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Abstract
We present a novel means to understand granular materials, the Hydra String Method (HSM). This is an efficient and 
autonomous way to trawl an arbitrary potential energy surface (or any similarly high dimensional function) that enumerates 
the saddle points, minima, and minimum energy paths between them. In doing so, it creates a reduced dimensional network 
representation of this surface. We also present a series of tests to choose optimized parameters for the application of the HSM. 
We apply this to the potential energy function of a granular system consisting of a configuration of bi-disperse, frictionless, 
soft spheres. Future work will make use of the found ensemble of transition pathways to statistically predict the dynamics 
of a system of grains.

Keywords  Transition path · Frictionless soft spheres · Stable packings · Computational algorithm · Energy landscape

1  Introduction

The class of granular materials is second only to water 
in materials used by humans and despite recent advance-
ments to understand their unusual behavior, scientists still 
lack an adequate way to describe the full range of their 
behavior [1–4]. Attempts at firmly grasping the dynamics 
and mechanics of granular materials have been as fruitful 
as firmly grasping a handful of sand, it quickly runs away 
from us.

This work presents the foundation of a new approach to 
predict the dynamic response of purely repulsive-interaction 
granular systems from a defined energy landscape. We take 
a soft-sphere quadratic potential between overlapping 2D 
bidisperse frictionless disks and map out energy-minimiz-
ing jammed states as well as the paths between neighbor-
ing states that minimize the energy, the minimum energy 
paths (MEP). Unlike other work that seeks to enumerate all 

uniquely jammed states [5, 6], we only seek a representa-
tive sample of states as full enumeration is computation-
ally infeasible for even small systems of 12 particles. Note 
that the neighboring states and pathways between them are 
dependent on the protocol generating the packing (c.f. Ref. 
[7] that allows the box size to change).

We expect this energy-based approach will lead to 
advances in understanding both thermal and athermal gran-
ular systems. In small colloidal packings, random thermal 
motion can have a significant effect on rheological properties 
[8], and even athermal granular systems can be subject to 
thermal-like fluctuations such as in vibration-fluidized sys-
tems [9]. Energy landscape exploration methods are already 
being implemented for the thermal jamming transition [10, 
11] and shearing using an extended potential energy land-
scape to account for the external strain [12]. Thus we antici-
pate our efficient energy landscape exploration algorithm 
will have predictive power by speeding up energy landscape 
exploration and creating transition networks like those gen-
erated from observing rearrangements under strain as in Ref. 
[13].

The idea of exploring an energy landscape is not itself 
new. In fact the building blocks of our automated “Hydra” 
method are the string method [14] and its climbing variant 
[15] (two of many such methods [16–23]) developed for use 
in computational chemistry to probe the evolution of a single 
reactant to a product state with possibly many intermediate 
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transition states. These transitions are often diagrammati-
cally sketched as a graph of energy vs. reaction coordinate 
called reaction coordinate diagrams [24]. Intermediate tran-
sition states along this path appear as maximums in energy, 
but correspond to saddle points in the full high-dimensional 
phase space of the system. Such a saddle point sits on top 
of the local lowest energy barrier separating two states and 
therefore chemical reactions are most likely to proceed over 
this barrier near a MEP (c.f. [25]). We show a sample MEP 
in Fig. 1 for a simple 2D potential (a and b) and for a more 
complicated soft-sphere model (c) discussed in more detail 
in Sect. 3.

Our automated method reduces the energy landscape to 
a network representation of transition pathways between 
neighboring states, through saddle points, like those pre-
sented for smaller systems such as six colloidal particles 
with depletion attraction [26], nematic liquid crystals on 2-D 
hexagons [27], small atomic clusters interacting with Len-
nard-Jones potential [28, 29] and 2D lattice polymers [30]. 
Unlike previous approaches, we find not just the transition 
state but the full transition path. The method sends out mul-
tiple climbing strings to find saddle points that are ensured 
to be on the edge of the basin of attraction (for gradient-
descent dynamics) around a minimum by the monotonicity 
of the energy along the string. From the unique saddle points 

found, strings are descended to find neighboring minima. 
This process is repeated and, like a Hydra, this “string” will 
grow new exploring heads to continue mapping the energy 
landscape.

The main focus of this paper is laying out a sequence of 
tests that can be applied to any system with an energy land-
scape to determine parameters that balance accuracy with 
computational cost to be able to efficiently sample higher-
dimensional more complex systems. These tests seek gen-
eral characteristics of the basins of attractions (of gradient 
descent dynamics) around each energy-minimizing state in 
order to efficiently climb to the edge of the basins and thereby 
sample the neighboring states. The first test dictates how pre-
cisely each state must be resolved to determine if two states 
are unique. The next test characterizes the radial size of a 
basin and informs how to resolve the smallest features of the 
landscape and how far away to look for saddle points on the 
edge of this basin. The last test determines how many climb-
ing string should be sent out to have a reasonable sample of 
unique saddle points on the edge of the basin of attraction.

The remainder of the paper is organized as follows. In 
Sect. 2 we briefly review the string and climbing string meth-
ods and present the details of our Hydra string method. We 
explain the three main tests to apply to a system in order to 
determine parameters for the Hydra string method that will 
balance accuracy with computational efficiency in Sect. 4. In 
Sect. 5 we apply these tests to the granular system given in 
Sect. 3. We conclude the paper with discussions of various 
parameter choices in Sect. 6 and conclusions in Sect. 7.

2 � The hydra string method and algorithm

The Hydra String Method (HSM) is designed to explore the 
potential energy surface (PES) in a systematic way, creat-
ing a network of connected minima and intermediate saddle 
points. Its base pieces are the existing string [14] and climb-
ing string [15] methods that find an MEP between two min-
ima, or a minima and unknown saddle point, respectively. 
We briefly review the string and climbing string method 
before proceeding to describe our algorithm in more detail.

2.1 � The string method

The String Method [14] finds the MEP between two minima 
but is more computationally efficient and exhibits greater 
stability than the popular Nudged Elastic Band (NEB) 
method [31]. Both methods evolves copies, or “images”, of 
the system in configuration space by gradient descent. To 
address the issue of the images falling towards the minima 
on either end of the path and bunching up there, the NEB 
method introduced springs between the images to keep them 
separated along the MEP. These spring forces couple the 
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Fig. 1   a A simple potential function with a MEP shown in orange and 
b the normalized energy along this transition path or “coordinate”. c 
Example of an energy versus transition coordinate for a granular sys-
tem moving between minima
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images that would otherwise independently undergo gradi-
ent descent. The String Method decouples these competing 
forces on the images and treats them as two different steps, 
thus enhancing efficiency. The String Method first allows 
the images to follow a gradient descent for one time step and 
then interpolates the images to equally space them along the 
string in arclength.

One of the benefits of decoupling these two processes is 
that it allows the user to change the interpolation method 
“on the fly”. A linear interpolation method can easily be 
changed to, for example, a natural spline method or any other 
desired interpolation method. The decoupled images also do 
not effect one another before the interpolation, so they can 
be computed in parallel.

The string method can be implemented with either one 
or both ends of the string held fixed. When both ends are 
held fixed the string methods converges to a MEP between 
those two points while keeping only one end point fixed 
allows the string method to converge to a MEP between a 
known minimum and a newly found minimum. This method 
was designed as a tool for computational chemistry where 
one may know both end points (known reactant and product 
states) or with only a single known end point (known reac-
tant or product state).

2.2 � The climbing string method

The Climbing String Method [15] is a modification of the 
String Method that finds saddle points from a single known 
minimum by allowing the final image along the string to 
climb up against the gradient with the following force act-
ing on it:

Here, �V is the gradient of the potential energy, �icli is the con-
figuration of the system at the climbing image, � is a tunable 
parameter (generally set to 2) that controls the climbing speed 
of the string, and 𝜏icli = (�icli − �icli−1

)∕|�icli − �icli−1
| is the 

approximate unit tangent to the string at the climbing image.
The first image on the string is kept fixed at a minimum 

and the intermediary images follow a gradient descent at 
each time step. As in the String Method, the intermediary 
images are redistributed via an independent interpolation. 
A computationally cheap option for this redistribution is a 
simple linear interpolation. But, other methods can easily 
be substituted.

To ensure that the string remains in the basin of attrac-
tion of the starting minimum, if, at any time step, the energy 
along the string fails to be monotonically increasing, the 
string is cut at the point of non-monotonicity. The images are 
then re-interpolated along this shorter string and the process 
is continued until it converges to a MEP.

(1)�icli
= −�V(�icli ) + 𝜈(�V(�icli), 𝜏icli )𝜏icli .

While at first glance the climbing string method appears 
inefficient relative to non-string methods such as the two-
image climbing dimer method [18] or improved eigenvector-
following methods such as r-ARTn and d-ARTn [23] due 
to the number of copies of the system that are evolved at 
each time step, we see a number of advantages. First, both 
these methods require post-checks to ensure the found saddle 
point is located on the edge of the original minima’s basin of 
attraction. As just stated above, the climbing string method 
ensures the saddle point is on the edge of the desired basin, 
thereby saving computation time. Additionally, these other 
methods suffer from convergence issues ([20] improves the 
convergence for the climbing dimer, and the improvement 
in [23] only increased the rate to 87%), something we rarely 
see with the climbing string method that converges more 
than 98% of the time.

Second, we desire the entire MEP, not just the energy 
barrier between the minimum and saddle point, in order to 
expand beyond thermally-activated processes for granular 
systems. These saddle-point-only finding methods would 
require finding the MEP as part of the post-check. As with 
the String method, the MEP is sensitive to the initial guess. 
That is, a strict linear interpolation between the minimum 
and saddle may converge to a path through many minima, 
while a monotonic MEP may exist along some other curving 
and twisting path. Therefore finding the MEP directly while 
also finding the saddle point appears more reliable.

Last, we are willing to sacrifice accuracy in favor of com-
putational efficiency, explaining in the remainder of this 
paper how to efficiently choose parameters for the Climbing 
String method. If greater accuracy is required, each approxi-
mate saddle point found could be further refined by using the 
inexact Newton method, as was done in [15], utilizing the 
climbing dimer or eigenvector following method, or using 
a non-linear spacing of the climbing string images to better 
approximate the tangent to the string at the climbing image.

2.3 � The hydra string method

We describe the Hydra string method in more detail, which 
is illustrated in Fig. 2 and summarized by the pseudo-code 
in Algorithm 1. Its MatLab implementation can be found 
on GitHub; see Code Availability at the end of the paper.

An initial minimum is found by choosing a random point and 
then performing a gradient descent. This minimum is added to a 
running list of minima found on the PES. From this initial mini-
mum, a number of new strings, nstrings , with nimages images along 
each string are extended a given distance, distext , in a random 
direction and allowed to climb following the climbing string 
method described above. (A set of initial strings evolving are 
shown in Fig. 2a). Those strings that converge to a saddle point 
(see the converged strings in Fig. 2b) have their saddle points 
added to a running list of saddle points. The images on these 
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Fig. 2   Depiction of the HSM on the 2D PES, 
E = x2 + y2 + sin(�x) + cos(�y) , shown as a contour plot. a Evolv-
ing climbing strings with one end pointed pinned at the original mini-
mum. b Convergence of the strings to minimum energy paths end-

ing at two new saddles. c and d Descent from these saddles to new 
minima. e Evolving and f convergence of climbing strings from one 
of the newly found minima
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saddle points are then perturbed, away from the minimum from 
which they were found, and allowed to follow a gradient descent 
until they converge to another minimum (see examples of such 
a converged path in Fig. 2c and d). These new minima are also 
added to the running list of minima. An unexplored minimum 
is chosen from the list and the process begins again (see new 
evolving strings in Fig. 2e and converged strings in Fig. 2f). 
This procedure is repeated until either no new minima/saddles 
are found or a predetermined number of minima are explored. 
In practice, one only wants to add unique minima(saddles) 
to the list of minima(saddles). Thus at every step where new 
minima(saddles) are found, they must be compared to the pre-
existing list of minima(saddles) with a tolerance, tolsad∕min , to 
determine uniqueness before being added to the list.

Algorithm 1 Hydra String Algorithm
1: xrandom %randomly chosen position
2: xinitial = Descend(xrandom) %descend to initial mini-

mum in system
3: xminnew = xinitial %add first minimum to list of unex-

plored minima
4: xminunique = xinitial %add first minimum to list of unique

minima

5: while xminnew is not empty do
6: xmin = xminnew (1) %Pick next minimum to explore
7: delete xminnew (1) %Remove minimum to be explored

from unexplored list

8: for i = 1:nstrings do
9: xminextended

= Extend(xmin,distext) %Extend a
string in a random direction

10: possibleunique sad(i) = Climb(xminextended
)

11: if possibleunique sad(i) is unique then
12: xsadtemp .append(possibleunique sad(i))
13: else
14: continue
15: end if

16: end for

17: for i = 1:Length(xsadnew ) do
18: possibleunique min(i) = Descend(xsadnew (i))

19: if possibleunique min(i) is unique then
20: xmintemp .append(possibleunique min(i))
21: else
22: continue
23: end if

24: end for

25: xminnew .append(xmintemp) %List of unexplored min-
ima

26: xminunique .append(xmintemp) %Full list of unique min-
ima

27: xsadunique
.append(xsadtemp) %Full list of unique sad-

dles
28: end while

2.4 � Parallelizability

Two of the major benefits of this algorithm are its high 
parallelizability and its high degree of flexibility in both 
execution and application. Each minimum can be explored 
independently from the others, the strings all act inde-
pendently from one another, and all of the images along 
each string act independently from each other during the 
gradient descent step. Thus, the while loop in Line 5 of 
Algorithm 1 can be run as a parallel process, the for loops 
in lines 8 and 17 can also be run as parallel processes, and 
the string evolution in the Climb and Descend func-
tions can have each image evolve in parallel. It is difficult 
to parallelize all of these process at the same time and is 
disallowed in many programming languages. So a choice 
of where to parallelize must be made.

Parallelizing over the while loop requires significant inter 
worker communication as it requires the list of potential new 
saddles and minima to be transferred at the end of each itera-
tion. However, parallelizing here is beneficial for investigat-
ing smaller systems where the minima/saddle lists are small 
in memory or for a system that is very large or has a com-
plicated potential function such that the time spent finding 
the minima and saddles is relatively long compared to the 
time spent transferring data between workers. The two for 
loops are easier to parallelize and parallelizing here would 
be a natural choice for systems with simple potential func-
tions where the time spent climbing and descending strings 
is relatively quick. These options in the implementation of 
the HSM allows it to be adapted to efficiently explore any 
system.

3 � Example system

As a test of the HSM, we have applied it to a simple example 
system. This test system we analyze is made up of 24 bi-
disperse soft spheres in a 2D periodic domain of unit length. 
The particles have a radii ratio of 1.4 to prevent crystalliza-
tion with half having a radius RL = 0.1336 and half having a 
radius RS = 0.0954 . This arrangement of particles is shown 
in Fig. 3.

The periodic boundaries allow us to simulate a larger 
system with comparatively few particles. However, the 
periodicity introduces two symmetries to the system which 
are undesirable for the analysis we wish to perform; criti-
cal points become 2-dimensional sheets rather than points. 
These symmetries correspond to concerted shifts of all par-
ticles in the x or y directions. To break this symmetry, we fix 
one of the particles so it is not allowed to move even when 
other particles exert a force on it. This removes the sym-
metries and reduces the dimensionality of the system to 46.
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The potential energy of the collection of these soft 
spheres is simply the sum of the pairwise spring potentials 
between the N particles, given by:

In Eq. 2, N is the number of soft spheres, �i,j is the stiffness 
tensor (analogous to the spring constant) between particles 
i and j, �i is the position vector of the center of particle 
i, Ri is the radius of particle i, and Jij is zero if particles i 
and j do not overlap and one if they do. By setting � = 1 
we find the energy-minimizing configurations, like the one 
shown in Fig. 3, appear similar to photoelastic disk systems 
studied by experimentalists studying shearing particles [32] 
(a review of the use of photoelastic particles in studying 
granular materials is available in [33]) and PNIPAM col-
loidal particles like those in [8] that also interact elastically.

The number of minima of such a system scales exponen-
tially with N [6] and most physical systems will have N much 
larger than the 24 we have used here. This system is large 
enough to prohibit an exact enumeration of minima/saddles 
yet not untractable as a test system for the HSM.

4 � Applying the method

The HSM requires several parameters, summarized in 
Table 1, to be set to efficiently generate an accurate and 
useful network. To choose these parameters, we need infor-
mation about the “basic structure” of the PES. By “basic 
structure” we mostly refer to the structure of the basins of 
attraction (for gradient-descent dynamics) around the min-
ima in the PES since the Hydra String Method finds minima, 
and first order saddle points, which lie along the ridges of 

(2)V =

N∑

i=1

N∑

j=i

�i,j

(
1 −

|�i − �j|
(Ri + Rj)

)2

Jij.

the basins. Of chief interest is the distance between basins, 
a characteristic radial size of the basins, and the number 
of saddles connected to a minimum. Knowing this struc-
ture tells us how far away from minima to look for sad-
dles, how accurately we need to resolve the basin, and how 
many strings we need to extend from a minimum to find the 
saddles.

Since the structure of the basins of an arbitrary function 
are generally not known a priori, we propose three numerical 
experiments as a way to deduce this basic structure. Each 
numerical experiment we propose addresses one of the char-
acteristics of the basins we are interested in. We will make 
extensive use of these experiments to determine values for 
the various parameters used in the Hydra String Method 
which will be discussed in Sect. 5.

In our experience, determining this basic structure 
requires an iterative approach. That is, the easiest way to 
pick values for the parameters of the Hydra String Method is 
to first run the Hydra String Method. This can be done with 
very conservative choices for the various parameters which 
can then be used to refine those initial choices. This process 
can be repeated several times to more fully understand the 
structure.

In this section, we will show the results of these numeri-
cal experiments when run on the PES that arises from the 
system described in Sect. 3, a collection of 24 bi-disperse 
soft spheres that interact with pairwise linear spring forces 
contained in a unit box with periodic boundaries.

4.1 � Determining the distance between basins

When applying the Hydra String Method, the user must des-
ignate what the tolerance is to call minima(saddles) distinct. 
This arises because the climbing strings may approach the 
same saddle point or the hydra may curl back on itself and 
find the same minima over again. The strings may approach 
this minima(saddle) from a slightly different direction and 
due to the flatness of the PES at these critical points, they 
may approach slightly different values. One should appeal 
to the physics of the underlying system to help determine 
which minima(saddles) should be considered distinct.

To investigate this, we propose the following numerical 
experiment. Determine a collection of minima or saddle 
points. These can be found by either randomly sampling 
your PES and performing a gradient descent to find local 
minima. Or the Hydra String Method can be implemented 
with conservative values for the parameters required (small 
distext , small tolsad∕min , large nstring , and large nimages ) as men-
tioned above. These parameters will be discussed at length 
in the following section. With either approach, all that is 
necessary to perform the analysis is a collection of possibly 
degenerate critical points.

0 0.2 0.4 0.6 0.8 1
0

0.2
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1

Fig. 3   A sample energy minimizing configuration of the 24 sphere 
system
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Now calculate the pairwise distance between all of the 
minima(saddles) and plot them on a histogram (as in Fig. 4). 
Most of the pairwise distances should be quite large and 
indicate unarguably distinct critical points. A second popula-
tion may arise near the stopping tolerance from the climbing 
string method ODE solver. Other populations may appear 
between these two pairwise distance groupings. By exploit-
ing the physics that gives rise to the PES the user can set 
a minimum distance between basins(saddles) to call them 
unique.

4.2 � Determining the radial size of a basin

Knowing the characteristic radial size of a basin allows the 
user to pick a distance to initially extend the climbing string. 
Unlike eigenvector following methods, the climbing string 
will always evolve towards a saddle point for any arbitrar-
ily small initial displacement away from the minimum. 
However, near the minimum this evolution will be slow, 
as the gradient is near zero. Therefor efficient implementa-
tion requires an initial extension large enough to leave this 
locally flat region. The characteristic radial size of the basin 
also gives the user a general sense of the smallest features 
of interest of the PES. This knowledge can also be used to 
pick the number of images along each climbing string. These 
images are what ultimately detect these small scale features 
of the PES and ensure the MEP is resolved and has not left 
the basin of the minimum.

To determine this characteristic radial size of the basins, 
we propose the following numerical experiment. Deter-
mine a representative collection of minima of the PES, as 
in Sect. 4.1. Perturb these minima a small distance from the 
minimal state in many different directions. Then take these 
perturbed points, gradient descend them, and determine if 
these perturbed points return to their original minimal state 
by calculating the distance between the gradient descended 
configuration and the original minimum. If this is equal to 
or smaller than tolsad∕min , we consider it to have returned. 
The number of perturbed points that return to the original 
minimum is then determined. This procedure is repeated for 

many different perturbation distances. This should also be 
repeated for many different minima as the basins may not 
all be identical. These results can be plotted as they are in 
Fig. 5.

This analysis is similar to that done in [6] where the 
authors describe the basins as containing a central spheri-
cal region within which all states can be relaxed back to the 
originating minimum. Beyond this spherical region, there 
are spindles where configurations lying in the spindles relax 
back to the minimum, but other configurations that do not. 
The radius of the central spherical region is what we con-
sider the “characteristic size of a basin” because within this 
region, all perturbations will relax back to the original state. 
This distance can be seen in Fig. 5 as the point when a single 
line departs from 1. This analysis can also tell the user the 
size of the smallest features of interest in the PES as well as 
reveal interesting features about the structure of the basins. 

Table 1   Hydra string method parameters

Parameter Description Value

� Controls how quickly the climbing image climbs towards a saddle, must be greater than 1 2
dt The time step used in the string evolution ODE solver 10−3

toldiff The tolerance used to stop the string evolution ODE solver 10−8

nstepmax The maximum number of time steps allowed in the string evolution ODE solver 105

distext The distance a string is initially extended away from a minimum or saddle 0.15
nimages The number of images along a given string 10
nstrings The number of strings to send out from each minimum to find new saddles 24
tolsad∕min The tolerance to call a saddle/minimum unique 10−2
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Pairwise Saddle Distance
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C
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Fig. 4   Histogram showing the pairwise distances between saddle 
points in a PES that arises from the system described in Sect. 3. The 
population between 10−1 and 100 (red) are the clearly unique saddles 
and the population smaller than approximately 10−3 (blue) is the pop-
ulation of degenerate saddles. The value we have chosen for tolsad∕min 
is indicated by the vertical dashed line (color figure online)
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This may be of interest in and of itself, but this analysis will 
be necessary to implement the Hydra String Method because 
we need these results to determine both distext and nimages , 
which will be discussed in the next section.

4.3 � Determining the number of connected saddles

The Hydra String Method calls for extending some number 
of climbing strings from each minimum to find new saddles. 
To choose the number of strings to extend out, it is useful 
to know how many unique saddles are connected to a given 
minimum. That is, how many saddle points lie on the ridge 
of the basin of attraction for any given minimum.

To determine this, we propose the following numerical 
experiment. Again, find a collection of minima to study. 
From each minimum extend out one string and note the sad-
dle it converges to, then send a second, a third, etc. Note how 
many unique saddles are found for the number of extended 
strings. In practice, this can be accomplished by sending out 
a large number of strings all at once and determining how 
many converged to unique saddles after the fact. This should 
be done for a large number of minima because, as before, 
each basin need not be the same as the others. Plotting these 
data as a series of histograms for various numbers of strings 
extended as shown in, Fig. 6, with the number of unique 
saddles found on the x-axis and the number of minima with 
that many unique saddles found on the y-axis will give the 

user an idea of how many unique saddles the basins in the 
PES have.

4.4 � Computational eficiency

Once optimized, the HSM is quite efficient in its execution. 
For our system, with the parameters in Table 1, an individual 
string converges to a saddle after an average of 3.25 × 104 
time steps of the climbing string method. Furthermore the 
strings converge more than 98% of the time. We ran the HSM 
on a cluster of 24 parallel workers for one week. In that time, 
it explored ≈ 1650 minima finding more than 14,000 path-
ways. The test to determine the parameters in Table 1, also 
require a non-trivial amount of computations. Determining 
distest and nimages take, by far, the most computational effort 
requiring almost 1010 time steps of the string method in our 
system. These force calculations can be run in parallel and 
on our system of 24 workers, can be completed in about a 
day.

The strings will sometimes converge to previously found 
saddles, this is discussed in Sect. 5.3.2, and when extending 
24 strings, as we do in this implementation, the strings find 
unique saddles about 50% of the time. This can potentially be 
improved by extending strings in specified directions instead 
of in random directions, however at this point what these 
specified directions should be remains unknown.

5 � Parameters involved in the hydra string 
algorithm and how to choose them

Equipped with the numerical experiments from Sect. 4, we 
will look at each parameter tabulated in Table 1 and describe 
how to choose a value for it. Specifically, we will discuss 
how to choose these parameters for the system described 
in Sect. 3. We find it convenient to group them into three 
categories of parameters: those used to find a saddle, those 
used to ensure the saddle is in the original basin, and those 
used to generate a network of saddles and minima. We dis-
cuss each group in turn.

5.1 � Parameters used to find a saddle

These are the parameters needed to find an individual saddle, 
i.e. those needed to implement the climbing string method. 
They relate to numerically integrating the ordinary differen-
tial equation (ODE) describing the gradient descent of the 
images, and do not require specially designed tests to find 
these parameters.
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Fig. 5   The results of a radial basin size analysis for the PES that 
arises from the system described in Sect. 3. Each blue line represents 
a different minimum that was analyzed for its radial size. This analy-
sis indicates most basins have a radius of approximately 0.15, denoted 
by the dashed line, because beyond this perturbation distance, a rap-
idly increasing fraction of perturbed points fail to return to the origi-
nal minimum
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5.1.1 � �

The value of � controls how quickly the climbing image 
climbs and must be greater than 1, but not too large so as to 
cause the ODE solver to become unstable, preventing the 
climbing image from converging. Too small a value will 
cause a slower convergence. We use the typical value of 2 
since this reflects the descent direction into the ascent direc-
tion, and the values of the other parameters can be tailored 
around this choice.

5.1.2 � dt

The size of a time step of the climbing string and gradient 
descent ODE solver should be chosen by considering the 
normal accuracy, convergence, and stability issues: not too 
small to have an excessive time to convergence and not too 
large to become unstable. The value of dt should also be 
chosen such that the maximum movement of an image along 
the string during a gradient descent is small enough to not 
jump over any important features of the energy landscape. 
We used dt = 10−3.

5.1.3 � toldiff

The criterion to stop the evolution of the climbing or 
descending string is set by the difference in euclidean dis-
tance of an image along the string between two consecutive 
time steps. That is, how much an image moves between two 
consecutive time steps (including both ODE movement and 
interpolation of the string images). This parameter should 
be smaller than the smallest feature of the PES one wishes 

to resolve but also large enough that the string converges in 
a reasonable amount of time. The results of the experiment 
in Sect. 4.2 can help determine the sizes of these smallest 
features. We found that 10−8 was a good balance between 
these conflicting goals. Note we choose not to terminate the 
string evolution early if the end is nearing an already-found 
minima/saddle point, as the calculation of distances is com-
putationally expensive and potentially undesirable depend-
ing on how the algorithm is parallelized.

5.1.4 � nstepmax

The maximum number of time steps allowed in the string 
evolution ODE solver needs to be large enough to allow con-
vergence for most strings sent out during the snaking string 
algorithm. However, too large of a value leads to unneces-
sary computational load from runaway strings that have gone 
awry for one reason or another. This parameter is directly 
affected by dt, � , and distext . Thus, it should be chosen after 
suitable values of those parameters have been chosen. After 
finding the maximum number of time steps needed for a 
typical string evolution, via computational trials, a moderate 
margin should be added to this maximum to get a starting 
value of nstepmax . The competing goals of minimizing com-
putation time and allowing enough strings to converge to 
obtain a representative sample of the saddles in a system 
must be balanced in choosing a value of this parameter. We 
used 105 in our system.

5.2 � Parameters to ensure a saddle is in the original 
basin

These two parameters, distext and nimages , ensure that the 
initial climbing string is perturbed far enough away from 
the originating minimum (or initial string from a saddle) to 
allow for efficient climbing speed away from the locally flat 
region surrounding the minimum (or saddle), but also that 
the string has enough images to resolve the basin along this 
initial perturbation to be truncated if the string is not mono-
tonic in energy. These two values vary based on a granular 
system’s parameters such as particle radii, number of par-
ticles, etc. and will vary for different sorts of PESs. It is at 
this point that the analysis described in Sect. 4.2 should be 
performed. Looking at the results of this analysis in Fig. 5, 
we need to decide what the characteristic radial size across 
all of these basins is. Each blue line corresponds to a sin-
gle minimum. The characteristic radial size across all these 
basins is taken to be 0.15, or the maximum characteristic 
basin size of all the minimum (i.e. for no minimum do all 
perturbed points return to the original minimum).

Fig. 6   A series of histograms showing the number of minima from 
which a search was started and how many unique saddles were found 
connected to the minimum with a given number of strings extended
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5.2.1 � distext

A good choice is to pick the extension distance as the char-
acteristic radial size across all of the basins. In this case, 
from Fig. 5 we have that distext = 0.15 . Beyond this pertur-
bation distance, a rapidly increasing fraction of perturbed 
points fail to return to the original minimum, which would 
require truncating the initial string for an increasingly large 
fraction of initial perturbations. One could choose larger dis-
tances provided nimages is chosen appropriately. If there are 
enough images, the basin is resolved well enough to locate 
its edge. If a string is initially extended beyond the origi-
nal basin, it will be truncated leaving enough images in the 
original basin so that the string can be re-interpolated and 
continue climbing.

5.2.2 � nimages

The number of images, nimages , should be chosen large 
enough to properly approximate the MEPs. However, too 
many images will lead to an increase in the time spent 
running the algorithm. For larger systems, this can quickly 
become computationally prohibitive. We recommend 
choosing nimages such that the string resolves the smallest 
features of interest in the landscape. Figure 5 shows that 
there are larger and smaller basins, so sending out a string 
the distance of the maximum characteristic basin size may 
miss these smaller basins. To prevent this, one should 
interpolate many images along the string to capture these 
smaller features. In this case, we chose nimages = 10 so that 
an image falls inside these smaller basins; we potentially 
ignore some of the very small basins.

In this case, most of the basins have approximately 
the same structure. That is, they are relatively flat and 
spherical up until about 0.15. If instead there were many 
basins with different structures, one may need to have 
more images to accurately capture the complicated struc-
ture that appears on the ridges of these basins. Our basins 
are quite uniform and so we can choose a small number 
of images without missing many small features. We may 
not accurately resolve the MEP but we are confident we 
find the minima and saddles of interest to our analysis. If 
one desires a more accurate MEP, they should interpolate 
many more images to resolve it more finely. Addition-
ally, the number of images can be dynamically changed 
and clustered around regions of interest. For example, 
the number of images near the climbing image can be 
increased to obtain a more accurate tangent approximation.

The Interplay between distextand nimages Since the energy 
of the climbing string at each image is kept monotonic by 
cutting the string if it ever fails to maintain monotonicity, 
the distext can be chosen to be larger than the characteristic 

radial size of the smallest basin as long as the string 
resolves the smallest basins of interest since the string 
will be cut if it fails to remain monotonic in energy. For 
example, the distext can be chosen to be 0.2 instead of 0.15. 
We can then interpolate more images, say nimages = 15 , and 
if the string leaves a smaller basin, the string should detect 
that it has left the basin, because the energy fails to be 
monotonic, and cut itself. Overestimating the distext allows 
the strings to quickly leave the region with a small gradient 
and having a large nimages prevents the over-extended string 
from leaving the basin.

5.3 � Parameters to make a network of saddles

The Hydra String Method generates a network where sad-
dles and minima are nodes and the minimum energy paths 
between them are the edges. To generate this network, we 
need to decide which minima and saddles are unique from 
one another (as discussed in Sect. 4.1) and we need to find 
the saddles between these minima.

5.3.1 � tolsad∕min

Often, the Hydra String Algorithm finds minima and sad-
dles that are very near to each other in euclidean space with 
nearly exactly the same energies. The question arises, are 
these differences from numerical tolerances or are they in 
fact distinct points? To answer this we proposed the numeri-
cal experiment in Sect. 4.1 to determine a numerical toler-
ance to call these granular configurations degenerate.

The results of such a numerical simulation are shown in 
Fig. 4. Due to the number of saddles included, we zoomed in 
to clearly see the important features. The region with pairwise 
distances between 10−1.5 and 100 are the obviously distinct 
saddles which can be seen by plotting the two configurations 
for a given pair in this region. The region between 10−2.5 and 
10−8 are the obviously degenerate saddles. Again this can be 
seen by plotting both configurations for any given pair in this 
region and noting they overlap almost perfectly. From this, 
we chose tolsad∕min to be 10−2 . All configurations closer than 
10−2 in euclidean distance would be considered degenerate.

This histogram is likely to appear wildly differently for 
different PESs. In the case of a granular material, these 
pairwise differences will change in magnitude based on the 
radii of the particles and the number of particles themselves, 
and thus the dimension of the system. The distance function 
begins to be less useful at higher dimensions and so different 
means to differentiate saddles and minima may be necessary 
for sufficiently large systems. One possible substitute for the 
case of granular materials is to look at the contact matrices 
of the constituent particles and defining configurations with 
different contact matrices to be different. We propose using 
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the distance between configurations as the deciding factor 
instead of the contact matrix because recent work with soft 
spheres found that contact changes do not always correspond 
to a saddle point in the energy landscape [34].

It is important to note how variable this histogram may 
appear because this numerical experiment requires the user 
to apply some knowledge about the PES and the physics 
of the system that gives rise to that PES to interpret this 
plot and choose a value for tolsad∕min . In our application, 
we are not overly concerned with precisely finding the sad-
dles or minima of the granular system. Rather we prefer 
to find many saddles and minima quickly to map out the 
PES and network of connected low energy extrema. Systems 
described by different physical laws or different applications 
may require different considerations.

5.3.2 � nstrings

The number of strings to be sent out from each minimum 
to find new saddles should be large enough to find a sta-
tistically representative sample of the saddles connected to 
a minimum but small enough that not many of the strings 
converge to the same saddle. The analysis described in 
Sect. 4.3 should be performed to help choose the value of 
this parameter. The number of cores on the system should 
also be considered when choosing a value of nstrings , due to 
the parallel nature of the snaking algorithm, a multiple of 
the number of cores may make the execution more efficient.

Following the method outlined in Sect. 4.3, five histograms 
are shown in Fig. 6 generated for 20, 40, 60, 80 and 100 strings. 
The histograms might immediately indicate how many unique 
saddles exist on the ridge of a basin. However, we have found 
that as more strings are extended, there are generally more sad-
dles to be found. We instead find it useful to look at the effi-
ciency of these strings which we define as the fraction of strings 
that find unique saddles. This efficiency is plotted in Fig. 7. 
Choosing an efficiency of 50% (half the maximum) would dic-
tate ns = 20 . Our computing hardware has nodes with 12, 24 
or 36 cores, so we chose nstrings = 24 to take advantage of the 
parallelizability of the Hydra String Method.

One may also want to apply an analysis that reveals how 
good of a sample of the surrounding saddle points has been 
obtained relative to some physically meaningful quantity to 
determine the number of extended strings. For example, has 
a good sampling of possible energy barriers between the 
originating minima and saddle points been obtained? We 
plot the running average energy barrier of all the unique 
found saddles as a function of the number of extended 
strings in Fig. 8 for a few different originating minima. The 
flatness of the line is a rough estimate of the error of the 
average; a relatively flat line indicates enough samples have 
been obtained. From this figure, we can see that the aver-
age energy barrier found levels off at different values for 

different originating minima, but overall, the lines level off 
around 30 or so extended strings. As before, multiples of 12 
are convenient so we might choose nstrings = 36 in this case.

In this system, the histograms from Fig. 6 each appear 
largely uniformly distributed. However, we have also ana-
lyzed systems with bi-modal or heavily tailed distributions. 
So, one should look at these underlying histograms before 
immediately creating the efficiency plot to find a value for 
nstrings as one may need a different measure of the average 
than a simple mean to effectively create this efficiency plot.

One must also consider what is more important in their 
analysis of their PES. Is it more important to find every con-
nection between all minima of the PES? Or does one favor 
exploring more of the PES at the cost of missing a few sad-
dles and minima? In our case, we were not concerned with 
finding every hard to find saddle but we do want to find 
the many possibly interconnected saddles between minima. 
So, we chose an intermediate goal, finding many but not all 
minima and the connecting saddles.

6 � Discussion

Choosing the various parameters in the Hydra String Method 
allows it to be adapted to different goals such as short range 
accuracy or long range exploration. Thus one can choose if it 
is more important to painstakingly map out every minimum 
and saddle point in your network? Or is it more important to 
find many minima and saddle points far from the initial point 
from which the Hydra String Method begins? These conflict-
ing goals appear several times in the Hydra String Method. 
Does one choose a short extension distance to ensure no 
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nearby saddles are missed? Or does one pick a large value to 
quickly find further away saddles? Does one extend a large 
number of strings to find as many connected saddles as pos-
sible? Or a few to find the most common saddle points and 
move further into the PES? And so on.

In our case, we are analyzing the PES of a collection of 
soft spheres to map out various transition pathways the sys-
tem can undergo. That is, starting in a stable configuration, 
what are the nearby stable configurations and what unstable 
configurations, saddle points, do they pass through as the 
system moves between these stable configurations? In this 
application, we favor exploring more of the PES instead of 
finding every possible minimum or saddle point. Many of 
those configurations may be unlikely for the granular system 
to reach and are therefore unimportant to our future analyses.

However, for other systems the Hydra String Method 
might be applied to, it may be more important to locate every 
minimum or saddle. For example, when studying a chemical 
system, one might be interested in determining various by-
products or possibly dangerous intermediate products of a 
chemical reaction. In that case, it might be more important 
to find every possible minimum or saddle point.

7 � Conclusion

In this paper we presented the Hydra String Method, a novel 
computational method to autonomously and efficiently map 
the minima and first order saddle points of a PES. In doing 
so, we presented a systemic approach to tailor the various 
system specific parameters of the HSM to arbitrary systems 

and demonstrated this approach on an example soft-sphere 
granular system. The results of the above numerical experi-
ments may be very different for other systems with differ-
ent potential functions, such as a pairwise Lennard-Jones 
potential between particles, commonly used in bubbles [35] 
and as a model for molecules/atoms in chemistry [36]. This 
broad applicability is one of the major assets of this method.

In our case, we intend to apply this method to granular 
systems to map out the various stable configurations and 
determine the MEPs that connect them. We believe that, 
these MEPs approximate the transition paths the system 
undergoes when sheared slowly and with sufficient damping. 
We hypothesize that the transitions with the lowest energy 
barriers will be the most likely transitions the system will 
undergo when slowly sheared with sufficient damping.

Since this method utilizes the String Method, it inherits 
all of the benefits that the String Method has over other 
saddle finding schemes. Of note are the modular re-inter-
polation of images along the string and the improved sta-
bility. As previously discussed, the interpolation of the 
images along the string can be easily changed from a lin-
ear interpolation to a cubic spline or any other method. 
If desired, the images can be adaptively added to further 
refine highly serpentine paths, removed to save computa-
tional costs, or redistributed to be “bunched up” around 
areas where the landscape may have more intricate struc-
ture or “thinned out” in relatively barren regions.

Finally, the advantage this method gains from its highly 
parallelizable nature and autonomous execution can hardly 
be overstated. The method efficiently realizes computational 
speed ups with growing numbers of parallel cores. The time 
spent climbing and descending strings is much greater than 
the time spent with overhead memory transference and using 
a list of unexplored minima to direct the workers mitigates 
wasted computation time spent searching already explored 
regions of the PES. The upfront time spent in picking suitable 
parameters for the method is quickly recouped in the autono-
mous execution of the search. With some intuitive precau-
tions such as a maximum number of time steps allowed on 
the climbing/descending functions (to prevent strings from 
becoming stuck) and a maximum allowed energy along a 
string (to prevent run away strings) the Hydra will happily 
branch out and explore any energy surface.
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