ing string should be sent out to have a reasonable sample of
unique saddle points on the edge of the basin of attraction.

The remainder of the paper is organized as follows. In
Sect. 2 we briefly review the string and climbing string meth-
ods and present the details of our Hydra string method. We
explain the three main tests to apply to a system in order to
determine parameters for the Hydra string method that will
balance accuracy with computational efficiency in Sect. 4. In
Sect. 5 we apply these tests to the granular system given in
Sect. 3. We conclude the paper with discussions of various
parameter choices in Sect. 6 and conclusions in Sect. 7.

2 The hydra string method and algorithm

The Hydra String Method (HSM) is designed to explore the
potential energy surface (PES) in a systematic way, creat-
ing a network of connected minima and intermediate saddle
points. Its base pieces are the existing string [14] and climb-
ing string [15] methods that find an MEP between two min-
ima, or a minima and unknown saddle point, respectively.
We briefly review the string and climbing string method
before proceeding to describe our algorithm in more detail.

2.1 The string method

The String Method [14] finds the MEP between two minima
but is more computationally efficient and exhibits greater
stability than the popular Nudged Elastic Band (NEB)
method [31]. Both methods evolves copies, or “images”, of
the system in configuration space by gradient descent. To
address the issue of the images falling towards the minima
on either end of the path and bunching up there, the NEB
method introduced springs between the images to keep them
separated along the MEP. These spring forces couple the
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images that would otherwise independently undergo gradi-
ent descent. The String Method decouples these competing
forces on the images and treats them as two different steps,
thus enhancing efficiency. The String Method first allows
the images to follow a gradient descent for one time step and
then interpolates the images to equally space them along the
string in arclength.

One of the benefits of decoupling these two processes is
that it allows the user to change the interpolation method
“on the fly”. A linear interpolation method can easily be
changed to, for example, a natural spline method or any other
desired interpolation method. The decoupled images also do
not effect one another before the interpolation, so they can
be computed in parallel.

The string method can be implemented with either one
or both ends of the string held fixed. When both ends are
held fixed the string methods converges to a MEP between
those two points while keeping only one end point fixed
allows the string method to converge to a MEP between a
known minimum and a newly found minimum. This method
was designed as a tool for computational chemistry where
one may know both end points (known reactant and product
states) or with only a single known end point (known reac-
tant or product state).

2.2 The climbing string method

The Climbing String Method [15] is a modification of the
String Method that finds saddle points from a single known
minimum by allowing the final image along the string to
climb up against the gradient with the following force act-
ing on it:

F, ==YV, ) +v(VV(, ).7;, )7 - ey
Here, VV is the gradient of the potential energy, r; is the con-
figuration of the system at the climbing image, v is a tunable
parameter (generally set to 2) that controls the climbing speed
of the string, and %, =(r; —r; _)/|r; —r; _|is the
approximate unit tangent to the string at the climbing image.

The first image on the string is kept fixed at a minimum
and the intermediary images follow a gradient descent at
each time step. As in the String Method, the intermediary
images are redistributed via an independent interpolation.
A computationally cheap option for this redistribution is a
simple linear interpolation. But, other methods can easily
be substituted.

To ensure that the string remains in the basin of attrac-
tion of the starting minimum, if, at any time step, the energy
along the string fails to be monotonically increasing, the
string is cut at the point of non-monotonicity. The images are
then re-interpolated along this shorter string and the process
is continued until it converges to a MEP.

While at first glance the climbing string method appears
inefficient relative to non-string methods such as the two-
image climbing dimer method [18] or improved eigenvector-
following methods such as r-ARTn and d-ARTn [23] due
to the number of copies of the system that are evolved at
each time step, we see a number of advantages. First, both
these methods require post-checks to ensure the found saddle
point is located on the edge of the original minima’s basin of
attraction. As just stated above, the climbing string method
ensures the saddle point is on the edge of the desired basin,
thereby saving computation time. Additionally, these other
methods suffer from convergence issues ([20] improves the
convergence for the climbing dimer, and the improvement
in [23] only increased the rate to 87%), something we rarely
see with the climbing string method that converges more
than 98% of the time.

Second, we desire the entire MEP, not just the energy
barrier between the minimum and saddle point, in order to
expand beyond thermally-activated processes for granular
systems. These saddle-point-only finding methods would
require finding the MEP as part of the post-check. As with
the String method, the MEP is sensitive to the initial guess.
That is, a strict linear interpolation between the minimum
and saddle may converge to a path through many minima,
while a monotonic MEP may exist along some other curving
and twisting path. Therefore finding the MEP directly while
also finding the saddle point appears more reliable.

Last, we are willing to sacrifice accuracy in favor of com-
putational efficiency, explaining in the remainder of this
paper how to efficiently choose parameters for the Climbing
String method. If greater accuracy is required, each approxi-
mate saddle point found could be further refined by using the
inexact Newton method, as was done in [15], utilizing the
climbing dimer or eigenvector following method, or using
a non-linear spacing of the climbing string images to better
approximate the tangent to the string at the climbing image.

2.3 The hydra string method

We describe the Hydra string method in more detail, which
is illustrated in Fig. 2 and summarized by the pseudo-code
in Algorithm 1. Its MATLAB implementation can be found
on GitHub; see Code Availability at the end of the paper.
An initial minimum is found by choosing a random point and
then performing a gradient descent. This minimum is added to a
running list of minima found on the PES. From this initial mini-
mum, a number of new strings, 1., Withn,,,,,....images along
each string are extended a given distance, dist,,,, in a random
direction and allowed to climb following the climbing string
method described above. (A set of initial strings evolving are
shown in Fig. 2a). Those strings that converge to a saddle point
(see the converged strings in Fig. 2b) have their saddle points
added to a running list of saddle points. The images on these
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saddle points are then perturbed, away from the minimum from
which they were found, and allowed to follow a gradient descent
until they converge to another minimum (see examples of such
a converged path in Fig. 2¢c and d). These new minima are also
added to the running list of minima. An unexplored minimum
is chosen from the list and the process begins again (see new
evolving strings in Fig. 2e and converged strings in Fig. 2f).
This procedure is repeated until either no new minima/saddles
are found or a predetermined number of minima are explored.
In practice, one only wants to add unique minima(saddles)
to the list of minima(saddles). Thus at every step where new
minima(saddles) are found, they must be compared to the pre-
existing list of minima(saddles) with a tolerance, ol to
determine uniqueness before being added to the list.

sad [ min>

Algorithm 1 Hydra String Algorithm

1: Zrandom %randomly chosen position

2: Tinitiat = Descend(Zrandom) %descend to initial mini-
mum in system

3! Tminnew = Tinitial 70add first minimum to list of unex-
plored minima

4 Trmingnique = Tinitial %add first minimum to list of unique
minima

5: while z,in,,,.,, is not empty do

6: Tmin = Tminmge, (1) %Pick next minimum to explore

7: delete Tmin,,., (1) %Remove minimum to be explored
from unexplored list

8: for i = lingstrings do

9: Tminggpengeq = EXtend(Tmin,distest) %Extend a
string in a random direction

10: possibleynique_sad(t) = CHMb(ZTmin,,,.pnaeq)

11: if possibleynique_sada (%) is unique then

12: Tsadiemp -append(pOSSibleunique,sad (Z))

13: else

14: continue

15: end if

16: end for

17:  for i = 1:Length(zsqad,,,,,) do

18: possibleynique_min (1) = Descend(zsqd,,,,, (¢))

19: if possibleynique_min (i) is unique then

20: Tmingemp -apPend(possibleunique_min (1))

21: else

22: continue

23: end if

24: end for

25! Tming ey, -2PPENd(Tming,,,) %List of unexplored min-
ima

26: Tminunique .append(mmmmw) %Full list of unique min-
ima

270 Tsadypique-2PPONA(Tsadyen,) %Full list of unique sad-
dles

28: end while

2.4 Parallelizability

Two of the major benefits of this algorithm are its high
parallelizability and its high degree of flexibility in both
execution and application. Each minimum can be explored
independently from the others, the strings all act inde-
pendently from one another, and all of the images along
each string act independently from each other during the
gradient descent step. Thus, the while loop in Line 5 of
Algorithm 1 can be run as a parallel process, the for loops
in lines 8 and 17 can also be run as parallel processes, and
the string evolution in the C1imb and Descend func-
tions can have each image evolve in parallel. It is difficult
to parallelize all of these process at the same time and is
disallowed in many programming languages. So a choice
of where to parallelize must be made.

Parallelizing over the while loop requires significant inter
worker communication as it requires the list of potential new
saddles and minima to be transferred at the end of each itera-
tion. However, parallelizing here is beneficial for investigat-
ing smaller systems where the minima/saddle lists are small
in memory or for a system that is very large or has a com-
plicated potential function such that the time spent finding
the minima and saddles is relatively long compared to the
time spent transferring data between workers. The two for
loops are easier to parallelize and parallelizing here would
be a natural choice for systems with simple potential func-
tions where the time spent climbing and descending strings
is relatively quick. These options in the implementation of
the HSM allows it to be adapted to efficiently explore any
system.

3 Example system

As atest of the HSM, we have applied it to a simple example
system. This test system we analyze is made up of 24 bi-
disperse soft spheres in a 2D periodic domain of unit length.
The particles have a radii ratio of 1.4 to prevent crystalliza-
tion with half having a radius R; = 0.1336 and half having a
radius Rg = 0.0954. This arrangement of particles is shown
in Fig. 3.

The periodic boundaries allow us to simulate a larger
system with comparatively few particles. However, the
periodicity introduces two symmetries to the system which
are undesirable for the analysis we wish to perform; criti-
cal points become 2-dimensional sheets rather than points.
These symmetries correspond to concerted shifts of all par-
ticles in the x or y directions. To break this symmetry, we fix
one of the particles so it is not allowed to move even when
other particles exert a force on it. This removes the sym-
metries and reduces the dimensionality of the system to 46.
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The potential energy of the collection of these soft
spheres is simply the sum of the pairwise spring potentials
between the N particles, given by:

N N |Xl_xj| 2
V= ZZ'%(1 m) T @

In Eq. 2, N is the number of soft spheres, k; j is the stiffness
tensor (analogous to the spring constant) between particles
i and j, X; is the position vector of the center of particle
i, R; is the radius of particle i, and Jij is zero if particles i
and j do not overlap and one if they do. By setting k = 1
we find the energy-minimizing configurations, like the one
shown in Fig. 3, appear similar to photoelastic disk systems
studied by experimentalists studying shearing particles [32]
(a review of the use of photoelastic particles in studying
granular materials is available in [33]) and PNIPAM col-
loidal particles like those in [8] that also interact elastically.

The number of minima of such a system scales exponen-
tially with N [6] and most physical systems will have N much
larger than the 24 we have used here. This system is large
enough to prohibit an exact enumeration of minima/saddles
yet not untractable as a test system for the HSM.

4 Applying the method

The HSM requires several parameters, summarized in
Table 1, to be set to efficiently generate an accurate and
useful network. To choose these parameters, we need infor-
mation about the “basic structure” of the PES. By “basic
structure” we mostly refer to the structure of the basins of
attraction (for gradient-descent dynamics) around the min-
ima in the PES since the Hydra String Method finds minima,
and first order saddle points, which lie along the ridges of

Fig.3 A sample energy minimizing configuration of the 24 sphere
system
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the basins. Of chief interest is the distance between basins,
a characteristic radial size of the basins, and the number
of saddles connected to a minimum. Knowing this struc-
ture tells us how far away from minima to look for sad-
dles, how accurately we need to resolve the basin, and how
many strings we need to extend from a minimum to find the
saddles.

Since the structure of the basins of an arbitrary function
are generally not known a priori, we propose three numerical
experiments as a way to deduce this basic structure. Each
numerical experiment we propose addresses one of the char-
acteristics of the basins we are interested in. We will make
extensive use of these experiments to determine values for
the various parameters used in the Hydra String Method
which will be discussed in Sect. 5.

In our experience, determining this basic structure
requires an iterative approach. That is, the easiest way to
pick values for the parameters of the Hydra String Method is
to first run the Hydra String Method. This can be done with
very conservative choices for the various parameters which
can then be used to refine those initial choices. This process
can be repeated several times to more fully understand the
structure.

In this section, we will show the results of these numeri-
cal experiments when run on the PES that arises from the
system described in Sect. 3, a collection of 24 bi-disperse
soft spheres that interact with pairwise linear spring forces
contained in a unit box with periodic boundaries.

4.1 Determining the distance between basins

When applying the Hydra String Method, the user must des-
ignate what the tolerance is to call minima(saddles) distinct.
This arises because the climbing strings may approach the
same saddle point or the hydra may curl back on itself and
find the same minima over again. The strings may approach
this minima(saddle) from a slightly different direction and
due to the flatness of the PES at these critical points, they
may approach slightly different values. One should appeal
to the physics of the underlying system to help determine
which minima(saddles) should be considered distinct.

To investigate this, we propose the following numerical
experiment. Determine a collection of minima or saddle
points. These can be found by either randomly sampling
your PES and performing a gradient descent to find local
minima. Or the Hydra String Method can be implemented
with conservative values for the parameters required (small
dist,, small toly,; ;. large ny,,;,,, and large n;,,.) as men-
tioned above. These parameters will be discussed at length
in the following section. With either approach, all that is
necessary to perform the analysis is a collection of possibly
degenerate critical points.



The hydra string method: a novel means to explore potential energy surfaces and its application...

Page70f13 24

Table 1 Hydra string method parameters

Parameter Description Value
v Controls how quickly the climbing image climbs towards a saddle, must be greater than 1 2

dt The time step used in the string evolution ODE solver 1073
10l The tolerance used to stop the string evolution ODE solver 108
Rtep,. The maximum number of time steps allowed in the string evolution ODE solver 10°
dist,, The distance a string is initially extended away from a minimum or saddle 0.15
Mimages The number of images along a given string 10
Ntrings The number of strings to send out from each minimum to find new saddles 24
1044 fmin The tolerance to call a saddle/minimum unique 102

Now calculate the pairwise distance between all of the
minima(saddles) and plot them on a histogram (as in Fig. 4).
Most of the pairwise distances should be quite large and
indicate unarguably distinct critical points. A second popula-
tion may arise near the stopping tolerance from the climbing
string method ODE solver. Other populations may appear
between these two pairwise distance groupings. By exploit-
ing the physics that gives rise to the PES the user can set
a minimum distance between basins(saddles) to call them
unique.

4.2 Determining the radial size of a basin

Knowing the characteristic radial size of a basin allows the
user to pick a distance to initially extend the climbing string.
Unlike eigenvector following methods, the climbing string
will always evolve towards a saddle point for any arbitrar-
ily small initial displacement away from the minimum.
However, near the minimum this evolution will be slow,
as the gradient is near zero. Therefor efficient implementa-
tion requires an initial extension large enough to leave this
locally flat region. The characteristic radial size of the basin
also gives the user a general sense of the smallest features
of interest of the PES. This knowledge can also be used to
pick the number of images along each climbing string. These
images are what ultimately detect these small scale features
of the PES and ensure the MEP is resolved and has not left
the basin of the minimum.

To determine this characteristic radial size of the basins,
we propose the following numerical experiment. Deter-
mine a representative collection of minima of the PES, as
in Sect. 4.1. Perturb these minima a small distance from the
minimal state in many different directions. Then take these
perturbed points, gradient descend them, and determine if
these perturbed points return to their original minimal state
by calculating the distance between the gradient descended
configuration and the original minimum. If this is equal to
or smaller than 0l,,,,,, we consider it to have returned.
The number of perturbed points that return to the original
minimum is then determined. This procedure is repeated for
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Fig.4 Histogram showing the pairwise distances between saddle
points in a PES that arises from the system described in Sect. 3. The
population between 107! and 10° (red) are the clearly unique saddles
and the population smaller than approximately 103 (blue) is the pop-
ulation of degenerate saddles. The value we have chosen for fol
is indicated by the vertical dashed line (color figure online)

sad [min

many different perturbation distances. This should also be
repeated for many different minima as the basins may not
all be identical. These results can be plotted as they are in
Fig. 5.

This analysis is similar to that done in [6] where the
authors describe the basins as containing a central spheri-
cal region within which all states can be relaxed back to the
originating minimum. Beyond this spherical region, there
are spindles where configurations lying in the spindles relax
back to the minimum, but other configurations that do not.
The radius of the central spherical region is what we con-
sider the “characteristic size of a basin” because within this
region, all perturbations will relax back to the original state.
This distance can be seen in Fig. 5 as the point when a single
line departs from 1. This analysis can also tell the user the
size of the smallest features of interest in the PES as well as
reveal interesting features about the structure of the basins.
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This may be of interest in and of itself, but this analysis will
be necessary to implement the Hydra String Method because
we need these results to determine both dist,,, and 7,4,
which will be discussed in the next section.

4.3 Determining the number of connected saddles

The Hydra String Method calls for extending some number
of climbing strings from each minimum to find new saddles.
To choose the number of strings to extend out, it is useful
to know how many unique saddles are connected to a given
minimum. That is, how many saddle points lie on the ridge
of the basin of attraction for any given minimum.

To determine this, we propose the following numerical
experiment. Again, find a collection of minima to study.
From each minimum extend out one string and note the sad-
dle it converges to, then send a second, a third, etc. Note how
many unique saddles are found for the number of extended
strings. In practice, this can be accomplished by sending out
a large number of strings all at once and determining how
many converged to unique saddles after the fact. This should
be done for a large number of minima because, as before,
each basin need not be the same as the others. Plotting these
data as a series of histograms for various numbers of strings
extended as shown in, Fig. 6, with the number of unique
saddles found on the x-axis and the number of minima with
that many unique saddles found on the y-axis will give the

0.8

o
o

Fraction Returned
<]
»

0.2

0 . . .
0 0.05 0.1 0.15 0.2

Perturbation Distance

Fig.5 The results of a radial basin size analysis for the PES that
arises from the system described in Sect. 3. Each blue line represents
a different minimum that was analyzed for its radial size. This analy-
sis indicates most basins have a radius of approximately 0.15, denoted
by the dashed line, because beyond this perturbation distance, a rap-
idly increasing fraction of perturbed points fail to return to the origi-
nal minimum
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user an idea of how many unique saddles the basins in the
PES have.

4.4 Computational eficiency

Once optimized, the HSM is quite efficient in its execution.
For our system, with the parameters in Table 1, an individual
string converges to a saddle after an average of 3.25 x 10*
time steps of the climbing string method. Furthermore the
strings converge more than 98% of the time. We ran the HSM
on a cluster of 24 parallel workers for one week. In that time,
it explored =~ 1650 minima finding more than 14,000 path-
ways. The test to determine the parameters in Table 1, also
require a non-trivial amount of computations. Determining
dist,, and n,,,.., take, by far, the most computational effort
requiring almost 10'° time steps of the string method in our
system. These force calculations can be run in parallel and
on our system of 24 workers, can be completed in about a
day.

The strings will sometimes converge to previously found
saddles, this is discussed in Sect. 5.3.2, and when extending
24 strings, as we do in this implementation, the strings find
unique saddles about 50% of the time. This can potentially be
improved by extending strings in specified directions instead
of in random directions, however at this point what these
specified directions should be remains unknown.

5 Parameters involved in the hydra string
algorithm and how to choose them

Equipped with the numerical experiments from Sect. 4, we
will look at each parameter tabulated in Table 1 and describe
how to choose a value for it. Specifically, we will discuss
how to choose these parameters for the system described
in Sect. 3. We find it convenient to group them into three
categories of parameters: those used to find a saddle, those
used to ensure the saddle is in the original basin, and those
used to generate a network of saddles and minima. We dis-
cuss each group in turn.

5.1 Parameters used to find a saddle

These are the parameters needed to find an individual saddle,
i.e. those needed to implement the climbing string method.
They relate to numerically integrating the ordinary differen-
tial equation (ODE) describing the gradient descent of the
images, and do not require specially designed tests to find
these parameters.
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Fig.6 A series of histograms showing the number of minima from
which a search was started and how many unique saddles were found
connected to the minimum with a given number of strings extended

511 v

The value of v controls how quickly the climbing image
climbs and must be greater than 1, but not too large so as to
cause the ODE solver to become unstable, preventing the
climbing image from converging. Too small a value will
cause a slower convergence. We use the typical value of 2
since this reflects the descent direction into the ascent direc-
tion, and the values of the other parameters can be tailored
around this choice.

5.1.2 dt

The size of a time step of the climbing string and gradient
descent ODE solver should be chosen by considering the
normal accuracy, convergence, and stability issues: not too
small to have an excessive time to convergence and not too
large to become unstable. The value of df should also be
chosen such that the maximum movement of an image along
the string during a gradient descent is small enough to not
jump over any important features of the energy landscape.
We used dt = 1073,

5.1.3 tol 4

The criterion to stop the evolution of the climbing or
descending string is set by the difference in euclidean dis-
tance of an image along the string between two consecutive
time steps. That is, how much an image moves between two
consecutive time steps (including both ODE movement and
interpolation of the string images). This parameter should
be smaller than the smallest feature of the PES one wishes

to resolve but also large enough that the string converges in
a reasonable amount of time. The results of the experiment
in Sect. 4.2 can help determine the sizes of these smallest
features. We found that 1078 was a good balance between
these conflicting goals. Note we choose not to terminate the
string evolution early if the end is nearing an already-found
minima/saddle point, as the calculation of distances is com-
putationally expensive and potentially undesirable depend-
ing on how the algorithm is parallelized.

514 ny,,
The maximum number of time steps allowed in the string
evolution ODE solver needs to be large enough to allow con-
vergence for most strings sent out during the snaking string
algorithm. However, too large of a value leads to unneces-
sary computational load from runaway strings that have gone
awry for one reason or another. This parameter is directly
affected by dt, v, and dist,,,. Thus, it should be chosen after
suitable values of those parameters have been chosen. After
finding the maximum number of time steps needed for a
typical string evolution, via computational trials, a moderate
margin should be added to this maximum to get a starting
value of ng,, .The competing goals of minimizing com-
putation time and allowing enough strings to converge to
obtain a representative sample of the saddles in a system
must be balanced in choosing a value of this parameter. We
used 10° in our system.

5.2 Parameters to ensure a saddle is in the original
basin

These two parameters, dist,, and n, ensure that the

ext images>

initial climbing string is perturbed far enough away from
the originating minimum (or initial string from a saddle) to
allow for efficient climbing speed away from the locally flat
region surrounding the minimum (or saddle), but also that
the string has enough images to resolve the basin along this
initial perturbation to be truncated if the string is not mono-
tonic in energy. These two values vary based on a granular
system’s parameters such as particle radii, number of par-
ticles, etc. and will vary for different sorts of PESs. It is at
this point that the analysis described in Sect. 4.2 should be
performed. Looking at the results of this analysis in Fig. 5,
we need to decide what the characteristic radial size across
all of these basins is. Each blue line corresponds to a sin-
gle minimum. The characteristic radial size across all these
basins is taken to be 0.15, or the maximum characteristic
basin size of all the minimum (i.e. for no minimum do all
perturbed points return to the original minimum).
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5.2.1 dist,,

A good choice is to pick the extension distance as the char-
acteristic radial size across all of the basins. In this case,
from Fig. 5 we have that dist,,, = 0.15. Beyond this pertur-
bation distance, a rapidly increasing fraction of perturbed
points fail to return to the original minimum, which would
require truncating the initial string for an increasingly large
fraction of initial perturbations. One could choose larger dis-
tances provided 7,,,,,, is chosen appropriately. If there are
enough images, the basin is resolved well enough to locate
its edge. If a string is initially extended beyond the origi-
nal basin, it will be truncated leaving enough images in the
original basin so that the string can be re-interpolated and
continue climbing.

5.2.2 n;

images

The number of images, 7, should be chosen large
enough to properly approximate the MEPs. However, too
many images will lead to an increase in the time spent
running the algorithm. For larger systems, this can quickly
become computationally prohibitive. We recommend
choosing n;,,,., such that the string resolves the smallest
features of interest in the landscape. Figure 5 shows that
there are larger and smaller basins, so sending out a string
the distance of the maximum characteristic basin size may
miss these smaller basins. To prevent this, one should
interpolate many images along the string to capture these
smaller features. In this case, we chose n;,,,,,, = 10 so that
an image falls inside these smaller basins; we potentially
ignore some of the very small basins.

In this case, most of the basins have approximately
the same structure. That is, they are relatively flat and
spherical up until about 0.15. If instead there were many
basins with different structures, one may need to have
more images to accurately capture the complicated struc-
ture that appears on the ridges of these basins. Our basins
are quite uniform and so we can choose a small number
of images without missing many small features. We may
not accurately resolve the MEP but we are confident we
find the minima and saddles of interest to our analysis. If
one desires a more accurate MEP, they should interpolate
many more images to resolve it more finely. Addition-
ally, the number of images can be dynamically changed
and clustered around regions of interest. For example,
the number of images near the climbing image can be
increased to obtain a more accurate tangent approximation.

The Interplay between dist,and n;,,.., Since the energy
of the climbing string at each image is kept monotonic by
cutting the string if it ever fails to maintain monotonicity,
the dist,,, can be chosen to be larger than the characteristic
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radial size of the smallest basin as long as the string
resolves the smallest basins of interest since the string
will be cut if it fails to remain monotonic in energy. For
example, the dist,,, can be chosen to be 0.2 instead of 0.15.
We can then interpolate more images, Say .., = 15, and
if the string leaves a smaller basin, the string should detect
that it has left the basin, because the energy fails to be
monotonic, and cut itself. Overestimating the dist,,, allows
the strings to quickly leave the region with a small gradient
and having a large n;,,,.., prevents the over-extended string
from leaving the basin.

5.3 Parameters to make a network of saddles

The Hydra String Method generates a network where sad-
dles and minima are nodes and the minimum energy paths
between them are the edges. To generate this network, we
need to decide which minima and saddles are unique from
one another (as discussed in Sect. 4.1) and we need to find
the saddles between these minima.

5.3.1 tol,q /min
Often, the Hydra String Algorithm finds minima and sad-
dles that are very near to each other in euclidean space with
nearly exactly the same energies. The question arises, are
these differences from numerical tolerances or are they in
fact distinct points? To answer this we proposed the numeri-
cal experiment in Sect. 4.1 to determine a numerical toler-
ance to call these granular configurations degenerate.

The results of such a numerical simulation are shown in
Fig. 4. Due to the number of saddles included, we zoomed in
to clearly see the important features. The region with pairwise
distances between 107! and 10° are the obviously distinct
saddles which can be seen by plotting the two configurations
for a given pair in this region. The region between 1072 and
1078 are the obviously degenerate saddles. Again this can be
seen by plotting both configurations for any given pair in this
region and noting they overlap almost perfectly. From this,
we chose 101, /iy, t0 be 1072, All configurations closer than
1072 in euclidean distance would be considered degenerate.

This histogram is likely to appear wildly differently for
different PESs. In the case of a granular material, these
pairwise differences will change in magnitude based on the
radii of the particles and the number of particles themselves,
and thus the dimension of the system. The distance function
begins to be less useful at higher dimensions and so different
means to differentiate saddles and minima may be necessary
for sufficiently large systems. One possible substitute for the
case of granular materials is to look at the contact matrices
of the constituent particles and defining configurations with
different contact matrices to be different. We propose using
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the distance between configurations as the deciding factor
instead of the contact matrix because recent work with soft
spheres found that contact changes do not always correspond
to a saddle point in the energy landscape [34].

It is important to note how variable this histogram may
appear because this numerical experiment requires the user
to apply some knowledge about the PES and the physics
of the system that gives rise to that PES to interpret this
plot and choose a value for 70l,,/,,,- In our application,
we are not overly concerned with precisely finding the sad-
dles or minima of the granular system. Rather we prefer
to find many saddles and minima quickly to map out the
PES and network of connected low energy extrema. Systems
described by different physical laws or different applications
may require different considerations.

5.3.2 nstrings

The number of strings to be sent out from each minimum
to find new saddles should be large enough to find a sta-
tistically representative sample of the saddles connected to
a minimum but small enough that not many of the strings
converge to the same saddle. The analysis described in
Sect. 4.3 should be performed to help choose the value of
this parameter. The number of cores on the system should
also be considered when choosing a value of ng,;,,, due to
the parallel nature of the snaking algorithm, a multiple of
the number of cores may make the execution more efficient.

Following the method outlined in Sect. 4.3, five histograms
are shown in Fig. 6 generated for 20, 40, 60, 80 and 100 strings.
The histograms might immediately indicate how many unique
saddles exist on the ridge of a basin. However, we have found
that as more strings are extended, there are generally more sad-
dles to be found. We instead find it useful to look at the effi-
ciency of these strings which we define as the fraction of strings
that find unique saddles. This efficiency is plotted in Fig. 7.
Choosing an efficiency of 50% (half the maximum) would dic-
tate n, = 20. Our computing hardware has nodes with 12, 24
or 36 cores, so we chose n,;,,, = 24 to take advantage of the
parallelizability of the Hydra String Method.

One may also want to apply an analysis that reveals how
good of a sample of the surrounding saddle points has been
obtained relative to some physically meaningful quantity to
determine the number of extended strings. For example, has
a good sampling of possible energy barriers between the
originating minima and saddle points been obtained? We
plot the running average energy barrier of all the unique
found saddles as a function of the number of extended
strings in Fig. 8 for a few different originating minima. The
flatness of the line is a rough estimate of the error of the
average; a relatively flat line indicates enough samples have
been obtained. From this figure, we can see that the aver-
age energy barrier found levels off at different values for

different originating minima, but overall, the lines level off
around 30 or so extended strings. As before, multiples of 12
are convenient so we might choose n,,,,, = 36 in this case.

In this system, the histograms from Fig. 6 each appear
largely uniformly distributed. However, we have also ana-
lyzed systems with bi-modal or heavily tailed distributions.
So, one should look at these underlying histograms before
immediately creating the efficiency plot to find a value for
Nyrings @S ONE may need a different measure of the average
than a simple mean to effectively create this efficiency plot.

One must also consider what is more important in their
analysis of their PES. Is it more important to find every con-
nection between all minima of the PES? Or does one favor
exploring more of the PES at the cost of missing a few sad-
dles and minima? In our case, we were not concerned with
finding every hard to find saddle but we do want to find
the many possibly interconnected saddles between minima.
So, we chose an intermediate goal, finding many but not all
minima and the connecting saddles.

6 Discussion

Choosing the various parameters in the Hydra String Method
allows it to be adapted to different goals such as short range
accuracy or long range exploration. Thus one can choose if it
is more important to painstakingly map out every minimum
and saddle point in your network? Or is it more important to
find many minima and saddle points far from the initial point
from which the Hydra String Method begins? These conflict-
ing goals appear several times in the Hydra String Method.
Does one choose a short extension distance to ensure no

0.8
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Fig.7 This plot shows the efficiency of the strings sent to find
unique saddles around a basin. The y-axis is what fraction of strings
converged to new saddles and the x-axis is how many strings were
extended. This is an average over 750 minima
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Average Energy Barrier

Number of Strings Extended

Fig.8 Each line is for a different originating minima; it shows the
average energy barrier between this minimum and the unique found
saddles on the edge of the basin of attraction as a function of the
number of extended strings. Only approximately 20 lines of the 750
are shown for clarity

nearby saddles are missed? Or does one pick a large value to
quickly find further away saddles? Does one extend a large
number of strings to find as many connected saddles as pos-
sible? Or a few to find the most common saddle points and
move further into the PES? And so on.

In our case, we are analyzing the PES of a collection of
soft spheres to map out various transition pathways the sys-
tem can undergo. That is, starting in a stable configuration,
what are the nearby stable configurations and what unstable
configurations, saddle points, do they pass through as the
system moves between these stable configurations? In this
application, we favor exploring more of the PES instead of
finding every possible minimum or saddle point. Many of
those configurations may be unlikely for the granular system
to reach and are therefore unimportant to our future analyses.

However, for other systems the Hydra String Method
might be applied to, it may be more important to locate every
minimum or saddle. For example, when studying a chemical
system, one might be interested in determining various by-
products or possibly dangerous intermediate products of a
chemical reaction. In that case, it might be more important
to find every possible minimum or saddle point.

7 Conclusion

In this paper we presented the Hydra String Method, a novel
computational method to autonomously and efficiently map
the minima and first order saddle points of a PES. In doing
so, we presented a systemic approach to tailor the various
system specific parameters of the HSM to arbitrary systems

@ Springer

and demonstrated this approach on an example soft-sphere
granular system. The results of the above numerical experi-
ments may be very different for other systems with differ-
ent potential functions, such as a pairwise Lennard-Jones
potential between particles, commonly used in bubbles [35]
and as a model for molecules/atoms in chemistry [36]. This
broad applicability is one of the major assets of this method.

In our case, we intend to apply this method to granular
systems to map out the various stable configurations and
determine the MEPs that connect them. We believe that,
these MEPs approximate the transition paths the system
undergoes when sheared slowly and with sufficient damping.
We hypothesize that the transitions with the lowest energy
barriers will be the most likely transitions the system will
undergo when slowly sheared with sufficient damping.

Since this method utilizes the String Method, it inherits
all of the benefits that the String Method has over other
saddle finding schemes. Of note are the modular re-inter-
polation of images along the string and the improved sta-
bility. As previously discussed, the interpolation of the
images along the string can be easily changed from a lin-
ear interpolation to a cubic spline or any other method.
If desired, the images can be adaptively added to further
refine highly serpentine paths, removed to save computa-
tional costs, or redistributed to be “bunched up” around
areas where the landscape may have more intricate struc-
ture or “thinned out” in relatively barren regions.

Finally, the advantage this method gains from its highly
parallelizable nature and autonomous execution can hardly
be overstated. The method efficiently realizes computational
speed ups with growing numbers of parallel cores. The time
spent climbing and descending strings is much greater than
the time spent with overhead memory transference and using
a list of unexplored minima to direct the workers mitigates
wasted computation time spent searching already explored
regions of the PES. The upfront time spent in picking suitable
parameters for the method is quickly recouped in the autono-
mous execution of the search. With some intuitive precau-
tions such as a maximum number of time steps allowed on
the climbing/descending functions (to prevent strings from
becoming stuck) and a maximum allowed energy along a
string (to prevent run away strings) the Hydra will happily
branch out and explore any energy surface.
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