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Realization of novel topological phases in magnonic band structures represents a new opportunity for the
development of spintronics and magnonics with low power consumption. In this work, we show that in
antiparallelly aligned magnetic multilayers, the long-range, chiral dipolar interaction between propagating
magnons generates bulk bands with nonzero Chern integers and magnonic surface states carrying chiral
spin currents. The surface states are highly localized and can be easily toggled between nontrivial and
trivial phases through an external magnetic field. The realization of chiral surface spin currents in this
dipolarly coupled heterostructure represents a magnonic implementation of the coupled wire model that has
been extensively explored in electronic systems. Our work presents an easy-to-implement system for
realizing topological magnonic surface states and low-dissipation spin current transport in a tunable
manner.
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Exploration of novel topological phases in quantum
matter has become one of the central topics in current
condensed matter research, opening up avenues towards
electronics with high speed and low power consumption
[1–5]. Beyond electronic systems, recently topological
phases have also been generalized to various bosonic
systems, including phononic [6,7] and photonic [8,9] crys-
tals. Magnon, the quantized collective excitation of localized
spins, represents a promising candidate for efficient spin
transport [10–12]. However, the inevitable scattering from
phonons, impurities as well as among magnons themselves,
deflects magnons into different directions, greatly limiting
the coherence length of spin waves and preventing long-
range spin signal transfer [13–16]. The formation of topo-
logical magnonic surface states with suppressed scattering is
therefore of great importance for realizing low-dissipation
magnonic devices, which has been proposed in several
works [17–25]. Nevertheless, these proposals require mate-
rials with either special crystal symmetries [17–22] or
artificially modulated structures that demand advanced
nanofabrication techniques [23–25], both of which bring
in difficulties for experimental realization.
In this Letter, we theoretically study the magnonic band

structure and corresponding topological properties of anti-
parallelly aligned magnetic multilayers. We find that the
long-range dipolar interaction between propagating mag-
nons is chiral in nature, whose strength depends on the
wave vector direction and therefore breaks time-reversal
symmetry (TRS). Previously, the dipolar interaction has
been utilized to modulate the magnon transport properties
and induce the magnon spin or thermal Hall effect in both
ferromagnets [26] and antiferromagnets [27], as well as

been discovered to account for the topological origin of
magnetostatic surface spin waves [28,29]. Here we show
that, by correlating the sublattice and momentum degrees of
freedom, the dipolar interaction generates bulk bands with
nonzero Chern integers and ultralocalized magnonic surface
states that carry chiral spin currents. Through an external
magnetic field, the topological phase of the magnonic band
can be switched, which therefore provides a tunable and
efficient way for transferring spin angular momenta in this
synthetic antiparallelly aligned heterostructure.
The magnetic multilayers we study are shown in Fig. 1(a),

where the neighboring layers possess antiparallel equilib-
rium magnetic moments due to antiferromagnetic interfacial
exchange, as demonstrated in several recent experiments
[30–32]. An external magnetic field applied along the y axis
always aligns the higher- (lower-) moment layers parallel
(antiparallel) to it. The external field strength is below
the critical value for any spin-flop transition, ensuring the
stability of antiparallel configuration throughout the Letter.
The layers with the same equilibrium moment orientations
have entirely identical properties including their material
composition and thickness, providing the system with
periodicity along the z direction, and allowing us to define
unit cells with thickness of d ¼ d1 þ d2, as shown in red
frames in Fig. 1(a).
We start by considering the simplified case, where the

magnetic moment distribution along the y and z axes within
the same layer is uniform, i.e., the lowest-order standing
wave mode. Consequently, magnons are confined to trans-
port along the x axis in each individual layer. Meanwhile, it
is assumed that each layer is infinitely long along the x axis,
which is applicable to the regions far away from film edges
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in the real world. Considering intrinsic exchange modes in
the absence of interlayer interactions, we can write the
magnonic Hamiltonian for the multilayers as Ĥ0 ¼P

kx;j;n ωjb
†
jn;kx

bjn;kx , where b†jn;kx is the creation operator
for a circularly polarized magnon with wave vector kx in the
jth layer (j ¼ 1, 2 for sublattice indices) of the nth cell
(n ¼ 1; 2;…; N for cell indices), and ωj ¼ Ajk2x þ Ωj

stems from the intralayer exchange interaction and the
effective static field experienced by each sublattice [33].
Here, the coefficient Aj is defined as Aj ¼ 2Aex

j γ=Msj, with
the exchange stiffness constant Aex

j , electron’s gyromag-
netic ratio γ, and the saturated magnetization Msj, while
Ωj ¼ γμ0Hj is the Larmor precession frequency, with
vacuum permeability μ0, and the effective static field Hj.
Because of the dipolar interaction, magnons in neighboring
layers will get coupled. As previous studies reveal [37–40],
one important feature associated with the dipolar field from
propagating magnons is the chirality—whether it emerges
on the top or bottom side of the thin film depends on
the sign of kx and the equilibrium moment orientation,
as illustrated in Figs. 1(b) and 1(c). With the nearest
neighboring approximation [33], the dipolar interaction
Hamiltonian for the multilayers can be written as Ĥint ¼P

kx;nðΔSb
†
1n;kx

b2n;kx þ ΔDb
†
1n;kx

b2;n−1;kx þ H:c:Þ, with the
intracell (intercell) coupling strength ΔSðDÞ. When jkxj is
not large compared with the Brillouin zone (BZ) boundary,

ΔSðDÞ ¼B ·ðjkxj�kxÞ, with B¼γμ0N1N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ms1d1Ms2d2

p
=2

and Nj ¼ ð1 − e−jkxjdjÞ=ðjkxjdjÞ [33]. In sharp contrast to
the standard analytic expressions that describe local inter-
actions in electronic systems, ΔSðDÞ here contains a
nonanalytic function of jkxj � kx, which is originated from
the long-range nature of dipolar fields.
Combining Ĥ0 and Ĥint, adopting periodic boundary

condition (PBC) along the z axis, and implementing
Fourier transformation, i.e., bjn;kx ¼ð1= ffiffiffiffi

N
p ÞPkz βj;ke

ikznd

with k ¼ kxx̂þ kzẑ, we get the bulk magnonic Hamiltonian
for the multilayers on the basis of βk ¼ ½β1;k; β2;k�T :

Ĥbulk ¼
X
k

β†kHbulkðkÞβk;

HbulkðkÞ ¼
�

ω1 ΔS þ ΔDe−ikzd

ΔS þ ΔDeikzd ω2

�
: ð1Þ

Equation (1) coincides with the expression of the celebrated
one-dimensional Su-Schrieffer-Heeger (1D SSH) model
[41], except that our model applies to a two-dimensional
(2D) case with both ωj and ΔSðDÞ being functions of kx. In
the SSH model, the existence of surface or edge states is
determined by the relative magnitude of ΔS and ΔD. In
our case, this is further controlled by the sign of kx, as one
can easily verify ΔS > ΔD for kx > 0, and ΔS < ΔD for
kx < 0. Solving the eigenvalue equation Hbulkjχi ¼ ωjχi,
we can get the higher (lower) eigenfrequency ω� ¼
ðω1 þ ω2Þ=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω1 − ω2Þ2=4þ 4B2k2x

p
, either of which

has no dispersions along the kz direction, suggesting a flat
band when kx is fixed. Since our model is 2D in the xz
plane with broken TRS, we can calculate the Chern integer
as the topological invariant. Denoting jχ−i as the eigenstate
corresponding to ω−, we can calculate the Chern integer
Ch− ¼ ð2πÞ−1∬BZΩ−ðkÞdkxdkz for the lower band, where
Ω−ðkÞ ¼ i∂kxhχ−j∂kz jχ−i − i∂kzhχ−j∂kx jχ−i is the Berry
curvature. The Chern integer is evaluated to be

Ch− ¼
8<
:

1 ðA1 > A2; H1 < H2Þ
−1 ðA1 < A2; H1 > H2Þ
0 ðotherwiseÞ

; ð2Þ

suggesting that the bulk bands possess nonzero Chern
integers when ðA1 − A2ÞðH1 −H2Þ < 0.
The surface states can be explicitly obtained by consid-

ering multilayers with open boundary condition (OBC)
along the z direction. The magnonic Hamiltonian for the
N-cell multilayers is Ĥ ¼ Ĥ0 þ Ĥint ¼

P
kx b

†
kx
HðkxÞbkx ,

where bkx ¼ ½b11;kx ; b21;kx ;…; b1N;kx ; b2N;kx �T and HðkxÞ is
a 2N × 2N matrix. Solving the eigenvalue equation
Hjχi ¼ ωjχi, we can get 2N eigenfrequencies and corre-
sponding eigenstates. When kx < 0, corresponding to
ΔS ¼ 0 and ΔD > 0, two surface states emerge, which

FIG. 1. (a) Scheme of antiparallelly aligned magnetic multi-
layers. The blue (gray) blocks with thickness of d1ð2Þ form the 1st
(2nd) sublattice. The equilibrium moments in the 1st (2nd)
sublattice are parallel to the þy (−y) direction, represented by
⊗ (⊙) symbols. The red, solid frames correspond to unit cells
(indexed by n ¼ 1; 2;…; N) with thickness of d ¼ d1 þ d2. The
green, dotted frames select two layers belonging to neighboring
cells with intercell dipolar coupling. (b) Scheme of dipolar fields
(green lines and arrows) generated by propagating magnons with
kx > 0 in two layers within a cell. The red arrows represent the
deviations of magnetic moments from their equilibrium orienta-
tions, which propagates from left to right as a function of time
(the traces are represented by black, dotted circles). Here, the two
layers experience finite dipolar fields from each other, corre-
sponding to ΔS > 0. Meanwhile, they experience zero dipolar
fields from magnons in the layers of neighboring cells, corre-
sponding to ΔD ¼ 0. (c) Scheme of dipolar fields generated by
propagating magnons with kx < 0 for two layers within a cell,
corresponding to ΔS ¼ 0 and ΔD > 0.
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are separately localized in the 1st layer of the 1st cell
(bottom layer) with ω1e ¼ ω1, jχ1ei ¼ ½1; 0; 0;…; 0�T , and
in the 2nd layer of the Nth cell (top layer) with ω2e ¼ ω2,
jχ2ei ¼ ½0; 0;…; 0; 1�T . We note that both of them are
localized on the surfaces with little decay into the bulk.
Figures 2(a)–2(c) show the evolution of the magnonic band
structure, with a varying external field H. In this calcu-
lation, we consider an example consisting of alternating
10 nm yttrium iron garnet (YIG, 1st sublattice) and 10 nm
permalloy (Py, 2nd sublattice) thin films, with reported
material parameters of Aex

1 ¼ 3.7 × 10−12 J=m, Aex
2 ¼

8.7 × 10−12 J=m, Ms1 ¼ 1.4 × 105 A=m, and Ms2 ¼ 7.4 ×
105 A=m [42,43]. An external magnetic field is assumed
along the -y direction. The antiferromagnetic exchange
coupling constant at the YIG/Py interface is taken to be
J ¼ −8.6 × 104 J=m2 [32], which gives rise to the static
interfacial exchange field Hex

j ¼ 2jJj=ðμ0MsjdjÞ experi-
enced by each sublattice, further leading to the total
effective static field Hj ¼ Hex

j ∓ H. As the Chern integer
calculation shows, the topology of the magnonic band
depends on the sign of ðA1 − A2ÞðH1 −H2Þ, which can be
further controlled by tuning the relative magnitude of H1

and H2 through H, given that A1 − A2 > 0 is fixed. In
Fig. 2(a), under H ¼ 5 × 105 A=m, corresponding to
H1 < H2, the bulk bands (black lines) are inverted around
kx ¼ 0 and two surface bands (red and blue lines) emerge
in the kx < 0 half-space, which cross each other and form a
degenerate point, i.e., a tilted Dirac cone, without pairing at
its time-reversal point due to broken TRS. When H is
reduced such that H1 ¼ H2, a topological transition hap-
pens [Fig. 2(b)], where the bulk bands become degenerate
at kx ¼ 0, corresponding to a gap closing. With further
decreasing H such that H1 > H2 [Fig. 2(c)], there is no
bulk band inversion and the surface bands do not cross each
other in the kx < 0 half-space, representing a topologically
trivial system.
The formation of ultralocalized surface states in the

magnetic multilayers can be further understood as a mag-
nonic implementation of the coupled wire model that has
been widely investigated in the circumstance of quantum
Hall effect (QHE) in electronic systems [44–47]. We begin
by regarding the multilayers as an array of 2N noninteracting
one-dimensional wires, with single-particle magnonic
dispersion relations ω1ð2ÞðkxÞ, which cross each other in
the condition of ðA1 − A2ÞðH1 −H2Þ < 0. Because of the
interlayer dipolar interaction, magnons around the band-
crossing points in neighboring layers get coupled, as
shown in Fig. 2(d). As discussed earlier, depending on the
sign of kx, either ΔS or ΔD reduces to zero. For right-
moving magnons (kx > 0), ΔD ¼ 0 and ΔS > 0, the
coupling only happens within the same cell [red arrows
in Fig. 2(d)], while for left-moving magnons (kx < 0),
ΔS ¼ 0 and ΔD > 0, the coupling only happens between
neighboring cells (green arrows). Consequently, the left-
moving magnons in the bottom and top layers are left
uncoupled and form a pair of surface states. Considering
that two surface layers possess opposite equilibrium
moments, the surface magnonic states would carry spin
currents with opposite directions. This kind of chiral
surface spin currents still exist even if the number of
layers is odd, as shown in Fig. 2(e). In this case, the
surface states have opposite velocities but the same
equilibrium moment orientations, hence still carrying
opposite spin currents. The formation of surface magnonic
states and chiral spin currents here is similar to the
realization of QHE in electronic systems, where the left-
and right-moving electrons in neighboring wires are
coupled together due to interchannel scattering.
Until now, we have demonstrated tunable magnonic

Chern bands and ultralocalized surface states carrying
chiral spin currents in the 2D simplified case. In the
following, we extend our discussion to a generic case
where magnons can propagate within the whole xy plane in
each individual layer, i.e., with in-plane momenta
kk ¼ kxx̂þ kyŷ, and both the intralayer dipolar interaction
and dynamic interfacial exchange interaction are included.
With PBC along the z axis, the bulk magnonic Hamiltonian

FIG. 2. (a)–(c) Evolution of the magnonic band structure with a
varying external field H. The black lines correspond to bulk
states, and the red (blue) line corresponds to the surface state
localized in the bottom (top) layer. (a) and (c) The topologically
nontrivial and trivial phases, respectively. (b) The topological
transition. (d) Coupled wire construction with 2N total layers.
Because of the chirality of the interlayer dipolar interaction, right-
moving magnons get coupled (red arrows) within the same cell,
while left-moving magnons get coupled (green arrows) between
neighboring cells. Two surface states are therefore left uncoupled,
on which the symbols of⊗ and⊙ show the orientations of carried
spins. (e) Coupled wire construction with 2N − 1 total layers.
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for the three-dimensional (3D) multilayers can be
expressed in the Bogoliubov–de Gennes formalism:

Ĥ0
bulk ¼

1

2

X
k

½ β†k β−k � H0
bulkðkÞ

�
βk

β†−k

�
;

H0
bulkðkÞ ¼

�
hðkÞ bðkÞ

b�ð−kÞ h�ð−kÞ

�
; ð3Þ

with k ¼ kk þ kzẑ. The diagonal block hðkÞ in Eq. (3) has
the form of

hðkÞ ¼
�

ω0
1 Δ0

S þ Δ0
De

−ikzd

Δ0
S þ Δ0

De
ikzd ω0

2

�
; ð4Þ

with

ω0
j ¼ Ajk2k þ Ωj þ

γμ0Msj

2

�
ð1 − N0

jÞ
k2x
k2k

þ N0
j

�
;

Δ0
SðDÞ ¼

B0

2
·

�
kk þ

k2x
kk

� 2kx

�
; ð5Þ

where N0
j and B0 are obtained by replacing jkxj with jkkj in

Nj and B. The off-diagonal block bðkÞ in Eq. (3) has the
form of

bðkÞ ¼
�

δ1 δ0 · ð1þ e−ikzdÞ
δ0 · ð1þ eikzdÞ δ2

�
; ð6Þ

with

δj ¼
γμ0Msj

2

�
ð1 − N0

jÞ
k2x
k2k

− N0
j

�
;

δ0 ¼ γμ0
2

Y
j¼1;2

�
f0j · ðkk −

k2x
kk
Þ þHex

j

�
1=2

; ð7Þ

where f0
1ð2Þ ¼ Ms2ð1Þd2ð1ÞN0

1N
0
2=2. The derivation for

Eqs. (3)–(7) is presented in Ref. [33]. Here, we note that
the intralayer dipolar interaction not only modifies ω0

j by
adding a term proportional to Msj, but also mixes magnon
modes with opposite handedness, i.e., particles and holes,
within the same layer, leading to nonzero δj in bðkÞ. One
can also verify that the contribution of the static intralayer
dipolar field (also known as demagnetization field) changes
the total effective field fromHj to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HjðHj þMsjÞ

p
. On the

other hand, the dynamic interfacial exchange interaction
and the interlayer dipolar interaction under finite ky give rise
to the terms proportional to δ0 in bðkÞ, coupling magnon
modes with opposite handedness in neighboring layers. For
the usual cases with large enough effective static field that
we are interested in, the difference between frequencies of
right- and left-handed magnon modes is large, so bðkÞ in

Eq. (3) plays a role as a weak perturbation, which does not
lead to extra band inversions. Therefore approximately, the
existence of surface states is still governed by the relative
magnitude ofΔ0

S and Δ0
D in hðkÞ, which is further controlled

by the sign of kx according to Eq. (5).
With OBC along the z direction, the magnonic band

structure can be solved through numerical methods based
on the Cholesky decomposition [48]. Using the same
parameters as in Figs. 2(a)–2(c), we plot the magnonic
band structure in Figs. 3(a)–3(d) with fixed ky for two
different H, when all the interactions are included. We see
that after extending to a generic 3D case, the surface states
still exist in the kx < 0 half-space. When H remains the
same and ky varies, the magnonic band keeps its topologi-
cal properties, either with nontrivial [Figs. 3(a) and 3(b)] or
trivial [Figs. 3(c) and 3(d)] surface states, suggesting that
the 3D multilayers can be regarded as the magnonic analog
of stacked 2D Chern “insulators” along the y direction [49].
Similar to the 2D case discussed earlier, the topological
phases are still tunable through H, as illustrated by the
comparison of Figs. 3(a) and 3(c). The subtle difference for
the 3D case is that with finite ky, Δ0

S no longer vanishes for
kx < 0, and the surface states therefore extend into the bulk
with an exponential decay in magnitude, jχ1eiðzÞ ∼ e−z=ξ

FIG. 3. (a)–(d) Magnonic band structure for 3D multilayers
with N ¼ 20 cells when all the interactions are included. Panels
(a) and (b) correspond to the topologically nontrivial phase with
H ¼ 5 × 105 A=m, while (c) and (d) correspond to the trivial
phase with H ¼ 5 × 104 A=m. ky is fixed at 0 for (a) and (c), and
is fixed at �1.0 × 108 m−1 for (b) and (d). (e) Decay length ξ of
surface states as a function of jky=kxj.
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and jχ2eiðzÞ ∼ e−ðz−NdÞ=ξ, where ξ ¼ d= logðΔ0
D=Δ0

SÞ is the
decay length plotted in Fig. 3(e). ξ ≪ d for ky < kx
indicates the surfaces states are still highly localized.
In order to experimentally identify the topological

phases, one can characterize the magnonic band structure
using Brillouin-light-scattering spectroscopy [50], to pin-
point the surface states in the gap of bulk states, as
predicted in Figs. 2 and 3. Meanwhile, when the system
is in the nontrivial phase, one can observe the perfect
nonreciprocity and enhanced coherence length of topologi-
cal surface magnons by measuring magnon transmission
with propagating spin wave spectroscopy [12,51]. To
further show the viability of these proposed experimental
approaches, we carry out micromagnetic simulations using
the standard micromagnetic package MuMax3 [33,52],
which shows magnonic bands and surface states that are
highly consistent with our theoretical predictions.
In summary, we study the magnonic band structure and

corresponding topological properties in antiparallelly
aligned magnetic multilayers. We demonstrate that the
long-range, chiral interlayer dipolar interaction generates
bulk bands with nonzero Chern integers and ultralocalized
surface states carrying chiral spin currents. The topology of
the magnonic band can be switched between nontrivial and
trivial phases through an external field. We also reveal that
the multilayer system represents a magnonic implementa-
tion of the coupled wire model. We believe our study
provides an easy-to-implement system for realizing topo-
logically protected magnonic surface states and low-
dissipation spin transport in a tunable manner, which is
expected to benefit various areas of modern spintronics,
particularly serving as an ultimate solution for on-chip
nonreciprocal microwave components in both classical and
quantum domains.
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